]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/sys_pipe.c
Minimal subset of the unbound sources.
[FreeBSD/FreeBSD.git] / sys / kern / sys_pipe.c
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * Copyright (c) 2012 Giovanni Trematerra
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice immediately at the beginning of the file, without modification,
11  *    this list of conditions, and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Absolutely no warranty of function or purpose is made by the author
16  *    John S. Dyson.
17  * 4. Modifications may be freely made to this file if the above conditions
18  *    are met.
19  */
20
21 /*
22  * This file contains a high-performance replacement for the socket-based
23  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24  * all features of sockets, but does do everything that pipes normally
25  * do.
26  */
27
28 /*
29  * This code has two modes of operation, a small write mode and a large
30  * write mode.  The small write mode acts like conventional pipes with
31  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33  * and PIPE_SIZE in size, the sending process pins the underlying pages in
34  * memory, and the receiving process copies directly from these pinned pages
35  * in the sending process.
36  *
37  * If the sending process receives a signal, it is possible that it will
38  * go away, and certainly its address space can change, because control
39  * is returned back to the user-mode side.  In that case, the pipe code
40  * arranges to copy the buffer supplied by the user process, to a pageable
41  * kernel buffer, and the receiving process will grab the data from the
42  * pageable kernel buffer.  Since signals don't happen all that often,
43  * the copy operation is normally eliminated.
44  *
45  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46  * happen for small transfers so that the system will not spend all of
47  * its time context switching.
48  *
49  * In order to limit the resource use of pipes, two sysctls exist:
50  *
51  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52  * address space available to us in pipe_map. This value is normally
53  * autotuned, but may also be loader tuned.
54  *
55  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56  * memory in use by pipes.
57  *
58  * Based on how large pipekva is relative to maxpipekva, the following
59  * will happen:
60  *
61  * 0% - 50%:
62  *     New pipes are given 16K of memory backing, pipes may dynamically
63  *     grow to as large as 64K where needed.
64  * 50% - 75%:
65  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66  *     existing pipes may NOT grow.
67  * 75% - 100%:
68  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69  *     existing pipes will be shrunk down to 4K whenever possible.
70  *
71  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73  * resize which MUST occur for reverse-direction pipes when they are
74  * first used.
75  *
76  * Additional information about the current state of pipes may be obtained
77  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78  * and kern.ipc.piperesizefail.
79  *
80  * Locking rules:  There are two locks present here:  A mutex, used via
81  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82  * the flag, as mutexes can not persist over uiomove.  The mutex
83  * exists only to guard access to the flag, and is not in itself a
84  * locking mechanism.  Also note that there is only a single mutex for
85  * both directions of a pipe.
86  *
87  * As pipelock() may have to sleep before it can acquire the flag, it
88  * is important to reread all data after a call to pipelock(); everything
89  * in the structure may have changed.
90  */
91
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/conf.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/syscallsubr.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/event.h>
119
120 #include <security/mac/mac_framework.h>
121
122 #include <vm/vm.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_extern.h>
127 #include <vm/pmap.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/uma.h>
131
132 /*
133  * Use this define if you want to disable *fancy* VM things.  Expect an
134  * approx 30% decrease in transfer rate.  This could be useful for
135  * NetBSD or OpenBSD.
136  */
137 /* #define PIPE_NODIRECT */
138
139 #define PIPE_PEER(pipe) \
140         (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141
142 /*
143  * interfaces to the outside world
144  */
145 static fo_rdwr_t        pipe_read;
146 static fo_rdwr_t        pipe_write;
147 static fo_truncate_t    pipe_truncate;
148 static fo_ioctl_t       pipe_ioctl;
149 static fo_poll_t        pipe_poll;
150 static fo_kqfilter_t    pipe_kqfilter;
151 static fo_stat_t        pipe_stat;
152 static fo_close_t       pipe_close;
153 static fo_chmod_t       pipe_chmod;
154 static fo_chown_t       pipe_chown;
155
156 struct fileops pipeops = {
157         .fo_read = pipe_read,
158         .fo_write = pipe_write,
159         .fo_truncate = pipe_truncate,
160         .fo_ioctl = pipe_ioctl,
161         .fo_poll = pipe_poll,
162         .fo_kqfilter = pipe_kqfilter,
163         .fo_stat = pipe_stat,
164         .fo_close = pipe_close,
165         .fo_chmod = pipe_chmod,
166         .fo_chown = pipe_chown,
167         .fo_flags = DFLAG_PASSABLE
168 };
169
170 static void     filt_pipedetach(struct knote *kn);
171 static void     filt_pipedetach_notsup(struct knote *kn);
172 static int      filt_pipenotsup(struct knote *kn, long hint);
173 static int      filt_piperead(struct knote *kn, long hint);
174 static int      filt_pipewrite(struct knote *kn, long hint);
175
176 static struct filterops pipe_nfiltops = {
177         .f_isfd = 1,
178         .f_detach = filt_pipedetach_notsup,
179         .f_event = filt_pipenotsup
180 };
181 static struct filterops pipe_rfiltops = {
182         .f_isfd = 1,
183         .f_detach = filt_pipedetach,
184         .f_event = filt_piperead
185 };
186 static struct filterops pipe_wfiltops = {
187         .f_isfd = 1,
188         .f_detach = filt_pipedetach,
189         .f_event = filt_pipewrite
190 };
191
192 /*
193  * Default pipe buffer size(s), this can be kind-of large now because pipe
194  * space is pageable.  The pipe code will try to maintain locality of
195  * reference for performance reasons, so small amounts of outstanding I/O
196  * will not wipe the cache.
197  */
198 #define MINPIPESIZE (PIPE_SIZE/3)
199 #define MAXPIPESIZE (2*PIPE_SIZE/3)
200
201 static long amountpipekva;
202 static int pipefragretry;
203 static int pipeallocfail;
204 static int piperesizefail;
205 static int piperesizeallowed = 1;
206
207 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
208            &maxpipekva, 0, "Pipe KVA limit");
209 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
210            &amountpipekva, 0, "Pipe KVA usage");
211 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
212           &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
213 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
214           &pipeallocfail, 0, "Pipe allocation failures");
215 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
216           &piperesizefail, 0, "Pipe resize failures");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
218           &piperesizeallowed, 0, "Pipe resizing allowed");
219
220 static void pipeinit(void *dummy __unused);
221 static void pipeclose(struct pipe *cpipe);
222 static void pipe_free_kmem(struct pipe *cpipe);
223 static int pipe_create(struct pipe *pipe, int backing);
224 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
225 static __inline int pipelock(struct pipe *cpipe, int catch);
226 static __inline void pipeunlock(struct pipe *cpipe);
227 #ifndef PIPE_NODIRECT
228 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
229 static void pipe_destroy_write_buffer(struct pipe *wpipe);
230 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
231 static void pipe_clone_write_buffer(struct pipe *wpipe);
232 #endif
233 static int pipespace(struct pipe *cpipe, int size);
234 static int pipespace_new(struct pipe *cpipe, int size);
235
236 static int      pipe_zone_ctor(void *mem, int size, void *arg, int flags);
237 static int      pipe_zone_init(void *mem, int size, int flags);
238 static void     pipe_zone_fini(void *mem, int size);
239
240 static uma_zone_t pipe_zone;
241 static struct unrhdr *pipeino_unr;
242 static dev_t pipedev_ino;
243
244 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
245
246 static void
247 pipeinit(void *dummy __unused)
248 {
249
250         pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
251             pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
252             UMA_ALIGN_PTR, 0);
253         KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
254         pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
255         KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
256         pipedev_ino = devfs_alloc_cdp_inode();
257         KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
258 }
259
260 static int
261 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
262 {
263         struct pipepair *pp;
264         struct pipe *rpipe, *wpipe;
265
266         KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
267
268         pp = (struct pipepair *)mem;
269
270         /*
271          * We zero both pipe endpoints to make sure all the kmem pointers
272          * are NULL, flag fields are zero'd, etc.  We timestamp both
273          * endpoints with the same time.
274          */
275         rpipe = &pp->pp_rpipe;
276         bzero(rpipe, sizeof(*rpipe));
277         vfs_timestamp(&rpipe->pipe_ctime);
278         rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
279
280         wpipe = &pp->pp_wpipe;
281         bzero(wpipe, sizeof(*wpipe));
282         wpipe->pipe_ctime = rpipe->pipe_ctime;
283         wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
284
285         rpipe->pipe_peer = wpipe;
286         rpipe->pipe_pair = pp;
287         wpipe->pipe_peer = rpipe;
288         wpipe->pipe_pair = pp;
289
290         /*
291          * Mark both endpoints as present; they will later get free'd
292          * one at a time.  When both are free'd, then the whole pair
293          * is released.
294          */
295         rpipe->pipe_present = PIPE_ACTIVE;
296         wpipe->pipe_present = PIPE_ACTIVE;
297
298         /*
299          * Eventually, the MAC Framework may initialize the label
300          * in ctor or init, but for now we do it elswhere to avoid
301          * blocking in ctor or init.
302          */
303         pp->pp_label = NULL;
304
305         return (0);
306 }
307
308 static int
309 pipe_zone_init(void *mem, int size, int flags)
310 {
311         struct pipepair *pp;
312
313         KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
314
315         pp = (struct pipepair *)mem;
316
317         mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
318         return (0);
319 }
320
321 static void
322 pipe_zone_fini(void *mem, int size)
323 {
324         struct pipepair *pp;
325
326         KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
327
328         pp = (struct pipepair *)mem;
329
330         mtx_destroy(&pp->pp_mtx);
331 }
332
333 static int
334 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
335 {
336         struct pipepair *pp;
337         struct pipe *rpipe, *wpipe;
338         int error;
339
340         *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
341 #ifdef MAC
342         /*
343          * The MAC label is shared between the connected endpoints.  As a
344          * result mac_pipe_init() and mac_pipe_create() are called once
345          * for the pair, and not on the endpoints.
346          */
347         mac_pipe_init(pp);
348         mac_pipe_create(td->td_ucred, pp);
349 #endif
350         rpipe = &pp->pp_rpipe;
351         wpipe = &pp->pp_wpipe;
352
353         knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
354         knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
355
356         /* Only the forward direction pipe is backed by default */
357         if ((error = pipe_create(rpipe, 1)) != 0 ||
358             (error = pipe_create(wpipe, 0)) != 0) {
359                 pipeclose(rpipe);
360                 pipeclose(wpipe);
361                 return (error);
362         }
363
364         rpipe->pipe_state |= PIPE_DIRECTOK;
365         wpipe->pipe_state |= PIPE_DIRECTOK;
366         return (0);
367 }
368
369 int
370 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371 {
372         struct pipepair *pp;
373         int error;
374
375         error = pipe_paircreate(td, &pp);
376         if (error != 0)
377                 return (error);
378         pp->pp_rpipe.pipe_state |= PIPE_NAMED;
379         *ppipe = &pp->pp_rpipe;
380         return (0);
381 }
382
383 void
384 pipe_dtor(struct pipe *dpipe)
385 {
386         ino_t ino;
387
388         ino = dpipe->pipe_ino;
389         funsetown(&dpipe->pipe_sigio);
390         pipeclose(dpipe);
391         if (dpipe->pipe_state & PIPE_NAMED) {
392                 dpipe = dpipe->pipe_peer;
393                 funsetown(&dpipe->pipe_sigio);
394                 pipeclose(dpipe);
395         }
396         if (ino != 0 && ino != (ino_t)-1)
397                 free_unr(pipeino_unr, ino);
398 }
399
400 /*
401  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
402  * the zone pick up the pieces via pipeclose().
403  */
404 int
405 kern_pipe(struct thread *td, int fildes[2])
406 {
407
408         return (kern_pipe2(td, fildes, 0));
409 }
410
411 int
412 kern_pipe2(struct thread *td, int fildes[2], int flags)
413 {
414         struct filedesc *fdp; 
415         struct file *rf, *wf;
416         struct pipe *rpipe, *wpipe;
417         struct pipepair *pp;
418         int fd, fflags, error;
419
420         fdp = td->td_proc->p_fd;
421         error = pipe_paircreate(td, &pp);
422         if (error != 0)
423                 return (error);
424         rpipe = &pp->pp_rpipe;
425         wpipe = &pp->pp_wpipe;
426         error = falloc(td, &rf, &fd, flags);
427         if (error) {
428                 pipeclose(rpipe);
429                 pipeclose(wpipe);
430                 return (error);
431         }
432         /* An extra reference on `rf' has been held for us by falloc(). */
433         fildes[0] = fd;
434
435         fflags = FREAD | FWRITE;
436         if ((flags & O_NONBLOCK) != 0)
437                 fflags |= FNONBLOCK;
438
439         /*
440          * Warning: once we've gotten past allocation of the fd for the
441          * read-side, we can only drop the read side via fdrop() in order
442          * to avoid races against processes which manage to dup() the read
443          * side while we are blocked trying to allocate the write side.
444          */
445         finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
446         error = falloc(td, &wf, &fd, flags);
447         if (error) {
448                 fdclose(fdp, rf, fildes[0], td);
449                 fdrop(rf, td);
450                 /* rpipe has been closed by fdrop(). */
451                 pipeclose(wpipe);
452                 return (error);
453         }
454         /* An extra reference on `wf' has been held for us by falloc(). */
455         finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
456         fdrop(wf, td);
457         fildes[1] = fd;
458         fdrop(rf, td);
459
460         return (0);
461 }
462
463 /* ARGSUSED */
464 int
465 sys_pipe(struct thread *td, struct pipe_args *uap)
466 {
467         int error;
468         int fildes[2];
469
470         error = kern_pipe(td, fildes);
471         if (error)
472                 return (error);
473
474         td->td_retval[0] = fildes[0];
475         td->td_retval[1] = fildes[1];
476
477         return (0);
478 }
479
480 /*
481  * Allocate kva for pipe circular buffer, the space is pageable
482  * This routine will 'realloc' the size of a pipe safely, if it fails
483  * it will retain the old buffer.
484  * If it fails it will return ENOMEM.
485  */
486 static int
487 pipespace_new(cpipe, size)
488         struct pipe *cpipe;
489         int size;
490 {
491         caddr_t buffer;
492         int error, cnt, firstseg;
493         static int curfail = 0;
494         static struct timeval lastfail;
495
496         KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
497         KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
498                 ("pipespace: resize of direct writes not allowed"));
499 retry:
500         cnt = cpipe->pipe_buffer.cnt;
501         if (cnt > size)
502                 size = cnt;
503
504         size = round_page(size);
505         buffer = (caddr_t) vm_map_min(pipe_map);
506
507         error = vm_map_find(pipe_map, NULL, 0,
508                 (vm_offset_t *) &buffer, size, 1,
509                 VM_PROT_ALL, VM_PROT_ALL, 0);
510         if (error != KERN_SUCCESS) {
511                 if ((cpipe->pipe_buffer.buffer == NULL) &&
512                         (size > SMALL_PIPE_SIZE)) {
513                         size = SMALL_PIPE_SIZE;
514                         pipefragretry++;
515                         goto retry;
516                 }
517                 if (cpipe->pipe_buffer.buffer == NULL) {
518                         pipeallocfail++;
519                         if (ppsratecheck(&lastfail, &curfail, 1))
520                                 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
521                 } else {
522                         piperesizefail++;
523                 }
524                 return (ENOMEM);
525         }
526
527         /* copy data, then free old resources if we're resizing */
528         if (cnt > 0) {
529                 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
530                         firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
531                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
532                                 buffer, firstseg);
533                         if ((cnt - firstseg) > 0)
534                                 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
535                                         cpipe->pipe_buffer.in);
536                 } else {
537                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
538                                 buffer, cnt);
539                 }
540         }
541         pipe_free_kmem(cpipe);
542         cpipe->pipe_buffer.buffer = buffer;
543         cpipe->pipe_buffer.size = size;
544         cpipe->pipe_buffer.in = cnt;
545         cpipe->pipe_buffer.out = 0;
546         cpipe->pipe_buffer.cnt = cnt;
547         atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
548         return (0);
549 }
550
551 /*
552  * Wrapper for pipespace_new() that performs locking assertions.
553  */
554 static int
555 pipespace(cpipe, size)
556         struct pipe *cpipe;
557         int size;
558 {
559
560         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
561                 ("Unlocked pipe passed to pipespace"));
562         return (pipespace_new(cpipe, size));
563 }
564
565 /*
566  * lock a pipe for I/O, blocking other access
567  */
568 static __inline int
569 pipelock(cpipe, catch)
570         struct pipe *cpipe;
571         int catch;
572 {
573         int error;
574
575         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
576         while (cpipe->pipe_state & PIPE_LOCKFL) {
577                 cpipe->pipe_state |= PIPE_LWANT;
578                 error = msleep(cpipe, PIPE_MTX(cpipe),
579                     catch ? (PRIBIO | PCATCH) : PRIBIO,
580                     "pipelk", 0);
581                 if (error != 0)
582                         return (error);
583         }
584         cpipe->pipe_state |= PIPE_LOCKFL;
585         return (0);
586 }
587
588 /*
589  * unlock a pipe I/O lock
590  */
591 static __inline void
592 pipeunlock(cpipe)
593         struct pipe *cpipe;
594 {
595
596         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
597         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
598                 ("Unlocked pipe passed to pipeunlock"));
599         cpipe->pipe_state &= ~PIPE_LOCKFL;
600         if (cpipe->pipe_state & PIPE_LWANT) {
601                 cpipe->pipe_state &= ~PIPE_LWANT;
602                 wakeup(cpipe);
603         }
604 }
605
606 void
607 pipeselwakeup(cpipe)
608         struct pipe *cpipe;
609 {
610
611         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
612         if (cpipe->pipe_state & PIPE_SEL) {
613                 selwakeuppri(&cpipe->pipe_sel, PSOCK);
614                 if (!SEL_WAITING(&cpipe->pipe_sel))
615                         cpipe->pipe_state &= ~PIPE_SEL;
616         }
617         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
618                 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
619         KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
620 }
621
622 /*
623  * Initialize and allocate VM and memory for pipe.  The structure
624  * will start out zero'd from the ctor, so we just manage the kmem.
625  */
626 static int
627 pipe_create(pipe, backing)
628         struct pipe *pipe;
629         int backing;
630 {
631         int error;
632
633         if (backing) {
634                 if (amountpipekva > maxpipekva / 2)
635                         error = pipespace_new(pipe, SMALL_PIPE_SIZE);
636                 else
637                         error = pipespace_new(pipe, PIPE_SIZE);
638         } else {
639                 /* If we're not backing this pipe, no need to do anything. */
640                 error = 0;
641         }
642         pipe->pipe_ino = -1;
643         return (error);
644 }
645
646 /* ARGSUSED */
647 static int
648 pipe_read(fp, uio, active_cred, flags, td)
649         struct file *fp;
650         struct uio *uio;
651         struct ucred *active_cred;
652         struct thread *td;
653         int flags;
654 {
655         struct pipe *rpipe;
656         int error;
657         int nread = 0;
658         int size;
659
660         rpipe = fp->f_data;
661         PIPE_LOCK(rpipe);
662         ++rpipe->pipe_busy;
663         error = pipelock(rpipe, 1);
664         if (error)
665                 goto unlocked_error;
666
667 #ifdef MAC
668         error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
669         if (error)
670                 goto locked_error;
671 #endif
672         if (amountpipekva > (3 * maxpipekva) / 4) {
673                 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
674                         (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
675                         (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
676                         (piperesizeallowed == 1)) {
677                         PIPE_UNLOCK(rpipe);
678                         pipespace(rpipe, SMALL_PIPE_SIZE);
679                         PIPE_LOCK(rpipe);
680                 }
681         }
682
683         while (uio->uio_resid) {
684                 /*
685                  * normal pipe buffer receive
686                  */
687                 if (rpipe->pipe_buffer.cnt > 0) {
688                         size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
689                         if (size > rpipe->pipe_buffer.cnt)
690                                 size = rpipe->pipe_buffer.cnt;
691                         if (size > uio->uio_resid)
692                                 size = uio->uio_resid;
693
694                         PIPE_UNLOCK(rpipe);
695                         error = uiomove(
696                             &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
697                             size, uio);
698                         PIPE_LOCK(rpipe);
699                         if (error)
700                                 break;
701
702                         rpipe->pipe_buffer.out += size;
703                         if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
704                                 rpipe->pipe_buffer.out = 0;
705
706                         rpipe->pipe_buffer.cnt -= size;
707
708                         /*
709                          * If there is no more to read in the pipe, reset
710                          * its pointers to the beginning.  This improves
711                          * cache hit stats.
712                          */
713                         if (rpipe->pipe_buffer.cnt == 0) {
714                                 rpipe->pipe_buffer.in = 0;
715                                 rpipe->pipe_buffer.out = 0;
716                         }
717                         nread += size;
718 #ifndef PIPE_NODIRECT
719                 /*
720                  * Direct copy, bypassing a kernel buffer.
721                  */
722                 } else if ((size = rpipe->pipe_map.cnt) &&
723                            (rpipe->pipe_state & PIPE_DIRECTW)) {
724                         if (size > uio->uio_resid)
725                                 size = (u_int) uio->uio_resid;
726
727                         PIPE_UNLOCK(rpipe);
728                         error = uiomove_fromphys(rpipe->pipe_map.ms,
729                             rpipe->pipe_map.pos, size, uio);
730                         PIPE_LOCK(rpipe);
731                         if (error)
732                                 break;
733                         nread += size;
734                         rpipe->pipe_map.pos += size;
735                         rpipe->pipe_map.cnt -= size;
736                         if (rpipe->pipe_map.cnt == 0) {
737                                 rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
738                                 wakeup(rpipe);
739                         }
740 #endif
741                 } else {
742                         /*
743                          * detect EOF condition
744                          * read returns 0 on EOF, no need to set error
745                          */
746                         if (rpipe->pipe_state & PIPE_EOF)
747                                 break;
748
749                         /*
750                          * If the "write-side" has been blocked, wake it up now.
751                          */
752                         if (rpipe->pipe_state & PIPE_WANTW) {
753                                 rpipe->pipe_state &= ~PIPE_WANTW;
754                                 wakeup(rpipe);
755                         }
756
757                         /*
758                          * Break if some data was read.
759                          */
760                         if (nread > 0)
761                                 break;
762
763                         /*
764                          * Unlock the pipe buffer for our remaining processing.
765                          * We will either break out with an error or we will
766                          * sleep and relock to loop.
767                          */
768                         pipeunlock(rpipe);
769
770                         /*
771                          * Handle non-blocking mode operation or
772                          * wait for more data.
773                          */
774                         if (fp->f_flag & FNONBLOCK) {
775                                 error = EAGAIN;
776                         } else {
777                                 rpipe->pipe_state |= PIPE_WANTR;
778                                 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
779                                     PRIBIO | PCATCH,
780                                     "piperd", 0)) == 0)
781                                         error = pipelock(rpipe, 1);
782                         }
783                         if (error)
784                                 goto unlocked_error;
785                 }
786         }
787 #ifdef MAC
788 locked_error:
789 #endif
790         pipeunlock(rpipe);
791
792         /* XXX: should probably do this before getting any locks. */
793         if (error == 0)
794                 vfs_timestamp(&rpipe->pipe_atime);
795 unlocked_error:
796         --rpipe->pipe_busy;
797
798         /*
799          * PIPE_WANT processing only makes sense if pipe_busy is 0.
800          */
801         if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
802                 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
803                 wakeup(rpipe);
804         } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
805                 /*
806                  * Handle write blocking hysteresis.
807                  */
808                 if (rpipe->pipe_state & PIPE_WANTW) {
809                         rpipe->pipe_state &= ~PIPE_WANTW;
810                         wakeup(rpipe);
811                 }
812         }
813
814         if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
815                 pipeselwakeup(rpipe);
816
817         PIPE_UNLOCK(rpipe);
818         return (error);
819 }
820
821 #ifndef PIPE_NODIRECT
822 /*
823  * Map the sending processes' buffer into kernel space and wire it.
824  * This is similar to a physical write operation.
825  */
826 static int
827 pipe_build_write_buffer(wpipe, uio)
828         struct pipe *wpipe;
829         struct uio *uio;
830 {
831         u_int size;
832         int i;
833
834         PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
835         KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
836                 ("Clone attempt on non-direct write pipe!"));
837
838         if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
839                 size = wpipe->pipe_buffer.size;
840         else
841                 size = uio->uio_iov->iov_len;
842
843         if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
844             (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
845             wpipe->pipe_map.ms, PIPENPAGES)) < 0)
846                 return (EFAULT);
847
848 /*
849  * set up the control block
850  */
851         wpipe->pipe_map.npages = i;
852         wpipe->pipe_map.pos =
853             ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
854         wpipe->pipe_map.cnt = size;
855
856 /*
857  * and update the uio data
858  */
859
860         uio->uio_iov->iov_len -= size;
861         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
862         if (uio->uio_iov->iov_len == 0)
863                 uio->uio_iov++;
864         uio->uio_resid -= size;
865         uio->uio_offset += size;
866         return (0);
867 }
868
869 /*
870  * unmap and unwire the process buffer
871  */
872 static void
873 pipe_destroy_write_buffer(wpipe)
874         struct pipe *wpipe;
875 {
876
877         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
878         vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
879         wpipe->pipe_map.npages = 0;
880 }
881
882 /*
883  * In the case of a signal, the writing process might go away.  This
884  * code copies the data into the circular buffer so that the source
885  * pages can be freed without loss of data.
886  */
887 static void
888 pipe_clone_write_buffer(wpipe)
889         struct pipe *wpipe;
890 {
891         struct uio uio;
892         struct iovec iov;
893         int size;
894         int pos;
895
896         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
897         size = wpipe->pipe_map.cnt;
898         pos = wpipe->pipe_map.pos;
899
900         wpipe->pipe_buffer.in = size;
901         wpipe->pipe_buffer.out = 0;
902         wpipe->pipe_buffer.cnt = size;
903         wpipe->pipe_state &= ~PIPE_DIRECTW;
904
905         PIPE_UNLOCK(wpipe);
906         iov.iov_base = wpipe->pipe_buffer.buffer;
907         iov.iov_len = size;
908         uio.uio_iov = &iov;
909         uio.uio_iovcnt = 1;
910         uio.uio_offset = 0;
911         uio.uio_resid = size;
912         uio.uio_segflg = UIO_SYSSPACE;
913         uio.uio_rw = UIO_READ;
914         uio.uio_td = curthread;
915         uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
916         PIPE_LOCK(wpipe);
917         pipe_destroy_write_buffer(wpipe);
918 }
919
920 /*
921  * This implements the pipe buffer write mechanism.  Note that only
922  * a direct write OR a normal pipe write can be pending at any given time.
923  * If there are any characters in the pipe buffer, the direct write will
924  * be deferred until the receiving process grabs all of the bytes from
925  * the pipe buffer.  Then the direct mapping write is set-up.
926  */
927 static int
928 pipe_direct_write(wpipe, uio)
929         struct pipe *wpipe;
930         struct uio *uio;
931 {
932         int error;
933
934 retry:
935         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
936         error = pipelock(wpipe, 1);
937         if (wpipe->pipe_state & PIPE_EOF)
938                 error = EPIPE;
939         if (error) {
940                 pipeunlock(wpipe);
941                 goto error1;
942         }
943         while (wpipe->pipe_state & PIPE_DIRECTW) {
944                 if (wpipe->pipe_state & PIPE_WANTR) {
945                         wpipe->pipe_state &= ~PIPE_WANTR;
946                         wakeup(wpipe);
947                 }
948                 pipeselwakeup(wpipe);
949                 wpipe->pipe_state |= PIPE_WANTW;
950                 pipeunlock(wpipe);
951                 error = msleep(wpipe, PIPE_MTX(wpipe),
952                     PRIBIO | PCATCH, "pipdww", 0);
953                 if (error)
954                         goto error1;
955                 else
956                         goto retry;
957         }
958         wpipe->pipe_map.cnt = 0;        /* transfer not ready yet */
959         if (wpipe->pipe_buffer.cnt > 0) {
960                 if (wpipe->pipe_state & PIPE_WANTR) {
961                         wpipe->pipe_state &= ~PIPE_WANTR;
962                         wakeup(wpipe);
963                 }
964                 pipeselwakeup(wpipe);
965                 wpipe->pipe_state |= PIPE_WANTW;
966                 pipeunlock(wpipe);
967                 error = msleep(wpipe, PIPE_MTX(wpipe),
968                     PRIBIO | PCATCH, "pipdwc", 0);
969                 if (error)
970                         goto error1;
971                 else
972                         goto retry;
973         }
974
975         wpipe->pipe_state |= PIPE_DIRECTW;
976
977         PIPE_UNLOCK(wpipe);
978         error = pipe_build_write_buffer(wpipe, uio);
979         PIPE_LOCK(wpipe);
980         if (error) {
981                 wpipe->pipe_state &= ~PIPE_DIRECTW;
982                 pipeunlock(wpipe);
983                 goto error1;
984         }
985
986         error = 0;
987         while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
988                 if (wpipe->pipe_state & PIPE_EOF) {
989                         pipe_destroy_write_buffer(wpipe);
990                         pipeselwakeup(wpipe);
991                         pipeunlock(wpipe);
992                         error = EPIPE;
993                         goto error1;
994                 }
995                 if (wpipe->pipe_state & PIPE_WANTR) {
996                         wpipe->pipe_state &= ~PIPE_WANTR;
997                         wakeup(wpipe);
998                 }
999                 pipeselwakeup(wpipe);
1000                 wpipe->pipe_state |= PIPE_WANTW;
1001                 pipeunlock(wpipe);
1002                 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1003                     "pipdwt", 0);
1004                 pipelock(wpipe, 0);
1005         }
1006
1007         if (wpipe->pipe_state & PIPE_EOF)
1008                 error = EPIPE;
1009         if (wpipe->pipe_state & PIPE_DIRECTW) {
1010                 /*
1011                  * this bit of trickery substitutes a kernel buffer for
1012                  * the process that might be going away.
1013                  */
1014                 pipe_clone_write_buffer(wpipe);
1015         } else {
1016                 pipe_destroy_write_buffer(wpipe);
1017         }
1018         pipeunlock(wpipe);
1019         return (error);
1020
1021 error1:
1022         wakeup(wpipe);
1023         return (error);
1024 }
1025 #endif
1026
1027 static int
1028 pipe_write(fp, uio, active_cred, flags, td)
1029         struct file *fp;
1030         struct uio *uio;
1031         struct ucred *active_cred;
1032         struct thread *td;
1033         int flags;
1034 {
1035         int error = 0;
1036         int desiredsize;
1037         ssize_t orig_resid;
1038         struct pipe *wpipe, *rpipe;
1039
1040         rpipe = fp->f_data;
1041         wpipe = PIPE_PEER(rpipe);
1042         PIPE_LOCK(rpipe);
1043         error = pipelock(wpipe, 1);
1044         if (error) {
1045                 PIPE_UNLOCK(rpipe);
1046                 return (error);
1047         }
1048         /*
1049          * detect loss of pipe read side, issue SIGPIPE if lost.
1050          */
1051         if (wpipe->pipe_present != PIPE_ACTIVE ||
1052             (wpipe->pipe_state & PIPE_EOF)) {
1053                 pipeunlock(wpipe);
1054                 PIPE_UNLOCK(rpipe);
1055                 return (EPIPE);
1056         }
1057 #ifdef MAC
1058         error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1059         if (error) {
1060                 pipeunlock(wpipe);
1061                 PIPE_UNLOCK(rpipe);
1062                 return (error);
1063         }
1064 #endif
1065         ++wpipe->pipe_busy;
1066
1067         /* Choose a larger size if it's advantageous */
1068         desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1069         while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1070                 if (piperesizeallowed != 1)
1071                         break;
1072                 if (amountpipekva > maxpipekva / 2)
1073                         break;
1074                 if (desiredsize == BIG_PIPE_SIZE)
1075                         break;
1076                 desiredsize = desiredsize * 2;
1077         }
1078
1079         /* Choose a smaller size if we're in a OOM situation */
1080         if ((amountpipekva > (3 * maxpipekva) / 4) &&
1081                 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1082                 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1083                 (piperesizeallowed == 1))
1084                 desiredsize = SMALL_PIPE_SIZE;
1085
1086         /* Resize if the above determined that a new size was necessary */
1087         if ((desiredsize != wpipe->pipe_buffer.size) &&
1088                 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1089                 PIPE_UNLOCK(wpipe);
1090                 pipespace(wpipe, desiredsize);
1091                 PIPE_LOCK(wpipe);
1092         }
1093         if (wpipe->pipe_buffer.size == 0) {
1094                 /*
1095                  * This can only happen for reverse direction use of pipes
1096                  * in a complete OOM situation.
1097                  */
1098                 error = ENOMEM;
1099                 --wpipe->pipe_busy;
1100                 pipeunlock(wpipe);
1101                 PIPE_UNLOCK(wpipe);
1102                 return (error);
1103         }
1104
1105         pipeunlock(wpipe);
1106
1107         orig_resid = uio->uio_resid;
1108
1109         while (uio->uio_resid) {
1110                 int space;
1111
1112                 pipelock(wpipe, 0);
1113                 if (wpipe->pipe_state & PIPE_EOF) {
1114                         pipeunlock(wpipe);
1115                         error = EPIPE;
1116                         break;
1117                 }
1118 #ifndef PIPE_NODIRECT
1119                 /*
1120                  * If the transfer is large, we can gain performance if
1121                  * we do process-to-process copies directly.
1122                  * If the write is non-blocking, we don't use the
1123                  * direct write mechanism.
1124                  *
1125                  * The direct write mechanism will detect the reader going
1126                  * away on us.
1127                  */
1128                 if (uio->uio_segflg == UIO_USERSPACE &&
1129                     uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1130                     wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1131                     (fp->f_flag & FNONBLOCK) == 0) {
1132                         pipeunlock(wpipe);
1133                         error = pipe_direct_write(wpipe, uio);
1134                         if (error)
1135                                 break;
1136                         continue;
1137                 }
1138 #endif
1139
1140                 /*
1141                  * Pipe buffered writes cannot be coincidental with
1142                  * direct writes.  We wait until the currently executing
1143                  * direct write is completed before we start filling the
1144                  * pipe buffer.  We break out if a signal occurs or the
1145                  * reader goes away.
1146                  */
1147                 if (wpipe->pipe_state & PIPE_DIRECTW) {
1148                         if (wpipe->pipe_state & PIPE_WANTR) {
1149                                 wpipe->pipe_state &= ~PIPE_WANTR;
1150                                 wakeup(wpipe);
1151                         }
1152                         pipeselwakeup(wpipe);
1153                         wpipe->pipe_state |= PIPE_WANTW;
1154                         pipeunlock(wpipe);
1155                         error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1156                             "pipbww", 0);
1157                         if (error)
1158                                 break;
1159                         else
1160                                 continue;
1161                 }
1162
1163                 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1164
1165                 /* Writes of size <= PIPE_BUF must be atomic. */
1166                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1167                         space = 0;
1168
1169                 if (space > 0) {
1170                         int size;       /* Transfer size */
1171                         int segsize;    /* first segment to transfer */
1172
1173                         /*
1174                          * Transfer size is minimum of uio transfer
1175                          * and free space in pipe buffer.
1176                          */
1177                         if (space > uio->uio_resid)
1178                                 size = uio->uio_resid;
1179                         else
1180                                 size = space;
1181                         /*
1182                          * First segment to transfer is minimum of
1183                          * transfer size and contiguous space in
1184                          * pipe buffer.  If first segment to transfer
1185                          * is less than the transfer size, we've got
1186                          * a wraparound in the buffer.
1187                          */
1188                         segsize = wpipe->pipe_buffer.size -
1189                                 wpipe->pipe_buffer.in;
1190                         if (segsize > size)
1191                                 segsize = size;
1192
1193                         /* Transfer first segment */
1194
1195                         PIPE_UNLOCK(rpipe);
1196                         error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1197                                         segsize, uio);
1198                         PIPE_LOCK(rpipe);
1199
1200                         if (error == 0 && segsize < size) {
1201                                 KASSERT(wpipe->pipe_buffer.in + segsize ==
1202                                         wpipe->pipe_buffer.size,
1203                                         ("Pipe buffer wraparound disappeared"));
1204                                 /*
1205                                  * Transfer remaining part now, to
1206                                  * support atomic writes.  Wraparound
1207                                  * happened.
1208                                  */
1209
1210                                 PIPE_UNLOCK(rpipe);
1211                                 error = uiomove(
1212                                     &wpipe->pipe_buffer.buffer[0],
1213                                     size - segsize, uio);
1214                                 PIPE_LOCK(rpipe);
1215                         }
1216                         if (error == 0) {
1217                                 wpipe->pipe_buffer.in += size;
1218                                 if (wpipe->pipe_buffer.in >=
1219                                     wpipe->pipe_buffer.size) {
1220                                         KASSERT(wpipe->pipe_buffer.in ==
1221                                                 size - segsize +
1222                                                 wpipe->pipe_buffer.size,
1223                                                 ("Expected wraparound bad"));
1224                                         wpipe->pipe_buffer.in = size - segsize;
1225                                 }
1226
1227                                 wpipe->pipe_buffer.cnt += size;
1228                                 KASSERT(wpipe->pipe_buffer.cnt <=
1229                                         wpipe->pipe_buffer.size,
1230                                         ("Pipe buffer overflow"));
1231                         }
1232                         pipeunlock(wpipe);
1233                         if (error != 0)
1234                                 break;
1235                 } else {
1236                         /*
1237                          * If the "read-side" has been blocked, wake it up now.
1238                          */
1239                         if (wpipe->pipe_state & PIPE_WANTR) {
1240                                 wpipe->pipe_state &= ~PIPE_WANTR;
1241                                 wakeup(wpipe);
1242                         }
1243
1244                         /*
1245                          * don't block on non-blocking I/O
1246                          */
1247                         if (fp->f_flag & FNONBLOCK) {
1248                                 error = EAGAIN;
1249                                 pipeunlock(wpipe);
1250                                 break;
1251                         }
1252
1253                         /*
1254                          * We have no more space and have something to offer,
1255                          * wake up select/poll.
1256                          */
1257                         pipeselwakeup(wpipe);
1258
1259                         wpipe->pipe_state |= PIPE_WANTW;
1260                         pipeunlock(wpipe);
1261                         error = msleep(wpipe, PIPE_MTX(rpipe),
1262                             PRIBIO | PCATCH, "pipewr", 0);
1263                         if (error != 0)
1264                                 break;
1265                 }
1266         }
1267
1268         pipelock(wpipe, 0);
1269         --wpipe->pipe_busy;
1270
1271         if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1272                 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1273                 wakeup(wpipe);
1274         } else if (wpipe->pipe_buffer.cnt > 0) {
1275                 /*
1276                  * If we have put any characters in the buffer, we wake up
1277                  * the reader.
1278                  */
1279                 if (wpipe->pipe_state & PIPE_WANTR) {
1280                         wpipe->pipe_state &= ~PIPE_WANTR;
1281                         wakeup(wpipe);
1282                 }
1283         }
1284
1285         /*
1286          * Don't return EPIPE if I/O was successful
1287          */
1288         if ((wpipe->pipe_buffer.cnt == 0) &&
1289             (uio->uio_resid == 0) &&
1290             (error == EPIPE)) {
1291                 error = 0;
1292         }
1293
1294         if (error == 0)
1295                 vfs_timestamp(&wpipe->pipe_mtime);
1296
1297         /*
1298          * We have something to offer,
1299          * wake up select/poll.
1300          */
1301         if (wpipe->pipe_buffer.cnt)
1302                 pipeselwakeup(wpipe);
1303
1304         pipeunlock(wpipe);
1305         PIPE_UNLOCK(rpipe);
1306         return (error);
1307 }
1308
1309 /* ARGSUSED */
1310 static int
1311 pipe_truncate(fp, length, active_cred, td)
1312         struct file *fp;
1313         off_t length;
1314         struct ucred *active_cred;
1315         struct thread *td;
1316 {
1317
1318         /* For named pipes call the vnode operation. */
1319         if (fp->f_vnode != NULL)
1320                 return (vnops.fo_truncate(fp, length, active_cred, td));
1321         return (EINVAL);
1322 }
1323
1324 /*
1325  * we implement a very minimal set of ioctls for compatibility with sockets.
1326  */
1327 static int
1328 pipe_ioctl(fp, cmd, data, active_cred, td)
1329         struct file *fp;
1330         u_long cmd;
1331         void *data;
1332         struct ucred *active_cred;
1333         struct thread *td;
1334 {
1335         struct pipe *mpipe = fp->f_data;
1336         int error;
1337
1338         PIPE_LOCK(mpipe);
1339
1340 #ifdef MAC
1341         error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1342         if (error) {
1343                 PIPE_UNLOCK(mpipe);
1344                 return (error);
1345         }
1346 #endif
1347
1348         error = 0;
1349         switch (cmd) {
1350
1351         case FIONBIO:
1352                 break;
1353
1354         case FIOASYNC:
1355                 if (*(int *)data) {
1356                         mpipe->pipe_state |= PIPE_ASYNC;
1357                 } else {
1358                         mpipe->pipe_state &= ~PIPE_ASYNC;
1359                 }
1360                 break;
1361
1362         case FIONREAD:
1363                 if (!(fp->f_flag & FREAD)) {
1364                         *(int *)data = 0;
1365                         PIPE_UNLOCK(mpipe);
1366                         return (0);
1367                 }
1368                 if (mpipe->pipe_state & PIPE_DIRECTW)
1369                         *(int *)data = mpipe->pipe_map.cnt;
1370                 else
1371                         *(int *)data = mpipe->pipe_buffer.cnt;
1372                 break;
1373
1374         case FIOSETOWN:
1375                 PIPE_UNLOCK(mpipe);
1376                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1377                 goto out_unlocked;
1378
1379         case FIOGETOWN:
1380                 *(int *)data = fgetown(&mpipe->pipe_sigio);
1381                 break;
1382
1383         /* This is deprecated, FIOSETOWN should be used instead. */
1384         case TIOCSPGRP:
1385                 PIPE_UNLOCK(mpipe);
1386                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1387                 goto out_unlocked;
1388
1389         /* This is deprecated, FIOGETOWN should be used instead. */
1390         case TIOCGPGRP:
1391                 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1392                 break;
1393
1394         default:
1395                 error = ENOTTY;
1396                 break;
1397         }
1398         PIPE_UNLOCK(mpipe);
1399 out_unlocked:
1400         return (error);
1401 }
1402
1403 static int
1404 pipe_poll(fp, events, active_cred, td)
1405         struct file *fp;
1406         int events;
1407         struct ucred *active_cred;
1408         struct thread *td;
1409 {
1410         struct pipe *rpipe;
1411         struct pipe *wpipe;
1412         int levents, revents;
1413 #ifdef MAC
1414         int error;
1415 #endif
1416
1417         revents = 0;
1418         rpipe = fp->f_data;
1419         wpipe = PIPE_PEER(rpipe);
1420         PIPE_LOCK(rpipe);
1421 #ifdef MAC
1422         error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1423         if (error)
1424                 goto locked_error;
1425 #endif
1426         if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1427                 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1428                     (rpipe->pipe_buffer.cnt > 0))
1429                         revents |= events & (POLLIN | POLLRDNORM);
1430
1431         if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1432                 if (wpipe->pipe_present != PIPE_ACTIVE ||
1433                     (wpipe->pipe_state & PIPE_EOF) ||
1434                     (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1435                      ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1436                          wpipe->pipe_buffer.size == 0)))
1437                         revents |= events & (POLLOUT | POLLWRNORM);
1438
1439         levents = events &
1440             (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1441         if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1442             fp->f_seqcount == rpipe->pipe_wgen)
1443                 events |= POLLINIGNEOF;
1444
1445         if ((events & POLLINIGNEOF) == 0) {
1446                 if (rpipe->pipe_state & PIPE_EOF) {
1447                         revents |= (events & (POLLIN | POLLRDNORM));
1448                         if (wpipe->pipe_present != PIPE_ACTIVE ||
1449                             (wpipe->pipe_state & PIPE_EOF))
1450                                 revents |= POLLHUP;
1451                 }
1452         }
1453
1454         if (revents == 0) {
1455                 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1456                         selrecord(td, &rpipe->pipe_sel);
1457                         if (SEL_WAITING(&rpipe->pipe_sel))
1458                                 rpipe->pipe_state |= PIPE_SEL;
1459                 }
1460
1461                 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1462                         selrecord(td, &wpipe->pipe_sel);
1463                         if (SEL_WAITING(&wpipe->pipe_sel))
1464                                 wpipe->pipe_state |= PIPE_SEL;
1465                 }
1466         }
1467 #ifdef MAC
1468 locked_error:
1469 #endif
1470         PIPE_UNLOCK(rpipe);
1471
1472         return (revents);
1473 }
1474
1475 /*
1476  * We shouldn't need locks here as we're doing a read and this should
1477  * be a natural race.
1478  */
1479 static int
1480 pipe_stat(fp, ub, active_cred, td)
1481         struct file *fp;
1482         struct stat *ub;
1483         struct ucred *active_cred;
1484         struct thread *td;
1485 {
1486         struct pipe *pipe;
1487         int new_unr;
1488 #ifdef MAC
1489         int error;
1490 #endif
1491
1492         pipe = fp->f_data;
1493         PIPE_LOCK(pipe);
1494 #ifdef MAC
1495         error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1496         if (error) {
1497                 PIPE_UNLOCK(pipe);
1498                 return (error);
1499         }
1500 #endif
1501
1502         /* For named pipes ask the underlying filesystem. */
1503         if (pipe->pipe_state & PIPE_NAMED) {
1504                 PIPE_UNLOCK(pipe);
1505                 return (vnops.fo_stat(fp, ub, active_cred, td));
1506         }
1507
1508         /*
1509          * Lazily allocate an inode number for the pipe.  Most pipe
1510          * users do not call fstat(2) on the pipe, which means that
1511          * postponing the inode allocation until it is must be
1512          * returned to userland is useful.  If alloc_unr failed,
1513          * assign st_ino zero instead of returning an error.
1514          * Special pipe_ino values:
1515          *  -1 - not yet initialized;
1516          *  0  - alloc_unr failed, return 0 as st_ino forever.
1517          */
1518         if (pipe->pipe_ino == (ino_t)-1) {
1519                 new_unr = alloc_unr(pipeino_unr);
1520                 if (new_unr != -1)
1521                         pipe->pipe_ino = new_unr;
1522                 else
1523                         pipe->pipe_ino = 0;
1524         }
1525         PIPE_UNLOCK(pipe);
1526
1527         bzero(ub, sizeof(*ub));
1528         ub->st_mode = S_IFIFO;
1529         ub->st_blksize = PAGE_SIZE;
1530         if (pipe->pipe_state & PIPE_DIRECTW)
1531                 ub->st_size = pipe->pipe_map.cnt;
1532         else
1533                 ub->st_size = pipe->pipe_buffer.cnt;
1534         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1535         ub->st_atim = pipe->pipe_atime;
1536         ub->st_mtim = pipe->pipe_mtime;
1537         ub->st_ctim = pipe->pipe_ctime;
1538         ub->st_uid = fp->f_cred->cr_uid;
1539         ub->st_gid = fp->f_cred->cr_gid;
1540         ub->st_dev = pipedev_ino;
1541         ub->st_ino = pipe->pipe_ino;
1542         /*
1543          * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1544          */
1545         return (0);
1546 }
1547
1548 /* ARGSUSED */
1549 static int
1550 pipe_close(fp, td)
1551         struct file *fp;
1552         struct thread *td;
1553 {
1554
1555         if (fp->f_vnode != NULL) 
1556                 return vnops.fo_close(fp, td);
1557         fp->f_ops = &badfileops;
1558         pipe_dtor(fp->f_data);
1559         fp->f_data = NULL;
1560         return (0);
1561 }
1562
1563 static int
1564 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1565 {
1566         struct pipe *cpipe;
1567         int error;
1568
1569         cpipe = fp->f_data;
1570         if (cpipe->pipe_state & PIPE_NAMED)
1571                 error = vn_chmod(fp, mode, active_cred, td);
1572         else
1573                 error = invfo_chmod(fp, mode, active_cred, td);
1574         return (error);
1575 }
1576
1577 static int
1578 pipe_chown(fp, uid, gid, active_cred, td)
1579         struct file *fp;
1580         uid_t uid;
1581         gid_t gid;
1582         struct ucred *active_cred;
1583         struct thread *td;
1584 {
1585         struct pipe *cpipe;
1586         int error;
1587
1588         cpipe = fp->f_data;
1589         if (cpipe->pipe_state & PIPE_NAMED)
1590                 error = vn_chown(fp, uid, gid, active_cred, td);
1591         else
1592                 error = invfo_chown(fp, uid, gid, active_cred, td);
1593         return (error);
1594 }
1595
1596 static void
1597 pipe_free_kmem(cpipe)
1598         struct pipe *cpipe;
1599 {
1600
1601         KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1602             ("pipe_free_kmem: pipe mutex locked"));
1603
1604         if (cpipe->pipe_buffer.buffer != NULL) {
1605                 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1606                 vm_map_remove(pipe_map,
1607                     (vm_offset_t)cpipe->pipe_buffer.buffer,
1608                     (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1609                 cpipe->pipe_buffer.buffer = NULL;
1610         }
1611 #ifndef PIPE_NODIRECT
1612         {
1613                 cpipe->pipe_map.cnt = 0;
1614                 cpipe->pipe_map.pos = 0;
1615                 cpipe->pipe_map.npages = 0;
1616         }
1617 #endif
1618 }
1619
1620 /*
1621  * shutdown the pipe
1622  */
1623 static void
1624 pipeclose(cpipe)
1625         struct pipe *cpipe;
1626 {
1627         struct pipepair *pp;
1628         struct pipe *ppipe;
1629
1630         KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1631
1632         PIPE_LOCK(cpipe);
1633         pipelock(cpipe, 0);
1634         pp = cpipe->pipe_pair;
1635
1636         pipeselwakeup(cpipe);
1637
1638         /*
1639          * If the other side is blocked, wake it up saying that
1640          * we want to close it down.
1641          */
1642         cpipe->pipe_state |= PIPE_EOF;
1643         while (cpipe->pipe_busy) {
1644                 wakeup(cpipe);
1645                 cpipe->pipe_state |= PIPE_WANT;
1646                 pipeunlock(cpipe);
1647                 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1648                 pipelock(cpipe, 0);
1649         }
1650
1651
1652         /*
1653          * Disconnect from peer, if any.
1654          */
1655         ppipe = cpipe->pipe_peer;
1656         if (ppipe->pipe_present == PIPE_ACTIVE) {
1657                 pipeselwakeup(ppipe);
1658
1659                 ppipe->pipe_state |= PIPE_EOF;
1660                 wakeup(ppipe);
1661                 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1662         }
1663
1664         /*
1665          * Mark this endpoint as free.  Release kmem resources.  We
1666          * don't mark this endpoint as unused until we've finished
1667          * doing that, or the pipe might disappear out from under
1668          * us.
1669          */
1670         PIPE_UNLOCK(cpipe);
1671         pipe_free_kmem(cpipe);
1672         PIPE_LOCK(cpipe);
1673         cpipe->pipe_present = PIPE_CLOSING;
1674         pipeunlock(cpipe);
1675
1676         /*
1677          * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1678          * PIPE_FINALIZED, that allows other end to free the
1679          * pipe_pair, only after the knotes are completely dismantled.
1680          */
1681         knlist_clear(&cpipe->pipe_sel.si_note, 1);
1682         cpipe->pipe_present = PIPE_FINALIZED;
1683         seldrain(&cpipe->pipe_sel);
1684         knlist_destroy(&cpipe->pipe_sel.si_note);
1685
1686         /*
1687          * If both endpoints are now closed, release the memory for the
1688          * pipe pair.  If not, unlock.
1689          */
1690         if (ppipe->pipe_present == PIPE_FINALIZED) {
1691                 PIPE_UNLOCK(cpipe);
1692 #ifdef MAC
1693                 mac_pipe_destroy(pp);
1694 #endif
1695                 uma_zfree(pipe_zone, cpipe->pipe_pair);
1696         } else
1697                 PIPE_UNLOCK(cpipe);
1698 }
1699
1700 /*ARGSUSED*/
1701 static int
1702 pipe_kqfilter(struct file *fp, struct knote *kn)
1703 {
1704         struct pipe *cpipe;
1705
1706         /*
1707          * If a filter is requested that is not supported by this file
1708          * descriptor, don't return an error, but also don't ever generate an
1709          * event.
1710          */
1711         if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1712                 kn->kn_fop = &pipe_nfiltops;
1713                 return (0);
1714         }
1715         if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1716                 kn->kn_fop = &pipe_nfiltops;
1717                 return (0);
1718         }
1719         cpipe = fp->f_data;
1720         PIPE_LOCK(cpipe);
1721         switch (kn->kn_filter) {
1722         case EVFILT_READ:
1723                 kn->kn_fop = &pipe_rfiltops;
1724                 break;
1725         case EVFILT_WRITE:
1726                 kn->kn_fop = &pipe_wfiltops;
1727                 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1728                         /* other end of pipe has been closed */
1729                         PIPE_UNLOCK(cpipe);
1730                         return (EPIPE);
1731                 }
1732                 cpipe = PIPE_PEER(cpipe);
1733                 break;
1734         default:
1735                 PIPE_UNLOCK(cpipe);
1736                 return (EINVAL);
1737         }
1738
1739         kn->kn_hook = cpipe; 
1740         knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1741         PIPE_UNLOCK(cpipe);
1742         return (0);
1743 }
1744
1745 static void
1746 filt_pipedetach(struct knote *kn)
1747 {
1748         struct pipe *cpipe = kn->kn_hook;
1749
1750         PIPE_LOCK(cpipe);
1751         knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1752         PIPE_UNLOCK(cpipe);
1753 }
1754
1755 /*ARGSUSED*/
1756 static int
1757 filt_piperead(struct knote *kn, long hint)
1758 {
1759         struct pipe *rpipe = kn->kn_hook;
1760         struct pipe *wpipe = rpipe->pipe_peer;
1761         int ret;
1762
1763         PIPE_LOCK(rpipe);
1764         kn->kn_data = rpipe->pipe_buffer.cnt;
1765         if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1766                 kn->kn_data = rpipe->pipe_map.cnt;
1767
1768         if ((rpipe->pipe_state & PIPE_EOF) ||
1769             wpipe->pipe_present != PIPE_ACTIVE ||
1770             (wpipe->pipe_state & PIPE_EOF)) {
1771                 kn->kn_flags |= EV_EOF;
1772                 PIPE_UNLOCK(rpipe);
1773                 return (1);
1774         }
1775         ret = kn->kn_data > 0;
1776         PIPE_UNLOCK(rpipe);
1777         return ret;
1778 }
1779
1780 /*ARGSUSED*/
1781 static int
1782 filt_pipewrite(struct knote *kn, long hint)
1783 {
1784         struct pipe *wpipe;
1785    
1786         wpipe = kn->kn_hook;
1787         PIPE_LOCK(wpipe);
1788         if (wpipe->pipe_present != PIPE_ACTIVE ||
1789             (wpipe->pipe_state & PIPE_EOF)) {
1790                 kn->kn_data = 0;
1791                 kn->kn_flags |= EV_EOF;
1792                 PIPE_UNLOCK(wpipe);
1793                 return (1);
1794         }
1795         kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1796             (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1797         if (wpipe->pipe_state & PIPE_DIRECTW)
1798                 kn->kn_data = 0;
1799
1800         PIPE_UNLOCK(wpipe);
1801         return (kn->kn_data >= PIPE_BUF);
1802 }
1803
1804 static void
1805 filt_pipedetach_notsup(struct knote *kn)
1806 {
1807
1808 }
1809
1810 static int
1811 filt_pipenotsup(struct knote *kn, long hint)
1812 {
1813
1814         return (0);
1815 }