]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Merge llvm-project 12.0.0 release
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42
43 /*
44  *      Main Entry: witness
45  *      Pronunciation: 'wit-n&s
46  *      Function: noun
47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *          testimony, witness, from 2wit
49  *      Date: before 12th century
50  *      1 : attestation of a fact or event : TESTIMONY
51  *      2 : one that gives evidence; specifically : one who testifies in
52  *          a cause or before a judicial tribunal
53  *      3 : one asked to be present at a transaction so as to be able to
54  *          testify to its having taken place
55  *      4 : one who has personal knowledge of something
56  *      5 a : something serving as evidence or proof : SIGN
57  *        b : public affirmation by word or example of usually
58  *            religious faith or conviction <the heroic witness to divine
59  *            life -- Pilot>
60  *      6 capitalized : a member of the Jehovah's Witnesses 
61  */
62
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117
118 #include <machine/stdarg.h>
119
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define KTR_WITNESS     KTR_SUBSYS
127 #else
128 #define KTR_WITNESS     0
129 #endif
130
131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
134 #define LI_SLEEPABLE    0x00040000      /* Lock may be held while sleeping. */
135
136 #ifndef WITNESS_COUNT
137 #define WITNESS_COUNT           1536
138 #endif
139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
140 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
141
142 /* Allocate 256 KB of stack data space */
143 #define WITNESS_LO_DATA_COUNT   2048
144
145 /* Prime, gives load factor of ~2 at full load */
146 #define WITNESS_LO_HASH_SIZE    1021
147
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define LOCK_NCHILDREN  5
154 #define LOCK_CHILDCOUNT 2048
155
156 #define MAX_W_NAME      64
157
158 #define FULLGRAPH_SBUF_SIZE     512
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283
284 struct witness_pendhelp {
285         const char              *wh_type;
286         struct lock_object      *wh_lock;
287 };
288
289 struct witness_order_list_entry {
290         const char              *w_name;
291         struct lock_class       *w_class;
292 };
293
294 /*
295  * Returns 0 if one of the locks is a spin lock and the other is not.
296  * Returns 1 otherwise.
297  */
298 static __inline int
299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
300 {
301
302         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
303                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
304 }
305
306 static __inline int
307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
308     const struct witness_lock_order_key *b)
309 {
310
311         return (a->from == b->from && a->to == b->to);
312 }
313
314 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
315                     const char *fname);
316 static void     adopt(struct witness *parent, struct witness *child);
317 static int      blessed(struct witness *, struct witness *);
318 static void     depart(struct witness *w);
319 static struct witness   *enroll(const char *description,
320                             struct lock_class *lock_class);
321 static struct lock_instance     *find_instance(struct lock_list_entry *list,
322                                     const struct lock_object *lock);
323 static int      isitmychild(struct witness *parent, struct witness *child);
324 static int      isitmydescendant(struct witness *parent, struct witness *child);
325 static void     itismychild(struct witness *parent, struct witness *child);
326 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
327 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
328 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
329 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
330 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
331 #ifdef DDB
332 static void     witness_ddb_compute_levels(void);
333 static void     witness_ddb_display(int(*)(const char *fmt, ...));
334 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
335                     struct witness *, int indent);
336 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
337                     struct witness_list *list);
338 static void     witness_ddb_level_descendants(struct witness *parent, int l);
339 static void     witness_ddb_list(struct thread *td);
340 #endif
341 static void     witness_enter_debugger(const char *msg);
342 static void     witness_debugger(int cond, const char *msg);
343 static void     witness_free(struct witness *m);
344 static struct witness   *witness_get(void);
345 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
346 static struct witness   *witness_hash_get(const char *key);
347 static void     witness_hash_put(struct witness *w);
348 static void     witness_init_hash_tables(void);
349 static void     witness_increment_graph_generation(void);
350 static void     witness_lock_list_free(struct lock_list_entry *lle);
351 static struct lock_list_entry   *witness_lock_list_get(void);
352 static int      witness_lock_order_add(struct witness *parent,
353                     struct witness *child);
354 static int      witness_lock_order_check(struct witness *parent,
355                     struct witness *child);
356 static struct witness_lock_order_data   *witness_lock_order_get(
357                                             struct witness *parent,
358                                             struct witness *child);
359 static void     witness_list_lock(struct lock_instance *instance,
360                     int (*prnt)(const char *fmt, ...));
361 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
362 static int      witness_output_drain(void *arg __unused, const char *data,
363                     int len);
364 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
365 static void     witness_setflag(struct lock_object *lock, int flag, int set);
366
367 FEATURE(witness, "kernel has witness(9) support");
368
369 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
370     "Witness Locking");
371
372 /*
373  * If set to 0, lock order checking is disabled.  If set to -1,
374  * witness is completely disabled.  Otherwise witness performs full
375  * lock order checking for all locks.  At runtime, lock order checking
376  * may be toggled.  However, witness cannot be reenabled once it is
377  * completely disabled.
378  */
379 static int witness_watch = 1;
380 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
381     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
382     sysctl_debug_witness_watch, "I",
383     "witness is watching lock operations");
384
385 #ifdef KDB
386 /*
387  * When KDB is enabled and witness_kdb is 1, it will cause the system
388  * to drop into kdebug() when:
389  *      - a lock hierarchy violation occurs
390  *      - locks are held when going to sleep.
391  */
392 #ifdef WITNESS_KDB
393 int     witness_kdb = 1;
394 #else
395 int     witness_kdb = 0;
396 #endif
397 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
398 #endif /* KDB */
399
400 #if defined(DDB) || defined(KDB)
401 /*
402  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
403  * to print a stack trace:
404  *      - a lock hierarchy violation occurs
405  *      - locks are held when going to sleep.
406  */
407 int     witness_trace = 1;
408 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
409 #endif /* DDB || KDB */
410
411 #ifdef WITNESS_SKIPSPIN
412 int     witness_skipspin = 1;
413 #else
414 int     witness_skipspin = 0;
415 #endif
416 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
417
418 int badstack_sbuf_size;
419
420 int witness_count = WITNESS_COUNT;
421 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
422     &witness_count, 0, "");
423
424 /*
425  * Output channel for witness messages.  By default we print to the console.
426  */
427 enum witness_channel {
428         WITNESS_CONSOLE,
429         WITNESS_LOG,
430         WITNESS_NONE,
431 };
432
433 static enum witness_channel witness_channel = WITNESS_CONSOLE;
434 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
435     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
436     sysctl_debug_witness_channel, "A",
437     "Output channel for warnings");
438
439 /*
440  * Call this to print out the relations between locks.
441  */
442 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
443     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
444     sysctl_debug_witness_fullgraph, "A",
445     "Show locks relation graphs");
446
447 /*
448  * Call this to print out the witness faulty stacks.
449  */
450 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
451     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
452     sysctl_debug_witness_badstacks, "A",
453     "Show bad witness stacks");
454
455 static struct mtx w_mtx;
456
457 /* w_list */
458 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
459 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
460
461 /* w_typelist */
462 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
463 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
464
465 /* lock list */
466 static struct lock_list_entry *w_lock_list_free = NULL;
467 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
468 static u_int pending_cnt;
469
470 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
471 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
472 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
473 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
474     "");
475
476 static struct witness *w_data;
477 static uint8_t **w_rmatrix;
478 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
479 static struct witness_hash w_hash;      /* The witness hash table. */
480
481 /* The lock order data hash */
482 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
483 static struct witness_lock_order_data *w_lofree = NULL;
484 static struct witness_lock_order_hash w_lohash;
485 static int w_max_used_index = 0;
486 static unsigned int w_generation = 0;
487 static const char w_notrunning[] = "Witness not running\n";
488 static const char w_stillcold[] = "Witness is still cold\n";
489 #ifdef __i386__
490 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
491 #endif
492
493 static struct witness_order_list_entry order_lists[] = {
494         /*
495          * sx locks
496          */
497         { "proctree", &lock_class_sx },
498         { "allproc", &lock_class_sx },
499         { "allprison", &lock_class_sx },
500         { NULL, NULL },
501         /*
502          * Various mutexes
503          */
504         { "Giant", &lock_class_mtx_sleep },
505         { "pipe mutex", &lock_class_mtx_sleep },
506         { "sigio lock", &lock_class_mtx_sleep },
507         { "process group", &lock_class_mtx_sleep },
508 #ifdef  HWPMC_HOOKS
509         { "pmc-sleep", &lock_class_mtx_sleep },
510 #endif
511         { "process lock", &lock_class_mtx_sleep },
512         { "session", &lock_class_mtx_sleep },
513         { "uidinfo hash", &lock_class_rw },
514         { "time lock", &lock_class_mtx_sleep },
515         { NULL, NULL },
516         /*
517          * umtx
518          */
519         { "umtx lock", &lock_class_mtx_sleep },
520         { NULL, NULL },
521         /*
522          * Sockets
523          */
524         { "accept", &lock_class_mtx_sleep },
525         { "so_snd", &lock_class_mtx_sleep },
526         { "so_rcv", &lock_class_mtx_sleep },
527         { "sellck", &lock_class_mtx_sleep },
528         { NULL, NULL },
529         /*
530          * Routing
531          */
532         { "so_rcv", &lock_class_mtx_sleep },
533         { "radix node head", &lock_class_rm },
534         { "ifaddr", &lock_class_mtx_sleep },
535         { NULL, NULL },
536         /*
537          * IPv4 multicast:
538          * protocol locks before interface locks, after UDP locks.
539          */
540         { "in_multi_sx", &lock_class_sx },
541         { "udpinp", &lock_class_rw },
542         { "in_multi_list_mtx", &lock_class_mtx_sleep },
543         { "igmp_mtx", &lock_class_mtx_sleep },
544         { "ifnet_rw", &lock_class_rw },
545         { "if_addr_lock", &lock_class_mtx_sleep },
546         { NULL, NULL },
547         /*
548          * IPv6 multicast:
549          * protocol locks before interface locks, after UDP locks.
550          */
551         { "in6_multi_sx", &lock_class_sx },
552         { "udpinp", &lock_class_rw },
553         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
554         { "mld_mtx", &lock_class_mtx_sleep },
555         { "ifnet_rw", &lock_class_rw },
556         { "if_addr_lock", &lock_class_mtx_sleep },
557         { NULL, NULL },
558         /*
559          * UNIX Domain Sockets
560          */
561         { "unp_link_rwlock", &lock_class_rw },
562         { "unp_list_lock", &lock_class_mtx_sleep },
563         { "unp", &lock_class_mtx_sleep },
564         { "so_snd", &lock_class_mtx_sleep },
565         { NULL, NULL },
566         /*
567          * UDP/IP
568          */
569         { "udp", &lock_class_mtx_sleep },
570         { "udpinp", &lock_class_rw },
571         { "so_snd", &lock_class_mtx_sleep },
572         { NULL, NULL },
573         /*
574          * TCP/IP
575          */
576         { "tcp", &lock_class_mtx_sleep },
577         { "tcpinp", &lock_class_rw },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580         /*
581          * BPF
582          */
583         { "bpf global lock", &lock_class_sx },
584         { "bpf cdev lock", &lock_class_mtx_sleep },
585         { NULL, NULL },
586         /*
587          * NFS server
588          */
589         { "nfsd_mtx", &lock_class_mtx_sleep },
590         { "so_snd", &lock_class_mtx_sleep },
591         { NULL, NULL },
592
593         /*
594          * IEEE 802.11
595          */
596         { "802.11 com lock", &lock_class_mtx_sleep},
597         { NULL, NULL },
598         /*
599          * Network drivers
600          */
601         { "network driver", &lock_class_mtx_sleep},
602         { NULL, NULL },
603
604         /*
605          * Netgraph
606          */
607         { "ng_node", &lock_class_mtx_sleep },
608         { "ng_worklist", &lock_class_mtx_sleep },
609         { NULL, NULL },
610         /*
611          * CDEV
612          */
613         { "vm map (system)", &lock_class_mtx_sleep },
614         { "vnode interlock", &lock_class_mtx_sleep },
615         { "cdev", &lock_class_mtx_sleep },
616         { "devthrd", &lock_class_mtx_sleep },
617         { NULL, NULL },
618         /*
619          * VM
620          */
621         { "vm map (user)", &lock_class_sx },
622         { "vm object", &lock_class_rw },
623         { "vm page", &lock_class_mtx_sleep },
624         { "pmap pv global", &lock_class_rw },
625         { "pmap", &lock_class_mtx_sleep },
626         { "pmap pv list", &lock_class_rw },
627         { "vm page free queue", &lock_class_mtx_sleep },
628         { "vm pagequeue", &lock_class_mtx_sleep },
629         { NULL, NULL },
630         /*
631          * kqueue/VFS interaction
632          */
633         { "kqueue", &lock_class_mtx_sleep },
634         { "struct mount mtx", &lock_class_mtx_sleep },
635         { "vnode interlock", &lock_class_mtx_sleep },
636         { NULL, NULL },
637         /*
638          * VFS namecache
639          */
640         { "ncvn", &lock_class_mtx_sleep },
641         { "ncbuc", &lock_class_mtx_sleep },
642         { "vnode interlock", &lock_class_mtx_sleep },
643         { "ncneg", &lock_class_mtx_sleep },
644         { NULL, NULL },
645         /*
646          * ZFS locking
647          */
648         { "dn->dn_mtx", &lock_class_sx },
649         { "dr->dt.di.dr_mtx", &lock_class_sx },
650         { "db->db_mtx", &lock_class_sx },
651         { NULL, NULL },
652         /*
653          * TCP log locks
654          */
655         { "TCP ID tree", &lock_class_rw },
656         { "tcp log id bucket", &lock_class_mtx_sleep },
657         { "tcpinp", &lock_class_rw },
658         { "TCP log expireq", &lock_class_mtx_sleep },
659         { NULL, NULL },
660         /*
661          * spin locks
662          */
663 #ifdef SMP
664         { "ap boot", &lock_class_mtx_spin },
665 #endif
666         { "rm.mutex_mtx", &lock_class_mtx_spin },
667 #ifdef __i386__
668         { "cy", &lock_class_mtx_spin },
669 #endif
670         { "scc_hwmtx", &lock_class_mtx_spin },
671         { "uart_hwmtx", &lock_class_mtx_spin },
672         { "fast_taskqueue", &lock_class_mtx_spin },
673         { "intr table", &lock_class_mtx_spin },
674         { "process slock", &lock_class_mtx_spin },
675         { "syscons video lock", &lock_class_mtx_spin },
676         { "sleepq chain", &lock_class_mtx_spin },
677         { "rm_spinlock", &lock_class_mtx_spin },
678         { "turnstile chain", &lock_class_mtx_spin },
679         { "turnstile lock", &lock_class_mtx_spin },
680         { "sched lock", &lock_class_mtx_spin },
681         { "td_contested", &lock_class_mtx_spin },
682         { "callout", &lock_class_mtx_spin },
683         { "entropy harvest mutex", &lock_class_mtx_spin },
684 #ifdef SMP
685         { "smp rendezvous", &lock_class_mtx_spin },
686 #endif
687 #ifdef __powerpc__
688         { "tlb0", &lock_class_mtx_spin },
689 #endif
690         { NULL, NULL },
691         { "sched lock", &lock_class_mtx_spin },
692 #ifdef  HWPMC_HOOKS
693         { "pmc-per-proc", &lock_class_mtx_spin },
694 #endif
695         { NULL, NULL },
696         /*
697          * leaf locks
698          */
699         { "intrcnt", &lock_class_mtx_spin },
700         { "icu", &lock_class_mtx_spin },
701 #ifdef __i386__
702         { "allpmaps", &lock_class_mtx_spin },
703         { "descriptor tables", &lock_class_mtx_spin },
704 #endif
705         { "clk", &lock_class_mtx_spin },
706         { "cpuset", &lock_class_mtx_spin },
707         { "mprof lock", &lock_class_mtx_spin },
708         { "zombie lock", &lock_class_mtx_spin },
709         { "ALD Queue", &lock_class_mtx_spin },
710 #if defined(__i386__) || defined(__amd64__)
711         { "pcicfg", &lock_class_mtx_spin },
712         { "NDIS thread lock", &lock_class_mtx_spin },
713 #endif
714         { "tw_osl_io_lock", &lock_class_mtx_spin },
715         { "tw_osl_q_lock", &lock_class_mtx_spin },
716         { "tw_cl_io_lock", &lock_class_mtx_spin },
717         { "tw_cl_intr_lock", &lock_class_mtx_spin },
718         { "tw_cl_gen_lock", &lock_class_mtx_spin },
719 #ifdef  HWPMC_HOOKS
720         { "pmc-leaf", &lock_class_mtx_spin },
721 #endif
722         { "blocked lock", &lock_class_mtx_spin },
723         { NULL, NULL },
724         { NULL, NULL }
725 };
726
727 /*
728  * Pairs of locks which have been blessed.  Witness does not complain about
729  * order problems with blessed lock pairs.  Please do not add an entry to the
730  * table without an explanatory comment.
731  */
732 static struct witness_blessed blessed_list[] = {
733         /*
734          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
735          * both lock orders, so a deadlock cannot happen as a result of this
736          * LOR.
737          */
738         { "dirhash",    "bufwait" },
739
740         /*
741          * A UFS vnode may be locked in vget() while a buffer belonging to the
742          * parent directory vnode is locked.
743          */
744         { "ufs",        "bufwait" },
745 };
746
747 /*
748  * This global is set to 0 once it becomes safe to use the witness code.
749  */
750 static int witness_cold = 1;
751
752 /*
753  * This global is set to 1 once the static lock orders have been enrolled
754  * so that a warning can be issued for any spin locks enrolled later.
755  */
756 static int witness_spin_warn = 0;
757
758 /* Trim useless garbage from filenames. */
759 static const char *
760 fixup_filename(const char *file)
761 {
762
763         if (file == NULL)
764                 return (NULL);
765         while (strncmp(file, "../", 3) == 0)
766                 file += 3;
767         return (file);
768 }
769
770 /*
771  * Calculate the size of early witness structures.
772  */
773 int
774 witness_startup_count(void)
775 {
776         int sz;
777
778         sz = sizeof(struct witness) * witness_count;
779         sz += sizeof(*w_rmatrix) * (witness_count + 1);
780         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
781             (witness_count + 1);
782
783         return (sz);
784 }
785
786 /*
787  * The WITNESS-enabled diagnostic code.  Note that the witness code does
788  * assume that the early boot is single-threaded at least until after this
789  * routine is completed.
790  */
791 void
792 witness_startup(void *mem)
793 {
794         struct lock_object *lock;
795         struct witness_order_list_entry *order;
796         struct witness *w, *w1;
797         uintptr_t p;
798         int i;
799
800         p = (uintptr_t)mem;
801         w_data = (void *)p;
802         p += sizeof(struct witness) * witness_count;
803
804         w_rmatrix = (void *)p;
805         p += sizeof(*w_rmatrix) * (witness_count + 1);
806
807         for (i = 0; i < witness_count + 1; i++) {
808                 w_rmatrix[i] = (void *)p;
809                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
810         }
811         badstack_sbuf_size = witness_count * 256;
812
813         /*
814          * We have to release Giant before initializing its witness
815          * structure so that WITNESS doesn't get confused.
816          */
817         mtx_unlock(&Giant);
818         mtx_assert(&Giant, MA_NOTOWNED);
819
820         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
821         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
822             MTX_NOWITNESS | MTX_NOPROFILE);
823         for (i = witness_count - 1; i >= 0; i--) {
824                 w = &w_data[i];
825                 memset(w, 0, sizeof(*w));
826                 w_data[i].w_index = i;  /* Witness index never changes. */
827                 witness_free(w);
828         }
829         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
830             ("%s: Invalid list of free witness objects", __func__));
831
832         /* Witness with index 0 is not used to aid in debugging. */
833         STAILQ_REMOVE_HEAD(&w_free, w_list);
834         w_free_cnt--;
835
836         for (i = 0; i < witness_count; i++) {
837                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
838                     (witness_count + 1));
839         }
840
841         for (i = 0; i < LOCK_CHILDCOUNT; i++)
842                 witness_lock_list_free(&w_locklistdata[i]);
843         witness_init_hash_tables();
844
845         /* First add in all the specified order lists. */
846         for (order = order_lists; order->w_name != NULL; order++) {
847                 w = enroll(order->w_name, order->w_class);
848                 if (w == NULL)
849                         continue;
850                 w->w_file = "order list";
851                 for (order++; order->w_name != NULL; order++) {
852                         w1 = enroll(order->w_name, order->w_class);
853                         if (w1 == NULL)
854                                 continue;
855                         w1->w_file = "order list";
856                         itismychild(w, w1);
857                         w = w1;
858                 }
859         }
860         witness_spin_warn = 1;
861
862         /* Iterate through all locks and add them to witness. */
863         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
864                 lock = pending_locks[i].wh_lock;
865                 KASSERT(lock->lo_flags & LO_WITNESS,
866                     ("%s: lock %s is on pending list but not LO_WITNESS",
867                     __func__, lock->lo_name));
868                 lock->lo_witness = enroll(pending_locks[i].wh_type,
869                     LOCK_CLASS(lock));
870         }
871
872         /* Mark the witness code as being ready for use. */
873         witness_cold = 0;
874
875         mtx_lock(&Giant);
876 }
877
878 void
879 witness_init(struct lock_object *lock, const char *type)
880 {
881         struct lock_class *class;
882
883         /* Various sanity checks. */
884         class = LOCK_CLASS(lock);
885         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
886             (class->lc_flags & LC_RECURSABLE) == 0)
887                 kassert_panic("%s: lock (%s) %s can not be recursable",
888                     __func__, class->lc_name, lock->lo_name);
889         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
890             (class->lc_flags & LC_SLEEPABLE) == 0)
891                 kassert_panic("%s: lock (%s) %s can not be sleepable",
892                     __func__, class->lc_name, lock->lo_name);
893         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
894             (class->lc_flags & LC_UPGRADABLE) == 0)
895                 kassert_panic("%s: lock (%s) %s can not be upgradable",
896                     __func__, class->lc_name, lock->lo_name);
897
898         /*
899          * If we shouldn't watch this lock, then just clear lo_witness.
900          * Otherwise, if witness_cold is set, then it is too early to
901          * enroll this lock, so defer it to witness_initialize() by adding
902          * it to the pending_locks list.  If it is not too early, then enroll
903          * the lock now.
904          */
905         if (witness_watch < 1 || KERNEL_PANICKED() ||
906             (lock->lo_flags & LO_WITNESS) == 0)
907                 lock->lo_witness = NULL;
908         else if (witness_cold) {
909                 pending_locks[pending_cnt].wh_lock = lock;
910                 pending_locks[pending_cnt++].wh_type = type;
911                 if (pending_cnt > WITNESS_PENDLIST)
912                         panic("%s: pending locks list is too small, "
913                             "increase WITNESS_PENDLIST\n",
914                             __func__);
915         } else
916                 lock->lo_witness = enroll(type, class);
917 }
918
919 void
920 witness_destroy(struct lock_object *lock)
921 {
922         struct lock_class *class;
923         struct witness *w;
924
925         class = LOCK_CLASS(lock);
926
927         if (witness_cold)
928                 panic("lock (%s) %s destroyed while witness_cold",
929                     class->lc_name, lock->lo_name);
930
931         /* XXX: need to verify that no one holds the lock */
932         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
933                 return;
934         w = lock->lo_witness;
935
936         mtx_lock_spin(&w_mtx);
937         MPASS(w->w_refcount > 0);
938         w->w_refcount--;
939
940         if (w->w_refcount == 0)
941                 depart(w);
942         mtx_unlock_spin(&w_mtx);
943 }
944
945 #ifdef DDB
946 static void
947 witness_ddb_compute_levels(void)
948 {
949         struct witness *w;
950
951         /*
952          * First clear all levels.
953          */
954         STAILQ_FOREACH(w, &w_all, w_list)
955                 w->w_ddb_level = -1;
956
957         /*
958          * Look for locks with no parents and level all their descendants.
959          */
960         STAILQ_FOREACH(w, &w_all, w_list) {
961                 /* If the witness has ancestors (is not a root), skip it. */
962                 if (w->w_num_ancestors > 0)
963                         continue;
964                 witness_ddb_level_descendants(w, 0);
965         }
966 }
967
968 static void
969 witness_ddb_level_descendants(struct witness *w, int l)
970 {
971         int i;
972
973         if (w->w_ddb_level >= l)
974                 return;
975
976         w->w_ddb_level = l;
977         l++;
978
979         for (i = 1; i <= w_max_used_index; i++) {
980                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
981                         witness_ddb_level_descendants(&w_data[i], l);
982         }
983 }
984
985 static void
986 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
987     struct witness *w, int indent)
988 {
989         int i;
990
991         for (i = 0; i < indent; i++)
992                 prnt(" ");
993         prnt("%s (type: %s, depth: %d, active refs: %d)",
994              w->w_name, w->w_class->lc_name,
995              w->w_ddb_level, w->w_refcount);
996         if (w->w_displayed) {
997                 prnt(" -- (already displayed)\n");
998                 return;
999         }
1000         w->w_displayed = 1;
1001         if (w->w_file != NULL && w->w_line != 0)
1002                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1003                     w->w_line);
1004         else
1005                 prnt(" -- never acquired\n");
1006         indent++;
1007         WITNESS_INDEX_ASSERT(w->w_index);
1008         for (i = 1; i <= w_max_used_index; i++) {
1009                 if (db_pager_quit)
1010                         return;
1011                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1012                         witness_ddb_display_descendants(prnt, &w_data[i],
1013                             indent);
1014         }
1015 }
1016
1017 static void
1018 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1019     struct witness_list *list)
1020 {
1021         struct witness *w;
1022
1023         STAILQ_FOREACH(w, list, w_typelist) {
1024                 if (w->w_file == NULL || w->w_ddb_level > 0)
1025                         continue;
1026
1027                 /* This lock has no anscestors - display its descendants. */
1028                 witness_ddb_display_descendants(prnt, w, 0);
1029                 if (db_pager_quit)
1030                         return;
1031         }
1032 }
1033
1034 static void
1035 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1036 {
1037         struct witness *w;
1038
1039         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1040         witness_ddb_compute_levels();
1041
1042         /* Clear all the displayed flags. */
1043         STAILQ_FOREACH(w, &w_all, w_list)
1044                 w->w_displayed = 0;
1045
1046         /*
1047          * First, handle sleep locks which have been acquired at least
1048          * once.
1049          */
1050         prnt("Sleep locks:\n");
1051         witness_ddb_display_list(prnt, &w_sleep);
1052         if (db_pager_quit)
1053                 return;
1054
1055         /*
1056          * Now do spin locks which have been acquired at least once.
1057          */
1058         prnt("\nSpin locks:\n");
1059         witness_ddb_display_list(prnt, &w_spin);
1060         if (db_pager_quit)
1061                 return;
1062
1063         /*
1064          * Finally, any locks which have not been acquired yet.
1065          */
1066         prnt("\nLocks which were never acquired:\n");
1067         STAILQ_FOREACH(w, &w_all, w_list) {
1068                 if (w->w_file != NULL || w->w_refcount == 0)
1069                         continue;
1070                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1071                     w->w_class->lc_name, w->w_ddb_level);
1072                 if (db_pager_quit)
1073                         return;
1074         }
1075 }
1076 #endif /* DDB */
1077
1078 int
1079 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1080 {
1081
1082         if (witness_watch == -1 || KERNEL_PANICKED())
1083                 return (0);
1084
1085         /* Require locks that witness knows about. */
1086         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1087             lock2->lo_witness == NULL)
1088                 return (EINVAL);
1089
1090         mtx_assert(&w_mtx, MA_NOTOWNED);
1091         mtx_lock_spin(&w_mtx);
1092
1093         /*
1094          * If we already have either an explicit or implied lock order that
1095          * is the other way around, then return an error.
1096          */
1097         if (witness_watch &&
1098             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1099                 mtx_unlock_spin(&w_mtx);
1100                 return (EDOOFUS);
1101         }
1102
1103         /* Try to add the new order. */
1104         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1105             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1106         itismychild(lock1->lo_witness, lock2->lo_witness);
1107         mtx_unlock_spin(&w_mtx);
1108         return (0);
1109 }
1110
1111 void
1112 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1113     int line, struct lock_object *interlock)
1114 {
1115         struct lock_list_entry *lock_list, *lle;
1116         struct lock_instance *lock1, *lock2, *plock;
1117         struct lock_class *class, *iclass;
1118         struct witness *w, *w1;
1119         struct thread *td;
1120         int i, j;
1121
1122         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1123             KERNEL_PANICKED())
1124                 return;
1125
1126         w = lock->lo_witness;
1127         class = LOCK_CLASS(lock);
1128         td = curthread;
1129
1130         if (class->lc_flags & LC_SLEEPLOCK) {
1131                 /*
1132                  * Since spin locks include a critical section, this check
1133                  * implicitly enforces a lock order of all sleep locks before
1134                  * all spin locks.
1135                  */
1136                 if (td->td_critnest != 0 && !kdb_active)
1137                         kassert_panic("acquiring blockable sleep lock with "
1138                             "spinlock or critical section held (%s) %s @ %s:%d",
1139                             class->lc_name, lock->lo_name,
1140                             fixup_filename(file), line);
1141
1142                 /*
1143                  * If this is the first lock acquired then just return as
1144                  * no order checking is needed.
1145                  */
1146                 lock_list = td->td_sleeplocks;
1147                 if (lock_list == NULL || lock_list->ll_count == 0)
1148                         return;
1149         } else {
1150                 /*
1151                  * If this is the first lock, just return as no order
1152                  * checking is needed.  Avoid problems with thread
1153                  * migration pinning the thread while checking if
1154                  * spinlocks are held.  If at least one spinlock is held
1155                  * the thread is in a safe path and it is allowed to
1156                  * unpin it.
1157                  */
1158                 sched_pin();
1159                 lock_list = PCPU_GET(spinlocks);
1160                 if (lock_list == NULL || lock_list->ll_count == 0) {
1161                         sched_unpin();
1162                         return;
1163                 }
1164                 sched_unpin();
1165         }
1166
1167         /*
1168          * Check to see if we are recursing on a lock we already own.  If
1169          * so, make sure that we don't mismatch exclusive and shared lock
1170          * acquires.
1171          */
1172         lock1 = find_instance(lock_list, lock);
1173         if (lock1 != NULL) {
1174                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1175                     (flags & LOP_EXCLUSIVE) == 0) {
1176                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1177                             class->lc_name, lock->lo_name,
1178                             fixup_filename(file), line);
1179                         witness_output("while exclusively locked from %s:%d\n",
1180                             fixup_filename(lock1->li_file), lock1->li_line);
1181                         kassert_panic("excl->share");
1182                 }
1183                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1184                     (flags & LOP_EXCLUSIVE) != 0) {
1185                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1186                             class->lc_name, lock->lo_name,
1187                             fixup_filename(file), line);
1188                         witness_output("while share locked from %s:%d\n",
1189                             fixup_filename(lock1->li_file), lock1->li_line);
1190                         kassert_panic("share->excl");
1191                 }
1192                 return;
1193         }
1194
1195         /* Warn if the interlock is not locked exactly once. */
1196         if (interlock != NULL) {
1197                 iclass = LOCK_CLASS(interlock);
1198                 lock1 = find_instance(lock_list, interlock);
1199                 if (lock1 == NULL)
1200                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1201                             iclass->lc_name, interlock->lo_name,
1202                             fixup_filename(file), line);
1203                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1204                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1205                             iclass->lc_name, interlock->lo_name,
1206                             fixup_filename(file), line);
1207         }
1208
1209         /*
1210          * Find the previously acquired lock, but ignore interlocks.
1211          */
1212         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1213         if (interlock != NULL && plock->li_lock == interlock) {
1214                 if (lock_list->ll_count > 1)
1215                         plock =
1216                             &lock_list->ll_children[lock_list->ll_count - 2];
1217                 else {
1218                         lle = lock_list->ll_next;
1219
1220                         /*
1221                          * The interlock is the only lock we hold, so
1222                          * simply return.
1223                          */
1224                         if (lle == NULL)
1225                                 return;
1226                         plock = &lle->ll_children[lle->ll_count - 1];
1227                 }
1228         }
1229
1230         /*
1231          * Try to perform most checks without a lock.  If this succeeds we
1232          * can skip acquiring the lock and return success.  Otherwise we redo
1233          * the check with the lock held to handle races with concurrent updates.
1234          */
1235         w1 = plock->li_lock->lo_witness;
1236         if (witness_lock_order_check(w1, w))
1237                 return;
1238
1239         mtx_lock_spin(&w_mtx);
1240         if (witness_lock_order_check(w1, w)) {
1241                 mtx_unlock_spin(&w_mtx);
1242                 return;
1243         }
1244         witness_lock_order_add(w1, w);
1245
1246         /*
1247          * Check for duplicate locks of the same type.  Note that we only
1248          * have to check for this on the last lock we just acquired.  Any
1249          * other cases will be caught as lock order violations.
1250          */
1251         if (w1 == w) {
1252                 i = w->w_index;
1253                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1254                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1255                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1256                         w->w_reversed = 1;
1257                         mtx_unlock_spin(&w_mtx);
1258                         witness_output(
1259                             "acquiring duplicate lock of same type: \"%s\"\n", 
1260                             w->w_name);
1261                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1262                             fixup_filename(plock->li_file), plock->li_line);
1263                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1264                             fixup_filename(file), line);
1265                         witness_debugger(1, __func__);
1266                 } else
1267                         mtx_unlock_spin(&w_mtx);
1268                 return;
1269         }
1270         mtx_assert(&w_mtx, MA_OWNED);
1271
1272         /*
1273          * If we know that the lock we are acquiring comes after
1274          * the lock we most recently acquired in the lock order tree,
1275          * then there is no need for any further checks.
1276          */
1277         if (isitmychild(w1, w))
1278                 goto out;
1279
1280         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1281                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1282                         struct stack pstack;
1283                         bool pstackv, trace;
1284
1285                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1286                         lock1 = &lle->ll_children[i];
1287
1288                         /*
1289                          * Ignore the interlock.
1290                          */
1291                         if (interlock == lock1->li_lock)
1292                                 continue;
1293
1294                         /*
1295                          * If this lock doesn't undergo witness checking,
1296                          * then skip it.
1297                          */
1298                         w1 = lock1->li_lock->lo_witness;
1299                         if (w1 == NULL) {
1300                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1301                                     ("lock missing witness structure"));
1302                                 continue;
1303                         }
1304
1305                         /*
1306                          * If we are locking Giant and this is a sleepable
1307                          * lock, then skip it.
1308                          */
1309                         if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1310                             lock == &Giant.lock_object)
1311                                 continue;
1312
1313                         /*
1314                          * If we are locking a sleepable lock and this lock
1315                          * is Giant, then skip it.
1316                          */
1317                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1318                             (flags & LOP_NOSLEEP) == 0 &&
1319                             lock1->li_lock == &Giant.lock_object)
1320                                 continue;
1321
1322                         /*
1323                          * If we are locking a sleepable lock and this lock
1324                          * isn't sleepable, we want to treat it as a lock
1325                          * order violation to enfore a general lock order of
1326                          * sleepable locks before non-sleepable locks.
1327                          */
1328                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1329                             (flags & LOP_NOSLEEP) == 0 &&
1330                             (lock1->li_flags & LI_SLEEPABLE) == 0)
1331                                 goto reversal;
1332
1333                         /*
1334                          * If we are locking Giant and this is a non-sleepable
1335                          * lock, then treat it as a reversal.
1336                          */
1337                         if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1338                             lock == &Giant.lock_object)
1339                                 goto reversal;
1340
1341                         /*
1342                          * Check the lock order hierarchy for a reveresal.
1343                          */
1344                         if (!isitmydescendant(w, w1))
1345                                 continue;
1346                 reversal:
1347
1348                         /*
1349                          * We have a lock order violation, check to see if it
1350                          * is allowed or has already been yelled about.
1351                          */
1352
1353                         /* Bail if this violation is known */
1354                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1355                                 goto out;
1356
1357                         /* Record this as a violation */
1358                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1359                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1360                         w->w_reversed = w1->w_reversed = 1;
1361                         witness_increment_graph_generation();
1362
1363                         /*
1364                          * If the lock order is blessed, bail before logging
1365                          * anything.  We don't look for other lock order
1366                          * violations though, which may be a bug.
1367                          */
1368                         if (blessed(w, w1))
1369                                 goto out;
1370
1371                         trace = atomic_load_int(&witness_trace);
1372                         if (trace) {
1373                                 struct witness_lock_order_data *data;
1374
1375                                 pstackv = false;
1376                                 data = witness_lock_order_get(w, w1);
1377                                 if (data != NULL) {
1378                                         stack_copy(&data->wlod_stack,
1379                                             &pstack);
1380                                         pstackv = true;
1381                                 }
1382                         }
1383                         mtx_unlock_spin(&w_mtx);
1384
1385 #ifdef WITNESS_NO_VNODE
1386                         /*
1387                          * There are known LORs between VNODE locks. They are
1388                          * not an indication of a bug. VNODE locks are flagged
1389                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1390                          * is between 2 VNODE locks.
1391                          */
1392                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1393                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1394                                 return;
1395 #endif
1396
1397                         /*
1398                          * Ok, yell about it.
1399                          */
1400                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1401                             (flags & LOP_NOSLEEP) == 0 &&
1402                             (lock1->li_flags & LI_SLEEPABLE) == 0)
1403                                 witness_output(
1404                 "lock order reversal: (sleepable after non-sleepable)\n");
1405                         else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1406                             && lock == &Giant.lock_object)
1407                                 witness_output(
1408                 "lock order reversal: (Giant after non-sleepable)\n");
1409                         else
1410                                 witness_output("lock order reversal:\n");
1411
1412                         /*
1413                          * Try to locate an earlier lock with
1414                          * witness w in our list.
1415                          */
1416                         do {
1417                                 lock2 = &lle->ll_children[i];
1418                                 MPASS(lock2->li_lock != NULL);
1419                                 if (lock2->li_lock->lo_witness == w)
1420                                         break;
1421                                 if (i == 0 && lle->ll_next != NULL) {
1422                                         lle = lle->ll_next;
1423                                         i = lle->ll_count - 1;
1424                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1425                                 } else
1426                                         i--;
1427                         } while (i >= 0);
1428                         if (i < 0) {
1429                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1430                                     lock1->li_lock, lock1->li_lock->lo_name,
1431                                     w1->w_name, w1->w_class->lc_name,
1432                                     fixup_filename(lock1->li_file),
1433                                     lock1->li_line);
1434                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1435                                     lock, lock->lo_name, w->w_name,
1436                                     w->w_class->lc_name, fixup_filename(file),
1437                                     line);
1438                         } else {
1439                                 struct witness *w2 = lock2->li_lock->lo_witness;
1440
1441                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1442                                     lock2->li_lock, lock2->li_lock->lo_name,
1443                                     w2->w_name, w2->w_class->lc_name,
1444                                     fixup_filename(lock2->li_file),
1445                                     lock2->li_line);
1446                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1447                                     lock1->li_lock, lock1->li_lock->lo_name,
1448                                     w1->w_name, w1->w_class->lc_name,
1449                                     fixup_filename(lock1->li_file),
1450                                     lock1->li_line);
1451                                 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
1452                                     lock->lo_name, w->w_name,
1453                                     w->w_class->lc_name, fixup_filename(file),
1454                                     line);
1455                         }
1456                         if (trace) {
1457                                 char buf[64];
1458                                 struct sbuf sb;
1459
1460                                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1461                                 sbuf_set_drain(&sb, witness_output_drain,
1462                                     NULL);
1463
1464                                 if (pstackv) {
1465                                         sbuf_printf(&sb,
1466                                     "lock order %s -> %s established at:\n",
1467                                             w->w_name, w1->w_name);
1468                                         stack_sbuf_print_flags(&sb, &pstack,
1469                                             M_NOWAIT, STACK_SBUF_FMT_LONG);
1470                                 }
1471
1472                                 sbuf_printf(&sb,
1473                                     "lock order %s -> %s attempted at:\n",
1474                                     w1->w_name, w->w_name);
1475                                 stack_save(&pstack);
1476                                 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
1477                                     STACK_SBUF_FMT_LONG);
1478
1479                                 sbuf_finish(&sb);
1480                                 sbuf_delete(&sb);
1481                         }
1482                         witness_enter_debugger(__func__);
1483                         return;
1484                 }
1485         }
1486
1487         /*
1488          * If requested, build a new lock order.  However, don't build a new
1489          * relationship between a sleepable lock and Giant if it is in the
1490          * wrong direction.  The correct lock order is that sleepable locks
1491          * always come before Giant.
1492          */
1493         if (flags & LOP_NEWORDER &&
1494             !(plock->li_lock == &Giant.lock_object &&
1495             (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1496             (flags & LOP_NOSLEEP) == 0)) {
1497                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1498                     w->w_name, plock->li_lock->lo_witness->w_name);
1499                 itismychild(plock->li_lock->lo_witness, w);
1500         }
1501 out:
1502         mtx_unlock_spin(&w_mtx);
1503 }
1504
1505 void
1506 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1507 {
1508         struct lock_list_entry **lock_list, *lle;
1509         struct lock_instance *instance;
1510         struct witness *w;
1511         struct thread *td;
1512
1513         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1514             KERNEL_PANICKED())
1515                 return;
1516         w = lock->lo_witness;
1517         td = curthread;
1518
1519         /* Determine lock list for this lock. */
1520         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1521                 lock_list = &td->td_sleeplocks;
1522         else
1523                 lock_list = PCPU_PTR(spinlocks);
1524
1525         /* Check to see if we are recursing on a lock we already own. */
1526         instance = find_instance(*lock_list, lock);
1527         if (instance != NULL) {
1528                 instance->li_flags++;
1529                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1530                     td->td_proc->p_pid, lock->lo_name,
1531                     instance->li_flags & LI_RECURSEMASK);
1532                 instance->li_file = file;
1533                 instance->li_line = line;
1534                 return;
1535         }
1536
1537         /* Update per-witness last file and line acquire. */
1538         w->w_file = file;
1539         w->w_line = line;
1540
1541         /* Find the next open lock instance in the list and fill it. */
1542         lle = *lock_list;
1543         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1544                 lle = witness_lock_list_get();
1545                 if (lle == NULL)
1546                         return;
1547                 lle->ll_next = *lock_list;
1548                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1549                     td->td_proc->p_pid, lle);
1550                 *lock_list = lle;
1551         }
1552         instance = &lle->ll_children[lle->ll_count++];
1553         instance->li_lock = lock;
1554         instance->li_line = line;
1555         instance->li_file = file;
1556         instance->li_flags = 0;
1557         if ((flags & LOP_EXCLUSIVE) != 0)
1558                 instance->li_flags |= LI_EXCLUSIVE;
1559         if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1560                 instance->li_flags |= LI_SLEEPABLE;
1561         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1562             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1563 }
1564
1565 void
1566 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1567 {
1568         struct lock_instance *instance;
1569         struct lock_class *class;
1570
1571         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1572         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1573                 return;
1574         class = LOCK_CLASS(lock);
1575         if (witness_watch) {
1576                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1577                         kassert_panic(
1578                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1579                             class->lc_name, lock->lo_name,
1580                             fixup_filename(file), line);
1581                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1582                         kassert_panic(
1583                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1584                             class->lc_name, lock->lo_name,
1585                             fixup_filename(file), line);
1586         }
1587         instance = find_instance(curthread->td_sleeplocks, lock);
1588         if (instance == NULL) {
1589                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1590                     class->lc_name, lock->lo_name,
1591                     fixup_filename(file), line);
1592                 return;
1593         }
1594         if (witness_watch) {
1595                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1596                         kassert_panic(
1597                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1598                             class->lc_name, lock->lo_name,
1599                             fixup_filename(file), line);
1600                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1601                         kassert_panic(
1602                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1603                             class->lc_name, lock->lo_name,
1604                             instance->li_flags & LI_RECURSEMASK,
1605                             fixup_filename(file), line);
1606         }
1607         instance->li_flags |= LI_EXCLUSIVE;
1608 }
1609
1610 void
1611 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1612     int line)
1613 {
1614         struct lock_instance *instance;
1615         struct lock_class *class;
1616
1617         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1618         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1619                 return;
1620         class = LOCK_CLASS(lock);
1621         if (witness_watch) {
1622                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1623                         kassert_panic(
1624                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1625                             class->lc_name, lock->lo_name,
1626                             fixup_filename(file), line);
1627                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1628                         kassert_panic(
1629                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1630                             class->lc_name, lock->lo_name,
1631                             fixup_filename(file), line);
1632         }
1633         instance = find_instance(curthread->td_sleeplocks, lock);
1634         if (instance == NULL) {
1635                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1636                     class->lc_name, lock->lo_name,
1637                     fixup_filename(file), line);
1638                 return;
1639         }
1640         if (witness_watch) {
1641                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1642                         kassert_panic(
1643                             "downgrade of shared lock (%s) %s @ %s:%d",
1644                             class->lc_name, lock->lo_name,
1645                             fixup_filename(file), line);
1646                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1647                         kassert_panic(
1648                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1649                             class->lc_name, lock->lo_name,
1650                             instance->li_flags & LI_RECURSEMASK,
1651                             fixup_filename(file), line);
1652         }
1653         instance->li_flags &= ~LI_EXCLUSIVE;
1654 }
1655
1656 void
1657 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1658 {
1659         struct lock_list_entry **lock_list, *lle;
1660         struct lock_instance *instance;
1661         struct lock_class *class;
1662         struct thread *td;
1663         register_t s;
1664         int i, j;
1665
1666         if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1667                 return;
1668         td = curthread;
1669         class = LOCK_CLASS(lock);
1670
1671         /* Find lock instance associated with this lock. */
1672         if (class->lc_flags & LC_SLEEPLOCK)
1673                 lock_list = &td->td_sleeplocks;
1674         else
1675                 lock_list = PCPU_PTR(spinlocks);
1676         lle = *lock_list;
1677         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1678                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1679                         instance = &(*lock_list)->ll_children[i];
1680                         if (instance->li_lock == lock)
1681                                 goto found;
1682                 }
1683
1684         /*
1685          * When disabling WITNESS through witness_watch we could end up in
1686          * having registered locks in the td_sleeplocks queue.
1687          * We have to make sure we flush these queues, so just search for
1688          * eventual register locks and remove them.
1689          */
1690         if (witness_watch > 0) {
1691                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1692                     lock->lo_name, fixup_filename(file), line);
1693                 return;
1694         } else {
1695                 return;
1696         }
1697 found:
1698
1699         /* First, check for shared/exclusive mismatches. */
1700         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1701             (flags & LOP_EXCLUSIVE) == 0) {
1702                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1703                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1704                 witness_output("while exclusively locked from %s:%d\n",
1705                     fixup_filename(instance->li_file), instance->li_line);
1706                 kassert_panic("excl->ushare");
1707         }
1708         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1709             (flags & LOP_EXCLUSIVE) != 0) {
1710                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1711                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1712                 witness_output("while share locked from %s:%d\n",
1713                     fixup_filename(instance->li_file),
1714                     instance->li_line);
1715                 kassert_panic("share->uexcl");
1716         }
1717         /* If we are recursed, unrecurse. */
1718         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1719                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1720                     td->td_proc->p_pid, instance->li_lock->lo_name,
1721                     instance->li_flags);
1722                 instance->li_flags--;
1723                 return;
1724         }
1725         /* The lock is now being dropped, check for NORELEASE flag */
1726         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1727                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1728                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1729                 kassert_panic("lock marked norelease");
1730         }
1731
1732         /* Otherwise, remove this item from the list. */
1733         s = intr_disable();
1734         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1735             td->td_proc->p_pid, instance->li_lock->lo_name,
1736             (*lock_list)->ll_count - 1);
1737         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1738                 (*lock_list)->ll_children[j] =
1739                     (*lock_list)->ll_children[j + 1];
1740         (*lock_list)->ll_count--;
1741         intr_restore(s);
1742
1743         /*
1744          * In order to reduce contention on w_mtx, we want to keep always an
1745          * head object into lists so that frequent allocation from the 
1746          * free witness pool (and subsequent locking) is avoided.
1747          * In order to maintain the current code simple, when the head
1748          * object is totally unloaded it means also that we do not have
1749          * further objects in the list, so the list ownership needs to be
1750          * hand over to another object if the current head needs to be freed.
1751          */
1752         if ((*lock_list)->ll_count == 0) {
1753                 if (*lock_list == lle) {
1754                         if (lle->ll_next == NULL)
1755                                 return;
1756                 } else
1757                         lle = *lock_list;
1758                 *lock_list = lle->ll_next;
1759                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1760                     td->td_proc->p_pid, lle);
1761                 witness_lock_list_free(lle);
1762         }
1763 }
1764
1765 void
1766 witness_thread_exit(struct thread *td)
1767 {
1768         struct lock_list_entry *lle;
1769         int i, n;
1770
1771         lle = td->td_sleeplocks;
1772         if (lle == NULL || KERNEL_PANICKED())
1773                 return;
1774         if (lle->ll_count != 0) {
1775                 for (n = 0; lle != NULL; lle = lle->ll_next)
1776                         for (i = lle->ll_count - 1; i >= 0; i--) {
1777                                 if (n == 0)
1778                                         witness_output(
1779                     "Thread %p exiting with the following locks held:\n", td);
1780                                 n++;
1781                                 witness_list_lock(&lle->ll_children[i],
1782                                     witness_output);
1783                                 
1784                         }
1785                 kassert_panic(
1786                     "Thread %p cannot exit while holding sleeplocks\n", td);
1787         }
1788         witness_lock_list_free(lle);
1789 }
1790
1791 /*
1792  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1793  * exempt Giant and sleepable locks from the checks as well.  If any
1794  * non-exempt locks are held, then a supplied message is printed to the
1795  * output channel along with a list of the offending locks.  If indicated in the
1796  * flags then a failure results in a panic as well.
1797  */
1798 int
1799 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1800 {
1801         struct lock_list_entry *lock_list, *lle;
1802         struct lock_instance *lock1;
1803         struct thread *td;
1804         va_list ap;
1805         int i, n;
1806
1807         if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1808                 return (0);
1809         n = 0;
1810         td = curthread;
1811         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1812                 for (i = lle->ll_count - 1; i >= 0; i--) {
1813                         lock1 = &lle->ll_children[i];
1814                         if (lock1->li_lock == lock)
1815                                 continue;
1816                         if (flags & WARN_GIANTOK &&
1817                             lock1->li_lock == &Giant.lock_object)
1818                                 continue;
1819                         if (flags & WARN_SLEEPOK &&
1820                             (lock1->li_flags & LI_SLEEPABLE) != 0)
1821                                 continue;
1822                         if (n == 0) {
1823                                 va_start(ap, fmt);
1824                                 vprintf(fmt, ap);
1825                                 va_end(ap);
1826                                 printf(" with the following %slocks held:\n",
1827                                     (flags & WARN_SLEEPOK) != 0 ?
1828                                     "non-sleepable " : "");
1829                         }
1830                         n++;
1831                         witness_list_lock(lock1, printf);
1832                 }
1833
1834         /*
1835          * Pin the thread in order to avoid problems with thread migration.
1836          * Once that all verifies are passed about spinlocks ownership,
1837          * the thread is in a safe path and it can be unpinned.
1838          */
1839         sched_pin();
1840         lock_list = PCPU_GET(spinlocks);
1841         if (lock_list != NULL && lock_list->ll_count != 0) {
1842                 sched_unpin();
1843
1844                 /*
1845                  * We should only have one spinlock and as long as
1846                  * the flags cannot match for this locks class,
1847                  * check if the first spinlock is the one curthread
1848                  * should hold.
1849                  */
1850                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1851                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1852                     lock1->li_lock == lock && n == 0)
1853                         return (0);
1854
1855                 va_start(ap, fmt);
1856                 vprintf(fmt, ap);
1857                 va_end(ap);
1858                 printf(" with the following %slocks held:\n",
1859                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1860                 n += witness_list_locks(&lock_list, printf);
1861         } else
1862                 sched_unpin();
1863         if (flags & WARN_PANIC && n)
1864                 kassert_panic("%s", __func__);
1865         else
1866                 witness_debugger(n, __func__);
1867         return (n);
1868 }
1869
1870 const char *
1871 witness_file(struct lock_object *lock)
1872 {
1873         struct witness *w;
1874
1875         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1876                 return ("?");
1877         w = lock->lo_witness;
1878         return (w->w_file);
1879 }
1880
1881 int
1882 witness_line(struct lock_object *lock)
1883 {
1884         struct witness *w;
1885
1886         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1887                 return (0);
1888         w = lock->lo_witness;
1889         return (w->w_line);
1890 }
1891
1892 static struct witness *
1893 enroll(const char *description, struct lock_class *lock_class)
1894 {
1895         struct witness *w;
1896
1897         MPASS(description != NULL);
1898
1899         if (witness_watch == -1 || KERNEL_PANICKED())
1900                 return (NULL);
1901         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1902                 if (witness_skipspin)
1903                         return (NULL);
1904         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1905                 kassert_panic("lock class %s is not sleep or spin",
1906                     lock_class->lc_name);
1907                 return (NULL);
1908         }
1909
1910         mtx_lock_spin(&w_mtx);
1911         w = witness_hash_get(description);
1912         if (w)
1913                 goto found;
1914         if ((w = witness_get()) == NULL)
1915                 return (NULL);
1916         MPASS(strlen(description) < MAX_W_NAME);
1917         strcpy(w->w_name, description);
1918         w->w_class = lock_class;
1919         w->w_refcount = 1;
1920         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1921         if (lock_class->lc_flags & LC_SPINLOCK) {
1922                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1923                 w_spin_cnt++;
1924         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1925                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1926                 w_sleep_cnt++;
1927         }
1928
1929         /* Insert new witness into the hash */
1930         witness_hash_put(w);
1931         witness_increment_graph_generation();
1932         mtx_unlock_spin(&w_mtx);
1933         return (w);
1934 found:
1935         w->w_refcount++;
1936         if (w->w_refcount == 1)
1937                 w->w_class = lock_class;
1938         mtx_unlock_spin(&w_mtx);
1939         if (lock_class != w->w_class)
1940                 kassert_panic(
1941                     "lock (%s) %s does not match earlier (%s) lock",
1942                     description, lock_class->lc_name,
1943                     w->w_class->lc_name);
1944         return (w);
1945 }
1946
1947 static void
1948 depart(struct witness *w)
1949 {
1950
1951         MPASS(w->w_refcount == 0);
1952         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1953                 w_sleep_cnt--;
1954         } else {
1955                 w_spin_cnt--;
1956         }
1957         /*
1958          * Set file to NULL as it may point into a loadable module.
1959          */
1960         w->w_file = NULL;
1961         w->w_line = 0;
1962         witness_increment_graph_generation();
1963 }
1964
1965 static void
1966 adopt(struct witness *parent, struct witness *child)
1967 {
1968         int pi, ci, i, j;
1969
1970         if (witness_cold == 0)
1971                 mtx_assert(&w_mtx, MA_OWNED);
1972
1973         /* If the relationship is already known, there's no work to be done. */
1974         if (isitmychild(parent, child))
1975                 return;
1976
1977         /* When the structure of the graph changes, bump up the generation. */
1978         witness_increment_graph_generation();
1979
1980         /*
1981          * The hard part ... create the direct relationship, then propagate all
1982          * indirect relationships.
1983          */
1984         pi = parent->w_index;
1985         ci = child->w_index;
1986         WITNESS_INDEX_ASSERT(pi);
1987         WITNESS_INDEX_ASSERT(ci);
1988         MPASS(pi != ci);
1989         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1990         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1991
1992         /*
1993          * If parent was not already an ancestor of child,
1994          * then we increment the descendant and ancestor counters.
1995          */
1996         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1997                 parent->w_num_descendants++;
1998                 child->w_num_ancestors++;
1999         }
2000
2001         /* 
2002          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
2003          * an ancestor of 'pi' during this loop.
2004          */
2005         for (i = 1; i <= w_max_used_index; i++) {
2006                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
2007                     (i != pi))
2008                         continue;
2009
2010                 /* Find each descendant of 'i' and mark it as a descendant. */
2011                 for (j = 1; j <= w_max_used_index; j++) {
2012                         /* 
2013                          * Skip children that are already marked as
2014                          * descendants of 'i'.
2015                          */
2016                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
2017                                 continue;
2018
2019                         /*
2020                          * We are only interested in descendants of 'ci'. Note
2021                          * that 'ci' itself is counted as a descendant of 'ci'.
2022                          */
2023                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
2024                             (j != ci))
2025                                 continue;
2026                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
2027                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
2028                         w_data[i].w_num_descendants++;
2029                         w_data[j].w_num_ancestors++;
2030
2031                         /* 
2032                          * Make sure we aren't marking a node as both an
2033                          * ancestor and descendant. We should have caught 
2034                          * this as a lock order reversal earlier.
2035                          */
2036                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
2037                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
2038                                 printf("witness rmatrix paradox! [%d][%d]=%d "
2039                                     "both ancestor and descendant\n",
2040                                     i, j, w_rmatrix[i][j]); 
2041                                 kdb_backtrace();
2042                                 printf("Witness disabled.\n");
2043                                 witness_watch = -1;
2044                         }
2045                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2046                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2047                                 printf("witness rmatrix paradox! [%d][%d]=%d "
2048                                     "both ancestor and descendant\n",
2049                                     j, i, w_rmatrix[j][i]); 
2050                                 kdb_backtrace();
2051                                 printf("Witness disabled.\n");
2052                                 witness_watch = -1;
2053                         }
2054                 }
2055         }
2056 }
2057
2058 static void
2059 itismychild(struct witness *parent, struct witness *child)
2060 {
2061         int unlocked;
2062
2063         MPASS(child != NULL && parent != NULL);
2064         if (witness_cold == 0)
2065                 mtx_assert(&w_mtx, MA_OWNED);
2066
2067         if (!witness_lock_type_equal(parent, child)) {
2068                 if (witness_cold == 0) {
2069                         unlocked = 1;
2070                         mtx_unlock_spin(&w_mtx);
2071                 } else {
2072                         unlocked = 0;
2073                 }
2074                 kassert_panic(
2075                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2076                     "the same lock type", __func__, parent->w_name,
2077                     parent->w_class->lc_name, child->w_name,
2078                     child->w_class->lc_name);
2079                 if (unlocked)
2080                         mtx_lock_spin(&w_mtx);
2081         }
2082         adopt(parent, child);
2083 }
2084
2085 /*
2086  * Generic code for the isitmy*() functions. The rmask parameter is the
2087  * expected relationship of w1 to w2.
2088  */
2089 static int
2090 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2091 {
2092         unsigned char r1, r2;
2093         int i1, i2;
2094
2095         i1 = w1->w_index;
2096         i2 = w2->w_index;
2097         WITNESS_INDEX_ASSERT(i1);
2098         WITNESS_INDEX_ASSERT(i2);
2099         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2100         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2101
2102         /* The flags on one better be the inverse of the flags on the other */
2103         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2104             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2105                 /* Don't squawk if we're potentially racing with an update. */
2106                 if (!mtx_owned(&w_mtx))
2107                         return (0);
2108                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2109                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2110                     "w_rmatrix[%d][%d] == %hhx\n",
2111                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2112                     i2, i1, r2);
2113                 kdb_backtrace();
2114                 printf("Witness disabled.\n");
2115                 witness_watch = -1;
2116         }
2117         return (r1 & rmask);
2118 }
2119
2120 /*
2121  * Checks if @child is a direct child of @parent.
2122  */
2123 static int
2124 isitmychild(struct witness *parent, struct witness *child)
2125 {
2126
2127         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2128 }
2129
2130 /*
2131  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2132  */
2133 static int
2134 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2135 {
2136
2137         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2138             __func__));
2139 }
2140
2141 static int
2142 blessed(struct witness *w1, struct witness *w2)
2143 {
2144         int i;
2145         struct witness_blessed *b;
2146
2147         for (i = 0; i < nitems(blessed_list); i++) {
2148                 b = &blessed_list[i];
2149                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2150                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2151                                 return (1);
2152                         continue;
2153                 }
2154                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2155                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2156                                 return (1);
2157         }
2158         return (0);
2159 }
2160
2161 static struct witness *
2162 witness_get(void)
2163 {
2164         struct witness *w;
2165         int index;
2166
2167         if (witness_cold == 0)
2168                 mtx_assert(&w_mtx, MA_OWNED);
2169
2170         if (witness_watch == -1) {
2171                 mtx_unlock_spin(&w_mtx);
2172                 return (NULL);
2173         }
2174         if (STAILQ_EMPTY(&w_free)) {
2175                 witness_watch = -1;
2176                 mtx_unlock_spin(&w_mtx);
2177                 printf("WITNESS: unable to allocate a new witness object\n");
2178                 return (NULL);
2179         }
2180         w = STAILQ_FIRST(&w_free);
2181         STAILQ_REMOVE_HEAD(&w_free, w_list);
2182         w_free_cnt--;
2183         index = w->w_index;
2184         MPASS(index > 0 && index == w_max_used_index+1 &&
2185             index < witness_count);
2186         bzero(w, sizeof(*w));
2187         w->w_index = index;
2188         if (index > w_max_used_index)
2189                 w_max_used_index = index;
2190         return (w);
2191 }
2192
2193 static void
2194 witness_free(struct witness *w)
2195 {
2196
2197         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2198         w_free_cnt++;
2199 }
2200
2201 static struct lock_list_entry *
2202 witness_lock_list_get(void)
2203 {
2204         struct lock_list_entry *lle;
2205
2206         if (witness_watch == -1)
2207                 return (NULL);
2208         mtx_lock_spin(&w_mtx);
2209         lle = w_lock_list_free;
2210         if (lle == NULL) {
2211                 witness_watch = -1;
2212                 mtx_unlock_spin(&w_mtx);
2213                 printf("%s: witness exhausted\n", __func__);
2214                 return (NULL);
2215         }
2216         w_lock_list_free = lle->ll_next;
2217         mtx_unlock_spin(&w_mtx);
2218         bzero(lle, sizeof(*lle));
2219         return (lle);
2220 }
2221                 
2222 static void
2223 witness_lock_list_free(struct lock_list_entry *lle)
2224 {
2225
2226         mtx_lock_spin(&w_mtx);
2227         lle->ll_next = w_lock_list_free;
2228         w_lock_list_free = lle;
2229         mtx_unlock_spin(&w_mtx);
2230 }
2231
2232 static struct lock_instance *
2233 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2234 {
2235         struct lock_list_entry *lle;
2236         struct lock_instance *instance;
2237         int i;
2238
2239         for (lle = list; lle != NULL; lle = lle->ll_next)
2240                 for (i = lle->ll_count - 1; i >= 0; i--) {
2241                         instance = &lle->ll_children[i];
2242                         if (instance->li_lock == lock)
2243                                 return (instance);
2244                 }
2245         return (NULL);
2246 }
2247
2248 static void
2249 witness_list_lock(struct lock_instance *instance,
2250     int (*prnt)(const char *fmt, ...))
2251 {
2252         struct lock_object *lock;
2253
2254         lock = instance->li_lock;
2255         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2256             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2257         if (lock->lo_witness->w_name != lock->lo_name)
2258                 prnt(" (%s)", lock->lo_witness->w_name);
2259         prnt(" r = %d (%p) locked @ %s:%d\n",
2260             instance->li_flags & LI_RECURSEMASK, lock,
2261             fixup_filename(instance->li_file), instance->li_line);
2262 }
2263
2264 static int
2265 witness_output(const char *fmt, ...)
2266 {
2267         va_list ap;
2268         int ret;
2269
2270         va_start(ap, fmt);
2271         ret = witness_voutput(fmt, ap);
2272         va_end(ap);
2273         return (ret);
2274 }
2275
2276 static int
2277 witness_voutput(const char *fmt, va_list ap)
2278 {
2279         int ret;
2280
2281         ret = 0;
2282         switch (witness_channel) {
2283         case WITNESS_CONSOLE:
2284                 ret = vprintf(fmt, ap);
2285                 break;
2286         case WITNESS_LOG:
2287                 vlog(LOG_NOTICE, fmt, ap);
2288                 break;
2289         case WITNESS_NONE:
2290                 break;
2291         }
2292         return (ret);
2293 }
2294
2295 #ifdef DDB
2296 static int
2297 witness_thread_has_locks(struct thread *td)
2298 {
2299
2300         if (td->td_sleeplocks == NULL)
2301                 return (0);
2302         return (td->td_sleeplocks->ll_count != 0);
2303 }
2304
2305 static int
2306 witness_proc_has_locks(struct proc *p)
2307 {
2308         struct thread *td;
2309
2310         FOREACH_THREAD_IN_PROC(p, td) {
2311                 if (witness_thread_has_locks(td))
2312                         return (1);
2313         }
2314         return (0);
2315 }
2316 #endif
2317
2318 int
2319 witness_list_locks(struct lock_list_entry **lock_list,
2320     int (*prnt)(const char *fmt, ...))
2321 {
2322         struct lock_list_entry *lle;
2323         int i, nheld;
2324
2325         nheld = 0;
2326         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2327                 for (i = lle->ll_count - 1; i >= 0; i--) {
2328                         witness_list_lock(&lle->ll_children[i], prnt);
2329                         nheld++;
2330                 }
2331         return (nheld);
2332 }
2333
2334 /*
2335  * This is a bit risky at best.  We call this function when we have timed
2336  * out acquiring a spin lock, and we assume that the other CPU is stuck
2337  * with this lock held.  So, we go groveling around in the other CPU's
2338  * per-cpu data to try to find the lock instance for this spin lock to
2339  * see when it was last acquired.
2340  */
2341 void
2342 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2343     int (*prnt)(const char *fmt, ...))
2344 {
2345         struct lock_instance *instance;
2346         struct pcpu *pc;
2347
2348         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2349                 return;
2350         pc = pcpu_find(owner->td_oncpu);
2351         instance = find_instance(pc->pc_spinlocks, lock);
2352         if (instance != NULL)
2353                 witness_list_lock(instance, prnt);
2354 }
2355
2356 void
2357 witness_save(struct lock_object *lock, const char **filep, int *linep)
2358 {
2359         struct lock_list_entry *lock_list;
2360         struct lock_instance *instance;
2361         struct lock_class *class;
2362
2363         /*
2364          * This function is used independently in locking code to deal with
2365          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2366          * is gone.
2367          */
2368         if (SCHEDULER_STOPPED())
2369                 return;
2370         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2371         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2372                 return;
2373         class = LOCK_CLASS(lock);
2374         if (class->lc_flags & LC_SLEEPLOCK)
2375                 lock_list = curthread->td_sleeplocks;
2376         else {
2377                 if (witness_skipspin)
2378                         return;
2379                 lock_list = PCPU_GET(spinlocks);
2380         }
2381         instance = find_instance(lock_list, lock);
2382         if (instance == NULL) {
2383                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2384                     class->lc_name, lock->lo_name);
2385                 return;
2386         }
2387         *filep = instance->li_file;
2388         *linep = instance->li_line;
2389 }
2390
2391 void
2392 witness_restore(struct lock_object *lock, const char *file, int line)
2393 {
2394         struct lock_list_entry *lock_list;
2395         struct lock_instance *instance;
2396         struct lock_class *class;
2397
2398         /*
2399          * This function is used independently in locking code to deal with
2400          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2401          * is gone.
2402          */
2403         if (SCHEDULER_STOPPED())
2404                 return;
2405         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2406         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2407                 return;
2408         class = LOCK_CLASS(lock);
2409         if (class->lc_flags & LC_SLEEPLOCK)
2410                 lock_list = curthread->td_sleeplocks;
2411         else {
2412                 if (witness_skipspin)
2413                         return;
2414                 lock_list = PCPU_GET(spinlocks);
2415         }
2416         instance = find_instance(lock_list, lock);
2417         if (instance == NULL)
2418                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2419                     class->lc_name, lock->lo_name);
2420         lock->lo_witness->w_file = file;
2421         lock->lo_witness->w_line = line;
2422         if (instance == NULL)
2423                 return;
2424         instance->li_file = file;
2425         instance->li_line = line;
2426 }
2427
2428 void
2429 witness_assert(const struct lock_object *lock, int flags, const char *file,
2430     int line)
2431 {
2432 #ifdef INVARIANT_SUPPORT
2433         struct lock_instance *instance;
2434         struct lock_class *class;
2435
2436         if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2437                 return;
2438         class = LOCK_CLASS(lock);
2439         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2440                 instance = find_instance(curthread->td_sleeplocks, lock);
2441         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2442                 instance = find_instance(PCPU_GET(spinlocks), lock);
2443         else {
2444                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2445                     class->lc_name, lock->lo_name);
2446                 return;
2447         }
2448         switch (flags) {
2449         case LA_UNLOCKED:
2450                 if (instance != NULL)
2451                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2452                             class->lc_name, lock->lo_name,
2453                             fixup_filename(file), line);
2454                 break;
2455         case LA_LOCKED:
2456         case LA_LOCKED | LA_RECURSED:
2457         case LA_LOCKED | LA_NOTRECURSED:
2458         case LA_SLOCKED:
2459         case LA_SLOCKED | LA_RECURSED:
2460         case LA_SLOCKED | LA_NOTRECURSED:
2461         case LA_XLOCKED:
2462         case LA_XLOCKED | LA_RECURSED:
2463         case LA_XLOCKED | LA_NOTRECURSED:
2464                 if (instance == NULL) {
2465                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2466                             class->lc_name, lock->lo_name,
2467                             fixup_filename(file), line);
2468                         break;
2469                 }
2470                 if ((flags & LA_XLOCKED) != 0 &&
2471                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2472                         kassert_panic(
2473                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2474                             class->lc_name, lock->lo_name,
2475                             fixup_filename(file), line);
2476                 if ((flags & LA_SLOCKED) != 0 &&
2477                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2478                         kassert_panic(
2479                             "Lock (%s) %s exclusively locked @ %s:%d.",
2480                             class->lc_name, lock->lo_name,
2481                             fixup_filename(file), line);
2482                 if ((flags & LA_RECURSED) != 0 &&
2483                     (instance->li_flags & LI_RECURSEMASK) == 0)
2484                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2485                             class->lc_name, lock->lo_name,
2486                             fixup_filename(file), line);
2487                 if ((flags & LA_NOTRECURSED) != 0 &&
2488                     (instance->li_flags & LI_RECURSEMASK) != 0)
2489                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2490                             class->lc_name, lock->lo_name,
2491                             fixup_filename(file), line);
2492                 break;
2493         default:
2494                 kassert_panic("Invalid lock assertion at %s:%d.",
2495                     fixup_filename(file), line);
2496         }
2497 #endif  /* INVARIANT_SUPPORT */
2498 }
2499
2500 static void
2501 witness_setflag(struct lock_object *lock, int flag, int set)
2502 {
2503         struct lock_list_entry *lock_list;
2504         struct lock_instance *instance;
2505         struct lock_class *class;
2506
2507         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2508                 return;
2509         class = LOCK_CLASS(lock);
2510         if (class->lc_flags & LC_SLEEPLOCK)
2511                 lock_list = curthread->td_sleeplocks;
2512         else {
2513                 if (witness_skipspin)
2514                         return;
2515                 lock_list = PCPU_GET(spinlocks);
2516         }
2517         instance = find_instance(lock_list, lock);
2518         if (instance == NULL) {
2519                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2520                     class->lc_name, lock->lo_name);
2521                 return;
2522         }
2523
2524         if (set)
2525                 instance->li_flags |= flag;
2526         else
2527                 instance->li_flags &= ~flag;
2528 }
2529
2530 void
2531 witness_norelease(struct lock_object *lock)
2532 {
2533
2534         witness_setflag(lock, LI_NORELEASE, 1);
2535 }
2536
2537 void
2538 witness_releaseok(struct lock_object *lock)
2539 {
2540
2541         witness_setflag(lock, LI_NORELEASE, 0);
2542 }
2543
2544 #ifdef DDB
2545 static void
2546 witness_ddb_list(struct thread *td)
2547 {
2548
2549         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2550         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2551
2552         if (witness_watch < 1)
2553                 return;
2554
2555         witness_list_locks(&td->td_sleeplocks, db_printf);
2556
2557         /*
2558          * We only handle spinlocks if td == curthread.  This is somewhat broken
2559          * if td is currently executing on some other CPU and holds spin locks
2560          * as we won't display those locks.  If we had a MI way of getting
2561          * the per-cpu data for a given cpu then we could use
2562          * td->td_oncpu to get the list of spinlocks for this thread
2563          * and "fix" this.
2564          *
2565          * That still wouldn't really fix this unless we locked the scheduler
2566          * lock or stopped the other CPU to make sure it wasn't changing the
2567          * list out from under us.  It is probably best to just not try to
2568          * handle threads on other CPU's for now.
2569          */
2570         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2571                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2572 }
2573
2574 DB_SHOW_COMMAND(locks, db_witness_list)
2575 {
2576         struct thread *td;
2577
2578         if (have_addr)
2579                 td = db_lookup_thread(addr, true);
2580         else
2581                 td = kdb_thread;
2582         witness_ddb_list(td);
2583 }
2584
2585 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2586 {
2587         struct thread *td;
2588         struct proc *p;
2589
2590         /*
2591          * It would be nice to list only threads and processes that actually
2592          * held sleep locks, but that information is currently not exported
2593          * by WITNESS.
2594          */
2595         FOREACH_PROC_IN_SYSTEM(p) {
2596                 if (!witness_proc_has_locks(p))
2597                         continue;
2598                 FOREACH_THREAD_IN_PROC(p, td) {
2599                         if (!witness_thread_has_locks(td))
2600                                 continue;
2601                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2602                             p->p_comm, td, td->td_tid);
2603                         witness_ddb_list(td);
2604                         if (db_pager_quit)
2605                                 return;
2606                 }
2607         }
2608 }
2609 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2610
2611 DB_SHOW_COMMAND(witness, db_witness_display)
2612 {
2613
2614         witness_ddb_display(db_printf);
2615 }
2616 #endif
2617
2618 static void
2619 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2620 {
2621         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2622         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2623         int generation, i, j;
2624
2625         tmp_data1 = NULL;
2626         tmp_data2 = NULL;
2627         tmp_w1 = NULL;
2628         tmp_w2 = NULL;
2629
2630         /* Allocate and init temporary storage space. */
2631         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2632         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2633         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2634             M_WAITOK | M_ZERO);
2635         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2636             M_WAITOK | M_ZERO);
2637         stack_zero(&tmp_data1->wlod_stack);
2638         stack_zero(&tmp_data2->wlod_stack);
2639
2640 restart:
2641         mtx_lock_spin(&w_mtx);
2642         generation = w_generation;
2643         mtx_unlock_spin(&w_mtx);
2644         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2645             w_lohash.wloh_count);
2646         for (i = 1; i < w_max_used_index; i++) {
2647                 mtx_lock_spin(&w_mtx);
2648                 if (generation != w_generation) {
2649                         mtx_unlock_spin(&w_mtx);
2650
2651                         /* The graph has changed, try again. */
2652                         *oldidx = 0;
2653                         sbuf_clear(sb);
2654                         goto restart;
2655                 }
2656
2657                 w1 = &w_data[i];
2658                 if (w1->w_reversed == 0) {
2659                         mtx_unlock_spin(&w_mtx);
2660                         continue;
2661                 }
2662
2663                 /* Copy w1 locally so we can release the spin lock. */
2664                 *tmp_w1 = *w1;
2665                 mtx_unlock_spin(&w_mtx);
2666
2667                 if (tmp_w1->w_reversed == 0)
2668                         continue;
2669                 for (j = 1; j < w_max_used_index; j++) {
2670                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2671                                 continue;
2672
2673                         mtx_lock_spin(&w_mtx);
2674                         if (generation != w_generation) {
2675                                 mtx_unlock_spin(&w_mtx);
2676
2677                                 /* The graph has changed, try again. */
2678                                 *oldidx = 0;
2679                                 sbuf_clear(sb);
2680                                 goto restart;
2681                         }
2682
2683                         w2 = &w_data[j];
2684                         data1 = witness_lock_order_get(w1, w2);
2685                         data2 = witness_lock_order_get(w2, w1);
2686
2687                         /*
2688                          * Copy information locally so we can release the
2689                          * spin lock.
2690                          */
2691                         *tmp_w2 = *w2;
2692
2693                         if (data1) {
2694                                 stack_zero(&tmp_data1->wlod_stack);
2695                                 stack_copy(&data1->wlod_stack,
2696                                     &tmp_data1->wlod_stack);
2697                         }
2698                         if (data2 && data2 != data1) {
2699                                 stack_zero(&tmp_data2->wlod_stack);
2700                                 stack_copy(&data2->wlod_stack,
2701                                     &tmp_data2->wlod_stack);
2702                         }
2703                         mtx_unlock_spin(&w_mtx);
2704
2705                         if (blessed(tmp_w1, tmp_w2))
2706                                 continue;
2707
2708                         sbuf_printf(sb,
2709             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2710                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2711                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2712                         if (data1) {
2713                                 sbuf_printf(sb,
2714                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2715                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2716                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2717                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2718                                 sbuf_printf(sb, "\n");
2719                         }
2720                         if (data2 && data2 != data1) {
2721                                 sbuf_printf(sb,
2722                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2723                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2724                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2725                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2726                                 sbuf_printf(sb, "\n");
2727                         }
2728                 }
2729         }
2730         mtx_lock_spin(&w_mtx);
2731         if (generation != w_generation) {
2732                 mtx_unlock_spin(&w_mtx);
2733
2734                 /*
2735                  * The graph changed while we were printing stack data,
2736                  * try again.
2737                  */
2738                 *oldidx = 0;
2739                 sbuf_clear(sb);
2740                 goto restart;
2741         }
2742         mtx_unlock_spin(&w_mtx);
2743
2744         /* Free temporary storage space. */
2745         free(tmp_data1, M_TEMP);
2746         free(tmp_data2, M_TEMP);
2747         free(tmp_w1, M_TEMP);
2748         free(tmp_w2, M_TEMP);
2749 }
2750
2751 static int
2752 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2753 {
2754         struct sbuf *sb;
2755         int error;
2756
2757         if (witness_watch < 1) {
2758                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2759                 return (error);
2760         }
2761         if (witness_cold) {
2762                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2763                 return (error);
2764         }
2765         error = 0;
2766         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2767         if (sb == NULL)
2768                 return (ENOMEM);
2769
2770         sbuf_print_witness_badstacks(sb, &req->oldidx);
2771
2772         sbuf_finish(sb);
2773         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2774         sbuf_delete(sb);
2775
2776         return (error);
2777 }
2778
2779 #ifdef DDB
2780 static int
2781 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2782 {
2783
2784         return (db_printf("%.*s", len, data));
2785 }
2786
2787 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2788 {
2789         struct sbuf sb;
2790         char buffer[128];
2791         size_t dummy;
2792
2793         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2794         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2795         sbuf_print_witness_badstacks(&sb, &dummy);
2796         sbuf_finish(&sb);
2797 }
2798 #endif
2799
2800 static int
2801 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2802 {
2803         static const struct {
2804                 enum witness_channel channel;
2805                 const char *name;
2806         } channels[] = {
2807                 { WITNESS_CONSOLE, "console" },
2808                 { WITNESS_LOG, "log" },
2809                 { WITNESS_NONE, "none" },
2810         };
2811         char buf[16];
2812         u_int i;
2813         int error;
2814
2815         buf[0] = '\0';
2816         for (i = 0; i < nitems(channels); i++)
2817                 if (witness_channel == channels[i].channel) {
2818                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2819                         break;
2820                 }
2821
2822         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2823         if (error != 0 || req->newptr == NULL)
2824                 return (error);
2825
2826         error = EINVAL;
2827         for (i = 0; i < nitems(channels); i++)
2828                 if (strcmp(channels[i].name, buf) == 0) {
2829                         witness_channel = channels[i].channel;
2830                         error = 0;
2831                         break;
2832                 }
2833         return (error);
2834 }
2835
2836 static int
2837 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2838 {
2839         struct witness *w;
2840         struct sbuf *sb;
2841         int error;
2842
2843 #ifdef __i386__
2844         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2845         return (error);
2846 #endif
2847
2848         if (witness_watch < 1) {
2849                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2850                 return (error);
2851         }
2852         if (witness_cold) {
2853                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2854                 return (error);
2855         }
2856         error = 0;
2857
2858         error = sysctl_wire_old_buffer(req, 0);
2859         if (error != 0)
2860                 return (error);
2861         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2862         if (sb == NULL)
2863                 return (ENOMEM);
2864         sbuf_printf(sb, "\n");
2865
2866         mtx_lock_spin(&w_mtx);
2867         STAILQ_FOREACH(w, &w_all, w_list)
2868                 w->w_displayed = 0;
2869         STAILQ_FOREACH(w, &w_all, w_list)
2870                 witness_add_fullgraph(sb, w);
2871         mtx_unlock_spin(&w_mtx);
2872
2873         /*
2874          * Close the sbuf and return to userland.
2875          */
2876         error = sbuf_finish(sb);
2877         sbuf_delete(sb);
2878
2879         return (error);
2880 }
2881
2882 static int
2883 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2884 {
2885         int error, value;
2886
2887         value = witness_watch;
2888         error = sysctl_handle_int(oidp, &value, 0, req);
2889         if (error != 0 || req->newptr == NULL)
2890                 return (error);
2891         if (value > 1 || value < -1 ||
2892             (witness_watch == -1 && value != witness_watch))
2893                 return (EINVAL);
2894         witness_watch = value;
2895         return (0);
2896 }
2897
2898 static void
2899 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2900 {
2901         int i;
2902
2903         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2904                 return;
2905         w->w_displayed = 1;
2906
2907         WITNESS_INDEX_ASSERT(w->w_index);
2908         for (i = 1; i <= w_max_used_index; i++) {
2909                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2910                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2911                             w_data[i].w_name);
2912                         witness_add_fullgraph(sb, &w_data[i]);
2913                 }
2914         }
2915 }
2916
2917 /*
2918  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2919  * interprets the key as a string and reads until the null
2920  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2921  * hash value computed from the key.
2922  */
2923 static uint32_t
2924 witness_hash_djb2(const uint8_t *key, uint32_t size)
2925 {
2926         unsigned int hash = 5381;
2927         int i;
2928
2929         /* hash = hash * 33 + key[i] */
2930         if (size)
2931                 for (i = 0; i < size; i++)
2932                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2933         else
2934                 for (i = 0; key[i] != 0; i++)
2935                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2936
2937         return (hash);
2938 }
2939
2940 /*
2941  * Initializes the two witness hash tables. Called exactly once from
2942  * witness_initialize().
2943  */
2944 static void
2945 witness_init_hash_tables(void)
2946 {
2947         int i;
2948
2949         MPASS(witness_cold);
2950
2951         /* Initialize the hash tables. */
2952         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2953                 w_hash.wh_array[i] = NULL;
2954
2955         w_hash.wh_size = WITNESS_HASH_SIZE;
2956         w_hash.wh_count = 0;
2957
2958         /* Initialize the lock order data hash. */
2959         w_lofree = NULL;
2960         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2961                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2962                 w_lodata[i].wlod_next = w_lofree;
2963                 w_lofree = &w_lodata[i];
2964         }
2965         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2966         w_lohash.wloh_count = 0;
2967         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2968                 w_lohash.wloh_array[i] = NULL;
2969 }
2970
2971 static struct witness *
2972 witness_hash_get(const char *key)
2973 {
2974         struct witness *w;
2975         uint32_t hash;
2976
2977         MPASS(key != NULL);
2978         if (witness_cold == 0)
2979                 mtx_assert(&w_mtx, MA_OWNED);
2980         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2981         w = w_hash.wh_array[hash];
2982         while (w != NULL) {
2983                 if (strcmp(w->w_name, key) == 0)
2984                         goto out;
2985                 w = w->w_hash_next;
2986         }
2987
2988 out:
2989         return (w);
2990 }
2991
2992 static void
2993 witness_hash_put(struct witness *w)
2994 {
2995         uint32_t hash;
2996
2997         MPASS(w != NULL);
2998         MPASS(w->w_name != NULL);
2999         if (witness_cold == 0)
3000                 mtx_assert(&w_mtx, MA_OWNED);
3001         KASSERT(witness_hash_get(w->w_name) == NULL,
3002             ("%s: trying to add a hash entry that already exists!", __func__));
3003         KASSERT(w->w_hash_next == NULL,
3004             ("%s: w->w_hash_next != NULL", __func__));
3005
3006         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
3007         w->w_hash_next = w_hash.wh_array[hash];
3008         w_hash.wh_array[hash] = w;
3009         w_hash.wh_count++;
3010 }
3011
3012 static struct witness_lock_order_data *
3013 witness_lock_order_get(struct witness *parent, struct witness *child)
3014 {
3015         struct witness_lock_order_data *data = NULL;
3016         struct witness_lock_order_key key;
3017         unsigned int hash;
3018
3019         MPASS(parent != NULL && child != NULL);
3020         key.from = parent->w_index;
3021         key.to = child->w_index;
3022         WITNESS_INDEX_ASSERT(key.from);
3023         WITNESS_INDEX_ASSERT(key.to);
3024         if ((w_rmatrix[parent->w_index][child->w_index]
3025             & WITNESS_LOCK_ORDER_KNOWN) == 0)
3026                 goto out;
3027
3028         hash = witness_hash_djb2((const char*)&key,
3029             sizeof(key)) % w_lohash.wloh_size;
3030         data = w_lohash.wloh_array[hash];
3031         while (data != NULL) {
3032                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
3033                         break;
3034                 data = data->wlod_next;
3035         }
3036
3037 out:
3038         return (data);
3039 }
3040
3041 /*
3042  * Verify that parent and child have a known relationship, are not the same,
3043  * and child is actually a child of parent.  This is done without w_mtx
3044  * to avoid contention in the common case.
3045  */
3046 static int
3047 witness_lock_order_check(struct witness *parent, struct witness *child)
3048 {
3049
3050         if (parent != child &&
3051             w_rmatrix[parent->w_index][child->w_index]
3052             & WITNESS_LOCK_ORDER_KNOWN &&
3053             isitmychild(parent, child))
3054                 return (1);
3055
3056         return (0);
3057 }
3058
3059 static int
3060 witness_lock_order_add(struct witness *parent, struct witness *child)
3061 {
3062         struct witness_lock_order_data *data = NULL;
3063         struct witness_lock_order_key key;
3064         unsigned int hash;
3065
3066         MPASS(parent != NULL && child != NULL);
3067         key.from = parent->w_index;
3068         key.to = child->w_index;
3069         WITNESS_INDEX_ASSERT(key.from);
3070         WITNESS_INDEX_ASSERT(key.to);
3071         if (w_rmatrix[parent->w_index][child->w_index]
3072             & WITNESS_LOCK_ORDER_KNOWN)
3073                 return (1);
3074
3075         hash = witness_hash_djb2((const char*)&key,
3076             sizeof(key)) % w_lohash.wloh_size;
3077         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3078         data = w_lofree;
3079         if (data == NULL)
3080                 return (0);
3081         w_lofree = data->wlod_next;
3082         data->wlod_next = w_lohash.wloh_array[hash];
3083         data->wlod_key = key;
3084         w_lohash.wloh_array[hash] = data;
3085         w_lohash.wloh_count++;
3086         stack_zero(&data->wlod_stack);
3087         stack_save(&data->wlod_stack);
3088         return (1);
3089 }
3090
3091 /* Call this whenever the structure of the witness graph changes. */
3092 static void
3093 witness_increment_graph_generation(void)
3094 {
3095
3096         if (witness_cold == 0)
3097                 mtx_assert(&w_mtx, MA_OWNED);
3098         w_generation++;
3099 }
3100
3101 static int
3102 witness_output_drain(void *arg __unused, const char *data, int len)
3103 {
3104
3105         witness_output("%.*s", len, data);
3106         return (len);
3107 }
3108
3109 static void
3110 witness_debugger(int cond, const char *msg)
3111 {
3112         char buf[32];
3113         struct sbuf sb;
3114         struct stack st;
3115
3116         if (!cond)
3117                 return;
3118
3119         if (witness_trace) {
3120                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3121                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3122
3123                 stack_zero(&st);
3124                 stack_save(&st);
3125                 witness_output("stack backtrace:\n");
3126                 stack_sbuf_print_ddb(&sb, &st);
3127
3128                 sbuf_finish(&sb);
3129         }
3130
3131         witness_enter_debugger(msg);
3132 }
3133
3134 static void
3135 witness_enter_debugger(const char *msg)
3136 {
3137 #ifdef KDB
3138         if (witness_kdb)
3139                 kdb_enter(KDB_WHY_WITNESS, msg);
3140 #endif
3141 }