]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
zfs: merge openzfs/zfs@10e36e176
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42
43 /*
44  *      Main Entry: witness
45  *      Pronunciation: 'wit-n&s
46  *      Function: noun
47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *          testimony, witness, from 2wit
49  *      Date: before 12th century
50  *      1 : attestation of a fact or event : TESTIMONY
51  *      2 : one that gives evidence; specifically : one who testifies in
52  *          a cause or before a judicial tribunal
53  *      3 : one asked to be present at a transaction so as to be able to
54  *          testify to its having taken place
55  *      4 : one who has personal knowledge of something
56  *      5 a : something serving as evidence or proof : SIGN
57  *        b : public affirmation by word or example of usually
58  *            religious faith or conviction <the heroic witness to divine
59  *            life -- Pilot>
60  *      6 capitalized : a member of the Jehovah's Witnesses 
61  */
62
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117
118 #include <machine/stdarg.h>
119
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define KTR_WITNESS     KTR_SUBSYS
127 #else
128 #define KTR_WITNESS     0
129 #endif
130
131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
134 #define LI_SLEEPABLE    0x00040000      /* Lock may be held while sleeping. */
135
136 #ifndef WITNESS_COUNT
137 #define WITNESS_COUNT           1536
138 #endif
139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
140 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
141
142 /* Allocate 256 KB of stack data space */
143 #define WITNESS_LO_DATA_COUNT   2048
144
145 /* Prime, gives load factor of ~2 at full load */
146 #define WITNESS_LO_HASH_SIZE    1021
147
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define LOCK_NCHILDREN  5
154 #define LOCK_CHILDCOUNT 2048
155
156 #define MAX_W_NAME      64
157
158 #define FULLGRAPH_SBUF_SIZE     512
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283
284 struct witness_pendhelp {
285         const char              *wh_type;
286         struct lock_object      *wh_lock;
287 };
288
289 struct witness_order_list_entry {
290         const char              *w_name;
291         struct lock_class       *w_class;
292 };
293
294 /*
295  * Returns 0 if one of the locks is a spin lock and the other is not.
296  * Returns 1 otherwise.
297  */
298 static __inline int
299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
300 {
301
302         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
303                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
304 }
305
306 static __inline int
307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
308     const struct witness_lock_order_key *b)
309 {
310
311         return (a->from == b->from && a->to == b->to);
312 }
313
314 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
315                     const char *fname);
316 static void     adopt(struct witness *parent, struct witness *child);
317 static int      blessed(struct witness *, struct witness *);
318 static void     depart(struct witness *w);
319 static struct witness   *enroll(const char *description,
320                             struct lock_class *lock_class);
321 static struct lock_instance     *find_instance(struct lock_list_entry *list,
322                                     const struct lock_object *lock);
323 static int      isitmychild(struct witness *parent, struct witness *child);
324 static int      isitmydescendant(struct witness *parent, struct witness *child);
325 static void     itismychild(struct witness *parent, struct witness *child);
326 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
327 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
328 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
329 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
330 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
331 #ifdef DDB
332 static void     witness_ddb_compute_levels(void);
333 static void     witness_ddb_display(int(*)(const char *fmt, ...));
334 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
335                     struct witness *, int indent);
336 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
337                     struct witness_list *list);
338 static void     witness_ddb_level_descendants(struct witness *parent, int l);
339 static void     witness_ddb_list(struct thread *td);
340 #endif
341 static void     witness_enter_debugger(const char *msg);
342 static void     witness_debugger(int cond, const char *msg);
343 static void     witness_free(struct witness *m);
344 static struct witness   *witness_get(void);
345 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
346 static struct witness   *witness_hash_get(const char *key);
347 static void     witness_hash_put(struct witness *w);
348 static void     witness_init_hash_tables(void);
349 static void     witness_increment_graph_generation(void);
350 static void     witness_lock_list_free(struct lock_list_entry *lle);
351 static struct lock_list_entry   *witness_lock_list_get(void);
352 static int      witness_lock_order_add(struct witness *parent,
353                     struct witness *child);
354 static int      witness_lock_order_check(struct witness *parent,
355                     struct witness *child);
356 static struct witness_lock_order_data   *witness_lock_order_get(
357                                             struct witness *parent,
358                                             struct witness *child);
359 static void     witness_list_lock(struct lock_instance *instance,
360                     int (*prnt)(const char *fmt, ...));
361 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
362 static int      witness_output_drain(void *arg __unused, const char *data,
363                     int len);
364 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
365 static void     witness_setflag(struct lock_object *lock, int flag, int set);
366
367 FEATURE(witness, "kernel has witness(9) support");
368
369 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
370     "Witness Locking");
371
372 /*
373  * If set to 0, lock order checking is disabled.  If set to -1,
374  * witness is completely disabled.  Otherwise witness performs full
375  * lock order checking for all locks.  At runtime, lock order checking
376  * may be toggled.  However, witness cannot be reenabled once it is
377  * completely disabled.
378  */
379 static int witness_watch = 1;
380 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
381     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
382     sysctl_debug_witness_watch, "I",
383     "witness is watching lock operations");
384
385 #ifdef KDB
386 /*
387  * When KDB is enabled and witness_kdb is 1, it will cause the system
388  * to drop into kdebug() when:
389  *      - a lock hierarchy violation occurs
390  *      - locks are held when going to sleep.
391  */
392 #ifdef WITNESS_KDB
393 int     witness_kdb = 1;
394 #else
395 int     witness_kdb = 0;
396 #endif
397 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
398 #endif /* KDB */
399
400 #if defined(DDB) || defined(KDB)
401 /*
402  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
403  * to print a stack trace:
404  *      - a lock hierarchy violation occurs
405  *      - locks are held when going to sleep.
406  */
407 int     witness_trace = 1;
408 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
409 #endif /* DDB || KDB */
410
411 #ifdef WITNESS_SKIPSPIN
412 int     witness_skipspin = 1;
413 #else
414 int     witness_skipspin = 0;
415 #endif
416 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
417
418 int badstack_sbuf_size;
419
420 int witness_count = WITNESS_COUNT;
421 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
422     &witness_count, 0, "");
423
424 /*
425  * Output channel for witness messages.  By default we print to the console.
426  */
427 enum witness_channel {
428         WITNESS_CONSOLE,
429         WITNESS_LOG,
430         WITNESS_NONE,
431 };
432
433 static enum witness_channel witness_channel = WITNESS_CONSOLE;
434 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
435     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
436     sysctl_debug_witness_channel, "A",
437     "Output channel for warnings");
438
439 /*
440  * Call this to print out the relations between locks.
441  */
442 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
443     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
444     sysctl_debug_witness_fullgraph, "A",
445     "Show locks relation graphs");
446
447 /*
448  * Call this to print out the witness faulty stacks.
449  */
450 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
451     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
452     sysctl_debug_witness_badstacks, "A",
453     "Show bad witness stacks");
454
455 static struct mtx w_mtx;
456
457 /* w_list */
458 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
459 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
460
461 /* w_typelist */
462 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
463 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
464
465 /* lock list */
466 static struct lock_list_entry *w_lock_list_free = NULL;
467 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
468 static u_int pending_cnt;
469
470 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
471 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
472 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
473 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
474     "");
475
476 static struct witness *w_data;
477 static uint8_t **w_rmatrix;
478 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
479 static struct witness_hash w_hash;      /* The witness hash table. */
480
481 /* The lock order data hash */
482 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
483 static struct witness_lock_order_data *w_lofree = NULL;
484 static struct witness_lock_order_hash w_lohash;
485 static int w_max_used_index = 0;
486 static unsigned int w_generation = 0;
487 static const char w_notrunning[] = "Witness not running\n";
488 static const char w_stillcold[] = "Witness is still cold\n";
489 #ifdef __i386__
490 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
491 #endif
492
493 static struct witness_order_list_entry order_lists[] = {
494         /*
495          * sx locks
496          */
497         { "proctree", &lock_class_sx },
498         { "allproc", &lock_class_sx },
499         { "allprison", &lock_class_sx },
500         { NULL, NULL },
501         /*
502          * Various mutexes
503          */
504         { "Giant", &lock_class_mtx_sleep },
505         { "pipe mutex", &lock_class_mtx_sleep },
506         { "sigio lock", &lock_class_mtx_sleep },
507         { "process group", &lock_class_mtx_sleep },
508 #ifdef  HWPMC_HOOKS
509         { "pmc-sleep", &lock_class_mtx_sleep },
510 #endif
511         { "process lock", &lock_class_mtx_sleep },
512         { "session", &lock_class_mtx_sleep },
513         { "uidinfo hash", &lock_class_rw },
514         { "time lock", &lock_class_mtx_sleep },
515         { NULL, NULL },
516         /*
517          * umtx
518          */
519         { "umtx lock", &lock_class_mtx_sleep },
520         { NULL, NULL },
521         /*
522          * Sockets
523          */
524         { "accept", &lock_class_mtx_sleep },
525         { "so_snd", &lock_class_mtx_sleep },
526         { "so_rcv", &lock_class_mtx_sleep },
527         { "sellck", &lock_class_mtx_sleep },
528         { NULL, NULL },
529         /*
530          * Routing
531          */
532         { "so_rcv", &lock_class_mtx_sleep },
533         { "radix node head", &lock_class_rm },
534         { "ifaddr", &lock_class_mtx_sleep },
535         { NULL, NULL },
536         /*
537          * IPv4 multicast:
538          * protocol locks before interface locks, after UDP locks.
539          */
540         { "in_multi_sx", &lock_class_sx },
541         { "udpinp", &lock_class_rw },
542         { "in_multi_list_mtx", &lock_class_mtx_sleep },
543         { "igmp_mtx", &lock_class_mtx_sleep },
544         { "if_addr_lock", &lock_class_mtx_sleep },
545         { NULL, NULL },
546         /*
547          * IPv6 multicast:
548          * protocol locks before interface locks, after UDP locks.
549          */
550         { "in6_multi_sx", &lock_class_sx },
551         { "udpinp", &lock_class_rw },
552         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
553         { "mld_mtx", &lock_class_mtx_sleep },
554         { "if_addr_lock", &lock_class_mtx_sleep },
555         { NULL, NULL },
556         /*
557          * UNIX Domain Sockets
558          */
559         { "unp_link_rwlock", &lock_class_rw },
560         { "unp_list_lock", &lock_class_mtx_sleep },
561         { "unp", &lock_class_mtx_sleep },
562         { "so_snd", &lock_class_mtx_sleep },
563         { NULL, NULL },
564         /*
565          * UDP/IP
566          */
567         { "udpinp", &lock_class_rw },
568         { "udp", &lock_class_mtx_sleep },
569         { "so_snd", &lock_class_mtx_sleep },
570         { NULL, NULL },
571         /*
572          * TCP/IP
573          */
574         { "tcpinp", &lock_class_rw },
575         { "tcp", &lock_class_mtx_sleep },
576         { "so_snd", &lock_class_mtx_sleep },
577         { NULL, NULL },
578         /*
579          * BPF
580          */
581         { "bpf global lock", &lock_class_sx },
582         { "bpf cdev lock", &lock_class_mtx_sleep },
583         { NULL, NULL },
584         /*
585          * NFS server
586          */
587         { "nfsd_mtx", &lock_class_mtx_sleep },
588         { "so_snd", &lock_class_mtx_sleep },
589         { NULL, NULL },
590
591         /*
592          * IEEE 802.11
593          */
594         { "802.11 com lock", &lock_class_mtx_sleep},
595         { NULL, NULL },
596         /*
597          * Network drivers
598          */
599         { "network driver", &lock_class_mtx_sleep},
600         { NULL, NULL },
601
602         /*
603          * Netgraph
604          */
605         { "ng_node", &lock_class_mtx_sleep },
606         { "ng_worklist", &lock_class_mtx_sleep },
607         { NULL, NULL },
608         /*
609          * CDEV
610          */
611         { "vm map (system)", &lock_class_mtx_sleep },
612         { "vnode interlock", &lock_class_mtx_sleep },
613         { "cdev", &lock_class_mtx_sleep },
614         { "devthrd", &lock_class_mtx_sleep },
615         { NULL, NULL },
616         /*
617          * VM
618          */
619         { "vm map (user)", &lock_class_sx },
620         { "vm object", &lock_class_rw },
621         { "vm page", &lock_class_mtx_sleep },
622         { "pmap pv global", &lock_class_rw },
623         { "pmap", &lock_class_mtx_sleep },
624         { "pmap pv list", &lock_class_rw },
625         { "vm page free queue", &lock_class_mtx_sleep },
626         { "vm pagequeue", &lock_class_mtx_sleep },
627         { NULL, NULL },
628         /*
629          * kqueue/VFS interaction
630          */
631         { "kqueue", &lock_class_mtx_sleep },
632         { "struct mount mtx", &lock_class_mtx_sleep },
633         { "vnode interlock", &lock_class_mtx_sleep },
634         { NULL, NULL },
635         /*
636          * VFS namecache
637          */
638         { "ncvn", &lock_class_mtx_sleep },
639         { "ncbuc", &lock_class_mtx_sleep },
640         { "vnode interlock", &lock_class_mtx_sleep },
641         { "ncneg", &lock_class_mtx_sleep },
642         { NULL, NULL },
643         /*
644          * ZFS locking
645          */
646         { "dn->dn_mtx", &lock_class_sx },
647         { "dr->dt.di.dr_mtx", &lock_class_sx },
648         { "db->db_mtx", &lock_class_sx },
649         { NULL, NULL },
650         /*
651          * TCP log locks
652          */
653         { "TCP ID tree", &lock_class_rw },
654         { "tcp log id bucket", &lock_class_mtx_sleep },
655         { "tcpinp", &lock_class_rw },
656         { "TCP log expireq", &lock_class_mtx_sleep },
657         { NULL, NULL },
658         /*
659          * spin locks
660          */
661 #ifdef SMP
662         { "ap boot", &lock_class_mtx_spin },
663 #endif
664         { "rm.mutex_mtx", &lock_class_mtx_spin },
665 #ifdef __i386__
666         { "cy", &lock_class_mtx_spin },
667 #endif
668         { "scc_hwmtx", &lock_class_mtx_spin },
669         { "uart_hwmtx", &lock_class_mtx_spin },
670         { "fast_taskqueue", &lock_class_mtx_spin },
671         { "intr table", &lock_class_mtx_spin },
672         { "process slock", &lock_class_mtx_spin },
673         { "syscons video lock", &lock_class_mtx_spin },
674         { "sleepq chain", &lock_class_mtx_spin },
675         { "rm_spinlock", &lock_class_mtx_spin },
676         { "turnstile chain", &lock_class_mtx_spin },
677         { "turnstile lock", &lock_class_mtx_spin },
678         { "sched lock", &lock_class_mtx_spin },
679         { "td_contested", &lock_class_mtx_spin },
680         { "callout", &lock_class_mtx_spin },
681         { "entropy harvest mutex", &lock_class_mtx_spin },
682 #ifdef SMP
683         { "smp rendezvous", &lock_class_mtx_spin },
684 #endif
685 #ifdef __powerpc__
686         { "tlb0", &lock_class_mtx_spin },
687 #endif
688         { NULL, NULL },
689         { "sched lock", &lock_class_mtx_spin },
690 #ifdef  HWPMC_HOOKS
691         { "pmc-per-proc", &lock_class_mtx_spin },
692 #endif
693         { NULL, NULL },
694         /*
695          * leaf locks
696          */
697         { "intrcnt", &lock_class_mtx_spin },
698         { "icu", &lock_class_mtx_spin },
699 #ifdef __i386__
700         { "allpmaps", &lock_class_mtx_spin },
701         { "descriptor tables", &lock_class_mtx_spin },
702 #endif
703         { "clk", &lock_class_mtx_spin },
704         { "cpuset", &lock_class_mtx_spin },
705         { "mprof lock", &lock_class_mtx_spin },
706         { "zombie lock", &lock_class_mtx_spin },
707         { "ALD Queue", &lock_class_mtx_spin },
708 #if defined(__i386__) || defined(__amd64__)
709         { "pcicfg", &lock_class_mtx_spin },
710         { "NDIS thread lock", &lock_class_mtx_spin },
711 #endif
712         { "tw_osl_io_lock", &lock_class_mtx_spin },
713         { "tw_osl_q_lock", &lock_class_mtx_spin },
714         { "tw_cl_io_lock", &lock_class_mtx_spin },
715         { "tw_cl_intr_lock", &lock_class_mtx_spin },
716         { "tw_cl_gen_lock", &lock_class_mtx_spin },
717 #ifdef  HWPMC_HOOKS
718         { "pmc-leaf", &lock_class_mtx_spin },
719 #endif
720         { "blocked lock", &lock_class_mtx_spin },
721         { NULL, NULL },
722         { NULL, NULL }
723 };
724
725 /*
726  * Pairs of locks which have been blessed.  Witness does not complain about
727  * order problems with blessed lock pairs.  Please do not add an entry to the
728  * table without an explanatory comment.
729  */
730 static struct witness_blessed blessed_list[] = {
731         /*
732          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
733          * both lock orders, so a deadlock cannot happen as a result of this
734          * LOR.
735          */
736         { "dirhash",    "bufwait" },
737
738         /*
739          * A UFS vnode may be locked in vget() while a buffer belonging to the
740          * parent directory vnode is locked.
741          */
742         { "ufs",        "bufwait" },
743
744         /*
745          * The tarfs decompression stream vnode may be locked while a
746          * buffer belonging to a tarfs data vnode is locked.
747          */
748         { "tarfs",      "bufwait" },
749 };
750
751 /*
752  * This global is set to 0 once it becomes safe to use the witness code.
753  */
754 static int witness_cold = 1;
755
756 /*
757  * This global is set to 1 once the static lock orders have been enrolled
758  * so that a warning can be issued for any spin locks enrolled later.
759  */
760 static int witness_spin_warn = 0;
761
762 /* Trim useless garbage from filenames. */
763 static const char *
764 fixup_filename(const char *file)
765 {
766
767         if (file == NULL)
768                 return (NULL);
769         while (strncmp(file, "../", 3) == 0)
770                 file += 3;
771         return (file);
772 }
773
774 /*
775  * Calculate the size of early witness structures.
776  */
777 int
778 witness_startup_count(void)
779 {
780         int sz;
781
782         sz = sizeof(struct witness) * witness_count;
783         sz += sizeof(*w_rmatrix) * (witness_count + 1);
784         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
785             (witness_count + 1);
786
787         return (sz);
788 }
789
790 /*
791  * The WITNESS-enabled diagnostic code.  Note that the witness code does
792  * assume that the early boot is single-threaded at least until after this
793  * routine is completed.
794  */
795 void
796 witness_startup(void *mem)
797 {
798         struct lock_object *lock;
799         struct witness_order_list_entry *order;
800         struct witness *w, *w1;
801         uintptr_t p;
802         int i;
803
804         p = (uintptr_t)mem;
805         w_data = (void *)p;
806         p += sizeof(struct witness) * witness_count;
807
808         w_rmatrix = (void *)p;
809         p += sizeof(*w_rmatrix) * (witness_count + 1);
810
811         for (i = 0; i < witness_count + 1; i++) {
812                 w_rmatrix[i] = (void *)p;
813                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
814         }
815         badstack_sbuf_size = witness_count * 256;
816
817         /*
818          * We have to release Giant before initializing its witness
819          * structure so that WITNESS doesn't get confused.
820          */
821         mtx_unlock(&Giant);
822         mtx_assert(&Giant, MA_NOTOWNED);
823
824         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
825         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
826             MTX_NOWITNESS | MTX_NOPROFILE);
827         for (i = witness_count - 1; i >= 0; i--) {
828                 w = &w_data[i];
829                 memset(w, 0, sizeof(*w));
830                 w_data[i].w_index = i;  /* Witness index never changes. */
831                 witness_free(w);
832         }
833         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
834             ("%s: Invalid list of free witness objects", __func__));
835
836         /* Witness with index 0 is not used to aid in debugging. */
837         STAILQ_REMOVE_HEAD(&w_free, w_list);
838         w_free_cnt--;
839
840         for (i = 0; i < witness_count; i++) {
841                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
842                     (witness_count + 1));
843         }
844
845         for (i = 0; i < LOCK_CHILDCOUNT; i++)
846                 witness_lock_list_free(&w_locklistdata[i]);
847         witness_init_hash_tables();
848
849         /* First add in all the specified order lists. */
850         for (order = order_lists; order->w_name != NULL; order++) {
851                 w = enroll(order->w_name, order->w_class);
852                 if (w == NULL)
853                         continue;
854                 w->w_file = "order list";
855                 for (order++; order->w_name != NULL; order++) {
856                         w1 = enroll(order->w_name, order->w_class);
857                         if (w1 == NULL)
858                                 continue;
859                         w1->w_file = "order list";
860                         itismychild(w, w1);
861                         w = w1;
862                 }
863         }
864         witness_spin_warn = 1;
865
866         /* Iterate through all locks and add them to witness. */
867         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
868                 lock = pending_locks[i].wh_lock;
869                 KASSERT(lock->lo_flags & LO_WITNESS,
870                     ("%s: lock %s is on pending list but not LO_WITNESS",
871                     __func__, lock->lo_name));
872                 lock->lo_witness = enroll(pending_locks[i].wh_type,
873                     LOCK_CLASS(lock));
874         }
875
876         /* Mark the witness code as being ready for use. */
877         witness_cold = 0;
878
879         mtx_lock(&Giant);
880 }
881
882 void
883 witness_init(struct lock_object *lock, const char *type)
884 {
885         struct lock_class *class;
886
887         /* Various sanity checks. */
888         class = LOCK_CLASS(lock);
889         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
890             (class->lc_flags & LC_RECURSABLE) == 0)
891                 kassert_panic("%s: lock (%s) %s can not be recursable",
892                     __func__, class->lc_name, lock->lo_name);
893         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
894             (class->lc_flags & LC_SLEEPABLE) == 0)
895                 kassert_panic("%s: lock (%s) %s can not be sleepable",
896                     __func__, class->lc_name, lock->lo_name);
897         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
898             (class->lc_flags & LC_UPGRADABLE) == 0)
899                 kassert_panic("%s: lock (%s) %s can not be upgradable",
900                     __func__, class->lc_name, lock->lo_name);
901
902         /*
903          * If we shouldn't watch this lock, then just clear lo_witness.
904          * Otherwise, if witness_cold is set, then it is too early to
905          * enroll this lock, so defer it to witness_initialize() by adding
906          * it to the pending_locks list.  If it is not too early, then enroll
907          * the lock now.
908          */
909         if (witness_watch < 1 || KERNEL_PANICKED() ||
910             (lock->lo_flags & LO_WITNESS) == 0)
911                 lock->lo_witness = NULL;
912         else if (witness_cold) {
913                 pending_locks[pending_cnt].wh_lock = lock;
914                 pending_locks[pending_cnt++].wh_type = type;
915                 if (pending_cnt > WITNESS_PENDLIST)
916                         panic("%s: pending locks list is too small, "
917                             "increase WITNESS_PENDLIST\n",
918                             __func__);
919         } else
920                 lock->lo_witness = enroll(type, class);
921 }
922
923 void
924 witness_destroy(struct lock_object *lock)
925 {
926         struct lock_class *class;
927         struct witness *w;
928
929         class = LOCK_CLASS(lock);
930
931         if (witness_cold)
932                 panic("lock (%s) %s destroyed while witness_cold",
933                     class->lc_name, lock->lo_name);
934
935         /* XXX: need to verify that no one holds the lock */
936         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
937                 return;
938         w = lock->lo_witness;
939
940         mtx_lock_spin(&w_mtx);
941         MPASS(w->w_refcount > 0);
942         w->w_refcount--;
943
944         if (w->w_refcount == 0)
945                 depart(w);
946         mtx_unlock_spin(&w_mtx);
947 }
948
949 #ifdef DDB
950 static void
951 witness_ddb_compute_levels(void)
952 {
953         struct witness *w;
954
955         /*
956          * First clear all levels.
957          */
958         STAILQ_FOREACH(w, &w_all, w_list)
959                 w->w_ddb_level = -1;
960
961         /*
962          * Look for locks with no parents and level all their descendants.
963          */
964         STAILQ_FOREACH(w, &w_all, w_list) {
965                 /* If the witness has ancestors (is not a root), skip it. */
966                 if (w->w_num_ancestors > 0)
967                         continue;
968                 witness_ddb_level_descendants(w, 0);
969         }
970 }
971
972 static void
973 witness_ddb_level_descendants(struct witness *w, int l)
974 {
975         int i;
976
977         if (w->w_ddb_level >= l)
978                 return;
979
980         w->w_ddb_level = l;
981         l++;
982
983         for (i = 1; i <= w_max_used_index; i++) {
984                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
985                         witness_ddb_level_descendants(&w_data[i], l);
986         }
987 }
988
989 static void
990 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
991     struct witness *w, int indent)
992 {
993         int i;
994
995         for (i = 0; i < indent; i++)
996                 prnt(" ");
997         prnt("%s (type: %s, depth: %d, active refs: %d)",
998              w->w_name, w->w_class->lc_name,
999              w->w_ddb_level, w->w_refcount);
1000         if (w->w_displayed) {
1001                 prnt(" -- (already displayed)\n");
1002                 return;
1003         }
1004         w->w_displayed = 1;
1005         if (w->w_file != NULL && w->w_line != 0)
1006                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1007                     w->w_line);
1008         else
1009                 prnt(" -- never acquired\n");
1010         indent++;
1011         WITNESS_INDEX_ASSERT(w->w_index);
1012         for (i = 1; i <= w_max_used_index; i++) {
1013                 if (db_pager_quit)
1014                         return;
1015                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1016                         witness_ddb_display_descendants(prnt, &w_data[i],
1017                             indent);
1018         }
1019 }
1020
1021 static void
1022 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1023     struct witness_list *list)
1024 {
1025         struct witness *w;
1026
1027         STAILQ_FOREACH(w, list, w_typelist) {
1028                 if (w->w_file == NULL || w->w_ddb_level > 0)
1029                         continue;
1030
1031                 /* This lock has no anscestors - display its descendants. */
1032                 witness_ddb_display_descendants(prnt, w, 0);
1033                 if (db_pager_quit)
1034                         return;
1035         }
1036 }
1037
1038 static void
1039 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1040 {
1041         struct witness *w;
1042
1043         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1044         witness_ddb_compute_levels();
1045
1046         /* Clear all the displayed flags. */
1047         STAILQ_FOREACH(w, &w_all, w_list)
1048                 w->w_displayed = 0;
1049
1050         /*
1051          * First, handle sleep locks which have been acquired at least
1052          * once.
1053          */
1054         prnt("Sleep locks:\n");
1055         witness_ddb_display_list(prnt, &w_sleep);
1056         if (db_pager_quit)
1057                 return;
1058
1059         /*
1060          * Now do spin locks which have been acquired at least once.
1061          */
1062         prnt("\nSpin locks:\n");
1063         witness_ddb_display_list(prnt, &w_spin);
1064         if (db_pager_quit)
1065                 return;
1066
1067         /*
1068          * Finally, any locks which have not been acquired yet.
1069          */
1070         prnt("\nLocks which were never acquired:\n");
1071         STAILQ_FOREACH(w, &w_all, w_list) {
1072                 if (w->w_file != NULL || w->w_refcount == 0)
1073                         continue;
1074                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1075                     w->w_class->lc_name, w->w_ddb_level);
1076                 if (db_pager_quit)
1077                         return;
1078         }
1079 }
1080 #endif /* DDB */
1081
1082 int
1083 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1084 {
1085
1086         if (witness_watch == -1 || KERNEL_PANICKED())
1087                 return (0);
1088
1089         /* Require locks that witness knows about. */
1090         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1091             lock2->lo_witness == NULL)
1092                 return (EINVAL);
1093
1094         mtx_assert(&w_mtx, MA_NOTOWNED);
1095         mtx_lock_spin(&w_mtx);
1096
1097         /*
1098          * If we already have either an explicit or implied lock order that
1099          * is the other way around, then return an error.
1100          */
1101         if (witness_watch &&
1102             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1103                 mtx_unlock_spin(&w_mtx);
1104                 return (EDOOFUS);
1105         }
1106
1107         /* Try to add the new order. */
1108         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1109             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1110         itismychild(lock1->lo_witness, lock2->lo_witness);
1111         mtx_unlock_spin(&w_mtx);
1112         return (0);
1113 }
1114
1115 void
1116 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1117     int line, struct lock_object *interlock)
1118 {
1119         struct lock_list_entry *lock_list, *lle;
1120         struct lock_instance *lock1, *lock2, *plock;
1121         struct lock_class *class, *iclass;
1122         struct witness *w, *w1;
1123         struct thread *td;
1124         int i, j;
1125
1126         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1127             KERNEL_PANICKED())
1128                 return;
1129
1130         w = lock->lo_witness;
1131         class = LOCK_CLASS(lock);
1132         td = curthread;
1133
1134         if (class->lc_flags & LC_SLEEPLOCK) {
1135                 /*
1136                  * Since spin locks include a critical section, this check
1137                  * implicitly enforces a lock order of all sleep locks before
1138                  * all spin locks.
1139                  */
1140                 if (td->td_critnest != 0 && !kdb_active)
1141                         kassert_panic("acquiring blockable sleep lock with "
1142                             "spinlock or critical section held (%s) %s @ %s:%d",
1143                             class->lc_name, lock->lo_name,
1144                             fixup_filename(file), line);
1145
1146                 /*
1147                  * If this is the first lock acquired then just return as
1148                  * no order checking is needed.
1149                  */
1150                 lock_list = td->td_sleeplocks;
1151                 if (lock_list == NULL || lock_list->ll_count == 0)
1152                         return;
1153         } else {
1154                 /*
1155                  * If this is the first lock, just return as no order
1156                  * checking is needed.  Avoid problems with thread
1157                  * migration pinning the thread while checking if
1158                  * spinlocks are held.  If at least one spinlock is held
1159                  * the thread is in a safe path and it is allowed to
1160                  * unpin it.
1161                  */
1162                 sched_pin();
1163                 lock_list = PCPU_GET(spinlocks);
1164                 if (lock_list == NULL || lock_list->ll_count == 0) {
1165                         sched_unpin();
1166                         return;
1167                 }
1168                 sched_unpin();
1169         }
1170
1171         /*
1172          * Check to see if we are recursing on a lock we already own.  If
1173          * so, make sure that we don't mismatch exclusive and shared lock
1174          * acquires.
1175          */
1176         lock1 = find_instance(lock_list, lock);
1177         if (lock1 != NULL) {
1178                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1179                     (flags & LOP_EXCLUSIVE) == 0) {
1180                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1181                             class->lc_name, lock->lo_name,
1182                             fixup_filename(file), line);
1183                         witness_output("while exclusively locked from %s:%d\n",
1184                             fixup_filename(lock1->li_file), lock1->li_line);
1185                         kassert_panic("excl->share");
1186                 }
1187                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1188                     (flags & LOP_EXCLUSIVE) != 0) {
1189                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1190                             class->lc_name, lock->lo_name,
1191                             fixup_filename(file), line);
1192                         witness_output("while share locked from %s:%d\n",
1193                             fixup_filename(lock1->li_file), lock1->li_line);
1194                         kassert_panic("share->excl");
1195                 }
1196                 return;
1197         }
1198
1199         /* Warn if the interlock is not locked exactly once. */
1200         if (interlock != NULL) {
1201                 iclass = LOCK_CLASS(interlock);
1202                 lock1 = find_instance(lock_list, interlock);
1203                 if (lock1 == NULL)
1204                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1205                             iclass->lc_name, interlock->lo_name,
1206                             fixup_filename(file), line);
1207                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1208                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1209                             iclass->lc_name, interlock->lo_name,
1210                             fixup_filename(file), line);
1211         }
1212
1213         /*
1214          * Find the previously acquired lock, but ignore interlocks.
1215          */
1216         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1217         if (interlock != NULL && plock->li_lock == interlock) {
1218                 if (lock_list->ll_count > 1)
1219                         plock =
1220                             &lock_list->ll_children[lock_list->ll_count - 2];
1221                 else {
1222                         lle = lock_list->ll_next;
1223
1224                         /*
1225                          * The interlock is the only lock we hold, so
1226                          * simply return.
1227                          */
1228                         if (lle == NULL)
1229                                 return;
1230                         plock = &lle->ll_children[lle->ll_count - 1];
1231                 }
1232         }
1233
1234         /*
1235          * Try to perform most checks without a lock.  If this succeeds we
1236          * can skip acquiring the lock and return success.  Otherwise we redo
1237          * the check with the lock held to handle races with concurrent updates.
1238          */
1239         w1 = plock->li_lock->lo_witness;
1240         if (witness_lock_order_check(w1, w))
1241                 return;
1242
1243         mtx_lock_spin(&w_mtx);
1244         if (witness_lock_order_check(w1, w)) {
1245                 mtx_unlock_spin(&w_mtx);
1246                 return;
1247         }
1248         witness_lock_order_add(w1, w);
1249
1250         /*
1251          * Check for duplicate locks of the same type.  Note that we only
1252          * have to check for this on the last lock we just acquired.  Any
1253          * other cases will be caught as lock order violations.
1254          */
1255         if (w1 == w) {
1256                 i = w->w_index;
1257                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1258                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1259                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1260                         w->w_reversed = 1;
1261                         mtx_unlock_spin(&w_mtx);
1262                         witness_output(
1263                             "acquiring duplicate lock of same type: \"%s\"\n", 
1264                             w->w_name);
1265                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1266                             fixup_filename(plock->li_file), plock->li_line);
1267                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1268                             fixup_filename(file), line);
1269                         witness_debugger(1, __func__);
1270                 } else
1271                         mtx_unlock_spin(&w_mtx);
1272                 return;
1273         }
1274         mtx_assert(&w_mtx, MA_OWNED);
1275
1276         /*
1277          * If we know that the lock we are acquiring comes after
1278          * the lock we most recently acquired in the lock order tree,
1279          * then there is no need for any further checks.
1280          */
1281         if (isitmychild(w1, w))
1282                 goto out;
1283
1284         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1285                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1286                         struct stack pstack;
1287                         bool pstackv, trace;
1288
1289                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1290                         lock1 = &lle->ll_children[i];
1291
1292                         /*
1293                          * Ignore the interlock.
1294                          */
1295                         if (interlock == lock1->li_lock)
1296                                 continue;
1297
1298                         /*
1299                          * If this lock doesn't undergo witness checking,
1300                          * then skip it.
1301                          */
1302                         w1 = lock1->li_lock->lo_witness;
1303                         if (w1 == NULL) {
1304                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1305                                     ("lock missing witness structure"));
1306                                 continue;
1307                         }
1308
1309                         /*
1310                          * If we are locking Giant and this is a sleepable
1311                          * lock, then skip it.
1312                          */
1313                         if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1314                             lock == &Giant.lock_object)
1315                                 continue;
1316
1317                         /*
1318                          * If we are locking a sleepable lock and this lock
1319                          * is Giant, then skip it.
1320                          */
1321                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1322                             (flags & LOP_NOSLEEP) == 0 &&
1323                             lock1->li_lock == &Giant.lock_object)
1324                                 continue;
1325
1326                         /*
1327                          * If we are locking a sleepable lock and this lock
1328                          * isn't sleepable, we want to treat it as a lock
1329                          * order violation to enfore a general lock order of
1330                          * sleepable locks before non-sleepable locks.
1331                          */
1332                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1333                             (flags & LOP_NOSLEEP) == 0 &&
1334                             (lock1->li_flags & LI_SLEEPABLE) == 0)
1335                                 goto reversal;
1336
1337                         /*
1338                          * If we are locking Giant and this is a non-sleepable
1339                          * lock, then treat it as a reversal.
1340                          */
1341                         if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1342                             lock == &Giant.lock_object)
1343                                 goto reversal;
1344
1345                         /*
1346                          * Check the lock order hierarchy for a reveresal.
1347                          */
1348                         if (!isitmydescendant(w, w1))
1349                                 continue;
1350                 reversal:
1351
1352                         /*
1353                          * We have a lock order violation, check to see if it
1354                          * is allowed or has already been yelled about.
1355                          */
1356
1357                         /* Bail if this violation is known */
1358                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1359                                 goto out;
1360
1361                         /* Record this as a violation */
1362                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1363                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1364                         w->w_reversed = w1->w_reversed = 1;
1365                         witness_increment_graph_generation();
1366
1367                         /*
1368                          * If the lock order is blessed, bail before logging
1369                          * anything.  We don't look for other lock order
1370                          * violations though, which may be a bug.
1371                          */
1372                         if (blessed(w, w1))
1373                                 goto out;
1374
1375                         trace = atomic_load_int(&witness_trace);
1376                         if (trace) {
1377                                 struct witness_lock_order_data *data;
1378
1379                                 pstackv = false;
1380                                 data = witness_lock_order_get(w, w1);
1381                                 if (data != NULL) {
1382                                         stack_copy(&data->wlod_stack,
1383                                             &pstack);
1384                                         pstackv = true;
1385                                 }
1386                         }
1387                         mtx_unlock_spin(&w_mtx);
1388
1389 #ifdef WITNESS_NO_VNODE
1390                         /*
1391                          * There are known LORs between VNODE locks. They are
1392                          * not an indication of a bug. VNODE locks are flagged
1393                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1394                          * is between 2 VNODE locks.
1395                          */
1396                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1397                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1398                                 return;
1399 #endif
1400
1401                         /*
1402                          * Ok, yell about it.
1403                          */
1404                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1405                             (flags & LOP_NOSLEEP) == 0 &&
1406                             (lock1->li_flags & LI_SLEEPABLE) == 0)
1407                                 witness_output(
1408                 "lock order reversal: (sleepable after non-sleepable)\n");
1409                         else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1410                             && lock == &Giant.lock_object)
1411                                 witness_output(
1412                 "lock order reversal: (Giant after non-sleepable)\n");
1413                         else
1414                                 witness_output("lock order reversal:\n");
1415
1416                         /*
1417                          * Try to locate an earlier lock with
1418                          * witness w in our list.
1419                          */
1420                         do {
1421                                 lock2 = &lle->ll_children[i];
1422                                 MPASS(lock2->li_lock != NULL);
1423                                 if (lock2->li_lock->lo_witness == w)
1424                                         break;
1425                                 if (i == 0 && lle->ll_next != NULL) {
1426                                         lle = lle->ll_next;
1427                                         i = lle->ll_count - 1;
1428                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1429                                 } else
1430                                         i--;
1431                         } while (i >= 0);
1432                         if (i < 0) {
1433                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1434                                     lock1->li_lock, lock1->li_lock->lo_name,
1435                                     w1->w_name, w1->w_class->lc_name,
1436                                     fixup_filename(lock1->li_file),
1437                                     lock1->li_line);
1438                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1439                                     lock, lock->lo_name, w->w_name,
1440                                     w->w_class->lc_name, fixup_filename(file),
1441                                     line);
1442                         } else {
1443                                 struct witness *w2 = lock2->li_lock->lo_witness;
1444
1445                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1446                                     lock2->li_lock, lock2->li_lock->lo_name,
1447                                     w2->w_name, w2->w_class->lc_name,
1448                                     fixup_filename(lock2->li_file),
1449                                     lock2->li_line);
1450                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1451                                     lock1->li_lock, lock1->li_lock->lo_name,
1452                                     w1->w_name, w1->w_class->lc_name,
1453                                     fixup_filename(lock1->li_file),
1454                                     lock1->li_line);
1455                                 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
1456                                     lock->lo_name, w->w_name,
1457                                     w->w_class->lc_name, fixup_filename(file),
1458                                     line);
1459                         }
1460                         if (trace) {
1461                                 char buf[64];
1462                                 struct sbuf sb;
1463
1464                                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1465                                 sbuf_set_drain(&sb, witness_output_drain,
1466                                     NULL);
1467
1468                                 if (pstackv) {
1469                                         sbuf_printf(&sb,
1470                                     "lock order %s -> %s established at:\n",
1471                                             w->w_name, w1->w_name);
1472                                         stack_sbuf_print_flags(&sb, &pstack,
1473                                             M_NOWAIT, STACK_SBUF_FMT_LONG);
1474                                 }
1475
1476                                 sbuf_printf(&sb,
1477                                     "lock order %s -> %s attempted at:\n",
1478                                     w1->w_name, w->w_name);
1479                                 stack_save(&pstack);
1480                                 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
1481                                     STACK_SBUF_FMT_LONG);
1482
1483                                 sbuf_finish(&sb);
1484                                 sbuf_delete(&sb);
1485                         }
1486                         witness_enter_debugger(__func__);
1487                         return;
1488                 }
1489         }
1490
1491         /*
1492          * If requested, build a new lock order.  However, don't build a new
1493          * relationship between a sleepable lock and Giant if it is in the
1494          * wrong direction.  The correct lock order is that sleepable locks
1495          * always come before Giant.
1496          */
1497         if (flags & LOP_NEWORDER &&
1498             !(plock->li_lock == &Giant.lock_object &&
1499             (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1500             (flags & LOP_NOSLEEP) == 0)) {
1501                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1502                     w->w_name, plock->li_lock->lo_witness->w_name);
1503                 itismychild(plock->li_lock->lo_witness, w);
1504         }
1505 out:
1506         mtx_unlock_spin(&w_mtx);
1507 }
1508
1509 void
1510 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1511 {
1512         struct lock_list_entry **lock_list, *lle;
1513         struct lock_instance *instance;
1514         struct witness *w;
1515         struct thread *td;
1516
1517         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1518             KERNEL_PANICKED())
1519                 return;
1520         w = lock->lo_witness;
1521         td = curthread;
1522
1523         /* Determine lock list for this lock. */
1524         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1525                 lock_list = &td->td_sleeplocks;
1526         else
1527                 lock_list = PCPU_PTR(spinlocks);
1528
1529         /* Check to see if we are recursing on a lock we already own. */
1530         instance = find_instance(*lock_list, lock);
1531         if (instance != NULL) {
1532                 instance->li_flags++;
1533                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1534                     td->td_proc->p_pid, lock->lo_name,
1535                     instance->li_flags & LI_RECURSEMASK);
1536                 instance->li_file = file;
1537                 instance->li_line = line;
1538                 return;
1539         }
1540
1541         /* Update per-witness last file and line acquire. */
1542         w->w_file = file;
1543         w->w_line = line;
1544
1545         /* Find the next open lock instance in the list and fill it. */
1546         lle = *lock_list;
1547         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1548                 lle = witness_lock_list_get();
1549                 if (lle == NULL)
1550                         return;
1551                 lle->ll_next = *lock_list;
1552                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1553                     td->td_proc->p_pid, lle);
1554                 *lock_list = lle;
1555         }
1556         instance = &lle->ll_children[lle->ll_count++];
1557         instance->li_lock = lock;
1558         instance->li_line = line;
1559         instance->li_file = file;
1560         instance->li_flags = 0;
1561         if ((flags & LOP_EXCLUSIVE) != 0)
1562                 instance->li_flags |= LI_EXCLUSIVE;
1563         if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1564                 instance->li_flags |= LI_SLEEPABLE;
1565         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1566             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1567 }
1568
1569 void
1570 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1571 {
1572         struct lock_instance *instance;
1573         struct lock_class *class;
1574
1575         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1576         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1577                 return;
1578         class = LOCK_CLASS(lock);
1579         if (witness_watch) {
1580                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1581                         kassert_panic(
1582                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1583                             class->lc_name, lock->lo_name,
1584                             fixup_filename(file), line);
1585                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1586                         kassert_panic(
1587                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1588                             class->lc_name, lock->lo_name,
1589                             fixup_filename(file), line);
1590         }
1591         instance = find_instance(curthread->td_sleeplocks, lock);
1592         if (instance == NULL) {
1593                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1594                     class->lc_name, lock->lo_name,
1595                     fixup_filename(file), line);
1596                 return;
1597         }
1598         if (witness_watch) {
1599                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1600                         kassert_panic(
1601                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1602                             class->lc_name, lock->lo_name,
1603                             fixup_filename(file), line);
1604                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1605                         kassert_panic(
1606                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1607                             class->lc_name, lock->lo_name,
1608                             instance->li_flags & LI_RECURSEMASK,
1609                             fixup_filename(file), line);
1610         }
1611         instance->li_flags |= LI_EXCLUSIVE;
1612 }
1613
1614 void
1615 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1616     int line)
1617 {
1618         struct lock_instance *instance;
1619         struct lock_class *class;
1620
1621         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1622         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1623                 return;
1624         class = LOCK_CLASS(lock);
1625         if (witness_watch) {
1626                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1627                         kassert_panic(
1628                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1629                             class->lc_name, lock->lo_name,
1630                             fixup_filename(file), line);
1631                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1632                         kassert_panic(
1633                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1634                             class->lc_name, lock->lo_name,
1635                             fixup_filename(file), line);
1636         }
1637         instance = find_instance(curthread->td_sleeplocks, lock);
1638         if (instance == NULL) {
1639                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1640                     class->lc_name, lock->lo_name,
1641                     fixup_filename(file), line);
1642                 return;
1643         }
1644         if (witness_watch) {
1645                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1646                         kassert_panic(
1647                             "downgrade of shared lock (%s) %s @ %s:%d",
1648                             class->lc_name, lock->lo_name,
1649                             fixup_filename(file), line);
1650                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1651                         kassert_panic(
1652                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1653                             class->lc_name, lock->lo_name,
1654                             instance->li_flags & LI_RECURSEMASK,
1655                             fixup_filename(file), line);
1656         }
1657         instance->li_flags &= ~LI_EXCLUSIVE;
1658 }
1659
1660 void
1661 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1662 {
1663         struct lock_list_entry **lock_list, *lle;
1664         struct lock_instance *instance;
1665         struct lock_class *class;
1666         struct thread *td;
1667         register_t s;
1668         int i, j;
1669
1670         if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1671                 return;
1672         td = curthread;
1673         class = LOCK_CLASS(lock);
1674
1675         /* Find lock instance associated with this lock. */
1676         if (class->lc_flags & LC_SLEEPLOCK)
1677                 lock_list = &td->td_sleeplocks;
1678         else
1679                 lock_list = PCPU_PTR(spinlocks);
1680         lle = *lock_list;
1681         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1682                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1683                         instance = &(*lock_list)->ll_children[i];
1684                         if (instance->li_lock == lock)
1685                                 goto found;
1686                 }
1687
1688         /*
1689          * When disabling WITNESS through witness_watch we could end up in
1690          * having registered locks in the td_sleeplocks queue.
1691          * We have to make sure we flush these queues, so just search for
1692          * eventual register locks and remove them.
1693          */
1694         if (witness_watch > 0) {
1695                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1696                     lock->lo_name, fixup_filename(file), line);
1697                 return;
1698         } else {
1699                 return;
1700         }
1701 found:
1702
1703         /* First, check for shared/exclusive mismatches. */
1704         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1705             (flags & LOP_EXCLUSIVE) == 0) {
1706                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1707                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1708                 witness_output("while exclusively locked from %s:%d\n",
1709                     fixup_filename(instance->li_file), instance->li_line);
1710                 kassert_panic("excl->ushare");
1711         }
1712         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1713             (flags & LOP_EXCLUSIVE) != 0) {
1714                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1715                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1716                 witness_output("while share locked from %s:%d\n",
1717                     fixup_filename(instance->li_file),
1718                     instance->li_line);
1719                 kassert_panic("share->uexcl");
1720         }
1721         /* If we are recursed, unrecurse. */
1722         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1723                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1724                     td->td_proc->p_pid, instance->li_lock->lo_name,
1725                     instance->li_flags);
1726                 instance->li_flags--;
1727                 return;
1728         }
1729         /* The lock is now being dropped, check for NORELEASE flag */
1730         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1731                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1732                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1733                 kassert_panic("lock marked norelease");
1734         }
1735
1736         /* Otherwise, remove this item from the list. */
1737         s = intr_disable();
1738         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1739             td->td_proc->p_pid, instance->li_lock->lo_name,
1740             (*lock_list)->ll_count - 1);
1741         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1742                 (*lock_list)->ll_children[j] =
1743                     (*lock_list)->ll_children[j + 1];
1744         (*lock_list)->ll_count--;
1745         intr_restore(s);
1746
1747         /*
1748          * In order to reduce contention on w_mtx, we want to keep always an
1749          * head object into lists so that frequent allocation from the 
1750          * free witness pool (and subsequent locking) is avoided.
1751          * In order to maintain the current code simple, when the head
1752          * object is totally unloaded it means also that we do not have
1753          * further objects in the list, so the list ownership needs to be
1754          * hand over to another object if the current head needs to be freed.
1755          */
1756         if ((*lock_list)->ll_count == 0) {
1757                 if (*lock_list == lle) {
1758                         if (lle->ll_next == NULL)
1759                                 return;
1760                 } else
1761                         lle = *lock_list;
1762                 *lock_list = lle->ll_next;
1763                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1764                     td->td_proc->p_pid, lle);
1765                 witness_lock_list_free(lle);
1766         }
1767 }
1768
1769 void
1770 witness_thread_exit(struct thread *td)
1771 {
1772         struct lock_list_entry *lle;
1773         int i, n;
1774
1775         lle = td->td_sleeplocks;
1776         if (lle == NULL || KERNEL_PANICKED())
1777                 return;
1778         if (lle->ll_count != 0) {
1779                 for (n = 0; lle != NULL; lle = lle->ll_next)
1780                         for (i = lle->ll_count - 1; i >= 0; i--) {
1781                                 if (n == 0)
1782                                         witness_output(
1783                     "Thread %p exiting with the following locks held:\n", td);
1784                                 n++;
1785                                 witness_list_lock(&lle->ll_children[i],
1786                                     witness_output);
1787                                 
1788                         }
1789                 kassert_panic(
1790                     "Thread %p cannot exit while holding sleeplocks\n", td);
1791         }
1792         witness_lock_list_free(lle);
1793 }
1794
1795 /*
1796  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1797  * exempt Giant and sleepable locks from the checks as well.  If any
1798  * non-exempt locks are held, then a supplied message is printed to the
1799  * output channel along with a list of the offending locks.  If indicated in the
1800  * flags then a failure results in a panic as well.
1801  */
1802 int
1803 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1804 {
1805         struct lock_list_entry *lock_list, *lle;
1806         struct lock_instance *lock1;
1807         struct thread *td;
1808         va_list ap;
1809         int i, n;
1810
1811         if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1812                 return (0);
1813         n = 0;
1814         td = curthread;
1815         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1816                 for (i = lle->ll_count - 1; i >= 0; i--) {
1817                         lock1 = &lle->ll_children[i];
1818                         if (lock1->li_lock == lock)
1819                                 continue;
1820                         if (flags & WARN_GIANTOK &&
1821                             lock1->li_lock == &Giant.lock_object)
1822                                 continue;
1823                         if (flags & WARN_SLEEPOK &&
1824                             (lock1->li_flags & LI_SLEEPABLE) != 0)
1825                                 continue;
1826                         if (n == 0) {
1827                                 va_start(ap, fmt);
1828                                 vprintf(fmt, ap);
1829                                 va_end(ap);
1830                                 printf(" with the following %slocks held:\n",
1831                                     (flags & WARN_SLEEPOK) != 0 ?
1832                                     "non-sleepable " : "");
1833                         }
1834                         n++;
1835                         witness_list_lock(lock1, printf);
1836                 }
1837
1838         /*
1839          * Pin the thread in order to avoid problems with thread migration.
1840          * Once that all verifies are passed about spinlocks ownership,
1841          * the thread is in a safe path and it can be unpinned.
1842          */
1843         sched_pin();
1844         lock_list = PCPU_GET(spinlocks);
1845         if (lock_list != NULL && lock_list->ll_count != 0) {
1846                 sched_unpin();
1847
1848                 /*
1849                  * We should only have one spinlock and as long as
1850                  * the flags cannot match for this locks class,
1851                  * check if the first spinlock is the one curthread
1852                  * should hold.
1853                  */
1854                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1855                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1856                     lock1->li_lock == lock && n == 0)
1857                         return (0);
1858
1859                 va_start(ap, fmt);
1860                 vprintf(fmt, ap);
1861                 va_end(ap);
1862                 printf(" with the following %slocks held:\n",
1863                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1864                 n += witness_list_locks(&lock_list, printf);
1865         } else
1866                 sched_unpin();
1867         if (flags & WARN_PANIC && n)
1868                 kassert_panic("%s", __func__);
1869         else
1870                 witness_debugger(n, __func__);
1871         return (n);
1872 }
1873
1874 const char *
1875 witness_file(struct lock_object *lock)
1876 {
1877         struct witness *w;
1878
1879         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1880                 return ("?");
1881         w = lock->lo_witness;
1882         return (w->w_file);
1883 }
1884
1885 int
1886 witness_line(struct lock_object *lock)
1887 {
1888         struct witness *w;
1889
1890         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1891                 return (0);
1892         w = lock->lo_witness;
1893         return (w->w_line);
1894 }
1895
1896 static struct witness *
1897 enroll(const char *description, struct lock_class *lock_class)
1898 {
1899         struct witness *w;
1900
1901         MPASS(description != NULL);
1902
1903         if (witness_watch == -1 || KERNEL_PANICKED())
1904                 return (NULL);
1905         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1906                 if (witness_skipspin)
1907                         return (NULL);
1908         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1909                 kassert_panic("lock class %s is not sleep or spin",
1910                     lock_class->lc_name);
1911                 return (NULL);
1912         }
1913
1914         mtx_lock_spin(&w_mtx);
1915         w = witness_hash_get(description);
1916         if (w)
1917                 goto found;
1918         if ((w = witness_get()) == NULL)
1919                 return (NULL);
1920         MPASS(strlen(description) < MAX_W_NAME);
1921         strcpy(w->w_name, description);
1922         w->w_class = lock_class;
1923         w->w_refcount = 1;
1924         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1925         if (lock_class->lc_flags & LC_SPINLOCK) {
1926                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1927                 w_spin_cnt++;
1928         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1929                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1930                 w_sleep_cnt++;
1931         }
1932
1933         /* Insert new witness into the hash */
1934         witness_hash_put(w);
1935         witness_increment_graph_generation();
1936         mtx_unlock_spin(&w_mtx);
1937         return (w);
1938 found:
1939         w->w_refcount++;
1940         if (w->w_refcount == 1)
1941                 w->w_class = lock_class;
1942         mtx_unlock_spin(&w_mtx);
1943         if (lock_class != w->w_class)
1944                 kassert_panic(
1945                     "lock (%s) %s does not match earlier (%s) lock",
1946                     description, lock_class->lc_name,
1947                     w->w_class->lc_name);
1948         return (w);
1949 }
1950
1951 static void
1952 depart(struct witness *w)
1953 {
1954
1955         MPASS(w->w_refcount == 0);
1956         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1957                 w_sleep_cnt--;
1958         } else {
1959                 w_spin_cnt--;
1960         }
1961         /*
1962          * Set file to NULL as it may point into a loadable module.
1963          */
1964         w->w_file = NULL;
1965         w->w_line = 0;
1966         witness_increment_graph_generation();
1967 }
1968
1969 static void
1970 adopt(struct witness *parent, struct witness *child)
1971 {
1972         int pi, ci, i, j;
1973
1974         if (witness_cold == 0)
1975                 mtx_assert(&w_mtx, MA_OWNED);
1976
1977         /* If the relationship is already known, there's no work to be done. */
1978         if (isitmychild(parent, child))
1979                 return;
1980
1981         /* When the structure of the graph changes, bump up the generation. */
1982         witness_increment_graph_generation();
1983
1984         /*
1985          * The hard part ... create the direct relationship, then propagate all
1986          * indirect relationships.
1987          */
1988         pi = parent->w_index;
1989         ci = child->w_index;
1990         WITNESS_INDEX_ASSERT(pi);
1991         WITNESS_INDEX_ASSERT(ci);
1992         MPASS(pi != ci);
1993         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1994         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1995
1996         /*
1997          * If parent was not already an ancestor of child,
1998          * then we increment the descendant and ancestor counters.
1999          */
2000         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
2001                 parent->w_num_descendants++;
2002                 child->w_num_ancestors++;
2003         }
2004
2005         /* 
2006          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
2007          * an ancestor of 'pi' during this loop.
2008          */
2009         for (i = 1; i <= w_max_used_index; i++) {
2010                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
2011                     (i != pi))
2012                         continue;
2013
2014                 /* Find each descendant of 'i' and mark it as a descendant. */
2015                 for (j = 1; j <= w_max_used_index; j++) {
2016                         /* 
2017                          * Skip children that are already marked as
2018                          * descendants of 'i'.
2019                          */
2020                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
2021                                 continue;
2022
2023                         /*
2024                          * We are only interested in descendants of 'ci'. Note
2025                          * that 'ci' itself is counted as a descendant of 'ci'.
2026                          */
2027                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
2028                             (j != ci))
2029                                 continue;
2030                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
2031                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
2032                         w_data[i].w_num_descendants++;
2033                         w_data[j].w_num_ancestors++;
2034
2035                         /* 
2036                          * Make sure we aren't marking a node as both an
2037                          * ancestor and descendant. We should have caught 
2038                          * this as a lock order reversal earlier.
2039                          */
2040                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
2041                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
2042                                 printf("witness rmatrix paradox! [%d][%d]=%d "
2043                                     "both ancestor and descendant\n",
2044                                     i, j, w_rmatrix[i][j]); 
2045                                 kdb_backtrace();
2046                                 printf("Witness disabled.\n");
2047                                 witness_watch = -1;
2048                         }
2049                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2050                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2051                                 printf("witness rmatrix paradox! [%d][%d]=%d "
2052                                     "both ancestor and descendant\n",
2053                                     j, i, w_rmatrix[j][i]); 
2054                                 kdb_backtrace();
2055                                 printf("Witness disabled.\n");
2056                                 witness_watch = -1;
2057                         }
2058                 }
2059         }
2060 }
2061
2062 static void
2063 itismychild(struct witness *parent, struct witness *child)
2064 {
2065         int unlocked;
2066
2067         MPASS(child != NULL && parent != NULL);
2068         if (witness_cold == 0)
2069                 mtx_assert(&w_mtx, MA_OWNED);
2070
2071         if (!witness_lock_type_equal(parent, child)) {
2072                 if (witness_cold == 0) {
2073                         unlocked = 1;
2074                         mtx_unlock_spin(&w_mtx);
2075                 } else {
2076                         unlocked = 0;
2077                 }
2078                 kassert_panic(
2079                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2080                     "the same lock type", __func__, parent->w_name,
2081                     parent->w_class->lc_name, child->w_name,
2082                     child->w_class->lc_name);
2083                 if (unlocked)
2084                         mtx_lock_spin(&w_mtx);
2085         }
2086         adopt(parent, child);
2087 }
2088
2089 /*
2090  * Generic code for the isitmy*() functions. The rmask parameter is the
2091  * expected relationship of w1 to w2.
2092  */
2093 static int
2094 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2095 {
2096         unsigned char r1, r2;
2097         int i1, i2;
2098
2099         i1 = w1->w_index;
2100         i2 = w2->w_index;
2101         WITNESS_INDEX_ASSERT(i1);
2102         WITNESS_INDEX_ASSERT(i2);
2103         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2104         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2105
2106         /* The flags on one better be the inverse of the flags on the other */
2107         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2108             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2109                 /* Don't squawk if we're potentially racing with an update. */
2110                 if (!mtx_owned(&w_mtx))
2111                         return (0);
2112                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2113                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2114                     "w_rmatrix[%d][%d] == %hhx\n",
2115                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2116                     i2, i1, r2);
2117                 kdb_backtrace();
2118                 printf("Witness disabled.\n");
2119                 witness_watch = -1;
2120         }
2121         return (r1 & rmask);
2122 }
2123
2124 /*
2125  * Checks if @child is a direct child of @parent.
2126  */
2127 static int
2128 isitmychild(struct witness *parent, struct witness *child)
2129 {
2130
2131         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2132 }
2133
2134 /*
2135  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2136  */
2137 static int
2138 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2139 {
2140
2141         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2142             __func__));
2143 }
2144
2145 static int
2146 blessed(struct witness *w1, struct witness *w2)
2147 {
2148         int i;
2149         struct witness_blessed *b;
2150
2151         for (i = 0; i < nitems(blessed_list); i++) {
2152                 b = &blessed_list[i];
2153                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2154                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2155                                 return (1);
2156                         continue;
2157                 }
2158                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2159                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2160                                 return (1);
2161         }
2162         return (0);
2163 }
2164
2165 static struct witness *
2166 witness_get(void)
2167 {
2168         struct witness *w;
2169         int index;
2170
2171         if (witness_cold == 0)
2172                 mtx_assert(&w_mtx, MA_OWNED);
2173
2174         if (witness_watch == -1) {
2175                 mtx_unlock_spin(&w_mtx);
2176                 return (NULL);
2177         }
2178         if (STAILQ_EMPTY(&w_free)) {
2179                 witness_watch = -1;
2180                 mtx_unlock_spin(&w_mtx);
2181                 printf("WITNESS: unable to allocate a new witness object\n");
2182                 return (NULL);
2183         }
2184         w = STAILQ_FIRST(&w_free);
2185         STAILQ_REMOVE_HEAD(&w_free, w_list);
2186         w_free_cnt--;
2187         index = w->w_index;
2188         MPASS(index > 0 && index == w_max_used_index+1 &&
2189             index < witness_count);
2190         bzero(w, sizeof(*w));
2191         w->w_index = index;
2192         if (index > w_max_used_index)
2193                 w_max_used_index = index;
2194         return (w);
2195 }
2196
2197 static void
2198 witness_free(struct witness *w)
2199 {
2200
2201         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2202         w_free_cnt++;
2203 }
2204
2205 static struct lock_list_entry *
2206 witness_lock_list_get(void)
2207 {
2208         struct lock_list_entry *lle;
2209
2210         if (witness_watch == -1)
2211                 return (NULL);
2212         mtx_lock_spin(&w_mtx);
2213         lle = w_lock_list_free;
2214         if (lle == NULL) {
2215                 witness_watch = -1;
2216                 mtx_unlock_spin(&w_mtx);
2217                 printf("%s: witness exhausted\n", __func__);
2218                 return (NULL);
2219         }
2220         w_lock_list_free = lle->ll_next;
2221         mtx_unlock_spin(&w_mtx);
2222         bzero(lle, sizeof(*lle));
2223         return (lle);
2224 }
2225                 
2226 static void
2227 witness_lock_list_free(struct lock_list_entry *lle)
2228 {
2229
2230         mtx_lock_spin(&w_mtx);
2231         lle->ll_next = w_lock_list_free;
2232         w_lock_list_free = lle;
2233         mtx_unlock_spin(&w_mtx);
2234 }
2235
2236 static struct lock_instance *
2237 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2238 {
2239         struct lock_list_entry *lle;
2240         struct lock_instance *instance;
2241         int i;
2242
2243         for (lle = list; lle != NULL; lle = lle->ll_next)
2244                 for (i = lle->ll_count - 1; i >= 0; i--) {
2245                         instance = &lle->ll_children[i];
2246                         if (instance->li_lock == lock)
2247                                 return (instance);
2248                 }
2249         return (NULL);
2250 }
2251
2252 static void
2253 witness_list_lock(struct lock_instance *instance,
2254     int (*prnt)(const char *fmt, ...))
2255 {
2256         struct lock_object *lock;
2257
2258         lock = instance->li_lock;
2259         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2260             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2261         if (lock->lo_witness->w_name != lock->lo_name)
2262                 prnt(" (%s)", lock->lo_witness->w_name);
2263         prnt(" r = %d (%p) locked @ %s:%d\n",
2264             instance->li_flags & LI_RECURSEMASK, lock,
2265             fixup_filename(instance->li_file), instance->li_line);
2266 }
2267
2268 static int
2269 witness_output(const char *fmt, ...)
2270 {
2271         va_list ap;
2272         int ret;
2273
2274         va_start(ap, fmt);
2275         ret = witness_voutput(fmt, ap);
2276         va_end(ap);
2277         return (ret);
2278 }
2279
2280 static int
2281 witness_voutput(const char *fmt, va_list ap)
2282 {
2283         int ret;
2284
2285         ret = 0;
2286         switch (witness_channel) {
2287         case WITNESS_CONSOLE:
2288                 ret = vprintf(fmt, ap);
2289                 break;
2290         case WITNESS_LOG:
2291                 vlog(LOG_NOTICE, fmt, ap);
2292                 break;
2293         case WITNESS_NONE:
2294                 break;
2295         }
2296         return (ret);
2297 }
2298
2299 #ifdef DDB
2300 static int
2301 witness_thread_has_locks(struct thread *td)
2302 {
2303
2304         if (td->td_sleeplocks == NULL)
2305                 return (0);
2306         return (td->td_sleeplocks->ll_count != 0);
2307 }
2308
2309 static int
2310 witness_proc_has_locks(struct proc *p)
2311 {
2312         struct thread *td;
2313
2314         FOREACH_THREAD_IN_PROC(p, td) {
2315                 if (witness_thread_has_locks(td))
2316                         return (1);
2317         }
2318         return (0);
2319 }
2320 #endif
2321
2322 int
2323 witness_list_locks(struct lock_list_entry **lock_list,
2324     int (*prnt)(const char *fmt, ...))
2325 {
2326         struct lock_list_entry *lle;
2327         int i, nheld;
2328
2329         nheld = 0;
2330         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2331                 for (i = lle->ll_count - 1; i >= 0; i--) {
2332                         witness_list_lock(&lle->ll_children[i], prnt);
2333                         nheld++;
2334                 }
2335         return (nheld);
2336 }
2337
2338 /*
2339  * This is a bit risky at best.  We call this function when we have timed
2340  * out acquiring a spin lock, and we assume that the other CPU is stuck
2341  * with this lock held.  So, we go groveling around in the other CPU's
2342  * per-cpu data to try to find the lock instance for this spin lock to
2343  * see when it was last acquired.
2344  */
2345 void
2346 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2347     int (*prnt)(const char *fmt, ...))
2348 {
2349         struct lock_instance *instance;
2350         struct pcpu *pc;
2351
2352         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2353                 return;
2354         pc = pcpu_find(owner->td_oncpu);
2355         instance = find_instance(pc->pc_spinlocks, lock);
2356         if (instance != NULL)
2357                 witness_list_lock(instance, prnt);
2358 }
2359
2360 void
2361 witness_save(struct lock_object *lock, const char **filep, int *linep)
2362 {
2363         struct lock_list_entry *lock_list;
2364         struct lock_instance *instance;
2365         struct lock_class *class;
2366
2367         /*
2368          * This function is used independently in locking code to deal with
2369          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2370          * is gone.
2371          */
2372         if (SCHEDULER_STOPPED())
2373                 return;
2374         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2375         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2376                 return;
2377         class = LOCK_CLASS(lock);
2378         if (class->lc_flags & LC_SLEEPLOCK)
2379                 lock_list = curthread->td_sleeplocks;
2380         else {
2381                 if (witness_skipspin)
2382                         return;
2383                 lock_list = PCPU_GET(spinlocks);
2384         }
2385         instance = find_instance(lock_list, lock);
2386         if (instance == NULL) {
2387                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2388                     class->lc_name, lock->lo_name);
2389                 return;
2390         }
2391         *filep = instance->li_file;
2392         *linep = instance->li_line;
2393 }
2394
2395 void
2396 witness_restore(struct lock_object *lock, const char *file, int line)
2397 {
2398         struct lock_list_entry *lock_list;
2399         struct lock_instance *instance;
2400         struct lock_class *class;
2401
2402         /*
2403          * This function is used independently in locking code to deal with
2404          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2405          * is gone.
2406          */
2407         if (SCHEDULER_STOPPED())
2408                 return;
2409         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2410         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2411                 return;
2412         class = LOCK_CLASS(lock);
2413         if (class->lc_flags & LC_SLEEPLOCK)
2414                 lock_list = curthread->td_sleeplocks;
2415         else {
2416                 if (witness_skipspin)
2417                         return;
2418                 lock_list = PCPU_GET(spinlocks);
2419         }
2420         instance = find_instance(lock_list, lock);
2421         if (instance == NULL)
2422                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2423                     class->lc_name, lock->lo_name);
2424         lock->lo_witness->w_file = file;
2425         lock->lo_witness->w_line = line;
2426         if (instance == NULL)
2427                 return;
2428         instance->li_file = file;
2429         instance->li_line = line;
2430 }
2431
2432 static bool
2433 witness_find_instance(const struct lock_object *lock,
2434     struct lock_instance **instance)
2435 {
2436 #ifdef INVARIANT_SUPPORT
2437         struct lock_class *class;
2438
2439         if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2440                 return (false);
2441         class = LOCK_CLASS(lock);
2442         if ((class->lc_flags & LC_SLEEPLOCK) != 0) {
2443                 *instance = find_instance(curthread->td_sleeplocks, lock);
2444                 return (true);
2445         } else if ((class->lc_flags & LC_SPINLOCK) != 0) {
2446                 *instance = find_instance(PCPU_GET(spinlocks), lock);
2447                 return (true);
2448         } else {
2449                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2450                     class->lc_name, lock->lo_name);
2451                 return (false);
2452         }
2453 #else
2454         return (false);
2455 #endif
2456 }
2457
2458 void
2459 witness_assert(const struct lock_object *lock, int flags, const char *file,
2460     int line)
2461 {
2462 #ifdef INVARIANT_SUPPORT
2463         struct lock_instance *instance;
2464         struct lock_class *class;
2465
2466         if (!witness_find_instance(lock, &instance))
2467                 return;
2468         class = LOCK_CLASS(lock);
2469         switch (flags) {
2470         case LA_UNLOCKED:
2471                 if (instance != NULL)
2472                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2473                             class->lc_name, lock->lo_name,
2474                             fixup_filename(file), line);
2475                 break;
2476         case LA_LOCKED:
2477         case LA_LOCKED | LA_RECURSED:
2478         case LA_LOCKED | LA_NOTRECURSED:
2479         case LA_SLOCKED:
2480         case LA_SLOCKED | LA_RECURSED:
2481         case LA_SLOCKED | LA_NOTRECURSED:
2482         case LA_XLOCKED:
2483         case LA_XLOCKED | LA_RECURSED:
2484         case LA_XLOCKED | LA_NOTRECURSED:
2485                 if (instance == NULL) {
2486                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2487                             class->lc_name, lock->lo_name,
2488                             fixup_filename(file), line);
2489                         break;
2490                 }
2491                 if ((flags & LA_XLOCKED) != 0 &&
2492                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2493                         kassert_panic(
2494                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2495                             class->lc_name, lock->lo_name,
2496                             fixup_filename(file), line);
2497                 if ((flags & LA_SLOCKED) != 0 &&
2498                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2499                         kassert_panic(
2500                             "Lock (%s) %s exclusively locked @ %s:%d.",
2501                             class->lc_name, lock->lo_name,
2502                             fixup_filename(file), line);
2503                 if ((flags & LA_RECURSED) != 0 &&
2504                     (instance->li_flags & LI_RECURSEMASK) == 0)
2505                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2506                             class->lc_name, lock->lo_name,
2507                             fixup_filename(file), line);
2508                 if ((flags & LA_NOTRECURSED) != 0 &&
2509                     (instance->li_flags & LI_RECURSEMASK) != 0)
2510                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2511                             class->lc_name, lock->lo_name,
2512                             fixup_filename(file), line);
2513                 break;
2514         default:
2515                 kassert_panic("Invalid lock assertion at %s:%d.",
2516                     fixup_filename(file), line);
2517         }
2518 #endif  /* INVARIANT_SUPPORT */
2519 }
2520
2521 /*
2522  * Checks the ownership of the lock by curthread, consulting the witness list.
2523  * Returns:
2524  *   0  if witness is disabled or did not work
2525  *   -1 if not owned
2526  *   1  if owned
2527  */
2528 int
2529 witness_is_owned(const struct lock_object *lock)
2530 {
2531 #ifdef INVARIANT_SUPPORT
2532         struct lock_instance *instance;
2533
2534         if (!witness_find_instance(lock, &instance))
2535                 return (0);
2536         return (instance == NULL ? -1 : 1);
2537 #else
2538         return (0);
2539 #endif
2540 }
2541
2542 static void
2543 witness_setflag(struct lock_object *lock, int flag, int set)
2544 {
2545         struct lock_list_entry *lock_list;
2546         struct lock_instance *instance;
2547         struct lock_class *class;
2548
2549         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2550                 return;
2551         class = LOCK_CLASS(lock);
2552         if (class->lc_flags & LC_SLEEPLOCK)
2553                 lock_list = curthread->td_sleeplocks;
2554         else {
2555                 if (witness_skipspin)
2556                         return;
2557                 lock_list = PCPU_GET(spinlocks);
2558         }
2559         instance = find_instance(lock_list, lock);
2560         if (instance == NULL) {
2561                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2562                     class->lc_name, lock->lo_name);
2563                 return;
2564         }
2565
2566         if (set)
2567                 instance->li_flags |= flag;
2568         else
2569                 instance->li_flags &= ~flag;
2570 }
2571
2572 void
2573 witness_norelease(struct lock_object *lock)
2574 {
2575
2576         witness_setflag(lock, LI_NORELEASE, 1);
2577 }
2578
2579 void
2580 witness_releaseok(struct lock_object *lock)
2581 {
2582
2583         witness_setflag(lock, LI_NORELEASE, 0);
2584 }
2585
2586 #ifdef DDB
2587 static void
2588 witness_ddb_list(struct thread *td)
2589 {
2590
2591         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2592         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2593
2594         if (witness_watch < 1)
2595                 return;
2596
2597         witness_list_locks(&td->td_sleeplocks, db_printf);
2598
2599         /*
2600          * We only handle spinlocks if td == curthread.  This is somewhat broken
2601          * if td is currently executing on some other CPU and holds spin locks
2602          * as we won't display those locks.  If we had a MI way of getting
2603          * the per-cpu data for a given cpu then we could use
2604          * td->td_oncpu to get the list of spinlocks for this thread
2605          * and "fix" this.
2606          *
2607          * That still wouldn't really fix this unless we locked the scheduler
2608          * lock or stopped the other CPU to make sure it wasn't changing the
2609          * list out from under us.  It is probably best to just not try to
2610          * handle threads on other CPU's for now.
2611          */
2612         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2613                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2614 }
2615
2616 DB_SHOW_COMMAND(locks, db_witness_list)
2617 {
2618         struct thread *td;
2619
2620         if (have_addr)
2621                 td = db_lookup_thread(addr, true);
2622         else
2623                 td = kdb_thread;
2624         witness_ddb_list(td);
2625 }
2626
2627 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2628 {
2629         struct thread *td;
2630         struct proc *p;
2631
2632         /*
2633          * It would be nice to list only threads and processes that actually
2634          * held sleep locks, but that information is currently not exported
2635          * by WITNESS.
2636          */
2637         FOREACH_PROC_IN_SYSTEM(p) {
2638                 if (!witness_proc_has_locks(p))
2639                         continue;
2640                 FOREACH_THREAD_IN_PROC(p, td) {
2641                         if (!witness_thread_has_locks(td))
2642                                 continue;
2643                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2644                             p->p_comm, td, td->td_tid);
2645                         witness_ddb_list(td);
2646                         if (db_pager_quit)
2647                                 return;
2648                 }
2649         }
2650 }
2651 DB_SHOW_ALIAS_FLAGS(alllocks, db_witness_list_all, DB_CMD_MEMSAFE)
2652
2653 DB_SHOW_COMMAND_FLAGS(witness, db_witness_display, DB_CMD_MEMSAFE)
2654 {
2655
2656         witness_ddb_display(db_printf);
2657 }
2658 #endif
2659
2660 static void
2661 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2662 {
2663         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2664         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2665         int generation, i, j;
2666
2667         tmp_data1 = NULL;
2668         tmp_data2 = NULL;
2669         tmp_w1 = NULL;
2670         tmp_w2 = NULL;
2671
2672         /* Allocate and init temporary storage space. */
2673         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2674         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2675         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2676             M_WAITOK | M_ZERO);
2677         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2678             M_WAITOK | M_ZERO);
2679         stack_zero(&tmp_data1->wlod_stack);
2680         stack_zero(&tmp_data2->wlod_stack);
2681
2682 restart:
2683         mtx_lock_spin(&w_mtx);
2684         generation = w_generation;
2685         mtx_unlock_spin(&w_mtx);
2686         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2687             w_lohash.wloh_count);
2688         for (i = 1; i < w_max_used_index; i++) {
2689                 mtx_lock_spin(&w_mtx);
2690                 if (generation != w_generation) {
2691                         mtx_unlock_spin(&w_mtx);
2692
2693                         /* The graph has changed, try again. */
2694                         *oldidx = 0;
2695                         sbuf_clear(sb);
2696                         goto restart;
2697                 }
2698
2699                 w1 = &w_data[i];
2700                 if (w1->w_reversed == 0) {
2701                         mtx_unlock_spin(&w_mtx);
2702                         continue;
2703                 }
2704
2705                 /* Copy w1 locally so we can release the spin lock. */
2706                 *tmp_w1 = *w1;
2707                 mtx_unlock_spin(&w_mtx);
2708
2709                 if (tmp_w1->w_reversed == 0)
2710                         continue;
2711                 for (j = 1; j < w_max_used_index; j++) {
2712                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2713                                 continue;
2714
2715                         mtx_lock_spin(&w_mtx);
2716                         if (generation != w_generation) {
2717                                 mtx_unlock_spin(&w_mtx);
2718
2719                                 /* The graph has changed, try again. */
2720                                 *oldidx = 0;
2721                                 sbuf_clear(sb);
2722                                 goto restart;
2723                         }
2724
2725                         w2 = &w_data[j];
2726                         data1 = witness_lock_order_get(w1, w2);
2727                         data2 = witness_lock_order_get(w2, w1);
2728
2729                         /*
2730                          * Copy information locally so we can release the
2731                          * spin lock.
2732                          */
2733                         *tmp_w2 = *w2;
2734
2735                         if (data1) {
2736                                 stack_zero(&tmp_data1->wlod_stack);
2737                                 stack_copy(&data1->wlod_stack,
2738                                     &tmp_data1->wlod_stack);
2739                         }
2740                         if (data2 && data2 != data1) {
2741                                 stack_zero(&tmp_data2->wlod_stack);
2742                                 stack_copy(&data2->wlod_stack,
2743                                     &tmp_data2->wlod_stack);
2744                         }
2745                         mtx_unlock_spin(&w_mtx);
2746
2747                         if (blessed(tmp_w1, tmp_w2))
2748                                 continue;
2749
2750                         sbuf_printf(sb,
2751             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2752                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2753                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2754                         if (data1) {
2755                                 sbuf_printf(sb,
2756                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2757                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2758                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2759                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2760                                 sbuf_printf(sb, "\n");
2761                         }
2762                         if (data2 && data2 != data1) {
2763                                 sbuf_printf(sb,
2764                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2765                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2766                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2767                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2768                                 sbuf_printf(sb, "\n");
2769                         }
2770                 }
2771         }
2772         mtx_lock_spin(&w_mtx);
2773         if (generation != w_generation) {
2774                 mtx_unlock_spin(&w_mtx);
2775
2776                 /*
2777                  * The graph changed while we were printing stack data,
2778                  * try again.
2779                  */
2780                 *oldidx = 0;
2781                 sbuf_clear(sb);
2782                 goto restart;
2783         }
2784         mtx_unlock_spin(&w_mtx);
2785
2786         /* Free temporary storage space. */
2787         free(tmp_data1, M_TEMP);
2788         free(tmp_data2, M_TEMP);
2789         free(tmp_w1, M_TEMP);
2790         free(tmp_w2, M_TEMP);
2791 }
2792
2793 static int
2794 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2795 {
2796         struct sbuf *sb;
2797         int error;
2798
2799         if (witness_watch < 1) {
2800                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2801                 return (error);
2802         }
2803         if (witness_cold) {
2804                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2805                 return (error);
2806         }
2807         error = 0;
2808         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2809         if (sb == NULL)
2810                 return (ENOMEM);
2811
2812         sbuf_print_witness_badstacks(sb, &req->oldidx);
2813
2814         sbuf_finish(sb);
2815         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2816         sbuf_delete(sb);
2817
2818         return (error);
2819 }
2820
2821 #ifdef DDB
2822 static int
2823 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2824 {
2825
2826         return (db_printf("%.*s", len, data));
2827 }
2828
2829 DB_SHOW_COMMAND_FLAGS(badstacks, db_witness_badstacks, DB_CMD_MEMSAFE)
2830 {
2831         struct sbuf sb;
2832         char buffer[128];
2833         size_t dummy;
2834
2835         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2836         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2837         sbuf_print_witness_badstacks(&sb, &dummy);
2838         sbuf_finish(&sb);
2839 }
2840 #endif
2841
2842 static int
2843 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2844 {
2845         static const struct {
2846                 enum witness_channel channel;
2847                 const char *name;
2848         } channels[] = {
2849                 { WITNESS_CONSOLE, "console" },
2850                 { WITNESS_LOG, "log" },
2851                 { WITNESS_NONE, "none" },
2852         };
2853         char buf[16];
2854         u_int i;
2855         int error;
2856
2857         buf[0] = '\0';
2858         for (i = 0; i < nitems(channels); i++)
2859                 if (witness_channel == channels[i].channel) {
2860                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2861                         break;
2862                 }
2863
2864         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2865         if (error != 0 || req->newptr == NULL)
2866                 return (error);
2867
2868         error = EINVAL;
2869         for (i = 0; i < nitems(channels); i++)
2870                 if (strcmp(channels[i].name, buf) == 0) {
2871                         witness_channel = channels[i].channel;
2872                         error = 0;
2873                         break;
2874                 }
2875         return (error);
2876 }
2877
2878 static int
2879 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2880 {
2881         struct witness *w;
2882         struct sbuf *sb;
2883         int error;
2884
2885 #ifdef __i386__
2886         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2887         return (error);
2888 #endif
2889
2890         if (witness_watch < 1) {
2891                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2892                 return (error);
2893         }
2894         if (witness_cold) {
2895                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2896                 return (error);
2897         }
2898         error = 0;
2899
2900         error = sysctl_wire_old_buffer(req, 0);
2901         if (error != 0)
2902                 return (error);
2903         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2904         if (sb == NULL)
2905                 return (ENOMEM);
2906         sbuf_printf(sb, "\n");
2907
2908         mtx_lock_spin(&w_mtx);
2909         STAILQ_FOREACH(w, &w_all, w_list)
2910                 w->w_displayed = 0;
2911         STAILQ_FOREACH(w, &w_all, w_list)
2912                 witness_add_fullgraph(sb, w);
2913         mtx_unlock_spin(&w_mtx);
2914
2915         /*
2916          * Close the sbuf and return to userland.
2917          */
2918         error = sbuf_finish(sb);
2919         sbuf_delete(sb);
2920
2921         return (error);
2922 }
2923
2924 static int
2925 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2926 {
2927         int error, value;
2928
2929         value = witness_watch;
2930         error = sysctl_handle_int(oidp, &value, 0, req);
2931         if (error != 0 || req->newptr == NULL)
2932                 return (error);
2933         if (value > 1 || value < -1 ||
2934             (witness_watch == -1 && value != witness_watch))
2935                 return (EINVAL);
2936         witness_watch = value;
2937         return (0);
2938 }
2939
2940 static void
2941 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2942 {
2943         int i;
2944
2945         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2946                 return;
2947         w->w_displayed = 1;
2948
2949         WITNESS_INDEX_ASSERT(w->w_index);
2950         for (i = 1; i <= w_max_used_index; i++) {
2951                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2952                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2953                             w_data[i].w_name);
2954                         witness_add_fullgraph(sb, &w_data[i]);
2955                 }
2956         }
2957 }
2958
2959 /*
2960  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2961  * interprets the key as a string and reads until the null
2962  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2963  * hash value computed from the key.
2964  */
2965 static uint32_t
2966 witness_hash_djb2(const uint8_t *key, uint32_t size)
2967 {
2968         unsigned int hash = 5381;
2969         int i;
2970
2971         /* hash = hash * 33 + key[i] */
2972         if (size)
2973                 for (i = 0; i < size; i++)
2974                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2975         else
2976                 for (i = 0; key[i] != 0; i++)
2977                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2978
2979         return (hash);
2980 }
2981
2982 /*
2983  * Initializes the two witness hash tables. Called exactly once from
2984  * witness_initialize().
2985  */
2986 static void
2987 witness_init_hash_tables(void)
2988 {
2989         int i;
2990
2991         MPASS(witness_cold);
2992
2993         /* Initialize the hash tables. */
2994         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2995                 w_hash.wh_array[i] = NULL;
2996
2997         w_hash.wh_size = WITNESS_HASH_SIZE;
2998         w_hash.wh_count = 0;
2999
3000         /* Initialize the lock order data hash. */
3001         w_lofree = NULL;
3002         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
3003                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
3004                 w_lodata[i].wlod_next = w_lofree;
3005                 w_lofree = &w_lodata[i];
3006         }
3007         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
3008         w_lohash.wloh_count = 0;
3009         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
3010                 w_lohash.wloh_array[i] = NULL;
3011 }
3012
3013 static struct witness *
3014 witness_hash_get(const char *key)
3015 {
3016         struct witness *w;
3017         uint32_t hash;
3018
3019         MPASS(key != NULL);
3020         if (witness_cold == 0)
3021                 mtx_assert(&w_mtx, MA_OWNED);
3022         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
3023         w = w_hash.wh_array[hash];
3024         while (w != NULL) {
3025                 if (strcmp(w->w_name, key) == 0)
3026                         goto out;
3027                 w = w->w_hash_next;
3028         }
3029
3030 out:
3031         return (w);
3032 }
3033
3034 static void
3035 witness_hash_put(struct witness *w)
3036 {
3037         uint32_t hash;
3038
3039         MPASS(w != NULL);
3040         MPASS(w->w_name != NULL);
3041         if (witness_cold == 0)
3042                 mtx_assert(&w_mtx, MA_OWNED);
3043         KASSERT(witness_hash_get(w->w_name) == NULL,
3044             ("%s: trying to add a hash entry that already exists!", __func__));
3045         KASSERT(w->w_hash_next == NULL,
3046             ("%s: w->w_hash_next != NULL", __func__));
3047
3048         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
3049         w->w_hash_next = w_hash.wh_array[hash];
3050         w_hash.wh_array[hash] = w;
3051         w_hash.wh_count++;
3052 }
3053
3054 static struct witness_lock_order_data *
3055 witness_lock_order_get(struct witness *parent, struct witness *child)
3056 {
3057         struct witness_lock_order_data *data = NULL;
3058         struct witness_lock_order_key key;
3059         unsigned int hash;
3060
3061         MPASS(parent != NULL && child != NULL);
3062         key.from = parent->w_index;
3063         key.to = child->w_index;
3064         WITNESS_INDEX_ASSERT(key.from);
3065         WITNESS_INDEX_ASSERT(key.to);
3066         if ((w_rmatrix[parent->w_index][child->w_index]
3067             & WITNESS_LOCK_ORDER_KNOWN) == 0)
3068                 goto out;
3069
3070         hash = witness_hash_djb2((const char*)&key,
3071             sizeof(key)) % w_lohash.wloh_size;
3072         data = w_lohash.wloh_array[hash];
3073         while (data != NULL) {
3074                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
3075                         break;
3076                 data = data->wlod_next;
3077         }
3078
3079 out:
3080         return (data);
3081 }
3082
3083 /*
3084  * Verify that parent and child have a known relationship, are not the same,
3085  * and child is actually a child of parent.  This is done without w_mtx
3086  * to avoid contention in the common case.
3087  */
3088 static int
3089 witness_lock_order_check(struct witness *parent, struct witness *child)
3090 {
3091
3092         if (parent != child &&
3093             w_rmatrix[parent->w_index][child->w_index]
3094             & WITNESS_LOCK_ORDER_KNOWN &&
3095             isitmychild(parent, child))
3096                 return (1);
3097
3098         return (0);
3099 }
3100
3101 static int
3102 witness_lock_order_add(struct witness *parent, struct witness *child)
3103 {
3104         struct witness_lock_order_data *data = NULL;
3105         struct witness_lock_order_key key;
3106         unsigned int hash;
3107
3108         MPASS(parent != NULL && child != NULL);
3109         key.from = parent->w_index;
3110         key.to = child->w_index;
3111         WITNESS_INDEX_ASSERT(key.from);
3112         WITNESS_INDEX_ASSERT(key.to);
3113         if (w_rmatrix[parent->w_index][child->w_index]
3114             & WITNESS_LOCK_ORDER_KNOWN)
3115                 return (1);
3116
3117         hash = witness_hash_djb2((const char*)&key,
3118             sizeof(key)) % w_lohash.wloh_size;
3119         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3120         data = w_lofree;
3121         if (data == NULL)
3122                 return (0);
3123         w_lofree = data->wlod_next;
3124         data->wlod_next = w_lohash.wloh_array[hash];
3125         data->wlod_key = key;
3126         w_lohash.wloh_array[hash] = data;
3127         w_lohash.wloh_count++;
3128         stack_save(&data->wlod_stack);
3129         return (1);
3130 }
3131
3132 /* Call this whenever the structure of the witness graph changes. */
3133 static void
3134 witness_increment_graph_generation(void)
3135 {
3136
3137         if (witness_cold == 0)
3138                 mtx_assert(&w_mtx, MA_OWNED);
3139         w_generation++;
3140 }
3141
3142 static int
3143 witness_output_drain(void *arg __unused, const char *data, int len)
3144 {
3145
3146         witness_output("%.*s", len, data);
3147         return (len);
3148 }
3149
3150 static void
3151 witness_debugger(int cond, const char *msg)
3152 {
3153         char buf[32];
3154         struct sbuf sb;
3155         struct stack st;
3156
3157         if (!cond)
3158                 return;
3159
3160         if (witness_trace) {
3161                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3162                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3163
3164                 stack_save(&st);
3165                 witness_output("stack backtrace:\n");
3166                 stack_sbuf_print_ddb(&sb, &st);
3167
3168                 sbuf_finish(&sb);
3169         }
3170
3171         witness_enter_debugger(msg);
3172 }
3173
3174 static void
3175 witness_enter_debugger(const char *msg)
3176 {
3177 #ifdef KDB
3178         if (witness_kdb)
3179                 kdb_enter(KDB_WHY_WITNESS, msg);
3180 #endif
3181 }