]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/sys_pipe.c
Update to Zstandard 1.3.8
[FreeBSD/FreeBSD.git] / sys / kern / sys_pipe.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122
123 #include <security/mac/mac_framework.h>
124
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141
142 #define PIPE_PEER(pipe) \
143         (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t        pipe_read;
149 static fo_rdwr_t        pipe_write;
150 static fo_truncate_t    pipe_truncate;
151 static fo_ioctl_t       pipe_ioctl;
152 static fo_poll_t        pipe_poll;
153 static fo_kqfilter_t    pipe_kqfilter;
154 static fo_stat_t        pipe_stat;
155 static fo_close_t       pipe_close;
156 static fo_chmod_t       pipe_chmod;
157 static fo_chown_t       pipe_chown;
158 static fo_fill_kinfo_t  pipe_fill_kinfo;
159
160 struct fileops pipeops = {
161         .fo_read = pipe_read,
162         .fo_write = pipe_write,
163         .fo_truncate = pipe_truncate,
164         .fo_ioctl = pipe_ioctl,
165         .fo_poll = pipe_poll,
166         .fo_kqfilter = pipe_kqfilter,
167         .fo_stat = pipe_stat,
168         .fo_close = pipe_close,
169         .fo_chmod = pipe_chmod,
170         .fo_chown = pipe_chown,
171         .fo_sendfile = invfo_sendfile,
172         .fo_fill_kinfo = pipe_fill_kinfo,
173         .fo_flags = DFLAG_PASSABLE
174 };
175
176 static void     filt_pipedetach(struct knote *kn);
177 static void     filt_pipedetach_notsup(struct knote *kn);
178 static int      filt_pipenotsup(struct knote *kn, long hint);
179 static int      filt_piperead(struct knote *kn, long hint);
180 static int      filt_pipewrite(struct knote *kn, long hint);
181
182 static struct filterops pipe_nfiltops = {
183         .f_isfd = 1,
184         .f_detach = filt_pipedetach_notsup,
185         .f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188         .f_isfd = 1,
189         .f_detach = filt_pipedetach,
190         .f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193         .f_isfd = 1,
194         .f_detach = filt_pipedetach,
195         .f_event = filt_pipewrite
196 };
197
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214            &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216            &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218           &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220           &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222           &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224           &piperesizeallowed, 0, "Pipe resizing allowed");
225
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static void pipe_create(struct pipe *pipe, int backing);
230 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241
242 static int      pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int      pipe_zone_init(void *mem, int size, int flags);
244 static void     pipe_zone_fini(void *mem, int size);
245
246 static uma_zone_t pipe_zone;
247 static struct unrhdr64 pipeino_unr;
248 static dev_t pipedev_ino;
249
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251
252 static void
253 pipeinit(void *dummy __unused)
254 {
255
256         pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257             pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258             UMA_ALIGN_PTR, 0);
259         KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260         new_unrhdr64(&pipeino_unr, 1);
261         pipedev_ino = devfs_alloc_cdp_inode();
262         KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
263 }
264
265 static int
266 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
267 {
268         struct pipepair *pp;
269         struct pipe *rpipe, *wpipe;
270
271         KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
272
273         pp = (struct pipepair *)mem;
274
275         /*
276          * We zero both pipe endpoints to make sure all the kmem pointers
277          * are NULL, flag fields are zero'd, etc.  We timestamp both
278          * endpoints with the same time.
279          */
280         rpipe = &pp->pp_rpipe;
281         bzero(rpipe, sizeof(*rpipe));
282         vfs_timestamp(&rpipe->pipe_ctime);
283         rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
284
285         wpipe = &pp->pp_wpipe;
286         bzero(wpipe, sizeof(*wpipe));
287         wpipe->pipe_ctime = rpipe->pipe_ctime;
288         wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
289
290         rpipe->pipe_peer = wpipe;
291         rpipe->pipe_pair = pp;
292         wpipe->pipe_peer = rpipe;
293         wpipe->pipe_pair = pp;
294
295         /*
296          * Mark both endpoints as present; they will later get free'd
297          * one at a time.  When both are free'd, then the whole pair
298          * is released.
299          */
300         rpipe->pipe_present = PIPE_ACTIVE;
301         wpipe->pipe_present = PIPE_ACTIVE;
302
303         /*
304          * Eventually, the MAC Framework may initialize the label
305          * in ctor or init, but for now we do it elswhere to avoid
306          * blocking in ctor or init.
307          */
308         pp->pp_label = NULL;
309
310         return (0);
311 }
312
313 static int
314 pipe_zone_init(void *mem, int size, int flags)
315 {
316         struct pipepair *pp;
317
318         KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
319
320         pp = (struct pipepair *)mem;
321
322         mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
323         return (0);
324 }
325
326 static void
327 pipe_zone_fini(void *mem, int size)
328 {
329         struct pipepair *pp;
330
331         KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
332
333         pp = (struct pipepair *)mem;
334
335         mtx_destroy(&pp->pp_mtx);
336 }
337
338 static void
339 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
340 {
341         struct pipepair *pp;
342         struct pipe *rpipe, *wpipe;
343
344         *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
345 #ifdef MAC
346         /*
347          * The MAC label is shared between the connected endpoints.  As a
348          * result mac_pipe_init() and mac_pipe_create() are called once
349          * for the pair, and not on the endpoints.
350          */
351         mac_pipe_init(pp);
352         mac_pipe_create(td->td_ucred, pp);
353 #endif
354         rpipe = &pp->pp_rpipe;
355         wpipe = &pp->pp_wpipe;
356
357         knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
358         knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
359
360         /* Only the forward direction pipe is backed by default */
361         pipe_create(rpipe, 1);
362         pipe_create(wpipe, 0);
363
364         rpipe->pipe_state |= PIPE_DIRECTOK;
365         wpipe->pipe_state |= PIPE_DIRECTOK;
366 }
367
368 void
369 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
370 {
371         struct pipepair *pp;
372
373         pipe_paircreate(td, &pp);
374         pp->pp_rpipe.pipe_state |= PIPE_NAMED;
375         *ppipe = &pp->pp_rpipe;
376 }
377
378 void
379 pipe_dtor(struct pipe *dpipe)
380 {
381         struct pipe *peer;
382         ino_t ino;
383
384         ino = dpipe->pipe_ino;
385         peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
386         funsetown(&dpipe->pipe_sigio);
387         pipeclose(dpipe);
388         if (peer != NULL) {
389                 funsetown(&peer->pipe_sigio);
390                 pipeclose(peer);
391         }
392 }
393
394 /*
395  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
396  * the zone pick up the pieces via pipeclose().
397  */
398 int
399 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
400     struct filecaps *fcaps2)
401 {
402         struct file *rf, *wf;
403         struct pipe *rpipe, *wpipe;
404         struct pipepair *pp;
405         int fd, fflags, error;
406
407         pipe_paircreate(td, &pp);
408         rpipe = &pp->pp_rpipe;
409         wpipe = &pp->pp_wpipe;
410         error = falloc_caps(td, &rf, &fd, flags, fcaps1);
411         if (error) {
412                 pipeclose(rpipe);
413                 pipeclose(wpipe);
414                 return (error);
415         }
416         /* An extra reference on `rf' has been held for us by falloc_caps(). */
417         fildes[0] = fd;
418
419         fflags = FREAD | FWRITE;
420         if ((flags & O_NONBLOCK) != 0)
421                 fflags |= FNONBLOCK;
422
423         /*
424          * Warning: once we've gotten past allocation of the fd for the
425          * read-side, we can only drop the read side via fdrop() in order
426          * to avoid races against processes which manage to dup() the read
427          * side while we are blocked trying to allocate the write side.
428          */
429         finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
430         error = falloc_caps(td, &wf, &fd, flags, fcaps2);
431         if (error) {
432                 fdclose(td, rf, fildes[0]);
433                 fdrop(rf, td);
434                 /* rpipe has been closed by fdrop(). */
435                 pipeclose(wpipe);
436                 return (error);
437         }
438         /* An extra reference on `wf' has been held for us by falloc_caps(). */
439         finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
440         fdrop(wf, td);
441         fildes[1] = fd;
442         fdrop(rf, td);
443
444         return (0);
445 }
446
447 #ifdef COMPAT_FREEBSD10
448 /* ARGSUSED */
449 int
450 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
451 {
452         int error;
453         int fildes[2];
454
455         error = kern_pipe(td, fildes, 0, NULL, NULL);
456         if (error)
457                 return (error);
458
459         td->td_retval[0] = fildes[0];
460         td->td_retval[1] = fildes[1];
461
462         return (0);
463 }
464 #endif
465
466 int
467 sys_pipe2(struct thread *td, struct pipe2_args *uap)
468 {
469         int error, fildes[2];
470
471         if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
472                 return (EINVAL);
473         error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
474         if (error)
475                 return (error);
476         error = copyout(fildes, uap->fildes, 2 * sizeof(int));
477         if (error) {
478                 (void)kern_close(td, fildes[0]);
479                 (void)kern_close(td, fildes[1]);
480         }
481         return (error);
482 }
483
484 /*
485  * Allocate kva for pipe circular buffer, the space is pageable
486  * This routine will 'realloc' the size of a pipe safely, if it fails
487  * it will retain the old buffer.
488  * If it fails it will return ENOMEM.
489  */
490 static int
491 pipespace_new(struct pipe *cpipe, int size)
492 {
493         caddr_t buffer;
494         int error, cnt, firstseg;
495         static int curfail = 0;
496         static struct timeval lastfail;
497
498         KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
499         KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
500                 ("pipespace: resize of direct writes not allowed"));
501 retry:
502         cnt = cpipe->pipe_buffer.cnt;
503         if (cnt > size)
504                 size = cnt;
505
506         size = round_page(size);
507         buffer = (caddr_t) vm_map_min(pipe_map);
508
509         error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
510             VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
511         if (error != KERN_SUCCESS) {
512                 if ((cpipe->pipe_buffer.buffer == NULL) &&
513                         (size > SMALL_PIPE_SIZE)) {
514                         size = SMALL_PIPE_SIZE;
515                         pipefragretry++;
516                         goto retry;
517                 }
518                 if (cpipe->pipe_buffer.buffer == NULL) {
519                         pipeallocfail++;
520                         if (ppsratecheck(&lastfail, &curfail, 1))
521                                 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
522                 } else {
523                         piperesizefail++;
524                 }
525                 return (ENOMEM);
526         }
527
528         /* copy data, then free old resources if we're resizing */
529         if (cnt > 0) {
530                 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
531                         firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
532                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
533                                 buffer, firstseg);
534                         if ((cnt - firstseg) > 0)
535                                 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
536                                         cpipe->pipe_buffer.in);
537                 } else {
538                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
539                                 buffer, cnt);
540                 }
541         }
542         pipe_free_kmem(cpipe);
543         cpipe->pipe_buffer.buffer = buffer;
544         cpipe->pipe_buffer.size = size;
545         cpipe->pipe_buffer.in = cnt;
546         cpipe->pipe_buffer.out = 0;
547         cpipe->pipe_buffer.cnt = cnt;
548         atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
549         return (0);
550 }
551
552 /*
553  * Wrapper for pipespace_new() that performs locking assertions.
554  */
555 static int
556 pipespace(struct pipe *cpipe, int size)
557 {
558
559         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
560                 ("Unlocked pipe passed to pipespace"));
561         return (pipespace_new(cpipe, size));
562 }
563
564 /*
565  * lock a pipe for I/O, blocking other access
566  */
567 static __inline int
568 pipelock(struct pipe *cpipe, int catch)
569 {
570         int error;
571
572         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
573         while (cpipe->pipe_state & PIPE_LOCKFL) {
574                 cpipe->pipe_state |= PIPE_LWANT;
575                 error = msleep(cpipe, PIPE_MTX(cpipe),
576                     catch ? (PRIBIO | PCATCH) : PRIBIO,
577                     "pipelk", 0);
578                 if (error != 0)
579                         return (error);
580         }
581         cpipe->pipe_state |= PIPE_LOCKFL;
582         return (0);
583 }
584
585 /*
586  * unlock a pipe I/O lock
587  */
588 static __inline void
589 pipeunlock(struct pipe *cpipe)
590 {
591
592         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
593         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
594                 ("Unlocked pipe passed to pipeunlock"));
595         cpipe->pipe_state &= ~PIPE_LOCKFL;
596         if (cpipe->pipe_state & PIPE_LWANT) {
597                 cpipe->pipe_state &= ~PIPE_LWANT;
598                 wakeup(cpipe);
599         }
600 }
601
602 void
603 pipeselwakeup(struct pipe *cpipe)
604 {
605
606         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
607         if (cpipe->pipe_state & PIPE_SEL) {
608                 selwakeuppri(&cpipe->pipe_sel, PSOCK);
609                 if (!SEL_WAITING(&cpipe->pipe_sel))
610                         cpipe->pipe_state &= ~PIPE_SEL;
611         }
612         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
613                 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
614         KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
615 }
616
617 /*
618  * Initialize and allocate VM and memory for pipe.  The structure
619  * will start out zero'd from the ctor, so we just manage the kmem.
620  */
621 static void
622 pipe_create(struct pipe *pipe, int backing)
623 {
624
625         if (backing) {
626                 /*
627                  * Note that these functions can fail if pipe map is exhausted
628                  * (as a result of too many pipes created), but we ignore the
629                  * error as it is not fatal and could be provoked by
630                  * unprivileged users. The only consequence is worse performance
631                  * with given pipe.
632                  */
633                 if (amountpipekva > maxpipekva / 2)
634                         (void)pipespace_new(pipe, SMALL_PIPE_SIZE);
635                 else
636                         (void)pipespace_new(pipe, PIPE_SIZE);
637         }
638
639         pipe->pipe_ino = alloc_unr64(&pipeino_unr);
640 }
641
642 /* ARGSUSED */
643 static int
644 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
645     int flags, struct thread *td)
646 {
647         struct pipe *rpipe;
648         int error;
649         int nread = 0;
650         int size;
651
652         rpipe = fp->f_data;
653         PIPE_LOCK(rpipe);
654         ++rpipe->pipe_busy;
655         error = pipelock(rpipe, 1);
656         if (error)
657                 goto unlocked_error;
658
659 #ifdef MAC
660         error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
661         if (error)
662                 goto locked_error;
663 #endif
664         if (amountpipekva > (3 * maxpipekva) / 4) {
665                 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
666                         (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
667                         (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
668                         (piperesizeallowed == 1)) {
669                         PIPE_UNLOCK(rpipe);
670                         pipespace(rpipe, SMALL_PIPE_SIZE);
671                         PIPE_LOCK(rpipe);
672                 }
673         }
674
675         while (uio->uio_resid) {
676                 /*
677                  * normal pipe buffer receive
678                  */
679                 if (rpipe->pipe_buffer.cnt > 0) {
680                         size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
681                         if (size > rpipe->pipe_buffer.cnt)
682                                 size = rpipe->pipe_buffer.cnt;
683                         if (size > uio->uio_resid)
684                                 size = uio->uio_resid;
685
686                         PIPE_UNLOCK(rpipe);
687                         error = uiomove(
688                             &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
689                             size, uio);
690                         PIPE_LOCK(rpipe);
691                         if (error)
692                                 break;
693
694                         rpipe->pipe_buffer.out += size;
695                         if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
696                                 rpipe->pipe_buffer.out = 0;
697
698                         rpipe->pipe_buffer.cnt -= size;
699
700                         /*
701                          * If there is no more to read in the pipe, reset
702                          * its pointers to the beginning.  This improves
703                          * cache hit stats.
704                          */
705                         if (rpipe->pipe_buffer.cnt == 0) {
706                                 rpipe->pipe_buffer.in = 0;
707                                 rpipe->pipe_buffer.out = 0;
708                         }
709                         nread += size;
710 #ifndef PIPE_NODIRECT
711                 /*
712                  * Direct copy, bypassing a kernel buffer.
713                  */
714                 } else if ((size = rpipe->pipe_map.cnt) &&
715                            (rpipe->pipe_state & PIPE_DIRECTW)) {
716                         if (size > uio->uio_resid)
717                                 size = (u_int) uio->uio_resid;
718
719                         PIPE_UNLOCK(rpipe);
720                         error = uiomove_fromphys(rpipe->pipe_map.ms,
721                             rpipe->pipe_map.pos, size, uio);
722                         PIPE_LOCK(rpipe);
723                         if (error)
724                                 break;
725                         nread += size;
726                         rpipe->pipe_map.pos += size;
727                         rpipe->pipe_map.cnt -= size;
728                         if (rpipe->pipe_map.cnt == 0) {
729                                 rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
730                                 wakeup(rpipe);
731                         }
732 #endif
733                 } else {
734                         /*
735                          * detect EOF condition
736                          * read returns 0 on EOF, no need to set error
737                          */
738                         if (rpipe->pipe_state & PIPE_EOF)
739                                 break;
740
741                         /*
742                          * If the "write-side" has been blocked, wake it up now.
743                          */
744                         if (rpipe->pipe_state & PIPE_WANTW) {
745                                 rpipe->pipe_state &= ~PIPE_WANTW;
746                                 wakeup(rpipe);
747                         }
748
749                         /*
750                          * Break if some data was read.
751                          */
752                         if (nread > 0)
753                                 break;
754
755                         /*
756                          * Unlock the pipe buffer for our remaining processing.
757                          * We will either break out with an error or we will
758                          * sleep and relock to loop.
759                          */
760                         pipeunlock(rpipe);
761
762                         /*
763                          * Handle non-blocking mode operation or
764                          * wait for more data.
765                          */
766                         if (fp->f_flag & FNONBLOCK) {
767                                 error = EAGAIN;
768                         } else {
769                                 rpipe->pipe_state |= PIPE_WANTR;
770                                 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
771                                     PRIBIO | PCATCH,
772                                     "piperd", 0)) == 0)
773                                         error = pipelock(rpipe, 1);
774                         }
775                         if (error)
776                                 goto unlocked_error;
777                 }
778         }
779 #ifdef MAC
780 locked_error:
781 #endif
782         pipeunlock(rpipe);
783
784         /* XXX: should probably do this before getting any locks. */
785         if (error == 0)
786                 vfs_timestamp(&rpipe->pipe_atime);
787 unlocked_error:
788         --rpipe->pipe_busy;
789
790         /*
791          * PIPE_WANT processing only makes sense if pipe_busy is 0.
792          */
793         if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
794                 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
795                 wakeup(rpipe);
796         } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
797                 /*
798                  * Handle write blocking hysteresis.
799                  */
800                 if (rpipe->pipe_state & PIPE_WANTW) {
801                         rpipe->pipe_state &= ~PIPE_WANTW;
802                         wakeup(rpipe);
803                 }
804         }
805
806         if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
807                 pipeselwakeup(rpipe);
808
809         PIPE_UNLOCK(rpipe);
810         return (error);
811 }
812
813 #ifndef PIPE_NODIRECT
814 /*
815  * Map the sending processes' buffer into kernel space and wire it.
816  * This is similar to a physical write operation.
817  */
818 static int
819 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
820 {
821         u_int size;
822         int i;
823
824         PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
825         KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
826                 ("Clone attempt on non-direct write pipe!"));
827
828         if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
829                 size = wpipe->pipe_buffer.size;
830         else
831                 size = uio->uio_iov->iov_len;
832
833         if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
834             (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
835             wpipe->pipe_map.ms, PIPENPAGES)) < 0)
836                 return (EFAULT);
837
838 /*
839  * set up the control block
840  */
841         wpipe->pipe_map.npages = i;
842         wpipe->pipe_map.pos =
843             ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
844         wpipe->pipe_map.cnt = size;
845
846 /*
847  * and update the uio data
848  */
849
850         uio->uio_iov->iov_len -= size;
851         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
852         if (uio->uio_iov->iov_len == 0)
853                 uio->uio_iov++;
854         uio->uio_resid -= size;
855         uio->uio_offset += size;
856         return (0);
857 }
858
859 /*
860  * unmap and unwire the process buffer
861  */
862 static void
863 pipe_destroy_write_buffer(struct pipe *wpipe)
864 {
865
866         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
867         vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
868         wpipe->pipe_map.npages = 0;
869 }
870
871 /*
872  * In the case of a signal, the writing process might go away.  This
873  * code copies the data into the circular buffer so that the source
874  * pages can be freed without loss of data.
875  */
876 static void
877 pipe_clone_write_buffer(struct pipe *wpipe)
878 {
879         struct uio uio;
880         struct iovec iov;
881         int size;
882         int pos;
883
884         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
885         size = wpipe->pipe_map.cnt;
886         pos = wpipe->pipe_map.pos;
887
888         wpipe->pipe_buffer.in = size;
889         wpipe->pipe_buffer.out = 0;
890         wpipe->pipe_buffer.cnt = size;
891         wpipe->pipe_state &= ~PIPE_DIRECTW;
892
893         PIPE_UNLOCK(wpipe);
894         iov.iov_base = wpipe->pipe_buffer.buffer;
895         iov.iov_len = size;
896         uio.uio_iov = &iov;
897         uio.uio_iovcnt = 1;
898         uio.uio_offset = 0;
899         uio.uio_resid = size;
900         uio.uio_segflg = UIO_SYSSPACE;
901         uio.uio_rw = UIO_READ;
902         uio.uio_td = curthread;
903         uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
904         PIPE_LOCK(wpipe);
905         pipe_destroy_write_buffer(wpipe);
906 }
907
908 /*
909  * This implements the pipe buffer write mechanism.  Note that only
910  * a direct write OR a normal pipe write can be pending at any given time.
911  * If there are any characters in the pipe buffer, the direct write will
912  * be deferred until the receiving process grabs all of the bytes from
913  * the pipe buffer.  Then the direct mapping write is set-up.
914  */
915 static int
916 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
917 {
918         int error;
919
920 retry:
921         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
922         error = pipelock(wpipe, 1);
923         if (error != 0)
924                 goto error1;
925         if ((wpipe->pipe_state & PIPE_EOF) != 0) {
926                 error = EPIPE;
927                 pipeunlock(wpipe);
928                 goto error1;
929         }
930         while (wpipe->pipe_state & PIPE_DIRECTW) {
931                 if (wpipe->pipe_state & PIPE_WANTR) {
932                         wpipe->pipe_state &= ~PIPE_WANTR;
933                         wakeup(wpipe);
934                 }
935                 pipeselwakeup(wpipe);
936                 wpipe->pipe_state |= PIPE_WANTW;
937                 pipeunlock(wpipe);
938                 error = msleep(wpipe, PIPE_MTX(wpipe),
939                     PRIBIO | PCATCH, "pipdww", 0);
940                 if (error)
941                         goto error1;
942                 else
943                         goto retry;
944         }
945         wpipe->pipe_map.cnt = 0;        /* transfer not ready yet */
946         if (wpipe->pipe_buffer.cnt > 0) {
947                 if (wpipe->pipe_state & PIPE_WANTR) {
948                         wpipe->pipe_state &= ~PIPE_WANTR;
949                         wakeup(wpipe);
950                 }
951                 pipeselwakeup(wpipe);
952                 wpipe->pipe_state |= PIPE_WANTW;
953                 pipeunlock(wpipe);
954                 error = msleep(wpipe, PIPE_MTX(wpipe),
955                     PRIBIO | PCATCH, "pipdwc", 0);
956                 if (error)
957                         goto error1;
958                 else
959                         goto retry;
960         }
961
962         wpipe->pipe_state |= PIPE_DIRECTW;
963
964         PIPE_UNLOCK(wpipe);
965         error = pipe_build_write_buffer(wpipe, uio);
966         PIPE_LOCK(wpipe);
967         if (error) {
968                 wpipe->pipe_state &= ~PIPE_DIRECTW;
969                 pipeunlock(wpipe);
970                 goto error1;
971         }
972
973         error = 0;
974         while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
975                 if (wpipe->pipe_state & PIPE_EOF) {
976                         pipe_destroy_write_buffer(wpipe);
977                         pipeselwakeup(wpipe);
978                         pipeunlock(wpipe);
979                         error = EPIPE;
980                         goto error1;
981                 }
982                 if (wpipe->pipe_state & PIPE_WANTR) {
983                         wpipe->pipe_state &= ~PIPE_WANTR;
984                         wakeup(wpipe);
985                 }
986                 pipeselwakeup(wpipe);
987                 wpipe->pipe_state |= PIPE_WANTW;
988                 pipeunlock(wpipe);
989                 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
990                     "pipdwt", 0);
991                 pipelock(wpipe, 0);
992         }
993
994         if (wpipe->pipe_state & PIPE_EOF)
995                 error = EPIPE;
996         if (wpipe->pipe_state & PIPE_DIRECTW) {
997                 /*
998                  * this bit of trickery substitutes a kernel buffer for
999                  * the process that might be going away.
1000                  */
1001                 pipe_clone_write_buffer(wpipe);
1002         } else {
1003                 pipe_destroy_write_buffer(wpipe);
1004         }
1005         pipeunlock(wpipe);
1006         return (error);
1007
1008 error1:
1009         wakeup(wpipe);
1010         return (error);
1011 }
1012 #endif
1013
1014 static int
1015 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1016     int flags, struct thread *td)
1017 {
1018         int error = 0;
1019         int desiredsize;
1020         ssize_t orig_resid;
1021         struct pipe *wpipe, *rpipe;
1022
1023         rpipe = fp->f_data;
1024         wpipe = PIPE_PEER(rpipe);
1025         PIPE_LOCK(rpipe);
1026         error = pipelock(wpipe, 1);
1027         if (error) {
1028                 PIPE_UNLOCK(rpipe);
1029                 return (error);
1030         }
1031         /*
1032          * detect loss of pipe read side, issue SIGPIPE if lost.
1033          */
1034         if (wpipe->pipe_present != PIPE_ACTIVE ||
1035             (wpipe->pipe_state & PIPE_EOF)) {
1036                 pipeunlock(wpipe);
1037                 PIPE_UNLOCK(rpipe);
1038                 return (EPIPE);
1039         }
1040 #ifdef MAC
1041         error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1042         if (error) {
1043                 pipeunlock(wpipe);
1044                 PIPE_UNLOCK(rpipe);
1045                 return (error);
1046         }
1047 #endif
1048         ++wpipe->pipe_busy;
1049
1050         /* Choose a larger size if it's advantageous */
1051         desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1052         while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1053                 if (piperesizeallowed != 1)
1054                         break;
1055                 if (amountpipekva > maxpipekva / 2)
1056                         break;
1057                 if (desiredsize == BIG_PIPE_SIZE)
1058                         break;
1059                 desiredsize = desiredsize * 2;
1060         }
1061
1062         /* Choose a smaller size if we're in a OOM situation */
1063         if ((amountpipekva > (3 * maxpipekva) / 4) &&
1064                 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1065                 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1066                 (piperesizeallowed == 1))
1067                 desiredsize = SMALL_PIPE_SIZE;
1068
1069         /* Resize if the above determined that a new size was necessary */
1070         if ((desiredsize != wpipe->pipe_buffer.size) &&
1071                 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1072                 PIPE_UNLOCK(wpipe);
1073                 pipespace(wpipe, desiredsize);
1074                 PIPE_LOCK(wpipe);
1075         }
1076         if (wpipe->pipe_buffer.size == 0) {
1077                 /*
1078                  * This can only happen for reverse direction use of pipes
1079                  * in a complete OOM situation.
1080                  */
1081                 error = ENOMEM;
1082                 --wpipe->pipe_busy;
1083                 pipeunlock(wpipe);
1084                 PIPE_UNLOCK(wpipe);
1085                 return (error);
1086         }
1087
1088         pipeunlock(wpipe);
1089
1090         orig_resid = uio->uio_resid;
1091
1092         while (uio->uio_resid) {
1093                 int space;
1094
1095                 pipelock(wpipe, 0);
1096                 if (wpipe->pipe_state & PIPE_EOF) {
1097                         pipeunlock(wpipe);
1098                         error = EPIPE;
1099                         break;
1100                 }
1101 #ifndef PIPE_NODIRECT
1102                 /*
1103                  * If the transfer is large, we can gain performance if
1104                  * we do process-to-process copies directly.
1105                  * If the write is non-blocking, we don't use the
1106                  * direct write mechanism.
1107                  *
1108                  * The direct write mechanism will detect the reader going
1109                  * away on us.
1110                  */
1111                 if (uio->uio_segflg == UIO_USERSPACE &&
1112                     uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1113                     wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1114                     (fp->f_flag & FNONBLOCK) == 0) {
1115                         pipeunlock(wpipe);
1116                         error = pipe_direct_write(wpipe, uio);
1117                         if (error)
1118                                 break;
1119                         continue;
1120                 }
1121 #endif
1122
1123                 /*
1124                  * Pipe buffered writes cannot be coincidental with
1125                  * direct writes.  We wait until the currently executing
1126                  * direct write is completed before we start filling the
1127                  * pipe buffer.  We break out if a signal occurs or the
1128                  * reader goes away.
1129                  */
1130                 if (wpipe->pipe_state & PIPE_DIRECTW) {
1131                         if (wpipe->pipe_state & PIPE_WANTR) {
1132                                 wpipe->pipe_state &= ~PIPE_WANTR;
1133                                 wakeup(wpipe);
1134                         }
1135                         pipeselwakeup(wpipe);
1136                         wpipe->pipe_state |= PIPE_WANTW;
1137                         pipeunlock(wpipe);
1138                         error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1139                             "pipbww", 0);
1140                         if (error)
1141                                 break;
1142                         else
1143                                 continue;
1144                 }
1145
1146                 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1147
1148                 /* Writes of size <= PIPE_BUF must be atomic. */
1149                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1150                         space = 0;
1151
1152                 if (space > 0) {
1153                         int size;       /* Transfer size */
1154                         int segsize;    /* first segment to transfer */
1155
1156                         /*
1157                          * Transfer size is minimum of uio transfer
1158                          * and free space in pipe buffer.
1159                          */
1160                         if (space > uio->uio_resid)
1161                                 size = uio->uio_resid;
1162                         else
1163                                 size = space;
1164                         /*
1165                          * First segment to transfer is minimum of
1166                          * transfer size and contiguous space in
1167                          * pipe buffer.  If first segment to transfer
1168                          * is less than the transfer size, we've got
1169                          * a wraparound in the buffer.
1170                          */
1171                         segsize = wpipe->pipe_buffer.size -
1172                                 wpipe->pipe_buffer.in;
1173                         if (segsize > size)
1174                                 segsize = size;
1175
1176                         /* Transfer first segment */
1177
1178                         PIPE_UNLOCK(rpipe);
1179                         error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1180                                         segsize, uio);
1181                         PIPE_LOCK(rpipe);
1182
1183                         if (error == 0 && segsize < size) {
1184                                 KASSERT(wpipe->pipe_buffer.in + segsize ==
1185                                         wpipe->pipe_buffer.size,
1186                                         ("Pipe buffer wraparound disappeared"));
1187                                 /*
1188                                  * Transfer remaining part now, to
1189                                  * support atomic writes.  Wraparound
1190                                  * happened.
1191                                  */
1192
1193                                 PIPE_UNLOCK(rpipe);
1194                                 error = uiomove(
1195                                     &wpipe->pipe_buffer.buffer[0],
1196                                     size - segsize, uio);
1197                                 PIPE_LOCK(rpipe);
1198                         }
1199                         if (error == 0) {
1200                                 wpipe->pipe_buffer.in += size;
1201                                 if (wpipe->pipe_buffer.in >=
1202                                     wpipe->pipe_buffer.size) {
1203                                         KASSERT(wpipe->pipe_buffer.in ==
1204                                                 size - segsize +
1205                                                 wpipe->pipe_buffer.size,
1206                                                 ("Expected wraparound bad"));
1207                                         wpipe->pipe_buffer.in = size - segsize;
1208                                 }
1209
1210                                 wpipe->pipe_buffer.cnt += size;
1211                                 KASSERT(wpipe->pipe_buffer.cnt <=
1212                                         wpipe->pipe_buffer.size,
1213                                         ("Pipe buffer overflow"));
1214                         }
1215                         pipeunlock(wpipe);
1216                         if (error != 0)
1217                                 break;
1218                 } else {
1219                         /*
1220                          * If the "read-side" has been blocked, wake it up now.
1221                          */
1222                         if (wpipe->pipe_state & PIPE_WANTR) {
1223                                 wpipe->pipe_state &= ~PIPE_WANTR;
1224                                 wakeup(wpipe);
1225                         }
1226
1227                         /*
1228                          * don't block on non-blocking I/O
1229                          */
1230                         if (fp->f_flag & FNONBLOCK) {
1231                                 error = EAGAIN;
1232                                 pipeunlock(wpipe);
1233                                 break;
1234                         }
1235
1236                         /*
1237                          * We have no more space and have something to offer,
1238                          * wake up select/poll.
1239                          */
1240                         pipeselwakeup(wpipe);
1241
1242                         wpipe->pipe_state |= PIPE_WANTW;
1243                         pipeunlock(wpipe);
1244                         error = msleep(wpipe, PIPE_MTX(rpipe),
1245                             PRIBIO | PCATCH, "pipewr", 0);
1246                         if (error != 0)
1247                                 break;
1248                 }
1249         }
1250
1251         pipelock(wpipe, 0);
1252         --wpipe->pipe_busy;
1253
1254         if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1255                 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1256                 wakeup(wpipe);
1257         } else if (wpipe->pipe_buffer.cnt > 0) {
1258                 /*
1259                  * If we have put any characters in the buffer, we wake up
1260                  * the reader.
1261                  */
1262                 if (wpipe->pipe_state & PIPE_WANTR) {
1263                         wpipe->pipe_state &= ~PIPE_WANTR;
1264                         wakeup(wpipe);
1265                 }
1266         }
1267
1268         /*
1269          * Don't return EPIPE if any byte was written.
1270          * EINTR and other interrupts are handled by generic I/O layer.
1271          * Do not pretend that I/O succeeded for obvious user error
1272          * like EFAULT.
1273          */
1274         if (uio->uio_resid != orig_resid && error == EPIPE)
1275                 error = 0;
1276
1277         if (error == 0)
1278                 vfs_timestamp(&wpipe->pipe_mtime);
1279
1280         /*
1281          * We have something to offer,
1282          * wake up select/poll.
1283          */
1284         if (wpipe->pipe_buffer.cnt)
1285                 pipeselwakeup(wpipe);
1286
1287         pipeunlock(wpipe);
1288         PIPE_UNLOCK(rpipe);
1289         return (error);
1290 }
1291
1292 /* ARGSUSED */
1293 static int
1294 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1295     struct thread *td)
1296 {
1297         struct pipe *cpipe;
1298         int error;
1299
1300         cpipe = fp->f_data;
1301         if (cpipe->pipe_state & PIPE_NAMED)
1302                 error = vnops.fo_truncate(fp, length, active_cred, td);
1303         else
1304                 error = invfo_truncate(fp, length, active_cred, td);
1305         return (error);
1306 }
1307
1308 /*
1309  * we implement a very minimal set of ioctls for compatibility with sockets.
1310  */
1311 static int
1312 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1313     struct thread *td)
1314 {
1315         struct pipe *mpipe = fp->f_data;
1316         int error;
1317
1318         PIPE_LOCK(mpipe);
1319
1320 #ifdef MAC
1321         error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1322         if (error) {
1323                 PIPE_UNLOCK(mpipe);
1324                 return (error);
1325         }
1326 #endif
1327
1328         error = 0;
1329         switch (cmd) {
1330
1331         case FIONBIO:
1332                 break;
1333
1334         case FIOASYNC:
1335                 if (*(int *)data) {
1336                         mpipe->pipe_state |= PIPE_ASYNC;
1337                 } else {
1338                         mpipe->pipe_state &= ~PIPE_ASYNC;
1339                 }
1340                 break;
1341
1342         case FIONREAD:
1343                 if (!(fp->f_flag & FREAD)) {
1344                         *(int *)data = 0;
1345                         PIPE_UNLOCK(mpipe);
1346                         return (0);
1347                 }
1348                 if (mpipe->pipe_state & PIPE_DIRECTW)
1349                         *(int *)data = mpipe->pipe_map.cnt;
1350                 else
1351                         *(int *)data = mpipe->pipe_buffer.cnt;
1352                 break;
1353
1354         case FIOSETOWN:
1355                 PIPE_UNLOCK(mpipe);
1356                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1357                 goto out_unlocked;
1358
1359         case FIOGETOWN:
1360                 *(int *)data = fgetown(&mpipe->pipe_sigio);
1361                 break;
1362
1363         /* This is deprecated, FIOSETOWN should be used instead. */
1364         case TIOCSPGRP:
1365                 PIPE_UNLOCK(mpipe);
1366                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1367                 goto out_unlocked;
1368
1369         /* This is deprecated, FIOGETOWN should be used instead. */
1370         case TIOCGPGRP:
1371                 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1372                 break;
1373
1374         default:
1375                 error = ENOTTY;
1376                 break;
1377         }
1378         PIPE_UNLOCK(mpipe);
1379 out_unlocked:
1380         return (error);
1381 }
1382
1383 static int
1384 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1385     struct thread *td)
1386 {
1387         struct pipe *rpipe;
1388         struct pipe *wpipe;
1389         int levents, revents;
1390 #ifdef MAC
1391         int error;
1392 #endif
1393
1394         revents = 0;
1395         rpipe = fp->f_data;
1396         wpipe = PIPE_PEER(rpipe);
1397         PIPE_LOCK(rpipe);
1398 #ifdef MAC
1399         error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1400         if (error)
1401                 goto locked_error;
1402 #endif
1403         if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1404                 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1405                     (rpipe->pipe_buffer.cnt > 0))
1406                         revents |= events & (POLLIN | POLLRDNORM);
1407
1408         if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1409                 if (wpipe->pipe_present != PIPE_ACTIVE ||
1410                     (wpipe->pipe_state & PIPE_EOF) ||
1411                     (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1412                      ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1413                          wpipe->pipe_buffer.size == 0)))
1414                         revents |= events & (POLLOUT | POLLWRNORM);
1415
1416         levents = events &
1417             (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1418         if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1419             fp->f_seqcount == rpipe->pipe_wgen)
1420                 events |= POLLINIGNEOF;
1421
1422         if ((events & POLLINIGNEOF) == 0) {
1423                 if (rpipe->pipe_state & PIPE_EOF) {
1424                         revents |= (events & (POLLIN | POLLRDNORM));
1425                         if (wpipe->pipe_present != PIPE_ACTIVE ||
1426                             (wpipe->pipe_state & PIPE_EOF))
1427                                 revents |= POLLHUP;
1428                 }
1429         }
1430
1431         if (revents == 0) {
1432                 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1433                         selrecord(td, &rpipe->pipe_sel);
1434                         if (SEL_WAITING(&rpipe->pipe_sel))
1435                                 rpipe->pipe_state |= PIPE_SEL;
1436                 }
1437
1438                 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1439                         selrecord(td, &wpipe->pipe_sel);
1440                         if (SEL_WAITING(&wpipe->pipe_sel))
1441                                 wpipe->pipe_state |= PIPE_SEL;
1442                 }
1443         }
1444 #ifdef MAC
1445 locked_error:
1446 #endif
1447         PIPE_UNLOCK(rpipe);
1448
1449         return (revents);
1450 }
1451
1452 /*
1453  * We shouldn't need locks here as we're doing a read and this should
1454  * be a natural race.
1455  */
1456 static int
1457 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1458     struct thread *td)
1459 {
1460         struct pipe *pipe;
1461 #ifdef MAC
1462         int error;
1463 #endif
1464
1465         pipe = fp->f_data;
1466         PIPE_LOCK(pipe);
1467 #ifdef MAC
1468         error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1469         if (error) {
1470                 PIPE_UNLOCK(pipe);
1471                 return (error);
1472         }
1473 #endif
1474
1475         /* For named pipes ask the underlying filesystem. */
1476         if (pipe->pipe_state & PIPE_NAMED) {
1477                 PIPE_UNLOCK(pipe);
1478                 return (vnops.fo_stat(fp, ub, active_cred, td));
1479         }
1480
1481         PIPE_UNLOCK(pipe);
1482
1483         bzero(ub, sizeof(*ub));
1484         ub->st_mode = S_IFIFO;
1485         ub->st_blksize = PAGE_SIZE;
1486         if (pipe->pipe_state & PIPE_DIRECTW)
1487                 ub->st_size = pipe->pipe_map.cnt;
1488         else
1489                 ub->st_size = pipe->pipe_buffer.cnt;
1490         ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1491         ub->st_atim = pipe->pipe_atime;
1492         ub->st_mtim = pipe->pipe_mtime;
1493         ub->st_ctim = pipe->pipe_ctime;
1494         ub->st_uid = fp->f_cred->cr_uid;
1495         ub->st_gid = fp->f_cred->cr_gid;
1496         ub->st_dev = pipedev_ino;
1497         ub->st_ino = pipe->pipe_ino;
1498         /*
1499          * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1500          */
1501         return (0);
1502 }
1503
1504 /* ARGSUSED */
1505 static int
1506 pipe_close(struct file *fp, struct thread *td)
1507 {
1508
1509         if (fp->f_vnode != NULL) 
1510                 return vnops.fo_close(fp, td);
1511         fp->f_ops = &badfileops;
1512         pipe_dtor(fp->f_data);
1513         fp->f_data = NULL;
1514         return (0);
1515 }
1516
1517 static int
1518 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1519 {
1520         struct pipe *cpipe;
1521         int error;
1522
1523         cpipe = fp->f_data;
1524         if (cpipe->pipe_state & PIPE_NAMED)
1525                 error = vn_chmod(fp, mode, active_cred, td);
1526         else
1527                 error = invfo_chmod(fp, mode, active_cred, td);
1528         return (error);
1529 }
1530
1531 static int
1532 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1533     struct thread *td)
1534 {
1535         struct pipe *cpipe;
1536         int error;
1537
1538         cpipe = fp->f_data;
1539         if (cpipe->pipe_state & PIPE_NAMED)
1540                 error = vn_chown(fp, uid, gid, active_cred, td);
1541         else
1542                 error = invfo_chown(fp, uid, gid, active_cred, td);
1543         return (error);
1544 }
1545
1546 static int
1547 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1548 {
1549         struct pipe *pi;
1550
1551         if (fp->f_type == DTYPE_FIFO)
1552                 return (vn_fill_kinfo(fp, kif, fdp));
1553         kif->kf_type = KF_TYPE_PIPE;
1554         pi = fp->f_data;
1555         kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1556         kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1557         kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1558         return (0);
1559 }
1560
1561 static void
1562 pipe_free_kmem(struct pipe *cpipe)
1563 {
1564
1565         KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1566             ("pipe_free_kmem: pipe mutex locked"));
1567
1568         if (cpipe->pipe_buffer.buffer != NULL) {
1569                 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1570                 vm_map_remove(pipe_map,
1571                     (vm_offset_t)cpipe->pipe_buffer.buffer,
1572                     (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1573                 cpipe->pipe_buffer.buffer = NULL;
1574         }
1575 #ifndef PIPE_NODIRECT
1576         {
1577                 cpipe->pipe_map.cnt = 0;
1578                 cpipe->pipe_map.pos = 0;
1579                 cpipe->pipe_map.npages = 0;
1580         }
1581 #endif
1582 }
1583
1584 /*
1585  * shutdown the pipe
1586  */
1587 static void
1588 pipeclose(struct pipe *cpipe)
1589 {
1590         struct pipepair *pp;
1591         struct pipe *ppipe;
1592
1593         KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1594
1595         PIPE_LOCK(cpipe);
1596         pipelock(cpipe, 0);
1597         pp = cpipe->pipe_pair;
1598
1599         pipeselwakeup(cpipe);
1600
1601         /*
1602          * If the other side is blocked, wake it up saying that
1603          * we want to close it down.
1604          */
1605         cpipe->pipe_state |= PIPE_EOF;
1606         while (cpipe->pipe_busy) {
1607                 wakeup(cpipe);
1608                 cpipe->pipe_state |= PIPE_WANT;
1609                 pipeunlock(cpipe);
1610                 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1611                 pipelock(cpipe, 0);
1612         }
1613
1614
1615         /*
1616          * Disconnect from peer, if any.
1617          */
1618         ppipe = cpipe->pipe_peer;
1619         if (ppipe->pipe_present == PIPE_ACTIVE) {
1620                 pipeselwakeup(ppipe);
1621
1622                 ppipe->pipe_state |= PIPE_EOF;
1623                 wakeup(ppipe);
1624                 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1625         }
1626
1627         /*
1628          * Mark this endpoint as free.  Release kmem resources.  We
1629          * don't mark this endpoint as unused until we've finished
1630          * doing that, or the pipe might disappear out from under
1631          * us.
1632          */
1633         PIPE_UNLOCK(cpipe);
1634         pipe_free_kmem(cpipe);
1635         PIPE_LOCK(cpipe);
1636         cpipe->pipe_present = PIPE_CLOSING;
1637         pipeunlock(cpipe);
1638
1639         /*
1640          * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1641          * PIPE_FINALIZED, that allows other end to free the
1642          * pipe_pair, only after the knotes are completely dismantled.
1643          */
1644         knlist_clear(&cpipe->pipe_sel.si_note, 1);
1645         cpipe->pipe_present = PIPE_FINALIZED;
1646         seldrain(&cpipe->pipe_sel);
1647         knlist_destroy(&cpipe->pipe_sel.si_note);
1648
1649         /*
1650          * If both endpoints are now closed, release the memory for the
1651          * pipe pair.  If not, unlock.
1652          */
1653         if (ppipe->pipe_present == PIPE_FINALIZED) {
1654                 PIPE_UNLOCK(cpipe);
1655 #ifdef MAC
1656                 mac_pipe_destroy(pp);
1657 #endif
1658                 uma_zfree(pipe_zone, cpipe->pipe_pair);
1659         } else
1660                 PIPE_UNLOCK(cpipe);
1661 }
1662
1663 /*ARGSUSED*/
1664 static int
1665 pipe_kqfilter(struct file *fp, struct knote *kn)
1666 {
1667         struct pipe *cpipe;
1668
1669         /*
1670          * If a filter is requested that is not supported by this file
1671          * descriptor, don't return an error, but also don't ever generate an
1672          * event.
1673          */
1674         if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1675                 kn->kn_fop = &pipe_nfiltops;
1676                 return (0);
1677         }
1678         if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1679                 kn->kn_fop = &pipe_nfiltops;
1680                 return (0);
1681         }
1682         cpipe = fp->f_data;
1683         PIPE_LOCK(cpipe);
1684         switch (kn->kn_filter) {
1685         case EVFILT_READ:
1686                 kn->kn_fop = &pipe_rfiltops;
1687                 break;
1688         case EVFILT_WRITE:
1689                 kn->kn_fop = &pipe_wfiltops;
1690                 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1691                         /* other end of pipe has been closed */
1692                         PIPE_UNLOCK(cpipe);
1693                         return (EPIPE);
1694                 }
1695                 cpipe = PIPE_PEER(cpipe);
1696                 break;
1697         default:
1698                 PIPE_UNLOCK(cpipe);
1699                 return (EINVAL);
1700         }
1701
1702         kn->kn_hook = cpipe; 
1703         knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1704         PIPE_UNLOCK(cpipe);
1705         return (0);
1706 }
1707
1708 static void
1709 filt_pipedetach(struct knote *kn)
1710 {
1711         struct pipe *cpipe = kn->kn_hook;
1712
1713         PIPE_LOCK(cpipe);
1714         knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1715         PIPE_UNLOCK(cpipe);
1716 }
1717
1718 /*ARGSUSED*/
1719 static int
1720 filt_piperead(struct knote *kn, long hint)
1721 {
1722         struct pipe *rpipe = kn->kn_hook;
1723         struct pipe *wpipe = rpipe->pipe_peer;
1724         int ret;
1725
1726         PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1727         kn->kn_data = rpipe->pipe_buffer.cnt;
1728         if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1729                 kn->kn_data = rpipe->pipe_map.cnt;
1730
1731         if ((rpipe->pipe_state & PIPE_EOF) ||
1732             wpipe->pipe_present != PIPE_ACTIVE ||
1733             (wpipe->pipe_state & PIPE_EOF)) {
1734                 kn->kn_flags |= EV_EOF;
1735                 return (1);
1736         }
1737         ret = kn->kn_data > 0;
1738         return ret;
1739 }
1740
1741 /*ARGSUSED*/
1742 static int
1743 filt_pipewrite(struct knote *kn, long hint)
1744 {
1745         struct pipe *wpipe;
1746    
1747         wpipe = kn->kn_hook;
1748         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1749         if (wpipe->pipe_present != PIPE_ACTIVE ||
1750             (wpipe->pipe_state & PIPE_EOF)) {
1751                 kn->kn_data = 0;
1752                 kn->kn_flags |= EV_EOF;
1753                 return (1);
1754         }
1755         kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1756             (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1757         if (wpipe->pipe_state & PIPE_DIRECTW)
1758                 kn->kn_data = 0;
1759
1760         return (kn->kn_data >= PIPE_BUF);
1761 }
1762
1763 static void
1764 filt_pipedetach_notsup(struct knote *kn)
1765 {
1766
1767 }
1768
1769 static int
1770 filt_pipenotsup(struct knote *kn, long hint)
1771 {
1772
1773         return (0);
1774 }