]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/sys_pipe.c
On Alan's advice, rather than do a wholesale conversion on a single
[FreeBSD/FreeBSD.git] / sys / kern / sys_pipe.c
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  */
19
20 /*
21  * This file contains a high-performance replacement for the socket-based
22  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23  * all features of sockets, but does do everything that pipes normally
24  * do.
25  */
26
27 /*
28  * This code has two modes of operation, a small write mode and a large
29  * write mode.  The small write mode acts like conventional pipes with
30  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33  * the receiving process can copy it directly from the pages in the sending
34  * process.
35  *
36  * If the sending process receives a signal, it is possible that it will
37  * go away, and certainly its address space can change, because control
38  * is returned back to the user-mode side.  In that case, the pipe code
39  * arranges to copy the buffer supplied by the user process, to a pageable
40  * kernel buffer, and the receiving process will grab the data from the
41  * pageable kernel buffer.  Since signals don't happen all that often,
42  * the copy operation is normally eliminated.
43  *
44  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45  * happen for small transfers so that the system will not spend all of
46  * its time context switching.
47  *
48  * In order to limit the resource use of pipes, two sysctls exist:
49  *
50  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51  * address space available to us in pipe_map. This value is normally
52  * autotuned, but may also be loader tuned.
53  *
54  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55  * memory in use by pipes.
56  *
57  * Based on how large pipekva is relative to maxpipekva, the following
58  * will happen:
59  *
60  * 0% - 50%:
61  *     New pipes are given 16K of memory backing, pipes may dynamically
62  *     grow to as large as 64K where needed.
63  * 50% - 75%:
64  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65  *     existing pipes may NOT grow.
66  * 75% - 100%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes will be shrunk down to 4K whenever possible.
69  *
70  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72  * resize which MUST occur for reverse-direction pipes when they are
73  * first used.
74  *
75  * Additional information about the current state of pipes may be obtained
76  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77  * and kern.ipc.piperesizefail.
78  *
79  * Locking rules:  There are two locks present here:  A mutex, used via
80  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81  * the flag, as mutexes can not persist over uiomove.  The mutex
82  * exists only to guard access to the flag, and is not in itself a
83  * locking mechanism.  Also note that there is only a single mutex for
84  * both directions of a pipe.
85  *
86  * As pipelock() may have to sleep before it can acquire the flag, it
87  * is important to reread all data after a call to pipelock(); everything
88  * in the structure may have changed.
89  */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/fcntl.h>
97 #include <sys/file.h>
98 #include <sys/filedesc.h>
99 #include <sys/filio.h>
100 #include <sys/kernel.h>
101 #include <sys/lock.h>
102 #include <sys/mutex.h>
103 #include <sys/ttycom.h>
104 #include <sys/stat.h>
105 #include <sys/malloc.h>
106 #include <sys/poll.h>
107 #include <sys/selinfo.h>
108 #include <sys/signalvar.h>
109 #include <sys/syscallsubr.h>
110 #include <sys/sysctl.h>
111 #include <sys/sysproto.h>
112 #include <sys/pipe.h>
113 #include <sys/proc.h>
114 #include <sys/vnode.h>
115 #include <sys/uio.h>
116 #include <sys/event.h>
117
118 #include <security/mac/mac_framework.h>
119
120 #include <vm/vm.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_extern.h>
125 #include <vm/pmap.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/uma.h>
129
130 /*
131  * Use this define if you want to disable *fancy* VM things.  Expect an
132  * approx 30% decrease in transfer rate.  This could be useful for
133  * NetBSD or OpenBSD.
134  */
135 /* #define PIPE_NODIRECT */
136
137 /*
138  * interfaces to the outside world
139  */
140 static fo_rdwr_t        pipe_read;
141 static fo_rdwr_t        pipe_write;
142 static fo_truncate_t    pipe_truncate;
143 static fo_ioctl_t       pipe_ioctl;
144 static fo_poll_t        pipe_poll;
145 static fo_kqfilter_t    pipe_kqfilter;
146 static fo_stat_t        pipe_stat;
147 static fo_close_t       pipe_close;
148
149 static struct fileops pipeops = {
150         .fo_read = pipe_read,
151         .fo_write = pipe_write,
152         .fo_truncate = pipe_truncate,
153         .fo_ioctl = pipe_ioctl,
154         .fo_poll = pipe_poll,
155         .fo_kqfilter = pipe_kqfilter,
156         .fo_stat = pipe_stat,
157         .fo_close = pipe_close,
158         .fo_flags = DFLAG_PASSABLE
159 };
160
161 static void     filt_pipedetach(struct knote *kn);
162 static int      filt_piperead(struct knote *kn, long hint);
163 static int      filt_pipewrite(struct knote *kn, long hint);
164
165 static struct filterops pipe_rfiltops = {
166         .f_isfd = 1,
167         .f_detach = filt_pipedetach,
168         .f_event = filt_piperead
169 };
170 static struct filterops pipe_wfiltops = {
171         .f_isfd = 1,
172         .f_detach = filt_pipedetach,
173         .f_event = filt_pipewrite
174 };
175
176 /*
177  * Default pipe buffer size(s), this can be kind-of large now because pipe
178  * space is pageable.  The pipe code will try to maintain locality of
179  * reference for performance reasons, so small amounts of outstanding I/O
180  * will not wipe the cache.
181  */
182 #define MINPIPESIZE (PIPE_SIZE/3)
183 #define MAXPIPESIZE (2*PIPE_SIZE/3)
184
185 static long amountpipekva;
186 static int pipefragretry;
187 static int pipeallocfail;
188 static int piperesizefail;
189 static int piperesizeallowed = 1;
190
191 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
192            &maxpipekva, 0, "Pipe KVA limit");
193 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
194            &amountpipekva, 0, "Pipe KVA usage");
195 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
196           &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
197 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
198           &pipeallocfail, 0, "Pipe allocation failures");
199 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
200           &piperesizefail, 0, "Pipe resize failures");
201 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
202           &piperesizeallowed, 0, "Pipe resizing allowed");
203
204 static void pipeinit(void *dummy __unused);
205 static void pipeclose(struct pipe *cpipe);
206 static void pipe_free_kmem(struct pipe *cpipe);
207 static int pipe_create(struct pipe *pipe, int backing);
208 static __inline int pipelock(struct pipe *cpipe, int catch);
209 static __inline void pipeunlock(struct pipe *cpipe);
210 static __inline void pipeselwakeup(struct pipe *cpipe);
211 #ifndef PIPE_NODIRECT
212 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
213 static void pipe_destroy_write_buffer(struct pipe *wpipe);
214 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
215 static void pipe_clone_write_buffer(struct pipe *wpipe);
216 #endif
217 static int pipespace(struct pipe *cpipe, int size);
218 static int pipespace_new(struct pipe *cpipe, int size);
219
220 static int      pipe_zone_ctor(void *mem, int size, void *arg, int flags);
221 static int      pipe_zone_init(void *mem, int size, int flags);
222 static void     pipe_zone_fini(void *mem, int size);
223
224 static uma_zone_t pipe_zone;
225
226 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
227
228 static void
229 pipeinit(void *dummy __unused)
230 {
231
232         pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
233             pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
234             UMA_ALIGN_PTR, 0);
235         KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
236 }
237
238 static int
239 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
240 {
241         struct pipepair *pp;
242         struct pipe *rpipe, *wpipe;
243
244         KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
245
246         pp = (struct pipepair *)mem;
247
248         /*
249          * We zero both pipe endpoints to make sure all the kmem pointers
250          * are NULL, flag fields are zero'd, etc.  We timestamp both
251          * endpoints with the same time.
252          */
253         rpipe = &pp->pp_rpipe;
254         bzero(rpipe, sizeof(*rpipe));
255         vfs_timestamp(&rpipe->pipe_ctime);
256         rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
257
258         wpipe = &pp->pp_wpipe;
259         bzero(wpipe, sizeof(*wpipe));
260         wpipe->pipe_ctime = rpipe->pipe_ctime;
261         wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
262
263         rpipe->pipe_peer = wpipe;
264         rpipe->pipe_pair = pp;
265         wpipe->pipe_peer = rpipe;
266         wpipe->pipe_pair = pp;
267
268         /*
269          * Mark both endpoints as present; they will later get free'd
270          * one at a time.  When both are free'd, then the whole pair
271          * is released.
272          */
273         rpipe->pipe_present = PIPE_ACTIVE;
274         wpipe->pipe_present = PIPE_ACTIVE;
275
276         /*
277          * Eventually, the MAC Framework may initialize the label
278          * in ctor or init, but for now we do it elswhere to avoid
279          * blocking in ctor or init.
280          */
281         pp->pp_label = NULL;
282
283         return (0);
284 }
285
286 static int
287 pipe_zone_init(void *mem, int size, int flags)
288 {
289         struct pipepair *pp;
290
291         KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
292
293         pp = (struct pipepair *)mem;
294
295         mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
296         return (0);
297 }
298
299 static void
300 pipe_zone_fini(void *mem, int size)
301 {
302         struct pipepair *pp;
303
304         KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
305
306         pp = (struct pipepair *)mem;
307
308         mtx_destroy(&pp->pp_mtx);
309 }
310
311 /*
312  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
313  * the zone pick up the pieces via pipeclose().
314  */
315 int
316 kern_pipe(struct thread *td, int fildes[2])
317 {
318         struct filedesc *fdp = td->td_proc->p_fd;
319         struct file *rf, *wf;
320         struct pipepair *pp;
321         struct pipe *rpipe, *wpipe;
322         int fd, error;
323
324         pp = uma_zalloc(pipe_zone, M_WAITOK);
325 #ifdef MAC
326         /*
327          * The MAC label is shared between the connected endpoints.  As a
328          * result mac_pipe_init() and mac_pipe_create() are called once
329          * for the pair, and not on the endpoints.
330          */
331         mac_pipe_init(pp);
332         mac_pipe_create(td->td_ucred, pp);
333 #endif
334         rpipe = &pp->pp_rpipe;
335         wpipe = &pp->pp_wpipe;
336
337         knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
338         knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
339
340         /* Only the forward direction pipe is backed by default */
341         if ((error = pipe_create(rpipe, 1)) != 0 ||
342             (error = pipe_create(wpipe, 0)) != 0) {
343                 pipeclose(rpipe);
344                 pipeclose(wpipe);
345                 return (error);
346         }
347
348         rpipe->pipe_state |= PIPE_DIRECTOK;
349         wpipe->pipe_state |= PIPE_DIRECTOK;
350
351         error = falloc(td, &rf, &fd);
352         if (error) {
353                 pipeclose(rpipe);
354                 pipeclose(wpipe);
355                 return (error);
356         }
357         /* An extra reference on `rf' has been held for us by falloc(). */
358         fildes[0] = fd;
359
360         /*
361          * Warning: once we've gotten past allocation of the fd for the
362          * read-side, we can only drop the read side via fdrop() in order
363          * to avoid races against processes which manage to dup() the read
364          * side while we are blocked trying to allocate the write side.
365          */
366         finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops);
367         error = falloc(td, &wf, &fd);
368         if (error) {
369                 fdclose(fdp, rf, fildes[0], td);
370                 fdrop(rf, td);
371                 /* rpipe has been closed by fdrop(). */
372                 pipeclose(wpipe);
373                 return (error);
374         }
375         /* An extra reference on `wf' has been held for us by falloc(). */
376         finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops);
377         fdrop(wf, td);
378         fildes[1] = fd;
379         fdrop(rf, td);
380
381         return (0);
382 }
383
384 /* ARGSUSED */
385 int
386 pipe(struct thread *td, struct pipe_args *uap)
387 {
388         int error;
389         int fildes[2];
390
391         error = kern_pipe(td, fildes);
392         if (error)
393                 return (error);
394         
395         td->td_retval[0] = fildes[0];
396         td->td_retval[1] = fildes[1];
397
398         return (0);
399 }
400
401 /*
402  * Allocate kva for pipe circular buffer, the space is pageable
403  * This routine will 'realloc' the size of a pipe safely, if it fails
404  * it will retain the old buffer.
405  * If it fails it will return ENOMEM.
406  */
407 static int
408 pipespace_new(cpipe, size)
409         struct pipe *cpipe;
410         int size;
411 {
412         caddr_t buffer;
413         int error, cnt, firstseg;
414         static int curfail = 0;
415         static struct timeval lastfail;
416
417         KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
418         KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
419                 ("pipespace: resize of direct writes not allowed"));
420 retry:
421         cnt = cpipe->pipe_buffer.cnt;
422         if (cnt > size)
423                 size = cnt;
424
425         size = round_page(size);
426         buffer = (caddr_t) vm_map_min(pipe_map);
427
428         error = vm_map_find(pipe_map, NULL, 0,
429                 (vm_offset_t *) &buffer, size, 1,
430                 VM_PROT_ALL, VM_PROT_ALL, 0);
431         if (error != KERN_SUCCESS) {
432                 if ((cpipe->pipe_buffer.buffer == NULL) &&
433                         (size > SMALL_PIPE_SIZE)) {
434                         size = SMALL_PIPE_SIZE;
435                         pipefragretry++;
436                         goto retry;
437                 }
438                 if (cpipe->pipe_buffer.buffer == NULL) {
439                         pipeallocfail++;
440                         if (ppsratecheck(&lastfail, &curfail, 1))
441                                 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
442                 } else {
443                         piperesizefail++;
444                 }
445                 return (ENOMEM);
446         }
447
448         /* copy data, then free old resources if we're resizing */
449         if (cnt > 0) {
450                 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
451                         firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
452                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
453                                 buffer, firstseg);
454                         if ((cnt - firstseg) > 0)
455                                 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
456                                         cpipe->pipe_buffer.in);
457                 } else {
458                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
459                                 buffer, cnt);
460                 }
461         }
462         pipe_free_kmem(cpipe);
463         cpipe->pipe_buffer.buffer = buffer;
464         cpipe->pipe_buffer.size = size;
465         cpipe->pipe_buffer.in = cnt;
466         cpipe->pipe_buffer.out = 0;
467         cpipe->pipe_buffer.cnt = cnt;
468         atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
469         return (0);
470 }
471
472 /*
473  * Wrapper for pipespace_new() that performs locking assertions.
474  */
475 static int
476 pipespace(cpipe, size)
477         struct pipe *cpipe;
478         int size;
479 {
480
481         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
482                 ("Unlocked pipe passed to pipespace"));
483         return (pipespace_new(cpipe, size));
484 }
485
486 /*
487  * lock a pipe for I/O, blocking other access
488  */
489 static __inline int
490 pipelock(cpipe, catch)
491         struct pipe *cpipe;
492         int catch;
493 {
494         int error;
495
496         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
497         while (cpipe->pipe_state & PIPE_LOCKFL) {
498                 cpipe->pipe_state |= PIPE_LWANT;
499                 error = msleep(cpipe, PIPE_MTX(cpipe),
500                     catch ? (PRIBIO | PCATCH) : PRIBIO,
501                     "pipelk", 0);
502                 if (error != 0)
503                         return (error);
504         }
505         cpipe->pipe_state |= PIPE_LOCKFL;
506         return (0);
507 }
508
509 /*
510  * unlock a pipe I/O lock
511  */
512 static __inline void
513 pipeunlock(cpipe)
514         struct pipe *cpipe;
515 {
516
517         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
518         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
519                 ("Unlocked pipe passed to pipeunlock"));
520         cpipe->pipe_state &= ~PIPE_LOCKFL;
521         if (cpipe->pipe_state & PIPE_LWANT) {
522                 cpipe->pipe_state &= ~PIPE_LWANT;
523                 wakeup(cpipe);
524         }
525 }
526
527 static __inline void
528 pipeselwakeup(cpipe)
529         struct pipe *cpipe;
530 {
531
532         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
533         if (cpipe->pipe_state & PIPE_SEL) {
534                 selwakeuppri(&cpipe->pipe_sel, PSOCK);
535                 if (!SEL_WAITING(&cpipe->pipe_sel))
536                         cpipe->pipe_state &= ~PIPE_SEL;
537         }
538         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
539                 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
540         KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
541 }
542
543 /*
544  * Initialize and allocate VM and memory for pipe.  The structure
545  * will start out zero'd from the ctor, so we just manage the kmem.
546  */
547 static int
548 pipe_create(pipe, backing)
549         struct pipe *pipe;
550         int backing;
551 {
552         int error;
553
554         if (backing) {
555                 if (amountpipekva > maxpipekva / 2)
556                         error = pipespace_new(pipe, SMALL_PIPE_SIZE);
557                 else
558                         error = pipespace_new(pipe, PIPE_SIZE);
559         } else {
560                 /* If we're not backing this pipe, no need to do anything. */
561                 error = 0;
562         }
563         return (error);
564 }
565
566 /* ARGSUSED */
567 static int
568 pipe_read(fp, uio, active_cred, flags, td)
569         struct file *fp;
570         struct uio *uio;
571         struct ucred *active_cred;
572         struct thread *td;
573         int flags;
574 {
575         struct pipe *rpipe = fp->f_data;
576         int error;
577         int nread = 0;
578         u_int size;
579
580         PIPE_LOCK(rpipe);
581         ++rpipe->pipe_busy;
582         error = pipelock(rpipe, 1);
583         if (error)
584                 goto unlocked_error;
585
586 #ifdef MAC
587         error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
588         if (error)
589                 goto locked_error;
590 #endif
591         if (amountpipekva > (3 * maxpipekva) / 4) {
592                 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
593                         (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
594                         (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
595                         (piperesizeallowed == 1)) {
596                         PIPE_UNLOCK(rpipe);
597                         pipespace(rpipe, SMALL_PIPE_SIZE);
598                         PIPE_LOCK(rpipe);
599                 }
600         }
601
602         while (uio->uio_resid) {
603                 /*
604                  * normal pipe buffer receive
605                  */
606                 if (rpipe->pipe_buffer.cnt > 0) {
607                         size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
608                         if (size > rpipe->pipe_buffer.cnt)
609                                 size = rpipe->pipe_buffer.cnt;
610                         if (size > (u_int) uio->uio_resid)
611                                 size = (u_int) uio->uio_resid;
612
613                         PIPE_UNLOCK(rpipe);
614                         error = uiomove(
615                             &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
616                             size, uio);
617                         PIPE_LOCK(rpipe);
618                         if (error)
619                                 break;
620
621                         rpipe->pipe_buffer.out += size;
622                         if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
623                                 rpipe->pipe_buffer.out = 0;
624
625                         rpipe->pipe_buffer.cnt -= size;
626
627                         /*
628                          * If there is no more to read in the pipe, reset
629                          * its pointers to the beginning.  This improves
630                          * cache hit stats.
631                          */
632                         if (rpipe->pipe_buffer.cnt == 0) {
633                                 rpipe->pipe_buffer.in = 0;
634                                 rpipe->pipe_buffer.out = 0;
635                         }
636                         nread += size;
637 #ifndef PIPE_NODIRECT
638                 /*
639                  * Direct copy, bypassing a kernel buffer.
640                  */
641                 } else if ((size = rpipe->pipe_map.cnt) &&
642                            (rpipe->pipe_state & PIPE_DIRECTW)) {
643                         if (size > (u_int) uio->uio_resid)
644                                 size = (u_int) uio->uio_resid;
645
646                         PIPE_UNLOCK(rpipe);
647                         error = uiomove_fromphys(rpipe->pipe_map.ms,
648                             rpipe->pipe_map.pos, size, uio);
649                         PIPE_LOCK(rpipe);
650                         if (error)
651                                 break;
652                         nread += size;
653                         rpipe->pipe_map.pos += size;
654                         rpipe->pipe_map.cnt -= size;
655                         if (rpipe->pipe_map.cnt == 0) {
656                                 rpipe->pipe_state &= ~PIPE_DIRECTW;
657                                 wakeup(rpipe);
658                         }
659 #endif
660                 } else {
661                         /*
662                          * detect EOF condition
663                          * read returns 0 on EOF, no need to set error
664                          */
665                         if (rpipe->pipe_state & PIPE_EOF)
666                                 break;
667
668                         /*
669                          * If the "write-side" has been blocked, wake it up now.
670                          */
671                         if (rpipe->pipe_state & PIPE_WANTW) {
672                                 rpipe->pipe_state &= ~PIPE_WANTW;
673                                 wakeup(rpipe);
674                         }
675
676                         /*
677                          * Break if some data was read.
678                          */
679                         if (nread > 0)
680                                 break;
681
682                         /*
683                          * Unlock the pipe buffer for our remaining processing.
684                          * We will either break out with an error or we will
685                          * sleep and relock to loop.
686                          */
687                         pipeunlock(rpipe);
688
689                         /*
690                          * Handle non-blocking mode operation or
691                          * wait for more data.
692                          */
693                         if (fp->f_flag & FNONBLOCK) {
694                                 error = EAGAIN;
695                         } else {
696                                 rpipe->pipe_state |= PIPE_WANTR;
697                                 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
698                                     PRIBIO | PCATCH,
699                                     "piperd", 0)) == 0)
700                                         error = pipelock(rpipe, 1);
701                         }
702                         if (error)
703                                 goto unlocked_error;
704                 }
705         }
706 #ifdef MAC
707 locked_error:
708 #endif
709         pipeunlock(rpipe);
710
711         /* XXX: should probably do this before getting any locks. */
712         if (error == 0)
713                 vfs_timestamp(&rpipe->pipe_atime);
714 unlocked_error:
715         --rpipe->pipe_busy;
716
717         /*
718          * PIPE_WANT processing only makes sense if pipe_busy is 0.
719          */
720         if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
721                 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
722                 wakeup(rpipe);
723         } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
724                 /*
725                  * Handle write blocking hysteresis.
726                  */
727                 if (rpipe->pipe_state & PIPE_WANTW) {
728                         rpipe->pipe_state &= ~PIPE_WANTW;
729                         wakeup(rpipe);
730                 }
731         }
732
733         if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
734                 pipeselwakeup(rpipe);
735
736         PIPE_UNLOCK(rpipe);
737         return (error);
738 }
739
740 #ifndef PIPE_NODIRECT
741 /*
742  * Map the sending processes' buffer into kernel space and wire it.
743  * This is similar to a physical write operation.
744  */
745 static int
746 pipe_build_write_buffer(wpipe, uio)
747         struct pipe *wpipe;
748         struct uio *uio;
749 {
750         pmap_t pmap;
751         u_int size;
752         int i, j;
753         vm_offset_t addr, endaddr;
754
755         PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
756         KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
757                 ("Clone attempt on non-direct write pipe!"));
758
759         size = (u_int) uio->uio_iov->iov_len;
760         if (size > wpipe->pipe_buffer.size)
761                 size = wpipe->pipe_buffer.size;
762
763         pmap = vmspace_pmap(curproc->p_vmspace);
764         endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
765         addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
766         if (endaddr < addr)
767                 return (EFAULT);
768         for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
769                 /*
770                  * vm_fault_quick() can sleep.  Consequently,
771                  * vm_page_lock_queue() and vm_page_unlock_queue()
772                  * should not be performed outside of this loop.
773                  */
774         race:
775                 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
776                         
777                         for (j = 0; j < i; j++) {
778                                 vm_page_lock(wpipe->pipe_map.ms[j]);
779                                 vm_page_unhold(wpipe->pipe_map.ms[j]);
780                                 vm_page_unlock(wpipe->pipe_map.ms[j]);
781                         }
782                         return (EFAULT);
783                 }
784                 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
785                     VM_PROT_READ);
786                 if (wpipe->pipe_map.ms[i] == NULL)
787                         goto race;
788         }
789
790 /*
791  * set up the control block
792  */
793         wpipe->pipe_map.npages = i;
794         wpipe->pipe_map.pos =
795             ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
796         wpipe->pipe_map.cnt = size;
797
798 /*
799  * and update the uio data
800  */
801
802         uio->uio_iov->iov_len -= size;
803         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
804         if (uio->uio_iov->iov_len == 0)
805                 uio->uio_iov++;
806         uio->uio_resid -= size;
807         uio->uio_offset += size;
808         return (0);
809 }
810
811 /*
812  * unmap and unwire the process buffer
813  */
814 static void
815 pipe_destroy_write_buffer(wpipe)
816         struct pipe *wpipe;
817 {
818         int i;
819
820         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
821         for (i = 0; i < wpipe->pipe_map.npages; i++) {
822                 vm_page_lock(wpipe->pipe_map.ms[i]);
823                 vm_page_unhold(wpipe->pipe_map.ms[i]);
824                 vm_page_unlock(wpipe->pipe_map.ms[i]);
825         }
826         wpipe->pipe_map.npages = 0;
827 }
828
829 /*
830  * In the case of a signal, the writing process might go away.  This
831  * code copies the data into the circular buffer so that the source
832  * pages can be freed without loss of data.
833  */
834 static void
835 pipe_clone_write_buffer(wpipe)
836         struct pipe *wpipe;
837 {
838         struct uio uio;
839         struct iovec iov;
840         int size;
841         int pos;
842
843         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
844         size = wpipe->pipe_map.cnt;
845         pos = wpipe->pipe_map.pos;
846
847         wpipe->pipe_buffer.in = size;
848         wpipe->pipe_buffer.out = 0;
849         wpipe->pipe_buffer.cnt = size;
850         wpipe->pipe_state &= ~PIPE_DIRECTW;
851
852         PIPE_UNLOCK(wpipe);
853         iov.iov_base = wpipe->pipe_buffer.buffer;
854         iov.iov_len = size;
855         uio.uio_iov = &iov;
856         uio.uio_iovcnt = 1;
857         uio.uio_offset = 0;
858         uio.uio_resid = size;
859         uio.uio_segflg = UIO_SYSSPACE;
860         uio.uio_rw = UIO_READ;
861         uio.uio_td = curthread;
862         uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
863         PIPE_LOCK(wpipe);
864         pipe_destroy_write_buffer(wpipe);
865 }
866
867 /*
868  * This implements the pipe buffer write mechanism.  Note that only
869  * a direct write OR a normal pipe write can be pending at any given time.
870  * If there are any characters in the pipe buffer, the direct write will
871  * be deferred until the receiving process grabs all of the bytes from
872  * the pipe buffer.  Then the direct mapping write is set-up.
873  */
874 static int
875 pipe_direct_write(wpipe, uio)
876         struct pipe *wpipe;
877         struct uio *uio;
878 {
879         int error;
880
881 retry:
882         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
883         error = pipelock(wpipe, 1);
884         if (wpipe->pipe_state & PIPE_EOF)
885                 error = EPIPE;
886         if (error) {
887                 pipeunlock(wpipe);
888                 goto error1;
889         }
890         while (wpipe->pipe_state & PIPE_DIRECTW) {
891                 if (wpipe->pipe_state & PIPE_WANTR) {
892                         wpipe->pipe_state &= ~PIPE_WANTR;
893                         wakeup(wpipe);
894                 }
895                 pipeselwakeup(wpipe);
896                 wpipe->pipe_state |= PIPE_WANTW;
897                 pipeunlock(wpipe);
898                 error = msleep(wpipe, PIPE_MTX(wpipe),
899                     PRIBIO | PCATCH, "pipdww", 0);
900                 if (error)
901                         goto error1;
902                 else
903                         goto retry;
904         }
905         wpipe->pipe_map.cnt = 0;        /* transfer not ready yet */
906         if (wpipe->pipe_buffer.cnt > 0) {
907                 if (wpipe->pipe_state & PIPE_WANTR) {
908                         wpipe->pipe_state &= ~PIPE_WANTR;
909                         wakeup(wpipe);
910                 }
911                 pipeselwakeup(wpipe);
912                 wpipe->pipe_state |= PIPE_WANTW;
913                 pipeunlock(wpipe);
914                 error = msleep(wpipe, PIPE_MTX(wpipe),
915                     PRIBIO | PCATCH, "pipdwc", 0);
916                 if (error)
917                         goto error1;
918                 else
919                         goto retry;
920         }
921
922         wpipe->pipe_state |= PIPE_DIRECTW;
923
924         PIPE_UNLOCK(wpipe);
925         error = pipe_build_write_buffer(wpipe, uio);
926         PIPE_LOCK(wpipe);
927         if (error) {
928                 wpipe->pipe_state &= ~PIPE_DIRECTW;
929                 pipeunlock(wpipe);
930                 goto error1;
931         }
932
933         error = 0;
934         while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
935                 if (wpipe->pipe_state & PIPE_EOF) {
936                         pipe_destroy_write_buffer(wpipe);
937                         pipeselwakeup(wpipe);
938                         pipeunlock(wpipe);
939                         error = EPIPE;
940                         goto error1;
941                 }
942                 if (wpipe->pipe_state & PIPE_WANTR) {
943                         wpipe->pipe_state &= ~PIPE_WANTR;
944                         wakeup(wpipe);
945                 }
946                 pipeselwakeup(wpipe);
947                 pipeunlock(wpipe);
948                 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
949                     "pipdwt", 0);
950                 pipelock(wpipe, 0);
951         }
952
953         if (wpipe->pipe_state & PIPE_EOF)
954                 error = EPIPE;
955         if (wpipe->pipe_state & PIPE_DIRECTW) {
956                 /*
957                  * this bit of trickery substitutes a kernel buffer for
958                  * the process that might be going away.
959                  */
960                 pipe_clone_write_buffer(wpipe);
961         } else {
962                 pipe_destroy_write_buffer(wpipe);
963         }
964         pipeunlock(wpipe);
965         return (error);
966
967 error1:
968         wakeup(wpipe);
969         return (error);
970 }
971 #endif
972
973 static int
974 pipe_write(fp, uio, active_cred, flags, td)
975         struct file *fp;
976         struct uio *uio;
977         struct ucred *active_cred;
978         struct thread *td;
979         int flags;
980 {
981         int error = 0;
982         int desiredsize, orig_resid;
983         struct pipe *wpipe, *rpipe;
984
985         rpipe = fp->f_data;
986         wpipe = rpipe->pipe_peer;
987
988         PIPE_LOCK(rpipe);
989         error = pipelock(wpipe, 1);
990         if (error) {
991                 PIPE_UNLOCK(rpipe);
992                 return (error);
993         }
994         /*
995          * detect loss of pipe read side, issue SIGPIPE if lost.
996          */
997         if (wpipe->pipe_present != PIPE_ACTIVE ||
998             (wpipe->pipe_state & PIPE_EOF)) {
999                 pipeunlock(wpipe);
1000                 PIPE_UNLOCK(rpipe);
1001                 return (EPIPE);
1002         }
1003 #ifdef MAC
1004         error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1005         if (error) {
1006                 pipeunlock(wpipe);
1007                 PIPE_UNLOCK(rpipe);
1008                 return (error);
1009         }
1010 #endif
1011         ++wpipe->pipe_busy;
1012
1013         /* Choose a larger size if it's advantageous */
1014         desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1015         while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1016                 if (piperesizeallowed != 1)
1017                         break;
1018                 if (amountpipekva > maxpipekva / 2)
1019                         break;
1020                 if (desiredsize == BIG_PIPE_SIZE)
1021                         break;
1022                 desiredsize = desiredsize * 2;
1023         }
1024
1025         /* Choose a smaller size if we're in a OOM situation */
1026         if ((amountpipekva > (3 * maxpipekva) / 4) &&
1027                 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1028                 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1029                 (piperesizeallowed == 1))
1030                 desiredsize = SMALL_PIPE_SIZE;
1031
1032         /* Resize if the above determined that a new size was necessary */
1033         if ((desiredsize != wpipe->pipe_buffer.size) &&
1034                 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1035                 PIPE_UNLOCK(wpipe);
1036                 pipespace(wpipe, desiredsize);
1037                 PIPE_LOCK(wpipe);
1038         }
1039         if (wpipe->pipe_buffer.size == 0) {
1040                 /*
1041                  * This can only happen for reverse direction use of pipes
1042                  * in a complete OOM situation.
1043                  */
1044                 error = ENOMEM;
1045                 --wpipe->pipe_busy;
1046                 pipeunlock(wpipe);
1047                 PIPE_UNLOCK(wpipe);
1048                 return (error);
1049         }
1050
1051         pipeunlock(wpipe);
1052
1053         orig_resid = uio->uio_resid;
1054
1055         while (uio->uio_resid) {
1056                 int space;
1057
1058                 pipelock(wpipe, 0);
1059                 if (wpipe->pipe_state & PIPE_EOF) {
1060                         pipeunlock(wpipe);
1061                         error = EPIPE;
1062                         break;
1063                 }
1064 #ifndef PIPE_NODIRECT
1065                 /*
1066                  * If the transfer is large, we can gain performance if
1067                  * we do process-to-process copies directly.
1068                  * If the write is non-blocking, we don't use the
1069                  * direct write mechanism.
1070                  *
1071                  * The direct write mechanism will detect the reader going
1072                  * away on us.
1073                  */
1074                 if (uio->uio_segflg == UIO_USERSPACE &&
1075                     uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1076                     wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1077                     (fp->f_flag & FNONBLOCK) == 0) {
1078                         pipeunlock(wpipe);
1079                         error = pipe_direct_write(wpipe, uio);
1080                         if (error)
1081                                 break;
1082                         continue;
1083                 }
1084 #endif
1085
1086                 /*
1087                  * Pipe buffered writes cannot be coincidental with
1088                  * direct writes.  We wait until the currently executing
1089                  * direct write is completed before we start filling the
1090                  * pipe buffer.  We break out if a signal occurs or the
1091                  * reader goes away.
1092                  */
1093                 if (wpipe->pipe_state & PIPE_DIRECTW) {
1094                         if (wpipe->pipe_state & PIPE_WANTR) {
1095                                 wpipe->pipe_state &= ~PIPE_WANTR;
1096                                 wakeup(wpipe);
1097                         }
1098                         pipeselwakeup(wpipe);
1099                         wpipe->pipe_state |= PIPE_WANTW;
1100                         pipeunlock(wpipe);
1101                         error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1102                             "pipbww", 0);
1103                         if (error)
1104                                 break;
1105                         else
1106                                 continue;
1107                 }
1108
1109                 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1110
1111                 /* Writes of size <= PIPE_BUF must be atomic. */
1112                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1113                         space = 0;
1114
1115                 if (space > 0) {
1116                         int size;       /* Transfer size */
1117                         int segsize;    /* first segment to transfer */
1118
1119                         /*
1120                          * Transfer size is minimum of uio transfer
1121                          * and free space in pipe buffer.
1122                          */
1123                         if (space > uio->uio_resid)
1124                                 size = uio->uio_resid;
1125                         else
1126                                 size = space;
1127                         /*
1128                          * First segment to transfer is minimum of
1129                          * transfer size and contiguous space in
1130                          * pipe buffer.  If first segment to transfer
1131                          * is less than the transfer size, we've got
1132                          * a wraparound in the buffer.
1133                          */
1134                         segsize = wpipe->pipe_buffer.size -
1135                                 wpipe->pipe_buffer.in;
1136                         if (segsize > size)
1137                                 segsize = size;
1138
1139                         /* Transfer first segment */
1140
1141                         PIPE_UNLOCK(rpipe);
1142                         error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1143                                         segsize, uio);
1144                         PIPE_LOCK(rpipe);
1145
1146                         if (error == 0 && segsize < size) {
1147                                 KASSERT(wpipe->pipe_buffer.in + segsize ==
1148                                         wpipe->pipe_buffer.size,
1149                                         ("Pipe buffer wraparound disappeared"));
1150                                 /*
1151                                  * Transfer remaining part now, to
1152                                  * support atomic writes.  Wraparound
1153                                  * happened.
1154                                  */
1155
1156                                 PIPE_UNLOCK(rpipe);
1157                                 error = uiomove(
1158                                     &wpipe->pipe_buffer.buffer[0],
1159                                     size - segsize, uio);
1160                                 PIPE_LOCK(rpipe);
1161                         }
1162                         if (error == 0) {
1163                                 wpipe->pipe_buffer.in += size;
1164                                 if (wpipe->pipe_buffer.in >=
1165                                     wpipe->pipe_buffer.size) {
1166                                         KASSERT(wpipe->pipe_buffer.in ==
1167                                                 size - segsize +
1168                                                 wpipe->pipe_buffer.size,
1169                                                 ("Expected wraparound bad"));
1170                                         wpipe->pipe_buffer.in = size - segsize;
1171                                 }
1172
1173                                 wpipe->pipe_buffer.cnt += size;
1174                                 KASSERT(wpipe->pipe_buffer.cnt <=
1175                                         wpipe->pipe_buffer.size,
1176                                         ("Pipe buffer overflow"));
1177                         }
1178                         pipeunlock(wpipe);
1179                         if (error != 0)
1180                                 break;
1181                 } else {
1182                         /*
1183                          * If the "read-side" has been blocked, wake it up now.
1184                          */
1185                         if (wpipe->pipe_state & PIPE_WANTR) {
1186                                 wpipe->pipe_state &= ~PIPE_WANTR;
1187                                 wakeup(wpipe);
1188                         }
1189
1190                         /*
1191                          * don't block on non-blocking I/O
1192                          */
1193                         if (fp->f_flag & FNONBLOCK) {
1194                                 error = EAGAIN;
1195                                 pipeunlock(wpipe);
1196                                 break;
1197                         }
1198
1199                         /*
1200                          * We have no more space and have something to offer,
1201                          * wake up select/poll.
1202                          */
1203                         pipeselwakeup(wpipe);
1204
1205                         wpipe->pipe_state |= PIPE_WANTW;
1206                         pipeunlock(wpipe);
1207                         error = msleep(wpipe, PIPE_MTX(rpipe),
1208                             PRIBIO | PCATCH, "pipewr", 0);
1209                         if (error != 0)
1210                                 break;
1211                 }
1212         }
1213
1214         pipelock(wpipe, 0);
1215         --wpipe->pipe_busy;
1216
1217         if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1218                 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1219                 wakeup(wpipe);
1220         } else if (wpipe->pipe_buffer.cnt > 0) {
1221                 /*
1222                  * If we have put any characters in the buffer, we wake up
1223                  * the reader.
1224                  */
1225                 if (wpipe->pipe_state & PIPE_WANTR) {
1226                         wpipe->pipe_state &= ~PIPE_WANTR;
1227                         wakeup(wpipe);
1228                 }
1229         }
1230
1231         /*
1232          * Don't return EPIPE if I/O was successful
1233          */
1234         if ((wpipe->pipe_buffer.cnt == 0) &&
1235             (uio->uio_resid == 0) &&
1236             (error == EPIPE)) {
1237                 error = 0;
1238         }
1239
1240         if (error == 0)
1241                 vfs_timestamp(&wpipe->pipe_mtime);
1242
1243         /*
1244          * We have something to offer,
1245          * wake up select/poll.
1246          */
1247         if (wpipe->pipe_buffer.cnt)
1248                 pipeselwakeup(wpipe);
1249
1250         pipeunlock(wpipe);
1251         PIPE_UNLOCK(rpipe);
1252         return (error);
1253 }
1254
1255 /* ARGSUSED */
1256 static int
1257 pipe_truncate(fp, length, active_cred, td)
1258         struct file *fp;
1259         off_t length;
1260         struct ucred *active_cred;
1261         struct thread *td;
1262 {
1263
1264         return (EINVAL);
1265 }
1266
1267 /*
1268  * we implement a very minimal set of ioctls for compatibility with sockets.
1269  */
1270 static int
1271 pipe_ioctl(fp, cmd, data, active_cred, td)
1272         struct file *fp;
1273         u_long cmd;
1274         void *data;
1275         struct ucred *active_cred;
1276         struct thread *td;
1277 {
1278         struct pipe *mpipe = fp->f_data;
1279         int error;
1280
1281         PIPE_LOCK(mpipe);
1282
1283 #ifdef MAC
1284         error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1285         if (error) {
1286                 PIPE_UNLOCK(mpipe);
1287                 return (error);
1288         }
1289 #endif
1290
1291         error = 0;
1292         switch (cmd) {
1293
1294         case FIONBIO:
1295                 break;
1296
1297         case FIOASYNC:
1298                 if (*(int *)data) {
1299                         mpipe->pipe_state |= PIPE_ASYNC;
1300                 } else {
1301                         mpipe->pipe_state &= ~PIPE_ASYNC;
1302                 }
1303                 break;
1304
1305         case FIONREAD:
1306                 if (mpipe->pipe_state & PIPE_DIRECTW)
1307                         *(int *)data = mpipe->pipe_map.cnt;
1308                 else
1309                         *(int *)data = mpipe->pipe_buffer.cnt;
1310                 break;
1311
1312         case FIOSETOWN:
1313                 PIPE_UNLOCK(mpipe);
1314                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1315                 goto out_unlocked;
1316
1317         case FIOGETOWN:
1318                 *(int *)data = fgetown(&mpipe->pipe_sigio);
1319                 break;
1320
1321         /* This is deprecated, FIOSETOWN should be used instead. */
1322         case TIOCSPGRP:
1323                 PIPE_UNLOCK(mpipe);
1324                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1325                 goto out_unlocked;
1326
1327         /* This is deprecated, FIOGETOWN should be used instead. */
1328         case TIOCGPGRP:
1329                 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1330                 break;
1331
1332         default:
1333                 error = ENOTTY;
1334                 break;
1335         }
1336         PIPE_UNLOCK(mpipe);
1337 out_unlocked:
1338         return (error);
1339 }
1340
1341 static int
1342 pipe_poll(fp, events, active_cred, td)
1343         struct file *fp;
1344         int events;
1345         struct ucred *active_cred;
1346         struct thread *td;
1347 {
1348         struct pipe *rpipe = fp->f_data;
1349         struct pipe *wpipe;
1350         int revents = 0;
1351 #ifdef MAC
1352         int error;
1353 #endif
1354
1355         wpipe = rpipe->pipe_peer;
1356         PIPE_LOCK(rpipe);
1357 #ifdef MAC
1358         error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1359         if (error)
1360                 goto locked_error;
1361 #endif
1362         if (events & (POLLIN | POLLRDNORM))
1363                 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1364                     (rpipe->pipe_buffer.cnt > 0))
1365                         revents |= events & (POLLIN | POLLRDNORM);
1366
1367         if (events & (POLLOUT | POLLWRNORM))
1368                 if (wpipe->pipe_present != PIPE_ACTIVE ||
1369                     (wpipe->pipe_state & PIPE_EOF) ||
1370                     (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1371                      (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1372                         revents |= events & (POLLOUT | POLLWRNORM);
1373
1374         if ((events & POLLINIGNEOF) == 0) {
1375                 if (rpipe->pipe_state & PIPE_EOF) {
1376                         revents |= (events & (POLLIN | POLLRDNORM));
1377                         if (wpipe->pipe_present != PIPE_ACTIVE ||
1378                             (wpipe->pipe_state & PIPE_EOF))
1379                                 revents |= POLLHUP;
1380                 }
1381         }
1382
1383         if (revents == 0) {
1384                 if (events & (POLLIN | POLLRDNORM)) {
1385                         selrecord(td, &rpipe->pipe_sel);
1386                         if (SEL_WAITING(&rpipe->pipe_sel))
1387                                 rpipe->pipe_state |= PIPE_SEL;
1388                 }
1389
1390                 if (events & (POLLOUT | POLLWRNORM)) {
1391                         selrecord(td, &wpipe->pipe_sel);
1392                         if (SEL_WAITING(&wpipe->pipe_sel))
1393                                 wpipe->pipe_state |= PIPE_SEL;
1394                 }
1395         }
1396 #ifdef MAC
1397 locked_error:
1398 #endif
1399         PIPE_UNLOCK(rpipe);
1400
1401         return (revents);
1402 }
1403
1404 /*
1405  * We shouldn't need locks here as we're doing a read and this should
1406  * be a natural race.
1407  */
1408 static int
1409 pipe_stat(fp, ub, active_cred, td)
1410         struct file *fp;
1411         struct stat *ub;
1412         struct ucred *active_cred;
1413         struct thread *td;
1414 {
1415         struct pipe *pipe = fp->f_data;
1416 #ifdef MAC
1417         int error;
1418
1419         PIPE_LOCK(pipe);
1420         error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1421         PIPE_UNLOCK(pipe);
1422         if (error)
1423                 return (error);
1424 #endif
1425         bzero(ub, sizeof(*ub));
1426         ub->st_mode = S_IFIFO;
1427         ub->st_blksize = PAGE_SIZE;
1428         if (pipe->pipe_state & PIPE_DIRECTW)
1429                 ub->st_size = pipe->pipe_map.cnt;
1430         else
1431                 ub->st_size = pipe->pipe_buffer.cnt;
1432         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1433         ub->st_atim = pipe->pipe_atime;
1434         ub->st_mtim = pipe->pipe_mtime;
1435         ub->st_ctim = pipe->pipe_ctime;
1436         ub->st_uid = fp->f_cred->cr_uid;
1437         ub->st_gid = fp->f_cred->cr_gid;
1438         /*
1439          * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1440          * XXX (st_dev, st_ino) should be unique.
1441          */
1442         return (0);
1443 }
1444
1445 /* ARGSUSED */
1446 static int
1447 pipe_close(fp, td)
1448         struct file *fp;
1449         struct thread *td;
1450 {
1451         struct pipe *cpipe = fp->f_data;
1452
1453         fp->f_ops = &badfileops;
1454         fp->f_data = NULL;
1455         funsetown(&cpipe->pipe_sigio);
1456         pipeclose(cpipe);
1457         return (0);
1458 }
1459
1460 static void
1461 pipe_free_kmem(cpipe)
1462         struct pipe *cpipe;
1463 {
1464
1465         KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1466             ("pipe_free_kmem: pipe mutex locked"));
1467
1468         if (cpipe->pipe_buffer.buffer != NULL) {
1469                 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1470                 vm_map_remove(pipe_map,
1471                     (vm_offset_t)cpipe->pipe_buffer.buffer,
1472                     (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1473                 cpipe->pipe_buffer.buffer = NULL;
1474         }
1475 #ifndef PIPE_NODIRECT
1476         {
1477                 cpipe->pipe_map.cnt = 0;
1478                 cpipe->pipe_map.pos = 0;
1479                 cpipe->pipe_map.npages = 0;
1480         }
1481 #endif
1482 }
1483
1484 /*
1485  * shutdown the pipe
1486  */
1487 static void
1488 pipeclose(cpipe)
1489         struct pipe *cpipe;
1490 {
1491         struct pipepair *pp;
1492         struct pipe *ppipe;
1493
1494         KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1495
1496         PIPE_LOCK(cpipe);
1497         pipelock(cpipe, 0);
1498         pp = cpipe->pipe_pair;
1499
1500         pipeselwakeup(cpipe);
1501
1502         /*
1503          * If the other side is blocked, wake it up saying that
1504          * we want to close it down.
1505          */
1506         cpipe->pipe_state |= PIPE_EOF;
1507         while (cpipe->pipe_busy) {
1508                 wakeup(cpipe);
1509                 cpipe->pipe_state |= PIPE_WANT;
1510                 pipeunlock(cpipe);
1511                 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1512                 pipelock(cpipe, 0);
1513         }
1514
1515
1516         /*
1517          * Disconnect from peer, if any.
1518          */
1519         ppipe = cpipe->pipe_peer;
1520         if (ppipe->pipe_present == PIPE_ACTIVE) {
1521                 pipeselwakeup(ppipe);
1522
1523                 ppipe->pipe_state |= PIPE_EOF;
1524                 wakeup(ppipe);
1525                 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1526         }
1527
1528         /*
1529          * Mark this endpoint as free.  Release kmem resources.  We
1530          * don't mark this endpoint as unused until we've finished
1531          * doing that, or the pipe might disappear out from under
1532          * us.
1533          */
1534         PIPE_UNLOCK(cpipe);
1535         pipe_free_kmem(cpipe);
1536         PIPE_LOCK(cpipe);
1537         cpipe->pipe_present = PIPE_CLOSING;
1538         pipeunlock(cpipe);
1539
1540         /*
1541          * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1542          * PIPE_FINALIZED, that allows other end to free the
1543          * pipe_pair, only after the knotes are completely dismantled.
1544          */
1545         knlist_clear(&cpipe->pipe_sel.si_note, 1);
1546         cpipe->pipe_present = PIPE_FINALIZED;
1547         knlist_destroy(&cpipe->pipe_sel.si_note);
1548
1549         /*
1550          * If both endpoints are now closed, release the memory for the
1551          * pipe pair.  If not, unlock.
1552          */
1553         if (ppipe->pipe_present == PIPE_FINALIZED) {
1554                 PIPE_UNLOCK(cpipe);
1555 #ifdef MAC
1556                 mac_pipe_destroy(pp);
1557 #endif
1558                 uma_zfree(pipe_zone, cpipe->pipe_pair);
1559         } else
1560                 PIPE_UNLOCK(cpipe);
1561 }
1562
1563 /*ARGSUSED*/
1564 static int
1565 pipe_kqfilter(struct file *fp, struct knote *kn)
1566 {
1567         struct pipe *cpipe;
1568
1569         cpipe = kn->kn_fp->f_data;
1570         PIPE_LOCK(cpipe);
1571         switch (kn->kn_filter) {
1572         case EVFILT_READ:
1573                 kn->kn_fop = &pipe_rfiltops;
1574                 break;
1575         case EVFILT_WRITE:
1576                 kn->kn_fop = &pipe_wfiltops;
1577                 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1578                         /* other end of pipe has been closed */
1579                         PIPE_UNLOCK(cpipe);
1580                         return (EPIPE);
1581                 }
1582                 cpipe = cpipe->pipe_peer;
1583                 break;
1584         default:
1585                 PIPE_UNLOCK(cpipe);
1586                 return (EINVAL);
1587         }
1588
1589         knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1590         PIPE_UNLOCK(cpipe);
1591         return (0);
1592 }
1593
1594 static void
1595 filt_pipedetach(struct knote *kn)
1596 {
1597         struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1598
1599         PIPE_LOCK(cpipe);
1600         if (kn->kn_filter == EVFILT_WRITE)
1601                 cpipe = cpipe->pipe_peer;
1602         knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1603         PIPE_UNLOCK(cpipe);
1604 }
1605
1606 /*ARGSUSED*/
1607 static int
1608 filt_piperead(struct knote *kn, long hint)
1609 {
1610         struct pipe *rpipe = kn->kn_fp->f_data;
1611         struct pipe *wpipe = rpipe->pipe_peer;
1612         int ret;
1613
1614         PIPE_LOCK(rpipe);
1615         kn->kn_data = rpipe->pipe_buffer.cnt;
1616         if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1617                 kn->kn_data = rpipe->pipe_map.cnt;
1618
1619         if ((rpipe->pipe_state & PIPE_EOF) ||
1620             wpipe->pipe_present != PIPE_ACTIVE ||
1621             (wpipe->pipe_state & PIPE_EOF)) {
1622                 kn->kn_flags |= EV_EOF;
1623                 PIPE_UNLOCK(rpipe);
1624                 return (1);
1625         }
1626         ret = kn->kn_data > 0;
1627         PIPE_UNLOCK(rpipe);
1628         return ret;
1629 }
1630
1631 /*ARGSUSED*/
1632 static int
1633 filt_pipewrite(struct knote *kn, long hint)
1634 {
1635         struct pipe *rpipe = kn->kn_fp->f_data;
1636         struct pipe *wpipe = rpipe->pipe_peer;
1637
1638         PIPE_LOCK(rpipe);
1639         if (wpipe->pipe_present != PIPE_ACTIVE ||
1640             (wpipe->pipe_state & PIPE_EOF)) {
1641                 kn->kn_data = 0;
1642                 kn->kn_flags |= EV_EOF;
1643                 PIPE_UNLOCK(rpipe);
1644                 return (1);
1645         }
1646         kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1647         if (wpipe->pipe_state & PIPE_DIRECTW)
1648                 kn->kn_data = 0;
1649
1650         PIPE_UNLOCK(rpipe);
1651         return (kn->kn_data >= PIPE_BUF);
1652 }