]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Remove kernel support for M:N threading.
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31
32 /*
33  * Implementation of the `witness' lock verifier.  Originally implemented for
34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35  * classes in FreeBSD.
36  */
37
38 /*
39  *      Main Entry: witness
40  *      Pronunciation: 'wit-n&s
41  *      Function: noun
42  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *          testimony, witness, from 2wit
44  *      Date: before 12th century
45  *      1 : attestation of a fact or event : TESTIMONY
46  *      2 : one that gives evidence; specifically : one who testifies in
47  *          a cause or before a judicial tribunal
48  *      3 : one asked to be present at a transaction so as to be able to
49  *          testify to its having taken place
50  *      4 : one who has personal knowledge of something
51  *      5 a : something serving as evidence or proof : SIGN
52  *        b : public affirmation by word or example of usually
53  *            religious faith or conviction <the heroic witness to divine
54  *            life -- Pilot>
55  *      6 capitalized : a member of the Jehovah's Witnesses 
56  */
57
58 /*
59  * Special rules concerning Giant and lock orders:
60  *
61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
62  *    no other mutex may be held when Giant is acquired.
63  *
64  * 2) Giant must be released when blocking on a sleepable lock.
65  *
66  * This rule is less obvious, but is a result of Giant providing the same
67  * semantics as spl().  Basically, when a thread sleeps, it must release
68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69  * 2).
70  *
71  * 3) Giant may be acquired before or after sleepable locks.
72  *
73  * This rule is also not quite as obvious.  Giant may be acquired after
74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
75  * locks may always be acquired while holding a sleepable lock.  The second
76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
81  * will not result in a lock order reversal.
82  */
83
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86
87 #include "opt_ddb.h"
88 #include "opt_hwpmc_hooks.h"
89 #include "opt_witness.h"
90
91 #include <sys/param.h>
92 #include <sys/bus.h>
93 #include <sys/kdb.h>
94 #include <sys/kernel.h>
95 #include <sys/ktr.h>
96 #include <sys/lock.h>
97 #include <sys/malloc.h>
98 #include <sys/mutex.h>
99 #include <sys/priv.h>
100 #include <sys/proc.h>
101 #include <sys/sysctl.h>
102 #include <sys/systm.h>
103
104 #include <ddb/ddb.h>
105
106 #include <machine/stdarg.h>
107
108 /* Note that these traces do not work with KTR_ALQ. */
109 #if 0
110 #define KTR_WITNESS     KTR_SUBSYS
111 #else
112 #define KTR_WITNESS     0
113 #endif
114
115 /* Easier to stay with the old names. */
116 #define lo_list         lo_witness_data.lod_list
117 #define lo_witness      lo_witness_data.lod_witness
118
119 /* Define this to check for blessed mutexes */
120 #undef BLESSING
121
122 #define WITNESS_COUNT 1024
123 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
124 /*
125  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
126  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
127  * probably be safe for the most part, but it's still a SWAG.
128  */
129 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
130
131 #define WITNESS_NCHILDREN 6
132
133 struct witness_child_list_entry;
134
135 struct witness {
136         const   char *w_name;
137         struct  lock_class *w_class;
138         STAILQ_ENTRY(witness) w_list;           /* List of all witnesses. */
139         STAILQ_ENTRY(witness) w_typelist;       /* Witnesses of a type. */
140         struct  witness_child_list_entry *w_children;   /* Great evilness... */
141         const   char *w_file;
142         int     w_line;
143         u_int   w_level;
144         u_int   w_refcount;
145         u_char  w_Giant_squawked:1;
146         u_char  w_other_squawked:1;
147         u_char  w_same_squawked:1;
148         u_char  w_displayed:1;
149 };
150
151 struct witness_child_list_entry {
152         struct  witness_child_list_entry *wcl_next;
153         struct  witness *wcl_children[WITNESS_NCHILDREN];
154         u_int   wcl_count;
155 };
156
157 STAILQ_HEAD(witness_list, witness);
158
159 #ifdef BLESSING
160 struct witness_blessed {
161         const   char *b_lock1;
162         const   char *b_lock2;
163 };
164 #endif
165
166 struct witness_order_list_entry {
167         const   char *w_name;
168         struct  lock_class *w_class;
169 };
170
171 #ifdef BLESSING
172 static int      blessed(struct witness *, struct witness *);
173 #endif
174 static int      depart(struct witness *w);
175 static struct   witness *enroll(const char *description,
176                                 struct lock_class *lock_class);
177 static int      insertchild(struct witness *parent, struct witness *child);
178 static int      isitmychild(struct witness *parent, struct witness *child);
179 static int      isitmydescendant(struct witness *parent, struct witness *child);
180 static int      itismychild(struct witness *parent, struct witness *child);
181 static void     removechild(struct witness *parent, struct witness *child);
182 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
183 static const char *fixup_filename(const char *file);
184 static struct   witness *witness_get(void);
185 static void     witness_free(struct witness *m);
186 static struct   witness_child_list_entry *witness_child_get(void);
187 static void     witness_child_free(struct witness_child_list_entry *wcl);
188 static struct   lock_list_entry *witness_lock_list_get(void);
189 static void     witness_lock_list_free(struct lock_list_entry *lle);
190 static struct   lock_instance *find_instance(struct lock_list_entry *lock_list,
191                                              struct lock_object *lock);
192 static void     witness_list_lock(struct lock_instance *instance);
193 #ifdef DDB
194 static void     witness_leveldescendents(struct witness *parent, int level);
195 static void     witness_levelall(void);
196 static void     witness_displaydescendants(void(*)(const char *fmt, ...),
197                                            struct witness *, int indent);
198 static void     witness_display_list(void(*prnt)(const char *fmt, ...),
199                                      struct witness_list *list);
200 static void     witness_display(void(*)(const char *fmt, ...));
201 static void     witness_list(struct thread *td);
202 #endif
203
204 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
205
206 /*
207  * If set to 0, witness is disabled.  If set to a non-zero value, witness
208  * performs full lock order checking for all locks.  At runtime, this
209  * value may be set to 0 to turn off witness.  witness is not allowed be
210  * turned on once it is turned off, however.
211  */
212 static int witness_watch = 1;
213 TUNABLE_INT("debug.witness.watch", &witness_watch);
214 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
215     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
216
217 #ifdef KDB
218 /*
219  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
220  * to drop into kdebug() when:
221  *      - a lock hierarchy violation occurs
222  *      - locks are held when going to sleep.
223  */
224 #ifdef WITNESS_KDB
225 int     witness_kdb = 1;
226 #else
227 int     witness_kdb = 0;
228 #endif
229 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
230 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
231
232 /*
233  * When KDB is enabled and witness_trace is set to 1, it will cause the system
234  * to print a stack trace:
235  *      - a lock hierarchy violation occurs
236  *      - locks are held when going to sleep.
237  */
238 int     witness_trace = 1;
239 TUNABLE_INT("debug.witness.trace", &witness_trace);
240 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
241 #endif /* KDB */
242
243 #ifdef WITNESS_SKIPSPIN
244 int     witness_skipspin = 1;
245 #else
246 int     witness_skipspin = 0;
247 #endif
248 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
249 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
250     &witness_skipspin, 0, "");
251
252 static struct mtx w_mtx;
253 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
254 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
255 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
256 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
257 static struct witness_child_list_entry *w_child_free = NULL;
258 static struct lock_list_entry *w_lock_list_free = NULL;
259
260 static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
261 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
262 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
263 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
264     "");
265 SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
266     &w_child_free_cnt, 0, "");
267 SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
268     "");
269
270 static struct witness w_data[WITNESS_COUNT];
271 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
272 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
273
274 static struct witness_order_list_entry order_lists[] = {
275         /*
276          * sx locks
277          */
278         { "proctree", &lock_class_sx },
279         { "allproc", &lock_class_sx },
280         { "allprison", &lock_class_sx },
281         { NULL, NULL },
282         /*
283          * Various mutexes
284          */
285         { "Giant", &lock_class_mtx_sleep },
286         { "pipe mutex", &lock_class_mtx_sleep },
287         { "sigio lock", &lock_class_mtx_sleep },
288         { "process group", &lock_class_mtx_sleep },
289         { "process lock", &lock_class_mtx_sleep },
290         { "session", &lock_class_mtx_sleep },
291         { "uidinfo hash", &lock_class_mtx_sleep },
292         { "uidinfo struct", &lock_class_mtx_sleep },
293 #ifdef  HWPMC_HOOKS
294         { "pmc-sleep", &lock_class_mtx_sleep },
295 #endif
296         { NULL, NULL },
297         /*
298          * Sockets
299          */
300         { "accept", &lock_class_mtx_sleep },
301         { "so_snd", &lock_class_mtx_sleep },
302         { "so_rcv", &lock_class_mtx_sleep },
303         { "sellck", &lock_class_mtx_sleep },
304         { NULL, NULL },
305         /*
306          * Routing
307          */
308         { "so_rcv", &lock_class_mtx_sleep },
309         { "radix node head", &lock_class_mtx_sleep },
310         { "rtentry", &lock_class_mtx_sleep },
311         { "ifaddr", &lock_class_mtx_sleep },
312         { NULL, NULL },
313         /*
314          * Multicast - protocol locks before interface locks, after UDP locks.
315          */
316         { "udpinp", &lock_class_mtx_sleep },
317         { "in_multi_mtx", &lock_class_mtx_sleep },
318         { "igmp_mtx", &lock_class_mtx_sleep },
319         { "if_addr_mtx", &lock_class_mtx_sleep },
320         { NULL, NULL },
321         /*
322          * UNIX Domain Sockets
323          */
324         { "unp", &lock_class_mtx_sleep },
325         { "so_snd", &lock_class_mtx_sleep },
326         { NULL, NULL },
327         /*
328          * UDP/IP
329          */
330         { "udp", &lock_class_mtx_sleep },
331         { "udpinp", &lock_class_mtx_sleep },
332         { "so_snd", &lock_class_mtx_sleep },
333         { NULL, NULL },
334         /*
335          * TCP/IP
336          */
337         { "tcp", &lock_class_mtx_sleep },
338         { "tcpinp", &lock_class_mtx_sleep },
339         { "so_snd", &lock_class_mtx_sleep },
340         { NULL, NULL },
341         /*
342          * SLIP
343          */
344         { "slip_mtx", &lock_class_mtx_sleep },
345         { "slip sc_mtx", &lock_class_mtx_sleep },
346         { NULL, NULL },
347         /*
348          * netatalk
349          */
350         { "ddp_list_mtx", &lock_class_mtx_sleep },
351         { "ddp_mtx", &lock_class_mtx_sleep },
352         { NULL, NULL },
353         /*
354          * BPF
355          */
356         { "bpf global lock", &lock_class_mtx_sleep },
357         { "bpf interface lock", &lock_class_mtx_sleep },
358         { "bpf cdev lock", &lock_class_mtx_sleep },
359         { NULL, NULL },
360         /*
361          * NFS server
362          */
363         { "nfsd_mtx", &lock_class_mtx_sleep },
364         { "so_snd", &lock_class_mtx_sleep },
365         { NULL, NULL },
366
367         /*
368          * IEEE 802.11
369          */
370         { "802.11 com lock", &lock_class_mtx_sleep},
371         { NULL, NULL },
372         /*
373          * Network drivers
374          */
375         { "network driver", &lock_class_mtx_sleep},
376         { NULL, NULL },
377
378         /*
379          * Netgraph
380          */
381         { "ng_node", &lock_class_mtx_sleep },
382         { "ng_worklist", &lock_class_mtx_sleep },
383         { NULL, NULL },
384         /*
385          * CDEV
386          */
387         { "system map", &lock_class_mtx_sleep },
388         { "vm page queue mutex", &lock_class_mtx_sleep },
389         { "vnode interlock", &lock_class_mtx_sleep },
390         { "cdev", &lock_class_mtx_sleep },
391         { NULL, NULL },
392         /*
393          * kqueue/VFS interaction
394          */
395         { "kqueue", &lock_class_mtx_sleep },
396         { "struct mount mtx", &lock_class_mtx_sleep },
397         { "vnode interlock", &lock_class_mtx_sleep },
398         { NULL, NULL },
399         /*
400          * spin locks
401          */
402 #ifdef SMP
403         { "ap boot", &lock_class_mtx_spin },
404 #endif
405         { "rm.mutex_mtx", &lock_class_mtx_spin },
406         { "sio", &lock_class_mtx_spin },
407         { "scrlock", &lock_class_mtx_spin },
408 #ifdef __i386__
409         { "cy", &lock_class_mtx_spin },
410 #endif
411 #ifdef __sparc64__
412         { "pcib_mtx", &lock_class_mtx_spin },
413         { "rtc_mtx", &lock_class_mtx_spin },
414 #endif
415         { "scc_hwmtx", &lock_class_mtx_spin },
416         { "uart_hwmtx", &lock_class_mtx_spin },
417         { "fast_taskqueue", &lock_class_mtx_spin },
418         { "intr table", &lock_class_mtx_spin },
419 #ifdef  HWPMC_HOOKS
420         { "pmc-per-proc", &lock_class_mtx_spin },
421 #endif
422         { "process slock", &lock_class_mtx_spin },
423         { "sleepq chain", &lock_class_mtx_spin },
424         { "umtx lock", &lock_class_mtx_spin },
425         { "rm_spinlock", &lock_class_mtx_spin },
426         { "turnstile chain", &lock_class_mtx_spin },
427         { "turnstile lock", &lock_class_mtx_spin },
428         { "sched lock", &lock_class_mtx_spin },
429         { "td_contested", &lock_class_mtx_spin },
430         { "callout", &lock_class_mtx_spin },
431         { "entropy harvest mutex", &lock_class_mtx_spin },
432         { "syscons video lock", &lock_class_mtx_spin },
433         { "time lock", &lock_class_mtx_spin },
434 #ifdef SMP
435         { "smp rendezvous", &lock_class_mtx_spin },
436 #endif
437 #ifdef __powerpc__
438         { "tlb0", &lock_class_mtx_spin },
439 #endif
440         /*
441          * leaf locks
442          */
443         { "icu", &lock_class_mtx_spin },
444 #if defined(SMP) && defined(__sparc64__)
445         { "ipi", &lock_class_mtx_spin },
446 #endif
447 #ifdef __i386__
448         { "allpmaps", &lock_class_mtx_spin },
449         { "descriptor tables", &lock_class_mtx_spin },
450 #endif
451         { "clk", &lock_class_mtx_spin },
452         { "mprof lock", &lock_class_mtx_spin },
453         { "zombie lock", &lock_class_mtx_spin },
454         { "ALD Queue", &lock_class_mtx_spin },
455 #ifdef __ia64__
456         { "MCA spin lock", &lock_class_mtx_spin },
457 #endif
458 #if defined(__i386__) || defined(__amd64__)
459         { "pcicfg", &lock_class_mtx_spin },
460         { "NDIS thread lock", &lock_class_mtx_spin },
461 #endif
462         { "tw_osl_io_lock", &lock_class_mtx_spin },
463         { "tw_osl_q_lock", &lock_class_mtx_spin },
464         { "tw_cl_io_lock", &lock_class_mtx_spin },
465         { "tw_cl_intr_lock", &lock_class_mtx_spin },
466         { "tw_cl_gen_lock", &lock_class_mtx_spin },
467 #ifdef  HWPMC_HOOKS
468         { "pmc-leaf", &lock_class_mtx_spin },
469 #endif
470         { "blocked lock", &lock_class_mtx_spin },
471         { NULL, NULL },
472         { NULL, NULL }
473 };
474
475 #ifdef BLESSING
476 /*
477  * Pairs of locks which have been blessed
478  * Don't complain about order problems with blessed locks
479  */
480 static struct witness_blessed blessed_list[] = {
481 };
482 static int blessed_count =
483         sizeof(blessed_list) / sizeof(struct witness_blessed);
484 #endif
485
486 /*
487  * List of locks initialized prior to witness being initialized whose
488  * enrollment is currently deferred.
489  */
490 STAILQ_HEAD(, lock_object) pending_locks =
491     STAILQ_HEAD_INITIALIZER(pending_locks);
492
493 /*
494  * This global is set to 0 once it becomes safe to use the witness code.
495  */
496 static int witness_cold = 1;
497
498 /*
499  * This global is set to 1 once the static lock orders have been enrolled
500  * so that a warning can be issued for any spin locks enrolled later.
501  */
502 static int witness_spin_warn = 0;
503
504 /*
505  * The WITNESS-enabled diagnostic code.  Note that the witness code does
506  * assume that the early boot is single-threaded at least until after this
507  * routine is completed.
508  */
509 static void
510 witness_initialize(void *dummy __unused)
511 {
512         struct lock_object *lock;
513         struct witness_order_list_entry *order;
514         struct witness *w, *w1;
515         int i;
516
517         /*
518          * We have to release Giant before initializing its witness
519          * structure so that WITNESS doesn't get confused.
520          */
521         mtx_unlock(&Giant);
522         mtx_assert(&Giant, MA_NOTOWNED);
523
524         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
525         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
526             MTX_NOWITNESS | MTX_NOPROFILE);
527         for (i = 0; i < WITNESS_COUNT; i++)
528                 witness_free(&w_data[i]);
529         for (i = 0; i < WITNESS_CHILDCOUNT; i++)
530                 witness_child_free(&w_childdata[i]);
531         for (i = 0; i < LOCK_CHILDCOUNT; i++)
532                 witness_lock_list_free(&w_locklistdata[i]);
533
534         /* First add in all the specified order lists. */
535         for (order = order_lists; order->w_name != NULL; order++) {
536                 w = enroll(order->w_name, order->w_class);
537                 if (w == NULL)
538                         continue;
539                 w->w_file = "order list";
540                 for (order++; order->w_name != NULL; order++) {
541                         w1 = enroll(order->w_name, order->w_class);
542                         if (w1 == NULL)
543                                 continue;
544                         w1->w_file = "order list";
545                         if (!itismychild(w, w1))
546                                 panic("Not enough memory for static orders!");
547                         w = w1;
548                 }
549         }
550         witness_spin_warn = 1;
551
552         /* Iterate through all locks and add them to witness. */
553         while (!STAILQ_EMPTY(&pending_locks)) {
554                 lock = STAILQ_FIRST(&pending_locks);
555                 STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
556                 KASSERT(lock->lo_flags & LO_WITNESS,
557                     ("%s: lock %s is on pending list but not LO_WITNESS",
558                     __func__, lock->lo_name));
559                 lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
560         }
561
562         /* Mark the witness code as being ready for use. */
563         witness_cold = 0;
564
565         mtx_lock(&Giant);
566 }
567 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
568
569 static int
570 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
571 {
572         int error, value;
573
574         value = witness_watch;
575         error = sysctl_handle_int(oidp, &value, 0, req);
576         if (error != 0 || req->newptr == NULL)
577                 return (error);
578         if (value == witness_watch)
579                 return (0);
580         if (value != 0)
581                 return (EINVAL);
582         witness_watch = 0;
583         return (0);
584 }
585
586 void
587 witness_init(struct lock_object *lock)
588 {
589         struct lock_class *class;
590
591         /* Various sanity checks. */
592         class = LOCK_CLASS(lock);
593         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
594             (class->lc_flags & LC_RECURSABLE) == 0)
595                 panic("%s: lock (%s) %s can not be recursable", __func__,
596                     class->lc_name, lock->lo_name);
597         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
598             (class->lc_flags & LC_SLEEPABLE) == 0)
599                 panic("%s: lock (%s) %s can not be sleepable", __func__,
600                     class->lc_name, lock->lo_name);
601         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
602             (class->lc_flags & LC_UPGRADABLE) == 0)
603                 panic("%s: lock (%s) %s can not be upgradable", __func__,
604                     class->lc_name, lock->lo_name);
605
606         /*
607          * If we shouldn't watch this lock, then just clear lo_witness.
608          * Otherwise, if witness_cold is set, then it is too early to
609          * enroll this lock, so defer it to witness_initialize() by adding
610          * it to the pending_locks list.  If it is not too early, then enroll
611          * the lock now.
612          */
613         if (witness_watch == 0 || panicstr != NULL ||
614             (lock->lo_flags & LO_WITNESS) == 0)
615                 lock->lo_witness = NULL;
616         else if (witness_cold) {
617                 STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
618                 lock->lo_flags |= LO_ENROLLPEND;
619         } else
620                 lock->lo_witness = enroll(lock->lo_type, class);
621 }
622
623 void
624 witness_destroy(struct lock_object *lock)
625 {
626         struct lock_class *class;
627         struct witness *w;
628
629         class = LOCK_CLASS(lock);
630         if (witness_cold)
631                 panic("lock (%s) %s destroyed while witness_cold",
632                     class->lc_name, lock->lo_name);
633
634         /* XXX: need to verify that no one holds the lock */
635         if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
636             lock->lo_witness != NULL) {
637                 w = lock->lo_witness;
638                 mtx_lock_spin(&w_mtx);
639                 MPASS(w->w_refcount > 0);
640                 w->w_refcount--;
641
642                 /*
643                  * Lock is already released if we have an allocation failure
644                  * and depart() fails.
645                  */
646                 if (w->w_refcount != 0 || depart(w))
647                         mtx_unlock_spin(&w_mtx);
648         }
649
650         /*
651          * If this lock is destroyed before witness is up and running,
652          * remove it from the pending list.
653          */
654         if (lock->lo_flags & LO_ENROLLPEND) {
655                 STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
656                 lock->lo_flags &= ~LO_ENROLLPEND;
657         }
658 }
659
660 #ifdef DDB
661 static void
662 witness_levelall (void)
663 {
664         struct witness_list *list;
665         struct witness *w, *w1;
666
667         /*
668          * First clear all levels.
669          */
670         STAILQ_FOREACH(w, &w_all, w_list) {
671                 w->w_level = 0;
672         }
673
674         /*
675          * Look for locks with no parent and level all their descendants.
676          */
677         STAILQ_FOREACH(w, &w_all, w_list) {
678                 /*
679                  * This is just an optimization, technically we could get
680                  * away just walking the all list each time.
681                  */
682                 if (w->w_class->lc_flags & LC_SLEEPLOCK)
683                         list = &w_sleep;
684                 else
685                         list = &w_spin;
686                 STAILQ_FOREACH(w1, list, w_typelist) {
687                         if (isitmychild(w1, w))
688                                 goto skip;
689                 }
690                 witness_leveldescendents(w, 0);
691         skip:
692                 ;       /* silence GCC 3.x */
693         }
694 }
695
696 static void
697 witness_leveldescendents(struct witness *parent, int level)
698 {
699         struct witness_child_list_entry *wcl;
700         int i;
701
702         if (parent->w_level < level)
703                 parent->w_level = level;
704         level++;
705         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
706                 for (i = 0; i < wcl->wcl_count; i++)
707                         witness_leveldescendents(wcl->wcl_children[i], level);
708 }
709
710 static void
711 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
712                            struct witness *parent, int indent)
713 {
714         struct witness_child_list_entry *wcl;
715         int i, level;
716
717         level = parent->w_level;
718         prnt("%-2d", level);
719         for (i = 0; i < indent; i++)
720                 prnt(" ");
721         if (parent->w_refcount > 0)
722                 prnt("%s", parent->w_name);
723         else
724                 prnt("(dead)");
725         if (parent->w_displayed) {
726                 prnt(" -- (already displayed)\n");
727                 return;
728         }
729         parent->w_displayed = 1;
730         if (parent->w_refcount > 0) {
731                 if (parent->w_file != NULL)
732                         prnt(" -- last acquired @ %s:%d", parent->w_file,
733                             parent->w_line);
734         }
735         prnt("\n");
736         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
737                 for (i = 0; i < wcl->wcl_count; i++)
738                             witness_displaydescendants(prnt,
739                                 wcl->wcl_children[i], indent + 1);
740 }
741
742 static void
743 witness_display_list(void(*prnt)(const char *fmt, ...),
744                      struct witness_list *list)
745 {
746         struct witness *w;
747
748         STAILQ_FOREACH(w, list, w_typelist) {
749                 if (w->w_file == NULL || w->w_level > 0)
750                         continue;
751                 /*
752                  * This lock has no anscestors, display its descendants. 
753                  */
754                 witness_displaydescendants(prnt, w, 0);
755         }
756 }
757         
758 static void
759 witness_display(void(*prnt)(const char *fmt, ...))
760 {
761         struct witness *w;
762
763         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
764         witness_levelall();
765
766         /* Clear all the displayed flags. */
767         STAILQ_FOREACH(w, &w_all, w_list) {
768                 w->w_displayed = 0;
769         }
770
771         /*
772          * First, handle sleep locks which have been acquired at least
773          * once.
774          */
775         prnt("Sleep locks:\n");
776         witness_display_list(prnt, &w_sleep);
777         
778         /*
779          * Now do spin locks which have been acquired at least once.
780          */
781         prnt("\nSpin locks:\n");
782         witness_display_list(prnt, &w_spin);
783         
784         /*
785          * Finally, any locks which have not been acquired yet.
786          */
787         prnt("\nLocks which were never acquired:\n");
788         STAILQ_FOREACH(w, &w_all, w_list) {
789                 if (w->w_file != NULL || w->w_refcount == 0)
790                         continue;
791                 prnt("%s\n", w->w_name);
792         }
793 }
794 #endif /* DDB */
795
796 /* Trim useless garbage from filenames. */
797 static const char *
798 fixup_filename(const char *file)
799 {
800
801         if (file == NULL)
802                 return (NULL);
803         while (strncmp(file, "../", 3) == 0)
804                 file += 3;
805         return (file);
806 }
807
808 int
809 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
810 {
811
812         if (witness_watch == 0 || panicstr != NULL)
813                 return (0);
814
815         /* Require locks that witness knows about. */
816         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
817             lock2->lo_witness == NULL)
818                 return (EINVAL);
819
820         MPASS(!mtx_owned(&w_mtx));
821         mtx_lock_spin(&w_mtx);
822
823         /*
824          * If we already have either an explicit or implied lock order that
825          * is the other way around, then return an error.
826          */
827         if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
828                 mtx_unlock_spin(&w_mtx);
829                 return (EDOOFUS);
830         }
831         
832         /* Try to add the new order. */
833         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
834             lock2->lo_type, lock1->lo_type);
835         if (!itismychild(lock1->lo_witness, lock2->lo_witness))
836                 return (ENOMEM);
837         mtx_unlock_spin(&w_mtx);
838         return (0);
839 }
840
841 void
842 witness_checkorder(struct lock_object *lock, int flags, const char *file,
843     int line)
844 {
845         struct lock_list_entry **lock_list, *lle;
846         struct lock_instance *lock1, *lock2;
847         struct lock_class *class;
848         struct witness *w, *w1;
849         struct thread *td;
850         int i, j;
851
852         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
853             panicstr != NULL)
854                 return;
855
856         /*
857          * Try locks do not block if they fail to acquire the lock, thus
858          * there is no danger of deadlocks or of switching while holding a
859          * spin lock if we acquire a lock via a try operation.  This
860          * function shouldn't even be called for try locks, so panic if
861          * that happens.
862          */
863         if (flags & LOP_TRYLOCK)
864                 panic("%s should not be called for try lock operations",
865                     __func__);
866
867         w = lock->lo_witness;
868         class = LOCK_CLASS(lock);
869         td = curthread;
870         file = fixup_filename(file);
871
872         if (class->lc_flags & LC_SLEEPLOCK) {
873                 /*
874                  * Since spin locks include a critical section, this check
875                  * implicitly enforces a lock order of all sleep locks before
876                  * all spin locks.
877                  */
878                 if (td->td_critnest != 0 && !kdb_active)
879                         panic("blockable sleep lock (%s) %s @ %s:%d",
880                             class->lc_name, lock->lo_name, file, line);
881
882                 /*
883                  * If this is the first lock acquired then just return as
884                  * no order checking is needed.
885                  */
886                 if (td->td_sleeplocks == NULL)
887                         return;
888                 lock_list = &td->td_sleeplocks;
889         } else {
890                 /*
891                  * If this is the first lock, just return as no order
892                  * checking is needed.  We check this in both if clauses
893                  * here as unifying the check would require us to use a
894                  * critical section to ensure we don't migrate while doing
895                  * the check.  Note that if this is not the first lock, we
896                  * are already in a critical section and are safe for the
897                  * rest of the check.
898                  */
899                 if (PCPU_GET(spinlocks) == NULL)
900                         return;
901                 lock_list = PCPU_PTR(spinlocks);
902         }
903
904         /*
905          * Check to see if we are recursing on a lock we already own.  If
906          * so, make sure that we don't mismatch exclusive and shared lock
907          * acquires.
908          */
909         lock1 = find_instance(*lock_list, lock);
910         if (lock1 != NULL) {
911                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
912                     (flags & LOP_EXCLUSIVE) == 0) {
913                         printf("shared lock of (%s) %s @ %s:%d\n",
914                             class->lc_name, lock->lo_name, file, line);
915                         printf("while exclusively locked from %s:%d\n",
916                             lock1->li_file, lock1->li_line);
917                         panic("share->excl");
918                 }
919                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
920                     (flags & LOP_EXCLUSIVE) != 0) {
921                         printf("exclusive lock of (%s) %s @ %s:%d\n",
922                             class->lc_name, lock->lo_name, file, line);
923                         printf("while share locked from %s:%d\n",
924                             lock1->li_file, lock1->li_line);
925                         panic("excl->share");
926                 }
927                 return;
928         }
929
930         /*
931          * Try locks do not block if they fail to acquire the lock, thus
932          * there is no danger of deadlocks or of switching while holding a
933          * spin lock if we acquire a lock via a try operation.
934          */
935         if (flags & LOP_TRYLOCK)
936                 return;
937
938         /*
939          * Check for duplicate locks of the same type.  Note that we only
940          * have to check for this on the last lock we just acquired.  Any
941          * other cases will be caught as lock order violations.
942          */
943         lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
944         w1 = lock1->li_lock->lo_witness;
945         if (w1 == w) {
946                 if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
947                     (flags & LOP_DUPOK))
948                         return;
949                 w->w_same_squawked = 1;
950                 printf("acquiring duplicate lock of same type: \"%s\"\n", 
951                         lock->lo_type);
952                 printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
953                     lock1->li_file, lock1->li_line);
954                 printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
955 #ifdef KDB
956                 goto debugger;
957 #else
958                 return;
959 #endif
960         }
961         MPASS(!mtx_owned(&w_mtx));
962         mtx_lock_spin(&w_mtx);
963         /*
964          * If we know that the the lock we are acquiring comes after
965          * the lock we most recently acquired in the lock order tree,
966          * then there is no need for any further checks.
967          */
968         if (isitmychild(w1, w)) {
969                 mtx_unlock_spin(&w_mtx);
970                 return;
971         }
972         for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
973                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
974
975                         MPASS(j < WITNESS_COUNT);
976                         lock1 = &lle->ll_children[i];
977                         w1 = lock1->li_lock->lo_witness;
978
979                         /*
980                          * If this lock doesn't undergo witness checking,
981                          * then skip it.
982                          */
983                         if (w1 == NULL) {
984                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
985                                     ("lock missing witness structure"));
986                                 continue;
987                         }
988                         /*
989                          * If we are locking Giant and this is a sleepable
990                          * lock, then skip it.
991                          */
992                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
993                             lock == &Giant.lock_object)
994                                 continue;
995                         /*
996                          * If we are locking a sleepable lock and this lock
997                          * is Giant, then skip it.
998                          */
999                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1000                             lock1->li_lock == &Giant.lock_object)
1001                                 continue;
1002                         /*
1003                          * If we are locking a sleepable lock and this lock
1004                          * isn't sleepable, we want to treat it as a lock
1005                          * order violation to enfore a general lock order of
1006                          * sleepable locks before non-sleepable locks.
1007                          */
1008                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1009                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1010                                 goto reversal;
1011                         /*
1012                          * If we are locking Giant and this is a non-sleepable
1013                          * lock, then treat it as a reversal.
1014                          */
1015                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1016                             lock == &Giant.lock_object)
1017                                 goto reversal;
1018                         /*
1019                          * Check the lock order hierarchy for a reveresal.
1020                          */
1021                         if (!isitmydescendant(w, w1))
1022                                 continue;
1023                 reversal:
1024                         /*
1025                          * We have a lock order violation, check to see if it
1026                          * is allowed or has already been yelled about.
1027                          */
1028                         mtx_unlock_spin(&w_mtx);
1029 #ifdef BLESSING
1030                         /*
1031                          * If the lock order is blessed, just bail.  We don't
1032                          * look for other lock order violations though, which
1033                          * may be a bug.
1034                          */
1035                         if (blessed(w, w1))
1036                                 return;
1037 #endif
1038                         if (lock1->li_lock == &Giant.lock_object) {
1039                                 if (w1->w_Giant_squawked)
1040                                         return;
1041                                 else
1042                                         w1->w_Giant_squawked = 1;
1043                         } else {
1044                                 if (w1->w_other_squawked)
1045                                         return;
1046                                 else
1047                                         w1->w_other_squawked = 1;
1048                         }
1049                         /*
1050                          * Ok, yell about it.
1051                          */
1052                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1053                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1054                                 printf(
1055                 "lock order reversal: (sleepable after non-sleepable)\n");
1056                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1057                             && lock == &Giant.lock_object)
1058                                 printf(
1059                 "lock order reversal: (Giant after non-sleepable)\n");
1060                         else
1061                                 printf("lock order reversal:\n");
1062                         /*
1063                          * Try to locate an earlier lock with
1064                          * witness w in our list.
1065                          */
1066                         do {
1067                                 lock2 = &lle->ll_children[i];
1068                                 MPASS(lock2->li_lock != NULL);
1069                                 if (lock2->li_lock->lo_witness == w)
1070                                         break;
1071                                 if (i == 0 && lle->ll_next != NULL) {
1072                                         lle = lle->ll_next;
1073                                         i = lle->ll_count - 1;
1074                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1075                                 } else
1076                                         i--;
1077                         } while (i >= 0);
1078                         if (i < 0) {
1079                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1080                                     lock1->li_lock, lock1->li_lock->lo_name,
1081                                     lock1->li_lock->lo_type, lock1->li_file,
1082                                     lock1->li_line);
1083                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1084                                     lock->lo_name, lock->lo_type, file, line);
1085                         } else {
1086                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1087                                     lock2->li_lock, lock2->li_lock->lo_name,
1088                                     lock2->li_lock->lo_type, lock2->li_file,
1089                                     lock2->li_line);
1090                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1091                                     lock1->li_lock, lock1->li_lock->lo_name,
1092                                     lock1->li_lock->lo_type, lock1->li_file,
1093                                     lock1->li_line);
1094                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1095                                     lock->lo_name, lock->lo_type, file, line);
1096                         }
1097 #ifdef KDB
1098                         goto debugger;
1099 #else
1100                         return;
1101 #endif
1102                 }
1103         }
1104         lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1105         /*
1106          * If requested, build a new lock order.  However, don't build a new
1107          * relationship between a sleepable lock and Giant if it is in the
1108          * wrong direction.  The correct lock order is that sleepable locks
1109          * always come before Giant.
1110          */
1111         if (flags & LOP_NEWORDER &&
1112             !(lock1->li_lock == &Giant.lock_object &&
1113             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1114                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1115                     lock->lo_type, lock1->li_lock->lo_type);
1116                 if (!itismychild(lock1->li_lock->lo_witness, w))
1117                         /* Witness is dead. */
1118                         return;
1119         } 
1120         mtx_unlock_spin(&w_mtx);
1121         return;
1122
1123 #ifdef KDB
1124 debugger:
1125         if (witness_trace)
1126                 kdb_backtrace();
1127         if (witness_kdb)
1128                 kdb_enter(KDB_WHY_WITNESS, __func__);
1129 #endif
1130 }
1131
1132 void
1133 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1134 {
1135         struct lock_list_entry **lock_list, *lle;
1136         struct lock_instance *instance;
1137         struct witness *w;
1138         struct thread *td;
1139
1140         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1141             panicstr != NULL)
1142                 return;
1143         w = lock->lo_witness;
1144         td = curthread;
1145         file = fixup_filename(file);
1146
1147         /* Determine lock list for this lock. */
1148         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1149                 lock_list = &td->td_sleeplocks;
1150         else
1151                 lock_list = PCPU_PTR(spinlocks);
1152
1153         /* Check to see if we are recursing on a lock we already own. */
1154         instance = find_instance(*lock_list, lock);
1155         if (instance != NULL) {
1156                 instance->li_flags++;
1157                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1158                     td->td_proc->p_pid, lock->lo_name,
1159                     instance->li_flags & LI_RECURSEMASK);
1160                 instance->li_file = file;
1161                 instance->li_line = line;
1162                 return;
1163         }
1164
1165         /* Update per-witness last file and line acquire. */
1166         w->w_file = file;
1167         w->w_line = line;
1168
1169         /* Find the next open lock instance in the list and fill it. */
1170         lle = *lock_list;
1171         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1172                 lle = witness_lock_list_get();
1173                 if (lle == NULL)
1174                         return;
1175                 lle->ll_next = *lock_list;
1176                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1177                     td->td_proc->p_pid, lle);
1178                 *lock_list = lle;
1179         }
1180         instance = &lle->ll_children[lle->ll_count++];
1181         instance->li_lock = lock;
1182         instance->li_line = line;
1183         instance->li_file = file;
1184         if ((flags & LOP_EXCLUSIVE) != 0)
1185                 instance->li_flags = LI_EXCLUSIVE;
1186         else
1187                 instance->li_flags = 0;
1188         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1189             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1190 }
1191
1192 void
1193 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1194 {
1195         struct lock_instance *instance;
1196         struct lock_class *class;
1197
1198         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1199         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1200                 return;
1201         class = LOCK_CLASS(lock);
1202         file = fixup_filename(file);
1203         if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1204                 panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1205                     class->lc_name, lock->lo_name, file, line);
1206         if ((flags & LOP_TRYLOCK) == 0)
1207                 panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1208                     lock->lo_name, file, line);
1209         if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1210                 panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1211                     class->lc_name, lock->lo_name, file, line);
1212         instance = find_instance(curthread->td_sleeplocks, lock);
1213         if (instance == NULL)
1214                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1215                     class->lc_name, lock->lo_name, file, line);
1216         if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1217                 panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1218                     class->lc_name, lock->lo_name, file, line);
1219         if ((instance->li_flags & LI_RECURSEMASK) != 0)
1220                 panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1221                     class->lc_name, lock->lo_name,
1222                     instance->li_flags & LI_RECURSEMASK, file, line);
1223         instance->li_flags |= LI_EXCLUSIVE;
1224 }
1225
1226 void
1227 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1228     int line)
1229 {
1230         struct lock_instance *instance;
1231         struct lock_class *class;
1232
1233         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1234         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1235                 return;
1236         class = LOCK_CLASS(lock);
1237         file = fixup_filename(file);
1238         if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1239                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1240                     class->lc_name, lock->lo_name, file, line);
1241         if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1242                 panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1243                     class->lc_name, lock->lo_name, file, line);
1244         instance = find_instance(curthread->td_sleeplocks, lock);
1245         if (instance == NULL)
1246                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1247                     class->lc_name, lock->lo_name, file, line);
1248         if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1249                 panic("downgrade of shared lock (%s) %s @ %s:%d",
1250                     class->lc_name, lock->lo_name, file, line);
1251         if ((instance->li_flags & LI_RECURSEMASK) != 0)
1252                 panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1253                     class->lc_name, lock->lo_name,
1254                     instance->li_flags & LI_RECURSEMASK, file, line);
1255         instance->li_flags &= ~LI_EXCLUSIVE;
1256 }
1257
1258 void
1259 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1260 {
1261         struct lock_list_entry **lock_list, *lle;
1262         struct lock_instance *instance;
1263         struct lock_class *class;
1264         struct thread *td;
1265         register_t s;
1266         int i, j;
1267
1268         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1269             panicstr != NULL)
1270                 return;
1271         td = curthread;
1272         class = LOCK_CLASS(lock);
1273         file = fixup_filename(file);
1274
1275         /* Find lock instance associated with this lock. */
1276         if (class->lc_flags & LC_SLEEPLOCK)
1277                 lock_list = &td->td_sleeplocks;
1278         else
1279                 lock_list = PCPU_PTR(spinlocks);
1280         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1281                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1282                         instance = &(*lock_list)->ll_children[i];
1283                         if (instance->li_lock == lock)
1284                                 goto found;
1285                 }
1286         panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1287             file, line);
1288 found:
1289
1290         /* First, check for shared/exclusive mismatches. */
1291         if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1292             (flags & LOP_EXCLUSIVE) == 0) {
1293                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1294                     lock->lo_name, file, line);
1295                 printf("while exclusively locked from %s:%d\n",
1296                     instance->li_file, instance->li_line);
1297                 panic("excl->ushare");
1298         }
1299         if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1300             (flags & LOP_EXCLUSIVE) != 0) {
1301                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1302                     lock->lo_name, file, line);
1303                 printf("while share locked from %s:%d\n", instance->li_file,
1304                     instance->li_line);
1305                 panic("share->uexcl");
1306         }
1307
1308         /* If we are recursed, unrecurse. */
1309         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1310                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1311                     td->td_proc->p_pid, instance->li_lock->lo_name,
1312                     instance->li_flags);
1313                 instance->li_flags--;
1314                 return;
1315         }
1316
1317         /* Otherwise, remove this item from the list. */
1318         s = intr_disable();
1319         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1320             td->td_proc->p_pid, instance->li_lock->lo_name,
1321             (*lock_list)->ll_count - 1);
1322         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1323                 (*lock_list)->ll_children[j] =
1324                     (*lock_list)->ll_children[j + 1];
1325         (*lock_list)->ll_count--;
1326         intr_restore(s);
1327
1328         /* If this lock list entry is now empty, free it. */
1329         if ((*lock_list)->ll_count == 0) {
1330                 lle = *lock_list;
1331                 *lock_list = lle->ll_next;
1332                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1333                     td->td_proc->p_pid, lle);
1334                 witness_lock_list_free(lle);
1335         }
1336 }
1337
1338 /*
1339  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1340  * exempt Giant and sleepable locks from the checks as well.  If any
1341  * non-exempt locks are held, then a supplied message is printed to the
1342  * console along with a list of the offending locks.  If indicated in the
1343  * flags then a failure results in a panic as well.
1344  */
1345 int
1346 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1347 {
1348         struct lock_list_entry *lle;
1349         struct lock_instance *lock1;
1350         struct thread *td;
1351         va_list ap;
1352         int i, n;
1353
1354         if (witness_cold || witness_watch == 0 || panicstr != NULL)
1355                 return (0);
1356         n = 0;
1357         td = curthread;
1358         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1359                 for (i = lle->ll_count - 1; i >= 0; i--) {
1360                         lock1 = &lle->ll_children[i];
1361                         if (lock1->li_lock == lock)
1362                                 continue;
1363                         if (flags & WARN_GIANTOK &&
1364                             lock1->li_lock == &Giant.lock_object)
1365                                 continue;
1366                         if (flags & WARN_SLEEPOK &&
1367                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1368                                 continue;
1369                         if (n == 0) {
1370                                 va_start(ap, fmt);
1371                                 vprintf(fmt, ap);
1372                                 va_end(ap);
1373                                 printf(" with the following");
1374                                 if (flags & WARN_SLEEPOK)
1375                                         printf(" non-sleepable");
1376                                 printf(" locks held:\n");
1377                         }
1378                         n++;
1379                         witness_list_lock(lock1);
1380                 }
1381         if (PCPU_GET(spinlocks) != NULL) {
1382                 /*
1383                  * Since we already hold a spinlock preemption is
1384                  * already blocked.
1385                  */
1386                 if (n == 0) {
1387                         va_start(ap, fmt);
1388                         vprintf(fmt, ap);
1389                         va_end(ap);
1390                         printf(" with the following");
1391                         if (flags & WARN_SLEEPOK)
1392                                 printf(" non-sleepable");
1393                         printf(" locks held:\n");
1394                 }
1395                 n += witness_list_locks(PCPU_PTR(spinlocks));
1396         }
1397         if (flags & WARN_PANIC && n)
1398                 panic("witness_warn");
1399 #ifdef KDB
1400         else if (witness_kdb && n)
1401                 kdb_enter(KDB_WHY_WITNESS, __func__);
1402         else if (witness_trace && n)
1403                 kdb_backtrace();
1404 #endif
1405         return (n);
1406 }
1407
1408 const char *
1409 witness_file(struct lock_object *lock)
1410 {
1411         struct witness *w;
1412
1413         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1414                 return ("?");
1415         w = lock->lo_witness;
1416         return (w->w_file);
1417 }
1418
1419 int
1420 witness_line(struct lock_object *lock)
1421 {
1422         struct witness *w;
1423
1424         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1425                 return (0);
1426         w = lock->lo_witness;
1427         return (w->w_line);
1428 }
1429
1430 static struct witness *
1431 enroll(const char *description, struct lock_class *lock_class)
1432 {
1433         struct witness *w;
1434
1435         if (witness_watch == 0 || panicstr != NULL)
1436                 return (NULL);
1437         if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1438                 return (NULL);
1439         mtx_lock_spin(&w_mtx);
1440         STAILQ_FOREACH(w, &w_all, w_list) {
1441                 if (w->w_name == description || (w->w_refcount > 0 &&
1442                     strcmp(description, w->w_name) == 0)) {
1443                         w->w_refcount++;
1444                         mtx_unlock_spin(&w_mtx);
1445                         if (lock_class != w->w_class)
1446                                 panic(
1447                                 "lock (%s) %s does not match earlier (%s) lock",
1448                                     description, lock_class->lc_name,
1449                                     w->w_class->lc_name);
1450                         return (w);
1451                 }
1452         }
1453         if ((w = witness_get()) == NULL)
1454                 goto out;
1455         w->w_name = description;
1456         w->w_class = lock_class;
1457         w->w_refcount = 1;
1458         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1459         if (lock_class->lc_flags & LC_SPINLOCK) {
1460                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1461                 w_spin_cnt++;
1462         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1463                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1464                 w_sleep_cnt++;
1465         } else {
1466                 mtx_unlock_spin(&w_mtx);
1467                 panic("lock class %s is not sleep or spin",
1468                     lock_class->lc_name);
1469         }
1470         mtx_unlock_spin(&w_mtx);
1471 out:
1472         /*
1473          * We issue a warning for any spin locks not defined in the static
1474          * order list as a way to discourage their use (folks should really
1475          * be using non-spin mutexes most of the time).  However, several
1476          * 3rd part device drivers use spin locks because that is all they
1477          * have available on Windows and Linux and they think that normal
1478          * mutexes are insufficient.
1479          */
1480         if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1481                 printf("WITNESS: spin lock %s not in order list\n",
1482                     description);
1483         return (w);
1484 }
1485
1486 /* Don't let the door bang you on the way out... */
1487 static int
1488 depart(struct witness *w)
1489 {
1490         struct witness_child_list_entry *wcl, *nwcl;
1491         struct witness_list *list;
1492         struct witness *parent;
1493
1494         MPASS(w->w_refcount == 0);
1495         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1496                 list = &w_sleep;
1497                 w_sleep_cnt--;
1498         } else {
1499                 list = &w_spin;
1500                 w_spin_cnt--;
1501         }
1502         /*
1503          * First, we run through the entire tree looking for any
1504          * witnesses that the outgoing witness is a child of.  For
1505          * each parent that we find, we reparent all the direct
1506          * children of the outgoing witness to its parent.
1507          */
1508         STAILQ_FOREACH(parent, list, w_typelist) {
1509                 if (!isitmychild(parent, w))
1510                         continue;
1511                 removechild(parent, w);
1512         }
1513
1514         /*
1515          * Now we go through and free up the child list of the
1516          * outgoing witness.
1517          */
1518         for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1519                 nwcl = wcl->wcl_next;
1520                 w_child_cnt--;
1521                 witness_child_free(wcl);
1522         }
1523
1524         /*
1525          * Detach from various lists and free.
1526          */
1527         STAILQ_REMOVE(list, w, witness, w_typelist);
1528         STAILQ_REMOVE(&w_all, w, witness, w_list);
1529         witness_free(w);
1530
1531         return (1);
1532 }
1533
1534 /*
1535  * Add "child" as a direct child of "parent".  Returns false if
1536  * we fail due to out of memory.
1537  */
1538 static int
1539 insertchild(struct witness *parent, struct witness *child)
1540 {
1541         struct witness_child_list_entry **wcl;
1542
1543         MPASS(child != NULL && parent != NULL);
1544
1545         /*
1546          * Insert "child" after "parent"
1547          */
1548         wcl = &parent->w_children;
1549         while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1550                 wcl = &(*wcl)->wcl_next;
1551         if (*wcl == NULL) {
1552                 *wcl = witness_child_get();
1553                 if (*wcl == NULL)
1554                         return (0);
1555                 w_child_cnt++;
1556         }
1557         (*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1558
1559         return (1);
1560 }
1561
1562
1563 static int
1564 itismychild(struct witness *parent, struct witness *child)
1565 {
1566         struct witness_list *list;
1567
1568         MPASS(child != NULL && parent != NULL);
1569         if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1570             (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1571                 panic(
1572                 "%s: parent (%s) and child (%s) are not the same lock type",
1573                     __func__, parent->w_class->lc_name,
1574                     child->w_class->lc_name);
1575
1576         if (!insertchild(parent, child))
1577                 return (0);
1578
1579         if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1580                 list = &w_sleep;
1581         else
1582                 list = &w_spin;
1583         return (1);
1584 }
1585
1586 static void
1587 removechild(struct witness *parent, struct witness *child)
1588 {
1589         struct witness_child_list_entry **wcl, *wcl1;
1590         int i;
1591
1592         for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1593                 for (i = 0; i < (*wcl)->wcl_count; i++)
1594                         if ((*wcl)->wcl_children[i] == child)
1595                                 goto found;
1596         return;
1597 found:
1598         (*wcl)->wcl_count--;
1599         if ((*wcl)->wcl_count > i)
1600                 (*wcl)->wcl_children[i] =
1601                     (*wcl)->wcl_children[(*wcl)->wcl_count];
1602         MPASS((*wcl)->wcl_children[i] != NULL);
1603         if ((*wcl)->wcl_count != 0)
1604                 return;
1605         wcl1 = *wcl;
1606         *wcl = wcl1->wcl_next;
1607         w_child_cnt--;
1608         witness_child_free(wcl1);
1609 }
1610
1611 static int
1612 isitmychild(struct witness *parent, struct witness *child)
1613 {
1614         struct witness_child_list_entry *wcl;
1615         int i;
1616
1617         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1618                 for (i = 0; i < wcl->wcl_count; i++) {
1619                         if (wcl->wcl_children[i] == child)
1620                                 return (1);
1621                 }
1622         }
1623         return (0);
1624 }
1625
1626 static int
1627 isitmydescendant(struct witness *parent, struct witness *child)
1628 {
1629         struct witness_child_list_entry *wcl;
1630         int i, j;
1631
1632         if (isitmychild(parent, child))
1633                 return (1);
1634         j = 0;
1635         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1636                 MPASS(j < 1000);
1637                 for (i = 0; i < wcl->wcl_count; i++) {
1638                         if (isitmydescendant(wcl->wcl_children[i], child))
1639                                 return (1);
1640                 }
1641                 j++;
1642         }
1643         return (0);
1644 }
1645
1646 #ifdef BLESSING
1647 static int
1648 blessed(struct witness *w1, struct witness *w2)
1649 {
1650         int i;
1651         struct witness_blessed *b;
1652
1653         for (i = 0; i < blessed_count; i++) {
1654                 b = &blessed_list[i];
1655                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1656                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1657                                 return (1);
1658                         continue;
1659                 }
1660                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1661                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1662                                 return (1);
1663         }
1664         return (0);
1665 }
1666 #endif
1667
1668 static struct witness *
1669 witness_get(void)
1670 {
1671         struct witness *w;
1672
1673         if (witness_watch == 0) {
1674                 mtx_unlock_spin(&w_mtx);
1675                 return (NULL);
1676         }
1677         if (STAILQ_EMPTY(&w_free)) {
1678                 witness_watch = 0;
1679                 mtx_unlock_spin(&w_mtx);
1680                 printf("%s: witness exhausted\n", __func__);
1681                 return (NULL);
1682         }
1683         w = STAILQ_FIRST(&w_free);
1684         STAILQ_REMOVE_HEAD(&w_free, w_list);
1685         w_free_cnt--;
1686         bzero(w, sizeof(*w));
1687         return (w);
1688 }
1689
1690 static void
1691 witness_free(struct witness *w)
1692 {
1693
1694         STAILQ_INSERT_HEAD(&w_free, w, w_list);
1695         w_free_cnt++;
1696 }
1697
1698 static struct witness_child_list_entry *
1699 witness_child_get(void)
1700 {
1701         struct witness_child_list_entry *wcl;
1702
1703         if (witness_watch == 0) {
1704                 mtx_unlock_spin(&w_mtx);
1705                 return (NULL);
1706         }
1707         wcl = w_child_free;
1708         if (wcl == NULL) {
1709                 witness_watch = 0;
1710                 mtx_unlock_spin(&w_mtx);
1711                 printf("%s: witness exhausted\n", __func__);
1712                 return (NULL);
1713         }
1714         w_child_free = wcl->wcl_next;
1715         w_child_free_cnt--;
1716         bzero(wcl, sizeof(*wcl));
1717         return (wcl);
1718 }
1719
1720 static void
1721 witness_child_free(struct witness_child_list_entry *wcl)
1722 {
1723
1724         wcl->wcl_next = w_child_free;
1725         w_child_free = wcl;
1726         w_child_free_cnt++;
1727 }
1728
1729 static struct lock_list_entry *
1730 witness_lock_list_get(void)
1731 {
1732         struct lock_list_entry *lle;
1733
1734         if (witness_watch == 0)
1735                 return (NULL);
1736         mtx_lock_spin(&w_mtx);
1737         lle = w_lock_list_free;
1738         if (lle == NULL) {
1739                 witness_watch = 0;
1740                 mtx_unlock_spin(&w_mtx);
1741                 printf("%s: witness exhausted\n", __func__);
1742                 return (NULL);
1743         }
1744         w_lock_list_free = lle->ll_next;
1745         mtx_unlock_spin(&w_mtx);
1746         bzero(lle, sizeof(*lle));
1747         return (lle);
1748 }
1749                 
1750 static void
1751 witness_lock_list_free(struct lock_list_entry *lle)
1752 {
1753
1754         mtx_lock_spin(&w_mtx);
1755         lle->ll_next = w_lock_list_free;
1756         w_lock_list_free = lle;
1757         mtx_unlock_spin(&w_mtx);
1758 }
1759
1760 static struct lock_instance *
1761 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1762 {
1763         struct lock_list_entry *lle;
1764         struct lock_instance *instance;
1765         int i;
1766
1767         for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1768                 for (i = lle->ll_count - 1; i >= 0; i--) {
1769                         instance = &lle->ll_children[i];
1770                         if (instance->li_lock == lock)
1771                                 return (instance);
1772                 }
1773         return (NULL);
1774 }
1775
1776 static void
1777 witness_list_lock(struct lock_instance *instance)
1778 {
1779         struct lock_object *lock;
1780
1781         lock = instance->li_lock;
1782         printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1783             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1784         if (lock->lo_type != lock->lo_name)
1785                 printf(" (%s)", lock->lo_type);
1786         printf(" r = %d (%p) locked @ %s:%d\n",
1787             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1788             instance->li_line);
1789 }
1790
1791 #ifdef DDB
1792 static int
1793 witness_thread_has_locks(struct thread *td)
1794 {
1795
1796         return (td->td_sleeplocks != NULL);
1797 }
1798
1799 static int
1800 witness_proc_has_locks(struct proc *p)
1801 {
1802         struct thread *td;
1803
1804         FOREACH_THREAD_IN_PROC(p, td) {
1805                 if (witness_thread_has_locks(td))
1806                         return (1);
1807         }
1808         return (0);
1809 }
1810 #endif
1811
1812 int
1813 witness_list_locks(struct lock_list_entry **lock_list)
1814 {
1815         struct lock_list_entry *lle;
1816         int i, nheld;
1817
1818         nheld = 0;
1819         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1820                 for (i = lle->ll_count - 1; i >= 0; i--) {
1821                         witness_list_lock(&lle->ll_children[i]);
1822                         nheld++;
1823                 }
1824         return (nheld);
1825 }
1826
1827 /*
1828  * This is a bit risky at best.  We call this function when we have timed
1829  * out acquiring a spin lock, and we assume that the other CPU is stuck
1830  * with this lock held.  So, we go groveling around in the other CPU's
1831  * per-cpu data to try to find the lock instance for this spin lock to
1832  * see when it was last acquired.
1833  */
1834 void
1835 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1836 {
1837         struct lock_instance *instance;
1838         struct pcpu *pc;
1839
1840         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1841                 return;
1842         pc = pcpu_find(owner->td_oncpu);
1843         instance = find_instance(pc->pc_spinlocks, lock);
1844         if (instance != NULL)
1845                 witness_list_lock(instance);
1846 }
1847
1848 void
1849 witness_save(struct lock_object *lock, const char **filep, int *linep)
1850 {
1851         struct lock_list_entry *lock_list;
1852         struct lock_instance *instance;
1853         struct lock_class *class;
1854
1855         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1856         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1857                 return;
1858         class = LOCK_CLASS(lock);
1859         if (class->lc_flags & LC_SLEEPLOCK)
1860                 lock_list = curthread->td_sleeplocks;
1861         else {
1862                 if (witness_skipspin)
1863                         return;
1864                 lock_list = PCPU_GET(spinlocks);
1865         }
1866         instance = find_instance(lock_list, lock);
1867         if (instance == NULL)
1868                 panic("%s: lock (%s) %s not locked", __func__,
1869                     class->lc_name, lock->lo_name);
1870         *filep = instance->li_file;
1871         *linep = instance->li_line;
1872 }
1873
1874 void
1875 witness_restore(struct lock_object *lock, const char *file, int line)
1876 {
1877         struct lock_list_entry *lock_list;
1878         struct lock_instance *instance;
1879         struct lock_class *class;
1880
1881         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1882         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1883                 return;
1884         class = LOCK_CLASS(lock);
1885         if (class->lc_flags & LC_SLEEPLOCK)
1886                 lock_list = curthread->td_sleeplocks;
1887         else {
1888                 if (witness_skipspin)
1889                         return;
1890                 lock_list = PCPU_GET(spinlocks);
1891         }
1892         instance = find_instance(lock_list, lock);
1893         if (instance == NULL)
1894                 panic("%s: lock (%s) %s not locked", __func__,
1895                     class->lc_name, lock->lo_name);
1896         lock->lo_witness->w_file = file;
1897         lock->lo_witness->w_line = line;
1898         instance->li_file = file;
1899         instance->li_line = line;
1900 }
1901
1902 void
1903 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1904 {
1905 #ifdef INVARIANT_SUPPORT
1906         struct lock_instance *instance;
1907         struct lock_class *class;
1908
1909         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1910                 return;
1911         class = LOCK_CLASS(lock);
1912         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1913                 instance = find_instance(curthread->td_sleeplocks, lock);
1914         else if ((class->lc_flags & LC_SPINLOCK) != 0)
1915                 instance = find_instance(PCPU_GET(spinlocks), lock);
1916         else {
1917                 panic("Lock (%s) %s is not sleep or spin!",
1918                     class->lc_name, lock->lo_name);
1919         }
1920         file = fixup_filename(file);
1921         switch (flags) {
1922         case LA_UNLOCKED:
1923                 if (instance != NULL)
1924                         panic("Lock (%s) %s locked @ %s:%d.",
1925                             class->lc_name, lock->lo_name, file, line);
1926                 break;
1927         case LA_LOCKED:
1928         case LA_LOCKED | LA_RECURSED:
1929         case LA_LOCKED | LA_NOTRECURSED:
1930         case LA_SLOCKED:
1931         case LA_SLOCKED | LA_RECURSED:
1932         case LA_SLOCKED | LA_NOTRECURSED:
1933         case LA_XLOCKED:
1934         case LA_XLOCKED | LA_RECURSED:
1935         case LA_XLOCKED | LA_NOTRECURSED:
1936                 if (instance == NULL) {
1937                         panic("Lock (%s) %s not locked @ %s:%d.",
1938                             class->lc_name, lock->lo_name, file, line);
1939                         break;
1940                 }
1941                 if ((flags & LA_XLOCKED) != 0 &&
1942                     (instance->li_flags & LI_EXCLUSIVE) == 0)
1943                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1944                             class->lc_name, lock->lo_name, file, line);
1945                 if ((flags & LA_SLOCKED) != 0 &&
1946                     (instance->li_flags & LI_EXCLUSIVE) != 0)
1947                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
1948                             class->lc_name, lock->lo_name, file, line);
1949                 if ((flags & LA_RECURSED) != 0 &&
1950                     (instance->li_flags & LI_RECURSEMASK) == 0)
1951                         panic("Lock (%s) %s not recursed @ %s:%d.",
1952                             class->lc_name, lock->lo_name, file, line);
1953                 if ((flags & LA_NOTRECURSED) != 0 &&
1954                     (instance->li_flags & LI_RECURSEMASK) != 0)
1955                         panic("Lock (%s) %s recursed @ %s:%d.",
1956                             class->lc_name, lock->lo_name, file, line);
1957                 break;
1958         default:
1959                 panic("Invalid lock assertion at %s:%d.", file, line);
1960
1961         }
1962 #endif  /* INVARIANT_SUPPORT */
1963 }
1964
1965 #ifdef DDB
1966 static void
1967 witness_list(struct thread *td)
1968 {
1969
1970         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1971         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1972
1973         if (witness_watch == 0)
1974                 return;
1975
1976         witness_list_locks(&td->td_sleeplocks);
1977
1978         /*
1979          * We only handle spinlocks if td == curthread.  This is somewhat broken
1980          * if td is currently executing on some other CPU and holds spin locks
1981          * as we won't display those locks.  If we had a MI way of getting
1982          * the per-cpu data for a given cpu then we could use
1983          * td->td_oncpu to get the list of spinlocks for this thread
1984          * and "fix" this.
1985          *
1986          * That still wouldn't really fix this unless we locked the scheduler
1987          * lock or stopped the other CPU to make sure it wasn't changing the
1988          * list out from under us.  It is probably best to just not try to
1989          * handle threads on other CPU's for now.
1990          */
1991         if (td == curthread && PCPU_GET(spinlocks) != NULL)
1992                 witness_list_locks(PCPU_PTR(spinlocks));
1993 }
1994
1995 DB_SHOW_COMMAND(locks, db_witness_list)
1996 {
1997         struct thread *td;
1998
1999         if (have_addr)
2000                 td = db_lookup_thread(addr, TRUE);
2001         else
2002                 td = kdb_thread;
2003         witness_list(td);
2004 }
2005
2006 DB_SHOW_COMMAND(alllocks, db_witness_list_all)
2007 {
2008         struct thread *td;
2009         struct proc *p;
2010
2011         /*
2012          * It would be nice to list only threads and processes that actually
2013          * held sleep locks, but that information is currently not exported
2014          * by WITNESS.
2015          */
2016         FOREACH_PROC_IN_SYSTEM(p) {
2017                 if (!witness_proc_has_locks(p))
2018                         continue;
2019                 FOREACH_THREAD_IN_PROC(p, td) {
2020                         if (!witness_thread_has_locks(td))
2021                                 continue;
2022                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2023                             td->td_name, td, td->td_tid);
2024                         witness_list(td);
2025                 }
2026         }
2027 }
2028
2029 DB_SHOW_COMMAND(witness, db_witness_display)
2030 {
2031
2032         witness_display(db_printf);
2033 }
2034 #endif