]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/sys_pipe.c
Makefile changes to reflect moving sys/isofs/cd9660 to sys/fs/cd9660.
[FreeBSD/FreeBSD.git] / sys / kern / sys_pipe.c
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  */
19
20 /*
21  * This file contains a high-performance replacement for the socket-based
22  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23  * all features of sockets, but does do everything that pipes normally
24  * do.
25  */
26
27 /*
28  * This code has two modes of operation, a small write mode and a large
29  * write mode.  The small write mode acts like conventional pipes with
30  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33  * the receiving process can copy it directly from the pages in the sending
34  * process.
35  *
36  * If the sending process receives a signal, it is possible that it will
37  * go away, and certainly its address space can change, because control
38  * is returned back to the user-mode side.  In that case, the pipe code
39  * arranges to copy the buffer supplied by the user process, to a pageable
40  * kernel buffer, and the receiving process will grab the data from the
41  * pageable kernel buffer.  Since signals don't happen all that often,
42  * the copy operation is normally eliminated.
43  *
44  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45  * happen for small transfers so that the system will not spend all of
46  * its time context switching.
47  *
48  * In order to limit the resource use of pipes, two sysctls exist:
49  *
50  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51  * address space available to us in pipe_map. This value is normally
52  * autotuned, but may also be loader tuned.
53  *
54  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55  * memory in use by pipes.
56  *
57  * Based on how large pipekva is relative to maxpipekva, the following
58  * will happen:
59  *
60  * 0% - 50%:
61  *     New pipes are given 16K of memory backing, pipes may dynamically
62  *     grow to as large as 64K where needed.
63  * 50% - 75%:
64  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65  *     existing pipes may NOT grow.
66  * 75% - 100%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes will be shrunk down to 4K whenever possible.
69  *
70  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72  * resize which MUST occur for reverse-direction pipes when they are
73  * first used.
74  *
75  * Additional information about the current state of pipes may be obtained
76  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77  * and kern.ipc.piperesizefail.
78  *
79  * Locking rules:  There are two locks present here:  A mutex, used via
80  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81  * the flag, as mutexes can not persist over uiomove.  The mutex
82  * exists only to guard access to the flag, and is not in itself a
83  * locking mechanism.  Also note that there is only a single mutex for
84  * both directions of a pipe.
85  *
86  * As pipelock() may have to sleep before it can acquire the flag, it
87  * is important to reread all data after a call to pipelock(); everything
88  * in the structure may have changed.
89  */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93
94 #include "opt_mac.h"
95
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/sysctl.h>
112 #include <sys/sysproto.h>
113 #include <sys/pipe.h>
114 #include <sys/proc.h>
115 #include <sys/vnode.h>
116 #include <sys/uio.h>
117 #include <sys/event.h>
118
119 #include <security/mac/mac_framework.h>
120
121 #include <vm/vm.h>
122 #include <vm/vm_param.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_extern.h>
126 #include <vm/pmap.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_page.h>
129 #include <vm/uma.h>
130
131 /*
132  * Use this define if you want to disable *fancy* VM things.  Expect an
133  * approx 30% decrease in transfer rate.  This could be useful for
134  * NetBSD or OpenBSD.
135  */
136 /* #define PIPE_NODIRECT */
137
138 /*
139  * interfaces to the outside world
140  */
141 static fo_rdwr_t        pipe_read;
142 static fo_rdwr_t        pipe_write;
143 static fo_ioctl_t       pipe_ioctl;
144 static fo_poll_t        pipe_poll;
145 static fo_kqfilter_t    pipe_kqfilter;
146 static fo_stat_t        pipe_stat;
147 static fo_close_t       pipe_close;
148
149 static struct fileops pipeops = {
150         .fo_read = pipe_read,
151         .fo_write = pipe_write,
152         .fo_ioctl = pipe_ioctl,
153         .fo_poll = pipe_poll,
154         .fo_kqfilter = pipe_kqfilter,
155         .fo_stat = pipe_stat,
156         .fo_close = pipe_close,
157         .fo_flags = DFLAG_PASSABLE
158 };
159
160 static void     filt_pipedetach(struct knote *kn);
161 static int      filt_piperead(struct knote *kn, long hint);
162 static int      filt_pipewrite(struct knote *kn, long hint);
163
164 static struct filterops pipe_rfiltops =
165         { 1, NULL, filt_pipedetach, filt_piperead };
166 static struct filterops pipe_wfiltops =
167         { 1, NULL, filt_pipedetach, filt_pipewrite };
168
169 /*
170  * Default pipe buffer size(s), this can be kind-of large now because pipe
171  * space is pageable.  The pipe code will try to maintain locality of
172  * reference for performance reasons, so small amounts of outstanding I/O
173  * will not wipe the cache.
174  */
175 #define MINPIPESIZE (PIPE_SIZE/3)
176 #define MAXPIPESIZE (2*PIPE_SIZE/3)
177
178 static int amountpipes;
179 static int amountpipekva;
180 static int pipefragretry;
181 static int pipeallocfail;
182 static int piperesizefail;
183 static int piperesizeallowed = 1;
184
185 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
186            &maxpipekva, 0, "Pipe KVA limit");
187 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
188            &amountpipes, 0, "Current # of pipes");
189 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
190            &amountpipekva, 0, "Pipe KVA usage");
191 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
192           &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
193 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
194           &pipeallocfail, 0, "Pipe allocation failures");
195 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
196           &piperesizefail, 0, "Pipe resize failures");
197 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
198           &piperesizeallowed, 0, "Pipe resizing allowed");
199
200 static void pipeinit(void *dummy __unused);
201 static void pipeclose(struct pipe *cpipe);
202 static void pipe_free_kmem(struct pipe *cpipe);
203 static int pipe_create(struct pipe *pipe, int backing);
204 static __inline int pipelock(struct pipe *cpipe, int catch);
205 static __inline void pipeunlock(struct pipe *cpipe);
206 static __inline void pipeselwakeup(struct pipe *cpipe);
207 #ifndef PIPE_NODIRECT
208 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
209 static void pipe_destroy_write_buffer(struct pipe *wpipe);
210 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
211 static void pipe_clone_write_buffer(struct pipe *wpipe);
212 #endif
213 static int pipespace(struct pipe *cpipe, int size);
214 static int pipespace_new(struct pipe *cpipe, int size);
215
216 static int      pipe_zone_ctor(void *mem, int size, void *arg, int flags);
217 static void     pipe_zone_dtor(void *mem, int size, void *arg);
218 static int      pipe_zone_init(void *mem, int size, int flags);
219 static void     pipe_zone_fini(void *mem, int size);
220
221 static uma_zone_t pipe_zone;
222
223 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
224
225 static void
226 pipeinit(void *dummy __unused)
227 {
228
229         pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair),
230             pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini,
231             UMA_ALIGN_PTR, 0);
232         KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
233 }
234
235 static int
236 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
237 {
238         struct pipepair *pp;
239         struct pipe *rpipe, *wpipe;
240
241         KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
242
243         pp = (struct pipepair *)mem;
244
245         /*
246          * We zero both pipe endpoints to make sure all the kmem pointers
247          * are NULL, flag fields are zero'd, etc.  We timestamp both
248          * endpoints with the same time.
249          */
250         rpipe = &pp->pp_rpipe;
251         bzero(rpipe, sizeof(*rpipe));
252         vfs_timestamp(&rpipe->pipe_ctime);
253         rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
254
255         wpipe = &pp->pp_wpipe;
256         bzero(wpipe, sizeof(*wpipe));
257         wpipe->pipe_ctime = rpipe->pipe_ctime;
258         wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
259
260         rpipe->pipe_peer = wpipe;
261         rpipe->pipe_pair = pp;
262         wpipe->pipe_peer = rpipe;
263         wpipe->pipe_pair = pp;
264
265         /*
266          * Mark both endpoints as present; they will later get free'd
267          * one at a time.  When both are free'd, then the whole pair
268          * is released.
269          */
270         rpipe->pipe_present = 1;
271         wpipe->pipe_present = 1;
272
273         /*
274          * Eventually, the MAC Framework may initialize the label
275          * in ctor or init, but for now we do it elswhere to avoid
276          * blocking in ctor or init.
277          */
278         pp->pp_label = NULL;
279
280         atomic_add_int(&amountpipes, 2);
281         return (0);
282 }
283
284 static void
285 pipe_zone_dtor(void *mem, int size, void *arg)
286 {
287         struct pipepair *pp;
288
289         KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size"));
290
291         pp = (struct pipepair *)mem;
292
293         atomic_subtract_int(&amountpipes, 2);
294 }
295
296 static int
297 pipe_zone_init(void *mem, int size, int flags)
298 {
299         struct pipepair *pp;
300
301         KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
302
303         pp = (struct pipepair *)mem;
304
305         mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
306         return (0);
307 }
308
309 static void
310 pipe_zone_fini(void *mem, int size)
311 {
312         struct pipepair *pp;
313
314         KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
315
316         pp = (struct pipepair *)mem;
317
318         mtx_destroy(&pp->pp_mtx);
319 }
320
321 /*
322  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail,
323  * let the zone pick up the pieces via pipeclose().
324  */
325
326 /* ARGSUSED */
327 int
328 pipe(td, uap)
329         struct thread *td;
330         struct pipe_args /* {
331                 int     dummy;
332         } */ *uap;
333 {
334         struct filedesc *fdp = td->td_proc->p_fd;
335         struct file *rf, *wf;
336         struct pipepair *pp;
337         struct pipe *rpipe, *wpipe;
338         int fd, error;
339
340         pp = uma_zalloc(pipe_zone, M_WAITOK);
341 #ifdef MAC
342         /*
343          * The MAC label is shared between the connected endpoints.  As a
344          * result mac_init_pipe() and mac_create_pipe() are called once
345          * for the pair, and not on the endpoints.
346          */
347         mac_init_pipe(pp);
348         mac_create_pipe(td->td_ucred, pp);
349 #endif
350         rpipe = &pp->pp_rpipe;
351         wpipe = &pp->pp_wpipe;
352
353         knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL,
354             NULL);
355         knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL,
356             NULL);
357
358         /* Only the forward direction pipe is backed by default */
359         if ((error = pipe_create(rpipe, 1)) != 0 ||
360             (error = pipe_create(wpipe, 0)) != 0) {
361                 pipeclose(rpipe);
362                 pipeclose(wpipe);
363                 return (error);
364         }
365
366         rpipe->pipe_state |= PIPE_DIRECTOK;
367         wpipe->pipe_state |= PIPE_DIRECTOK;
368
369         error = falloc(td, &rf, &fd);
370         if (error) {
371                 pipeclose(rpipe);
372                 pipeclose(wpipe);
373                 return (error);
374         }
375         /* An extra reference on `rf' has been held for us by falloc(). */
376         td->td_retval[0] = fd;
377
378         /*
379          * Warning: once we've gotten past allocation of the fd for the
380          * read-side, we can only drop the read side via fdrop() in order
381          * to avoid races against processes which manage to dup() the read
382          * side while we are blocked trying to allocate the write side.
383          */
384         FILE_LOCK(rf);
385         rf->f_flag = FREAD | FWRITE;
386         rf->f_type = DTYPE_PIPE;
387         rf->f_data = rpipe;
388         rf->f_ops = &pipeops;
389         FILE_UNLOCK(rf);
390         error = falloc(td, &wf, &fd);
391         if (error) {
392                 fdclose(fdp, rf, td->td_retval[0], td);
393                 fdrop(rf, td);
394                 /* rpipe has been closed by fdrop(). */
395                 pipeclose(wpipe);
396                 return (error);
397         }
398         /* An extra reference on `wf' has been held for us by falloc(). */
399         FILE_LOCK(wf);
400         wf->f_flag = FREAD | FWRITE;
401         wf->f_type = DTYPE_PIPE;
402         wf->f_data = wpipe;
403         wf->f_ops = &pipeops;
404         FILE_UNLOCK(wf);
405         fdrop(wf, td);
406         td->td_retval[1] = fd;
407         fdrop(rf, td);
408
409         return (0);
410 }
411
412 /*
413  * Allocate kva for pipe circular buffer, the space is pageable
414  * This routine will 'realloc' the size of a pipe safely, if it fails
415  * it will retain the old buffer.
416  * If it fails it will return ENOMEM.
417  */
418 static int
419 pipespace_new(cpipe, size)
420         struct pipe *cpipe;
421         int size;
422 {
423         caddr_t buffer;
424         int error, cnt, firstseg;
425         static int curfail = 0;
426         static struct timeval lastfail;
427
428         KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
429         KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
430                 ("pipespace: resize of direct writes not allowed"));
431 retry:
432         cnt = cpipe->pipe_buffer.cnt;
433         if (cnt > size)
434                 size = cnt;
435
436         size = round_page(size);
437         buffer = (caddr_t) vm_map_min(pipe_map);
438
439         error = vm_map_find(pipe_map, NULL, 0,
440                 (vm_offset_t *) &buffer, size, 1,
441                 VM_PROT_ALL, VM_PROT_ALL, 0);
442         if (error != KERN_SUCCESS) {
443                 if ((cpipe->pipe_buffer.buffer == NULL) &&
444                         (size > SMALL_PIPE_SIZE)) {
445                         size = SMALL_PIPE_SIZE;
446                         pipefragretry++;
447                         goto retry;
448                 }
449                 if (cpipe->pipe_buffer.buffer == NULL) {
450                         pipeallocfail++;
451                         if (ppsratecheck(&lastfail, &curfail, 1))
452                                 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
453                 } else {
454                         piperesizefail++;
455                 }
456                 return (ENOMEM);
457         }
458
459         /* copy data, then free old resources if we're resizing */
460         if (cnt > 0) {
461                 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
462                         firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
463                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
464                                 buffer, firstseg);
465                         if ((cnt - firstseg) > 0)
466                                 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
467                                         cpipe->pipe_buffer.in);
468                 } else {
469                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
470                                 buffer, cnt);
471                 }
472         }
473         pipe_free_kmem(cpipe);
474         cpipe->pipe_buffer.buffer = buffer;
475         cpipe->pipe_buffer.size = size;
476         cpipe->pipe_buffer.in = cnt;
477         cpipe->pipe_buffer.out = 0;
478         cpipe->pipe_buffer.cnt = cnt;
479         atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
480         return (0);
481 }
482
483 /*
484  * Wrapper for pipespace_new() that performs locking assertions.
485  */
486 static int
487 pipespace(cpipe, size)
488         struct pipe *cpipe;
489         int size;
490 {
491
492         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
493                 ("Unlocked pipe passed to pipespace"));
494         return (pipespace_new(cpipe, size));
495 }
496
497 /*
498  * lock a pipe for I/O, blocking other access
499  */
500 static __inline int
501 pipelock(cpipe, catch)
502         struct pipe *cpipe;
503         int catch;
504 {
505         int error;
506
507         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
508         while (cpipe->pipe_state & PIPE_LOCKFL) {
509                 cpipe->pipe_state |= PIPE_LWANT;
510                 error = msleep(cpipe, PIPE_MTX(cpipe),
511                     catch ? (PRIBIO | PCATCH) : PRIBIO,
512                     "pipelk", 0);
513                 if (error != 0)
514                         return (error);
515         }
516         cpipe->pipe_state |= PIPE_LOCKFL;
517         return (0);
518 }
519
520 /*
521  * unlock a pipe I/O lock
522  */
523 static __inline void
524 pipeunlock(cpipe)
525         struct pipe *cpipe;
526 {
527
528         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
529         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
530                 ("Unlocked pipe passed to pipeunlock"));
531         cpipe->pipe_state &= ~PIPE_LOCKFL;
532         if (cpipe->pipe_state & PIPE_LWANT) {
533                 cpipe->pipe_state &= ~PIPE_LWANT;
534                 wakeup(cpipe);
535         }
536 }
537
538 static __inline void
539 pipeselwakeup(cpipe)
540         struct pipe *cpipe;
541 {
542
543         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
544         if (cpipe->pipe_state & PIPE_SEL) {
545                 cpipe->pipe_state &= ~PIPE_SEL;
546                 selwakeuppri(&cpipe->pipe_sel, PSOCK);
547         }
548         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
549                 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
550         KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
551 }
552
553 /*
554  * Initialize and allocate VM and memory for pipe.  The structure
555  * will start out zero'd from the ctor, so we just manage the kmem.
556  */
557 static int
558 pipe_create(pipe, backing)
559         struct pipe *pipe;
560         int backing;
561 {
562         int error;
563
564         if (backing) {
565                 if (amountpipekva > maxpipekva / 2)
566                         error = pipespace_new(pipe, SMALL_PIPE_SIZE);
567                 else
568                         error = pipespace_new(pipe, PIPE_SIZE);
569         } else {
570                 /* If we're not backing this pipe, no need to do anything. */
571                 error = 0;
572         }
573         return (error);
574 }
575
576 /* ARGSUSED */
577 static int
578 pipe_read(fp, uio, active_cred, flags, td)
579         struct file *fp;
580         struct uio *uio;
581         struct ucred *active_cred;
582         struct thread *td;
583         int flags;
584 {
585         struct pipe *rpipe = fp->f_data;
586         int error;
587         int nread = 0;
588         u_int size;
589
590         PIPE_LOCK(rpipe);
591         ++rpipe->pipe_busy;
592         error = pipelock(rpipe, 1);
593         if (error)
594                 goto unlocked_error;
595
596 #ifdef MAC
597         error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
598         if (error)
599                 goto locked_error;
600 #endif
601         if (amountpipekva > (3 * maxpipekva) / 4) {
602                 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
603                         (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
604                         (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
605                         (piperesizeallowed == 1)) {
606                         PIPE_UNLOCK(rpipe);
607                         pipespace(rpipe, SMALL_PIPE_SIZE);
608                         PIPE_LOCK(rpipe);
609                 }
610         }
611
612         while (uio->uio_resid) {
613                 /*
614                  * normal pipe buffer receive
615                  */
616                 if (rpipe->pipe_buffer.cnt > 0) {
617                         size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
618                         if (size > rpipe->pipe_buffer.cnt)
619                                 size = rpipe->pipe_buffer.cnt;
620                         if (size > (u_int) uio->uio_resid)
621                                 size = (u_int) uio->uio_resid;
622
623                         PIPE_UNLOCK(rpipe);
624                         error = uiomove(
625                             &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
626                             size, uio);
627                         PIPE_LOCK(rpipe);
628                         if (error)
629                                 break;
630
631                         rpipe->pipe_buffer.out += size;
632                         if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
633                                 rpipe->pipe_buffer.out = 0;
634
635                         rpipe->pipe_buffer.cnt -= size;
636
637                         /*
638                          * If there is no more to read in the pipe, reset
639                          * its pointers to the beginning.  This improves
640                          * cache hit stats.
641                          */
642                         if (rpipe->pipe_buffer.cnt == 0) {
643                                 rpipe->pipe_buffer.in = 0;
644                                 rpipe->pipe_buffer.out = 0;
645                         }
646                         nread += size;
647 #ifndef PIPE_NODIRECT
648                 /*
649                  * Direct copy, bypassing a kernel buffer.
650                  */
651                 } else if ((size = rpipe->pipe_map.cnt) &&
652                            (rpipe->pipe_state & PIPE_DIRECTW)) {
653                         if (size > (u_int) uio->uio_resid)
654                                 size = (u_int) uio->uio_resid;
655
656                         PIPE_UNLOCK(rpipe);
657                         error = uiomove_fromphys(rpipe->pipe_map.ms,
658                             rpipe->pipe_map.pos, size, uio);
659                         PIPE_LOCK(rpipe);
660                         if (error)
661                                 break;
662                         nread += size;
663                         rpipe->pipe_map.pos += size;
664                         rpipe->pipe_map.cnt -= size;
665                         if (rpipe->pipe_map.cnt == 0) {
666                                 rpipe->pipe_state &= ~PIPE_DIRECTW;
667                                 wakeup(rpipe);
668                         }
669 #endif
670                 } else {
671                         /*
672                          * detect EOF condition
673                          * read returns 0 on EOF, no need to set error
674                          */
675                         if (rpipe->pipe_state & PIPE_EOF)
676                                 break;
677
678                         /*
679                          * If the "write-side" has been blocked, wake it up now.
680                          */
681                         if (rpipe->pipe_state & PIPE_WANTW) {
682                                 rpipe->pipe_state &= ~PIPE_WANTW;
683                                 wakeup(rpipe);
684                         }
685
686                         /*
687                          * Break if some data was read.
688                          */
689                         if (nread > 0)
690                                 break;
691
692                         /*
693                          * Unlock the pipe buffer for our remaining processing.
694                          * We will either break out with an error or we will
695                          * sleep and relock to loop.
696                          */
697                         pipeunlock(rpipe);
698
699                         /*
700                          * Handle non-blocking mode operation or
701                          * wait for more data.
702                          */
703                         if (fp->f_flag & FNONBLOCK) {
704                                 error = EAGAIN;
705                         } else {
706                                 rpipe->pipe_state |= PIPE_WANTR;
707                                 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
708                                     PRIBIO | PCATCH,
709                                     "piperd", 0)) == 0)
710                                         error = pipelock(rpipe, 1);
711                         }
712                         if (error)
713                                 goto unlocked_error;
714                 }
715         }
716 #ifdef MAC
717 locked_error:
718 #endif
719         pipeunlock(rpipe);
720
721         /* XXX: should probably do this before getting any locks. */
722         if (error == 0)
723                 vfs_timestamp(&rpipe->pipe_atime);
724 unlocked_error:
725         --rpipe->pipe_busy;
726
727         /*
728          * PIPE_WANT processing only makes sense if pipe_busy is 0.
729          */
730         if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
731                 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
732                 wakeup(rpipe);
733         } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
734                 /*
735                  * Handle write blocking hysteresis.
736                  */
737                 if (rpipe->pipe_state & PIPE_WANTW) {
738                         rpipe->pipe_state &= ~PIPE_WANTW;
739                         wakeup(rpipe);
740                 }
741         }
742
743         if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
744                 pipeselwakeup(rpipe);
745
746         PIPE_UNLOCK(rpipe);
747         return (error);
748 }
749
750 #ifndef PIPE_NODIRECT
751 /*
752  * Map the sending processes' buffer into kernel space and wire it.
753  * This is similar to a physical write operation.
754  */
755 static int
756 pipe_build_write_buffer(wpipe, uio)
757         struct pipe *wpipe;
758         struct uio *uio;
759 {
760         pmap_t pmap;
761         u_int size;
762         int i, j;
763         vm_offset_t addr, endaddr;
764
765         PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
766         KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
767                 ("Clone attempt on non-direct write pipe!"));
768
769         size = (u_int) uio->uio_iov->iov_len;
770         if (size > wpipe->pipe_buffer.size)
771                 size = wpipe->pipe_buffer.size;
772
773         pmap = vmspace_pmap(curproc->p_vmspace);
774         endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
775         addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
776         for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
777                 /*
778                  * vm_fault_quick() can sleep.  Consequently,
779                  * vm_page_lock_queue() and vm_page_unlock_queue()
780                  * should not be performed outside of this loop.
781                  */
782         race:
783                 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
784                         vm_page_lock_queues();
785                         for (j = 0; j < i; j++)
786                                 vm_page_unhold(wpipe->pipe_map.ms[j]);
787                         vm_page_unlock_queues();
788                         return (EFAULT);
789                 }
790                 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
791                     VM_PROT_READ);
792                 if (wpipe->pipe_map.ms[i] == NULL)
793                         goto race;
794         }
795
796 /*
797  * set up the control block
798  */
799         wpipe->pipe_map.npages = i;
800         wpipe->pipe_map.pos =
801             ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
802         wpipe->pipe_map.cnt = size;
803
804 /*
805  * and update the uio data
806  */
807
808         uio->uio_iov->iov_len -= size;
809         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
810         if (uio->uio_iov->iov_len == 0)
811                 uio->uio_iov++;
812         uio->uio_resid -= size;
813         uio->uio_offset += size;
814         return (0);
815 }
816
817 /*
818  * unmap and unwire the process buffer
819  */
820 static void
821 pipe_destroy_write_buffer(wpipe)
822         struct pipe *wpipe;
823 {
824         int i;
825
826         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
827         vm_page_lock_queues();
828         for (i = 0; i < wpipe->pipe_map.npages; i++) {
829                 vm_page_unhold(wpipe->pipe_map.ms[i]);
830         }
831         vm_page_unlock_queues();
832         wpipe->pipe_map.npages = 0;
833 }
834
835 /*
836  * In the case of a signal, the writing process might go away.  This
837  * code copies the data into the circular buffer so that the source
838  * pages can be freed without loss of data.
839  */
840 static void
841 pipe_clone_write_buffer(wpipe)
842         struct pipe *wpipe;
843 {
844         struct uio uio;
845         struct iovec iov;
846         int size;
847         int pos;
848
849         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
850         size = wpipe->pipe_map.cnt;
851         pos = wpipe->pipe_map.pos;
852
853         wpipe->pipe_buffer.in = size;
854         wpipe->pipe_buffer.out = 0;
855         wpipe->pipe_buffer.cnt = size;
856         wpipe->pipe_state &= ~PIPE_DIRECTW;
857
858         PIPE_UNLOCK(wpipe);
859         iov.iov_base = wpipe->pipe_buffer.buffer;
860         iov.iov_len = size;
861         uio.uio_iov = &iov;
862         uio.uio_iovcnt = 1;
863         uio.uio_offset = 0;
864         uio.uio_resid = size;
865         uio.uio_segflg = UIO_SYSSPACE;
866         uio.uio_rw = UIO_READ;
867         uio.uio_td = curthread;
868         uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
869         PIPE_LOCK(wpipe);
870         pipe_destroy_write_buffer(wpipe);
871 }
872
873 /*
874  * This implements the pipe buffer write mechanism.  Note that only
875  * a direct write OR a normal pipe write can be pending at any given time.
876  * If there are any characters in the pipe buffer, the direct write will
877  * be deferred until the receiving process grabs all of the bytes from
878  * the pipe buffer.  Then the direct mapping write is set-up.
879  */
880 static int
881 pipe_direct_write(wpipe, uio)
882         struct pipe *wpipe;
883         struct uio *uio;
884 {
885         int error;
886
887 retry:
888         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
889         error = pipelock(wpipe, 1);
890         if (wpipe->pipe_state & PIPE_EOF)
891                 error = EPIPE;
892         if (error) {
893                 pipeunlock(wpipe);
894                 goto error1;
895         }
896         while (wpipe->pipe_state & PIPE_DIRECTW) {
897                 if (wpipe->pipe_state & PIPE_WANTR) {
898                         wpipe->pipe_state &= ~PIPE_WANTR;
899                         wakeup(wpipe);
900                 }
901                 wpipe->pipe_state |= PIPE_WANTW;
902                 pipeunlock(wpipe);
903                 error = msleep(wpipe, PIPE_MTX(wpipe),
904                     PRIBIO | PCATCH, "pipdww", 0);
905                 if (error)
906                         goto error1;
907                 else
908                         goto retry;
909         }
910         wpipe->pipe_map.cnt = 0;        /* transfer not ready yet */
911         if (wpipe->pipe_buffer.cnt > 0) {
912                 if (wpipe->pipe_state & PIPE_WANTR) {
913                         wpipe->pipe_state &= ~PIPE_WANTR;
914                         wakeup(wpipe);
915                 }
916                 wpipe->pipe_state |= PIPE_WANTW;
917                 pipeunlock(wpipe);
918                 error = msleep(wpipe, PIPE_MTX(wpipe),
919                     PRIBIO | PCATCH, "pipdwc", 0);
920                 if (error)
921                         goto error1;
922                 else
923                         goto retry;
924         }
925
926         wpipe->pipe_state |= PIPE_DIRECTW;
927
928         PIPE_UNLOCK(wpipe);
929         error = pipe_build_write_buffer(wpipe, uio);
930         PIPE_LOCK(wpipe);
931         if (error) {
932                 wpipe->pipe_state &= ~PIPE_DIRECTW;
933                 pipeunlock(wpipe);
934                 goto error1;
935         }
936
937         error = 0;
938         while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
939                 if (wpipe->pipe_state & PIPE_EOF) {
940                         pipe_destroy_write_buffer(wpipe);
941                         pipeselwakeup(wpipe);
942                         pipeunlock(wpipe);
943                         error = EPIPE;
944                         goto error1;
945                 }
946                 if (wpipe->pipe_state & PIPE_WANTR) {
947                         wpipe->pipe_state &= ~PIPE_WANTR;
948                         wakeup(wpipe);
949                 }
950                 pipeselwakeup(wpipe);
951                 pipeunlock(wpipe);
952                 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
953                     "pipdwt", 0);
954                 pipelock(wpipe, 0);
955         }
956
957         if (wpipe->pipe_state & PIPE_EOF)
958                 error = EPIPE;
959         if (wpipe->pipe_state & PIPE_DIRECTW) {
960                 /*
961                  * this bit of trickery substitutes a kernel buffer for
962                  * the process that might be going away.
963                  */
964                 pipe_clone_write_buffer(wpipe);
965         } else {
966                 pipe_destroy_write_buffer(wpipe);
967         }
968         pipeunlock(wpipe);
969         return (error);
970
971 error1:
972         wakeup(wpipe);
973         return (error);
974 }
975 #endif
976
977 static int
978 pipe_write(fp, uio, active_cred, flags, td)
979         struct file *fp;
980         struct uio *uio;
981         struct ucred *active_cred;
982         struct thread *td;
983         int flags;
984 {
985         int error = 0;
986         int desiredsize, orig_resid;
987         struct pipe *wpipe, *rpipe;
988
989         rpipe = fp->f_data;
990         wpipe = rpipe->pipe_peer;
991
992         PIPE_LOCK(rpipe);
993         error = pipelock(wpipe, 1);
994         if (error) {
995                 PIPE_UNLOCK(rpipe);
996                 return (error);
997         }
998         /*
999          * detect loss of pipe read side, issue SIGPIPE if lost.
1000          */
1001         if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1002                 pipeunlock(wpipe);
1003                 PIPE_UNLOCK(rpipe);
1004                 return (EPIPE);
1005         }
1006 #ifdef MAC
1007         error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
1008         if (error) {
1009                 pipeunlock(wpipe);
1010                 PIPE_UNLOCK(rpipe);
1011                 return (error);
1012         }
1013 #endif
1014         ++wpipe->pipe_busy;
1015
1016         /* Choose a larger size if it's advantageous */
1017         desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1018         while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1019                 if (piperesizeallowed != 1)
1020                         break;
1021                 if (amountpipekva > maxpipekva / 2)
1022                         break;
1023                 if (desiredsize == BIG_PIPE_SIZE)
1024                         break;
1025                 desiredsize = desiredsize * 2;
1026         }
1027
1028         /* Choose a smaller size if we're in a OOM situation */
1029         if ((amountpipekva > (3 * maxpipekva) / 4) &&
1030                 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1031                 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1032                 (piperesizeallowed == 1))
1033                 desiredsize = SMALL_PIPE_SIZE;
1034
1035         /* Resize if the above determined that a new size was necessary */
1036         if ((desiredsize != wpipe->pipe_buffer.size) &&
1037                 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1038                 PIPE_UNLOCK(wpipe);
1039                 pipespace(wpipe, desiredsize);
1040                 PIPE_LOCK(wpipe);
1041         }
1042         if (wpipe->pipe_buffer.size == 0) {
1043                 /*
1044                  * This can only happen for reverse direction use of pipes
1045                  * in a complete OOM situation.
1046                  */
1047                 error = ENOMEM;
1048                 --wpipe->pipe_busy;
1049                 pipeunlock(wpipe);
1050                 PIPE_UNLOCK(wpipe);
1051                 return (error);
1052         }
1053
1054         pipeunlock(wpipe);
1055
1056         orig_resid = uio->uio_resid;
1057
1058         while (uio->uio_resid) {
1059                 int space;
1060
1061                 pipelock(wpipe, 0);
1062                 if (wpipe->pipe_state & PIPE_EOF) {
1063                         pipeunlock(wpipe);
1064                         error = EPIPE;
1065                         break;
1066                 }
1067 #ifndef PIPE_NODIRECT
1068                 /*
1069                  * If the transfer is large, we can gain performance if
1070                  * we do process-to-process copies directly.
1071                  * If the write is non-blocking, we don't use the
1072                  * direct write mechanism.
1073                  *
1074                  * The direct write mechanism will detect the reader going
1075                  * away on us.
1076                  */
1077                 if (uio->uio_segflg == UIO_USERSPACE &&
1078                     uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1079                     wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1080                     (fp->f_flag & FNONBLOCK) == 0) {
1081                         pipeunlock(wpipe);
1082                         error = pipe_direct_write(wpipe, uio);
1083                         if (error)
1084                                 break;
1085                         continue;
1086                 }
1087 #endif
1088
1089                 /*
1090                  * Pipe buffered writes cannot be coincidental with
1091                  * direct writes.  We wait until the currently executing
1092                  * direct write is completed before we start filling the
1093                  * pipe buffer.  We break out if a signal occurs or the
1094                  * reader goes away.
1095                  */
1096                 if (wpipe->pipe_state & PIPE_DIRECTW) {
1097                         if (wpipe->pipe_state & PIPE_WANTR) {
1098                                 wpipe->pipe_state &= ~PIPE_WANTR;
1099                                 wakeup(wpipe);
1100                         }
1101                         pipeunlock(wpipe);
1102                         error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1103                             "pipbww", 0);
1104                         if (error)
1105                                 break;
1106                         else
1107                                 continue;
1108                 }
1109
1110                 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1111
1112                 /* Writes of size <= PIPE_BUF must be atomic. */
1113                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1114                         space = 0;
1115
1116                 if (space > 0) {
1117                         int size;       /* Transfer size */
1118                         int segsize;    /* first segment to transfer */
1119
1120                         /*
1121                          * Transfer size is minimum of uio transfer
1122                          * and free space in pipe buffer.
1123                          */
1124                         if (space > uio->uio_resid)
1125                                 size = uio->uio_resid;
1126                         else
1127                                 size = space;
1128                         /*
1129                          * First segment to transfer is minimum of
1130                          * transfer size and contiguous space in
1131                          * pipe buffer.  If first segment to transfer
1132                          * is less than the transfer size, we've got
1133                          * a wraparound in the buffer.
1134                          */
1135                         segsize = wpipe->pipe_buffer.size -
1136                                 wpipe->pipe_buffer.in;
1137                         if (segsize > size)
1138                                 segsize = size;
1139
1140                         /* Transfer first segment */
1141
1142                         PIPE_UNLOCK(rpipe);
1143                         error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1144                                         segsize, uio);
1145                         PIPE_LOCK(rpipe);
1146
1147                         if (error == 0 && segsize < size) {
1148                                 KASSERT(wpipe->pipe_buffer.in + segsize ==
1149                                         wpipe->pipe_buffer.size,
1150                                         ("Pipe buffer wraparound disappeared"));
1151                                 /*
1152                                  * Transfer remaining part now, to
1153                                  * support atomic writes.  Wraparound
1154                                  * happened.
1155                                  */
1156
1157                                 PIPE_UNLOCK(rpipe);
1158                                 error = uiomove(
1159                                     &wpipe->pipe_buffer.buffer[0],
1160                                     size - segsize, uio);
1161                                 PIPE_LOCK(rpipe);
1162                         }
1163                         if (error == 0) {
1164                                 wpipe->pipe_buffer.in += size;
1165                                 if (wpipe->pipe_buffer.in >=
1166                                     wpipe->pipe_buffer.size) {
1167                                         KASSERT(wpipe->pipe_buffer.in ==
1168                                                 size - segsize +
1169                                                 wpipe->pipe_buffer.size,
1170                                                 ("Expected wraparound bad"));
1171                                         wpipe->pipe_buffer.in = size - segsize;
1172                                 }
1173
1174                                 wpipe->pipe_buffer.cnt += size;
1175                                 KASSERT(wpipe->pipe_buffer.cnt <=
1176                                         wpipe->pipe_buffer.size,
1177                                         ("Pipe buffer overflow"));
1178                         }
1179                         pipeunlock(wpipe);
1180                         if (error != 0)
1181                                 break;
1182                 } else {
1183                         /*
1184                          * If the "read-side" has been blocked, wake it up now.
1185                          */
1186                         if (wpipe->pipe_state & PIPE_WANTR) {
1187                                 wpipe->pipe_state &= ~PIPE_WANTR;
1188                                 wakeup(wpipe);
1189                         }
1190
1191                         /*
1192                          * don't block on non-blocking I/O
1193                          */
1194                         if (fp->f_flag & FNONBLOCK) {
1195                                 error = EAGAIN;
1196                                 pipeunlock(wpipe);
1197                                 break;
1198                         }
1199
1200                         /*
1201                          * We have no more space and have something to offer,
1202                          * wake up select/poll.
1203                          */
1204                         pipeselwakeup(wpipe);
1205
1206                         wpipe->pipe_state |= PIPE_WANTW;
1207                         pipeunlock(wpipe);
1208                         error = msleep(wpipe, PIPE_MTX(rpipe),
1209                             PRIBIO | PCATCH, "pipewr", 0);
1210                         if (error != 0)
1211                                 break;
1212                 }
1213         }
1214
1215         pipelock(wpipe, 0);
1216         --wpipe->pipe_busy;
1217
1218         if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1219                 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1220                 wakeup(wpipe);
1221         } else if (wpipe->pipe_buffer.cnt > 0) {
1222                 /*
1223                  * If we have put any characters in the buffer, we wake up
1224                  * the reader.
1225                  */
1226                 if (wpipe->pipe_state & PIPE_WANTR) {
1227                         wpipe->pipe_state &= ~PIPE_WANTR;
1228                         wakeup(wpipe);
1229                 }
1230         }
1231
1232         /*
1233          * Don't return EPIPE if I/O was successful
1234          */
1235         if ((wpipe->pipe_buffer.cnt == 0) &&
1236             (uio->uio_resid == 0) &&
1237             (error == EPIPE)) {
1238                 error = 0;
1239         }
1240
1241         if (error == 0)
1242                 vfs_timestamp(&wpipe->pipe_mtime);
1243
1244         /*
1245          * We have something to offer,
1246          * wake up select/poll.
1247          */
1248         if (wpipe->pipe_buffer.cnt)
1249                 pipeselwakeup(wpipe);
1250
1251         pipeunlock(wpipe);
1252         PIPE_UNLOCK(rpipe);
1253         return (error);
1254 }
1255
1256 /*
1257  * we implement a very minimal set of ioctls for compatibility with sockets.
1258  */
1259 static int
1260 pipe_ioctl(fp, cmd, data, active_cred, td)
1261         struct file *fp;
1262         u_long cmd;
1263         void *data;
1264         struct ucred *active_cred;
1265         struct thread *td;
1266 {
1267         struct pipe *mpipe = fp->f_data;
1268         int error;
1269
1270         PIPE_LOCK(mpipe);
1271
1272 #ifdef MAC
1273         error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1274         if (error) {
1275                 PIPE_UNLOCK(mpipe);
1276                 return (error);
1277         }
1278 #endif
1279
1280         error = 0;
1281         switch (cmd) {
1282
1283         case FIONBIO:
1284                 break;
1285
1286         case FIOASYNC:
1287                 if (*(int *)data) {
1288                         mpipe->pipe_state |= PIPE_ASYNC;
1289                 } else {
1290                         mpipe->pipe_state &= ~PIPE_ASYNC;
1291                 }
1292                 break;
1293
1294         case FIONREAD:
1295                 if (mpipe->pipe_state & PIPE_DIRECTW)
1296                         *(int *)data = mpipe->pipe_map.cnt;
1297                 else
1298                         *(int *)data = mpipe->pipe_buffer.cnt;
1299                 break;
1300
1301         case FIOSETOWN:
1302                 PIPE_UNLOCK(mpipe);
1303                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1304                 goto out_unlocked;
1305
1306         case FIOGETOWN:
1307                 *(int *)data = fgetown(&mpipe->pipe_sigio);
1308                 break;
1309
1310         /* This is deprecated, FIOSETOWN should be used instead. */
1311         case TIOCSPGRP:
1312                 PIPE_UNLOCK(mpipe);
1313                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1314                 goto out_unlocked;
1315
1316         /* This is deprecated, FIOGETOWN should be used instead. */
1317         case TIOCGPGRP:
1318                 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1319                 break;
1320
1321         default:
1322                 error = ENOTTY;
1323                 break;
1324         }
1325         PIPE_UNLOCK(mpipe);
1326 out_unlocked:
1327         return (error);
1328 }
1329
1330 static int
1331 pipe_poll(fp, events, active_cred, td)
1332         struct file *fp;
1333         int events;
1334         struct ucred *active_cred;
1335         struct thread *td;
1336 {
1337         struct pipe *rpipe = fp->f_data;
1338         struct pipe *wpipe;
1339         int revents = 0;
1340 #ifdef MAC
1341         int error;
1342 #endif
1343
1344         wpipe = rpipe->pipe_peer;
1345         PIPE_LOCK(rpipe);
1346 #ifdef MAC
1347         error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
1348         if (error)
1349                 goto locked_error;
1350 #endif
1351         if (events & (POLLIN | POLLRDNORM))
1352                 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1353                     (rpipe->pipe_buffer.cnt > 0) ||
1354                     (rpipe->pipe_state & PIPE_EOF))
1355                         revents |= events & (POLLIN | POLLRDNORM);
1356
1357         if (events & (POLLOUT | POLLWRNORM))
1358                 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) ||
1359                     (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1360                      (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1361                         revents |= events & (POLLOUT | POLLWRNORM);
1362
1363         if ((rpipe->pipe_state & PIPE_EOF) ||
1364             (!wpipe->pipe_present) ||
1365             (wpipe->pipe_state & PIPE_EOF))
1366                 revents |= POLLHUP;
1367
1368         if (revents == 0) {
1369                 if (events & (POLLIN | POLLRDNORM)) {
1370                         selrecord(td, &rpipe->pipe_sel);
1371                         rpipe->pipe_state |= PIPE_SEL;
1372                 }
1373
1374                 if (events & (POLLOUT | POLLWRNORM)) {
1375                         selrecord(td, &wpipe->pipe_sel);
1376                         wpipe->pipe_state |= PIPE_SEL;
1377                 }
1378         }
1379 #ifdef MAC
1380 locked_error:
1381 #endif
1382         PIPE_UNLOCK(rpipe);
1383
1384         return (revents);
1385 }
1386
1387 /*
1388  * We shouldn't need locks here as we're doing a read and this should
1389  * be a natural race.
1390  */
1391 static int
1392 pipe_stat(fp, ub, active_cred, td)
1393         struct file *fp;
1394         struct stat *ub;
1395         struct ucred *active_cred;
1396         struct thread *td;
1397 {
1398         struct pipe *pipe = fp->f_data;
1399 #ifdef MAC
1400         int error;
1401
1402         PIPE_LOCK(pipe);
1403         error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
1404         PIPE_UNLOCK(pipe);
1405         if (error)
1406                 return (error);
1407 #endif
1408         bzero(ub, sizeof(*ub));
1409         ub->st_mode = S_IFIFO;
1410         ub->st_blksize = PAGE_SIZE;
1411         if (pipe->pipe_state & PIPE_DIRECTW)
1412                 ub->st_size = pipe->pipe_map.cnt;
1413         else
1414                 ub->st_size = pipe->pipe_buffer.cnt;
1415         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1416         ub->st_atimespec = pipe->pipe_atime;
1417         ub->st_mtimespec = pipe->pipe_mtime;
1418         ub->st_ctimespec = pipe->pipe_ctime;
1419         ub->st_uid = fp->f_cred->cr_uid;
1420         ub->st_gid = fp->f_cred->cr_gid;
1421         /*
1422          * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1423          * XXX (st_dev, st_ino) should be unique.
1424          */
1425         return (0);
1426 }
1427
1428 /* ARGSUSED */
1429 static int
1430 pipe_close(fp, td)
1431         struct file *fp;
1432         struct thread *td;
1433 {
1434         struct pipe *cpipe = fp->f_data;
1435
1436         fp->f_ops = &badfileops;
1437         fp->f_data = NULL;
1438         funsetown(&cpipe->pipe_sigio);
1439         pipeclose(cpipe);
1440         return (0);
1441 }
1442
1443 static void
1444 pipe_free_kmem(cpipe)
1445         struct pipe *cpipe;
1446 {
1447
1448         KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1449             ("pipe_free_kmem: pipe mutex locked"));
1450
1451         if (cpipe->pipe_buffer.buffer != NULL) {
1452                 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1453                 vm_map_remove(pipe_map,
1454                     (vm_offset_t)cpipe->pipe_buffer.buffer,
1455                     (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1456                 cpipe->pipe_buffer.buffer = NULL;
1457         }
1458 #ifndef PIPE_NODIRECT
1459         {
1460                 cpipe->pipe_map.cnt = 0;
1461                 cpipe->pipe_map.pos = 0;
1462                 cpipe->pipe_map.npages = 0;
1463         }
1464 #endif
1465 }
1466
1467 /*
1468  * shutdown the pipe
1469  */
1470 static void
1471 pipeclose(cpipe)
1472         struct pipe *cpipe;
1473 {
1474         struct pipepair *pp;
1475         struct pipe *ppipe;
1476
1477         KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1478
1479         PIPE_LOCK(cpipe);
1480         pipelock(cpipe, 0);
1481         pp = cpipe->pipe_pair;
1482
1483         pipeselwakeup(cpipe);
1484
1485         /*
1486          * If the other side is blocked, wake it up saying that
1487          * we want to close it down.
1488          */
1489         cpipe->pipe_state |= PIPE_EOF;
1490         while (cpipe->pipe_busy) {
1491                 wakeup(cpipe);
1492                 cpipe->pipe_state |= PIPE_WANT;
1493                 pipeunlock(cpipe);
1494                 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1495                 pipelock(cpipe, 0);
1496         }
1497
1498
1499         /*
1500          * Disconnect from peer, if any.
1501          */
1502         ppipe = cpipe->pipe_peer;
1503         if (ppipe->pipe_present != 0) {
1504                 pipeselwakeup(ppipe);
1505
1506                 ppipe->pipe_state |= PIPE_EOF;
1507                 wakeup(ppipe);
1508                 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1509         }
1510
1511         /*
1512          * Mark this endpoint as free.  Release kmem resources.  We
1513          * don't mark this endpoint as unused until we've finished
1514          * doing that, or the pipe might disappear out from under
1515          * us.
1516          */
1517         PIPE_UNLOCK(cpipe);
1518         pipe_free_kmem(cpipe);
1519         PIPE_LOCK(cpipe);
1520         cpipe->pipe_present = 0;
1521         pipeunlock(cpipe);
1522         knlist_clear(&cpipe->pipe_sel.si_note, 1);
1523         knlist_destroy(&cpipe->pipe_sel.si_note);
1524
1525         /*
1526          * If both endpoints are now closed, release the memory for the
1527          * pipe pair.  If not, unlock.
1528          */
1529         if (ppipe->pipe_present == 0) {
1530                 PIPE_UNLOCK(cpipe);
1531 #ifdef MAC
1532                 mac_destroy_pipe(pp);
1533 #endif
1534                 uma_zfree(pipe_zone, cpipe->pipe_pair);
1535         } else
1536                 PIPE_UNLOCK(cpipe);
1537 }
1538
1539 /*ARGSUSED*/
1540 static int
1541 pipe_kqfilter(struct file *fp, struct knote *kn)
1542 {
1543         struct pipe *cpipe;
1544
1545         cpipe = kn->kn_fp->f_data;
1546         PIPE_LOCK(cpipe);
1547         switch (kn->kn_filter) {
1548         case EVFILT_READ:
1549                 kn->kn_fop = &pipe_rfiltops;
1550                 break;
1551         case EVFILT_WRITE:
1552                 kn->kn_fop = &pipe_wfiltops;
1553                 if (!cpipe->pipe_peer->pipe_present) {
1554                         /* other end of pipe has been closed */
1555                         PIPE_UNLOCK(cpipe);
1556                         return (EPIPE);
1557                 }
1558                 cpipe = cpipe->pipe_peer;
1559                 break;
1560         default:
1561                 PIPE_UNLOCK(cpipe);
1562                 return (EINVAL);
1563         }
1564
1565         knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1566         PIPE_UNLOCK(cpipe);
1567         return (0);
1568 }
1569
1570 static void
1571 filt_pipedetach(struct knote *kn)
1572 {
1573         struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1574
1575         PIPE_LOCK(cpipe);
1576         if (kn->kn_filter == EVFILT_WRITE) {
1577                 if (!cpipe->pipe_peer->pipe_present) {
1578                         PIPE_UNLOCK(cpipe);
1579                         return;
1580                 }
1581                 cpipe = cpipe->pipe_peer;
1582         }
1583         knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1584         PIPE_UNLOCK(cpipe);
1585 }
1586
1587 /*ARGSUSED*/
1588 static int
1589 filt_piperead(struct knote *kn, long hint)
1590 {
1591         struct pipe *rpipe = kn->kn_fp->f_data;
1592         struct pipe *wpipe = rpipe->pipe_peer;
1593         int ret;
1594
1595         PIPE_LOCK(rpipe);
1596         kn->kn_data = rpipe->pipe_buffer.cnt;
1597         if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1598                 kn->kn_data = rpipe->pipe_map.cnt;
1599
1600         if ((rpipe->pipe_state & PIPE_EOF) ||
1601             (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1602                 kn->kn_flags |= EV_EOF;
1603                 PIPE_UNLOCK(rpipe);
1604                 return (1);
1605         }
1606         ret = kn->kn_data > 0;
1607         PIPE_UNLOCK(rpipe);
1608         return ret;
1609 }
1610
1611 /*ARGSUSED*/
1612 static int
1613 filt_pipewrite(struct knote *kn, long hint)
1614 {
1615         struct pipe *rpipe = kn->kn_fp->f_data;
1616         struct pipe *wpipe = rpipe->pipe_peer;
1617
1618         PIPE_LOCK(rpipe);
1619         if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1620                 kn->kn_data = 0;
1621                 kn->kn_flags |= EV_EOF;
1622                 PIPE_UNLOCK(rpipe);
1623                 return (1);
1624         }
1625         kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1626         if (wpipe->pipe_state & PIPE_DIRECTW)
1627                 kn->kn_data = 0;
1628
1629         PIPE_UNLOCK(rpipe);
1630         return (kn->kn_data >= PIPE_BUF);
1631 }