]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/uipc_ktls.c
ktls: Close a race with setting so_error when dropping a connection.
[FreeBSD/FreeBSD.git] / sys / kern / uipc_ktls.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014-2019 Netflix Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_rss.h"
34
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/domainset.h>
38 #include <sys/ktls.h>
39 #include <sys/lock.h>
40 #include <sys/mbuf.h>
41 #include <sys/mutex.h>
42 #include <sys/rmlock.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/refcount.h>
46 #include <sys/smp.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 #include <sys/kthread.h>
52 #include <sys/uio.h>
53 #include <sys/vmmeter.h>
54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
55 #include <machine/pcb.h>
56 #endif
57 #include <machine/vmparam.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #ifdef RSS
61 #include <net/netisr.h>
62 #include <net/rss_config.h>
63 #endif
64 #include <net/route.h>
65 #include <net/route/nhop.h>
66 #if defined(INET) || defined(INET6)
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #endif
70 #include <netinet/tcp_var.h>
71 #ifdef TCP_OFFLOAD
72 #include <netinet/tcp_offload.h>
73 #endif
74 #include <opencrypto/xform.h>
75 #include <vm/uma_dbg.h>
76 #include <vm/vm.h>
77 #include <vm/vm_pageout.h>
78 #include <vm/vm_page.h>
79
80 struct ktls_wq {
81         struct mtx      mtx;
82         STAILQ_HEAD(, mbuf) m_head;
83         STAILQ_HEAD(, socket) so_head;
84         bool            running;
85 } __aligned(CACHE_LINE_SIZE);
86
87 struct ktls_domain_info {
88         int count;
89         int cpu[MAXCPU];
90 };
91
92 struct ktls_domain_info ktls_domains[MAXMEMDOM];
93 static struct ktls_wq *ktls_wq;
94 static struct proc *ktls_proc;
95 LIST_HEAD(, ktls_crypto_backend) ktls_backends;
96 static struct rmlock ktls_backends_lock;
97 static uma_zone_t ktls_session_zone;
98 static uint16_t ktls_cpuid_lookup[MAXCPU];
99
100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
101     "Kernel TLS offload");
102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
103     "Kernel TLS offload stats");
104
105 static int ktls_allow_unload;
106 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN,
107     &ktls_allow_unload, 0, "Allow software crypto modules to unload");
108
109 #ifdef RSS
110 static int ktls_bind_threads = 1;
111 #else
112 static int ktls_bind_threads;
113 #endif
114 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
115     &ktls_bind_threads, 0,
116     "Bind crypto threads to cores (1) or cores and domains (2) at boot");
117
118 static u_int ktls_maxlen = 16384;
119 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN,
120     &ktls_maxlen, 0, "Maximum TLS record size");
121
122 static int ktls_number_threads;
123 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
124     &ktls_number_threads, 0,
125     "Number of TLS threads in thread-pool");
126
127 static bool ktls_offload_enable;
128 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
129     &ktls_offload_enable, 0,
130     "Enable support for kernel TLS offload");
131
132 static bool ktls_cbc_enable = true;
133 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
134     &ktls_cbc_enable, 1,
135     "Enable Support of AES-CBC crypto for kernel TLS");
136
137 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
138 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
139     &ktls_tasks_active, "Number of active tasks");
140
141 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
142 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
143     &ktls_cnt_tx_pending,
144     "Number of TLS 1.0 records waiting for earlier TLS records");
145
146 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
147 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
148     &ktls_cnt_tx_queued,
149     "Number of TLS records in queue to tasks for SW encryption");
150
151 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
153     &ktls_cnt_rx_queued,
154     "Number of TLS sockets in queue to tasks for SW decryption");
155
156 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
157 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
158     CTLFLAG_RD, &ktls_offload_total,
159     "Total successful TLS setups (parameters set)");
160
161 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
163     CTLFLAG_RD, &ktls_offload_enable_calls,
164     "Total number of TLS enable calls made");
165
166 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
167 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
168     &ktls_offload_active, "Total Active TLS sessions");
169
170 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
171 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
172     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
173
174 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
175 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
176     &ktls_offload_failed_crypto, "Total TLS crypto failures");
177
178 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
180     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
181
182 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
183 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
184     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
185
186 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
187 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
188     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
189
190 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
191     "Software TLS session stats");
192 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
193     "Hardware (ifnet) TLS session stats");
194 #ifdef TCP_OFFLOAD
195 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
196     "TOE TLS session stats");
197 #endif
198
199 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
200 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
201     "Active number of software TLS sessions using AES-CBC");
202
203 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
204 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
205     "Active number of software TLS sessions using AES-GCM");
206
207 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
208 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
209     &ktls_sw_chacha20,
210     "Active number of software TLS sessions using Chacha20-Poly1305");
211
212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
213 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
214     &ktls_ifnet_cbc,
215     "Active number of ifnet TLS sessions using AES-CBC");
216
217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
218 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
219     &ktls_ifnet_gcm,
220     "Active number of ifnet TLS sessions using AES-GCM");
221
222 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
223 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
224     &ktls_ifnet_chacha20,
225     "Active number of ifnet TLS sessions using Chacha20-Poly1305");
226
227 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
228 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
229     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
230
231 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
232 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
233     &ktls_ifnet_reset_dropped,
234     "TLS sessions dropped after failing to update ifnet send tag");
235
236 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
237 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
238     &ktls_ifnet_reset_failed,
239     "TLS sessions that failed to allocate a new ifnet send tag");
240
241 static int ktls_ifnet_permitted;
242 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
243     &ktls_ifnet_permitted, 1,
244     "Whether to permit hardware (ifnet) TLS sessions");
245
246 #ifdef TCP_OFFLOAD
247 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
248 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
249     &ktls_toe_cbc,
250     "Active number of TOE TLS sessions using AES-CBC");
251
252 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
253 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
254     &ktls_toe_gcm,
255     "Active number of TOE TLS sessions using AES-GCM");
256
257 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
258 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
259     &ktls_toe_chacha20,
260     "Active number of TOE TLS sessions using Chacha20-Poly1305");
261 #endif
262
263 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
264
265 static void ktls_cleanup(struct ktls_session *tls);
266 #if defined(INET) || defined(INET6)
267 static void ktls_reset_send_tag(void *context, int pending);
268 #endif
269 static void ktls_work_thread(void *ctx);
270
271 int
272 ktls_crypto_backend_register(struct ktls_crypto_backend *be)
273 {
274         struct ktls_crypto_backend *curr_be, *tmp;
275
276         if (be->api_version != KTLS_API_VERSION) {
277                 printf("KTLS: API version mismatch (%d vs %d) for %s\n",
278                     be->api_version, KTLS_API_VERSION,
279                     be->name);
280                 return (EINVAL);
281         }
282
283         rm_wlock(&ktls_backends_lock);
284         printf("KTLS: Registering crypto method %s with prio %d\n",
285                be->name, be->prio);
286         if (LIST_EMPTY(&ktls_backends)) {
287                 LIST_INSERT_HEAD(&ktls_backends, be, next);
288         } else {
289                 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) {
290                         if (curr_be->prio < be->prio) {
291                                 LIST_INSERT_BEFORE(curr_be, be, next);
292                                 break;
293                         }
294                         if (LIST_NEXT(curr_be, next) == NULL) {
295                                 LIST_INSERT_AFTER(curr_be, be, next);
296                                 break;
297                         }
298                 }
299         }
300         rm_wunlock(&ktls_backends_lock);
301         return (0);
302 }
303
304 int
305 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be)
306 {
307         struct ktls_crypto_backend *tmp;
308
309         /*
310          * Don't error if the backend isn't registered.  This permits
311          * MOD_UNLOAD handlers to use this function unconditionally.
312          */
313         rm_wlock(&ktls_backends_lock);
314         LIST_FOREACH(tmp, &ktls_backends, next) {
315                 if (tmp == be)
316                         break;
317         }
318         if (tmp == NULL) {
319                 rm_wunlock(&ktls_backends_lock);
320                 return (0);
321         }
322
323         if (!ktls_allow_unload) {
324                 rm_wunlock(&ktls_backends_lock);
325                 printf(
326                     "KTLS: Deregistering crypto method %s is not supported\n",
327                     be->name);
328                 return (EBUSY);
329         }
330
331         if (be->use_count) {
332                 rm_wunlock(&ktls_backends_lock);
333                 return (EBUSY);
334         }
335
336         LIST_REMOVE(be, next);
337         rm_wunlock(&ktls_backends_lock);
338         return (0);
339 }
340
341 #if defined(INET) || defined(INET6)
342 static u_int
343 ktls_get_cpu(struct socket *so)
344 {
345         struct inpcb *inp;
346 #ifdef NUMA
347         struct ktls_domain_info *di;
348 #endif
349         u_int cpuid;
350
351         inp = sotoinpcb(so);
352 #ifdef RSS
353         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
354         if (cpuid != NETISR_CPUID_NONE)
355                 return (cpuid);
356 #endif
357         /*
358          * Just use the flowid to shard connections in a repeatable
359          * fashion.  Note that some crypto backends rely on the
360          * serialization provided by having the same connection use
361          * the same queue.
362          */
363 #ifdef NUMA
364         if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
365                 di = &ktls_domains[inp->inp_numa_domain];
366                 cpuid = di->cpu[inp->inp_flowid % di->count];
367         } else
368 #endif
369                 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
370         return (cpuid);
371 }
372 #endif
373
374 static void
375 ktls_init(void *dummy __unused)
376 {
377         struct thread *td;
378         struct pcpu *pc;
379         cpuset_t mask;
380         int count, domain, error, i;
381
382         rm_init(&ktls_backends_lock, "ktls backends");
383         LIST_INIT(&ktls_backends);
384
385         ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
386             M_WAITOK | M_ZERO);
387
388         ktls_session_zone = uma_zcreate("ktls_session",
389             sizeof(struct ktls_session),
390             NULL, NULL, NULL, NULL,
391             UMA_ALIGN_CACHE, 0);
392
393         /*
394          * Initialize the workqueues to run the TLS work.  We create a
395          * work queue for each CPU.
396          */
397         CPU_FOREACH(i) {
398                 STAILQ_INIT(&ktls_wq[i].m_head);
399                 STAILQ_INIT(&ktls_wq[i].so_head);
400                 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
401                 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
402                     &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
403                 if (error)
404                         panic("Can't add KTLS thread %d error %d", i, error);
405
406                 /*
407                  * Bind threads to cores.  If ktls_bind_threads is >
408                  * 1, then we bind to the NUMA domain.
409                  */
410                 if (ktls_bind_threads) {
411                         if (ktls_bind_threads > 1) {
412                                 pc = pcpu_find(i);
413                                 domain = pc->pc_domain;
414                                 CPU_COPY(&cpuset_domain[domain], &mask);
415                                 count = ktls_domains[domain].count;
416                                 ktls_domains[domain].cpu[count] = i;
417                                 ktls_domains[domain].count++;
418                         } else {
419                                 CPU_SETOF(i, &mask);
420                         }
421                         error = cpuset_setthread(td->td_tid, &mask);
422                         if (error)
423                                 panic(
424                             "Unable to bind KTLS thread for CPU %d error %d",
425                                      i, error);
426                 }
427                 ktls_cpuid_lookup[ktls_number_threads] = i;
428                 ktls_number_threads++;
429         }
430
431         /*
432          * If we somehow have an empty domain, fall back to choosing
433          * among all KTLS threads.
434          */
435         if (ktls_bind_threads > 1) {
436                 for (i = 0; i < vm_ndomains; i++) {
437                         if (ktls_domains[i].count == 0) {
438                                 ktls_bind_threads = 1;
439                                 break;
440                         }
441                 }
442         }
443
444         if (bootverbose)
445                 printf("KTLS: Initialized %d threads\n", ktls_number_threads);
446 }
447 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL);
448
449 #if defined(INET) || defined(INET6)
450 static int
451 ktls_create_session(struct socket *so, struct tls_enable *en,
452     struct ktls_session **tlsp)
453 {
454         struct ktls_session *tls;
455         int error;
456
457         /* Only TLS 1.0 - 1.3 are supported. */
458         if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
459                 return (EINVAL);
460         if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
461             en->tls_vminor > TLS_MINOR_VER_THREE)
462                 return (EINVAL);
463
464         if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
465                 return (EINVAL);
466         if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
467                 return (EINVAL);
468         if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
469                 return (EINVAL);
470
471         /* All supported algorithms require a cipher key. */
472         if (en->cipher_key_len == 0)
473                 return (EINVAL);
474
475         /* No flags are currently supported. */
476         if (en->flags != 0)
477                 return (EINVAL);
478
479         /* Common checks for supported algorithms. */
480         switch (en->cipher_algorithm) {
481         case CRYPTO_AES_NIST_GCM_16:
482                 /*
483                  * auth_algorithm isn't used, but permit GMAC values
484                  * for compatibility.
485                  */
486                 switch (en->auth_algorithm) {
487                 case 0:
488 #ifdef COMPAT_FREEBSD12
489                 /* XXX: Really 13.0-current COMPAT. */
490                 case CRYPTO_AES_128_NIST_GMAC:
491                 case CRYPTO_AES_192_NIST_GMAC:
492                 case CRYPTO_AES_256_NIST_GMAC:
493 #endif
494                         break;
495                 default:
496                         return (EINVAL);
497                 }
498                 if (en->auth_key_len != 0)
499                         return (EINVAL);
500                 switch (en->tls_vminor) {
501                 case TLS_MINOR_VER_TWO:
502                         if (en->iv_len != TLS_AEAD_GCM_LEN)
503                                 return (EINVAL);
504                         break;
505                 case TLS_MINOR_VER_THREE:
506                         if (en->iv_len != TLS_1_3_GCM_IV_LEN)
507                                 return (EINVAL);
508                         break;
509                 default:
510                         return (EINVAL);
511                 }
512                 break;
513         case CRYPTO_AES_CBC:
514                 switch (en->auth_algorithm) {
515                 case CRYPTO_SHA1_HMAC:
516                         break;
517                 case CRYPTO_SHA2_256_HMAC:
518                 case CRYPTO_SHA2_384_HMAC:
519                         if (en->tls_vminor != TLS_MINOR_VER_TWO)
520                                 return (EINVAL);
521                         break;
522                 default:
523                         return (EINVAL);
524                 }
525                 if (en->auth_key_len == 0)
526                         return (EINVAL);
527
528                 /*
529                  * TLS 1.0 requires an implicit IV.  TLS 1.1 and 1.2
530                  * use explicit IVs.
531                  */
532                 switch (en->tls_vminor) {
533                 case TLS_MINOR_VER_ZERO:
534                         if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
535                                 return (EINVAL);
536                         break;
537                 case TLS_MINOR_VER_ONE:
538                 case TLS_MINOR_VER_TWO:
539                         /* Ignore any supplied IV. */
540                         en->iv_len = 0;
541                         break;
542                 default:
543                         return (EINVAL);
544                 }
545                 break;
546         case CRYPTO_CHACHA20_POLY1305:
547                 if (en->auth_algorithm != 0 || en->auth_key_len != 0)
548                         return (EINVAL);
549                 if (en->tls_vminor != TLS_MINOR_VER_TWO &&
550                     en->tls_vminor != TLS_MINOR_VER_THREE)
551                         return (EINVAL);
552                 if (en->iv_len != TLS_CHACHA20_IV_LEN)
553                         return (EINVAL);
554                 break;
555         default:
556                 return (EINVAL);
557         }
558
559         tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
560
561         counter_u64_add(ktls_offload_active, 1);
562
563         refcount_init(&tls->refcount, 1);
564         TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
565
566         tls->wq_index = ktls_get_cpu(so);
567
568         tls->params.cipher_algorithm = en->cipher_algorithm;
569         tls->params.auth_algorithm = en->auth_algorithm;
570         tls->params.tls_vmajor = en->tls_vmajor;
571         tls->params.tls_vminor = en->tls_vminor;
572         tls->params.flags = en->flags;
573         tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
574
575         /* Set the header and trailer lengths. */
576         tls->params.tls_hlen = sizeof(struct tls_record_layer);
577         switch (en->cipher_algorithm) {
578         case CRYPTO_AES_NIST_GCM_16:
579                 /*
580                  * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
581                  * nonce.  TLS 1.3 uses a 12 byte implicit IV.
582                  */
583                 if (en->tls_vminor < TLS_MINOR_VER_THREE)
584                         tls->params.tls_hlen += sizeof(uint64_t);
585                 tls->params.tls_tlen = AES_GMAC_HASH_LEN;
586                 tls->params.tls_bs = 1;
587                 break;
588         case CRYPTO_AES_CBC:
589                 switch (en->auth_algorithm) {
590                 case CRYPTO_SHA1_HMAC:
591                         if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
592                                 /* Implicit IV, no nonce. */
593                                 tls->sequential_records = true;
594                                 tls->next_seqno = be64dec(en->rec_seq);
595                                 STAILQ_INIT(&tls->pending_records);
596                         } else {
597                                 tls->params.tls_hlen += AES_BLOCK_LEN;
598                         }
599                         tls->params.tls_tlen = AES_BLOCK_LEN +
600                             SHA1_HASH_LEN;
601                         break;
602                 case CRYPTO_SHA2_256_HMAC:
603                         tls->params.tls_hlen += AES_BLOCK_LEN;
604                         tls->params.tls_tlen = AES_BLOCK_LEN +
605                             SHA2_256_HASH_LEN;
606                         break;
607                 case CRYPTO_SHA2_384_HMAC:
608                         tls->params.tls_hlen += AES_BLOCK_LEN;
609                         tls->params.tls_tlen = AES_BLOCK_LEN +
610                             SHA2_384_HASH_LEN;
611                         break;
612                 default:
613                         panic("invalid hmac");
614                 }
615                 tls->params.tls_bs = AES_BLOCK_LEN;
616                 break;
617         case CRYPTO_CHACHA20_POLY1305:
618                 /*
619                  * Chacha20 uses a 12 byte implicit IV.
620                  */
621                 tls->params.tls_tlen = POLY1305_HASH_LEN;
622                 tls->params.tls_bs = 1;
623                 break;
624         default:
625                 panic("invalid cipher");
626         }
627
628         /*
629          * TLS 1.3 includes optional padding which we do not support,
630          * and also puts the "real" record type at the end of the
631          * encrypted data.
632          */
633         if (en->tls_vminor == TLS_MINOR_VER_THREE)
634                 tls->params.tls_tlen += sizeof(uint8_t);
635
636         KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
637             ("TLS header length too long: %d", tls->params.tls_hlen));
638         KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
639             ("TLS trailer length too long: %d", tls->params.tls_tlen));
640
641         if (en->auth_key_len != 0) {
642                 tls->params.auth_key_len = en->auth_key_len;
643                 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
644                     M_WAITOK);
645                 error = copyin(en->auth_key, tls->params.auth_key,
646                     en->auth_key_len);
647                 if (error)
648                         goto out;
649         }
650
651         tls->params.cipher_key_len = en->cipher_key_len;
652         tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
653         error = copyin(en->cipher_key, tls->params.cipher_key,
654             en->cipher_key_len);
655         if (error)
656                 goto out;
657
658         /*
659          * This holds the implicit portion of the nonce for AEAD
660          * ciphers and the initial implicit IV for TLS 1.0.  The
661          * explicit portions of the IV are generated in ktls_frame().
662          */
663         if (en->iv_len != 0) {
664                 tls->params.iv_len = en->iv_len;
665                 error = copyin(en->iv, tls->params.iv, en->iv_len);
666                 if (error)
667                         goto out;
668
669                 /*
670                  * For TLS 1.2 with GCM, generate an 8-byte nonce as a
671                  * counter to generate unique explicit IVs.
672                  *
673                  * Store this counter in the last 8 bytes of the IV
674                  * array so that it is 8-byte aligned.
675                  */
676                 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
677                     en->tls_vminor == TLS_MINOR_VER_TWO)
678                         arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
679         }
680
681         *tlsp = tls;
682         return (0);
683
684 out:
685         ktls_free(tls);
686         return (error);
687 }
688
689 static struct ktls_session *
690 ktls_clone_session(struct ktls_session *tls)
691 {
692         struct ktls_session *tls_new;
693
694         tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
695
696         counter_u64_add(ktls_offload_active, 1);
697
698         refcount_init(&tls_new->refcount, 1);
699         TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new);
700
701         /* Copy fields from existing session. */
702         tls_new->params = tls->params;
703         tls_new->wq_index = tls->wq_index;
704
705         /* Deep copy keys. */
706         if (tls_new->params.auth_key != NULL) {
707                 tls_new->params.auth_key = malloc(tls->params.auth_key_len,
708                     M_KTLS, M_WAITOK);
709                 memcpy(tls_new->params.auth_key, tls->params.auth_key,
710                     tls->params.auth_key_len);
711         }
712
713         tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
714             M_WAITOK);
715         memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
716             tls->params.cipher_key_len);
717
718         return (tls_new);
719 }
720 #endif
721
722 static void
723 ktls_cleanup(struct ktls_session *tls)
724 {
725
726         counter_u64_add(ktls_offload_active, -1);
727         switch (tls->mode) {
728         case TCP_TLS_MODE_SW:
729                 MPASS(tls->be != NULL);
730                 switch (tls->params.cipher_algorithm) {
731                 case CRYPTO_AES_CBC:
732                         counter_u64_add(ktls_sw_cbc, -1);
733                         break;
734                 case CRYPTO_AES_NIST_GCM_16:
735                         counter_u64_add(ktls_sw_gcm, -1);
736                         break;
737                 case CRYPTO_CHACHA20_POLY1305:
738                         counter_u64_add(ktls_sw_chacha20, -1);
739                         break;
740                 }
741                 tls->free(tls);
742                 break;
743         case TCP_TLS_MODE_IFNET:
744                 switch (tls->params.cipher_algorithm) {
745                 case CRYPTO_AES_CBC:
746                         counter_u64_add(ktls_ifnet_cbc, -1);
747                         break;
748                 case CRYPTO_AES_NIST_GCM_16:
749                         counter_u64_add(ktls_ifnet_gcm, -1);
750                         break;
751                 case CRYPTO_CHACHA20_POLY1305:
752                         counter_u64_add(ktls_ifnet_chacha20, -1);
753                         break;
754                 }
755                 if (tls->snd_tag != NULL)
756                         m_snd_tag_rele(tls->snd_tag);
757                 break;
758 #ifdef TCP_OFFLOAD
759         case TCP_TLS_MODE_TOE:
760                 switch (tls->params.cipher_algorithm) {
761                 case CRYPTO_AES_CBC:
762                         counter_u64_add(ktls_toe_cbc, -1);
763                         break;
764                 case CRYPTO_AES_NIST_GCM_16:
765                         counter_u64_add(ktls_toe_gcm, -1);
766                         break;
767                 case CRYPTO_CHACHA20_POLY1305:
768                         counter_u64_add(ktls_toe_chacha20, -1);
769                         break;
770                 }
771                 break;
772 #endif
773         }
774         if (tls->params.auth_key != NULL) {
775                 zfree(tls->params.auth_key, M_KTLS);
776                 tls->params.auth_key = NULL;
777                 tls->params.auth_key_len = 0;
778         }
779         if (tls->params.cipher_key != NULL) {
780                 zfree(tls->params.cipher_key, M_KTLS);
781                 tls->params.cipher_key = NULL;
782                 tls->params.cipher_key_len = 0;
783         }
784         explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
785 }
786
787 #if defined(INET) || defined(INET6)
788
789 #ifdef TCP_OFFLOAD
790 static int
791 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
792 {
793         struct inpcb *inp;
794         struct tcpcb *tp;
795         int error;
796
797         inp = so->so_pcb;
798         INP_WLOCK(inp);
799         if (inp->inp_flags2 & INP_FREED) {
800                 INP_WUNLOCK(inp);
801                 return (ECONNRESET);
802         }
803         if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
804                 INP_WUNLOCK(inp);
805                 return (ECONNRESET);
806         }
807         if (inp->inp_socket == NULL) {
808                 INP_WUNLOCK(inp);
809                 return (ECONNRESET);
810         }
811         tp = intotcpcb(inp);
812         if (!(tp->t_flags & TF_TOE)) {
813                 INP_WUNLOCK(inp);
814                 return (EOPNOTSUPP);
815         }
816
817         error = tcp_offload_alloc_tls_session(tp, tls, direction);
818         INP_WUNLOCK(inp);
819         if (error == 0) {
820                 tls->mode = TCP_TLS_MODE_TOE;
821                 switch (tls->params.cipher_algorithm) {
822                 case CRYPTO_AES_CBC:
823                         counter_u64_add(ktls_toe_cbc, 1);
824                         break;
825                 case CRYPTO_AES_NIST_GCM_16:
826                         counter_u64_add(ktls_toe_gcm, 1);
827                         break;
828                 case CRYPTO_CHACHA20_POLY1305:
829                         counter_u64_add(ktls_toe_chacha20, 1);
830                         break;
831                 }
832         }
833         return (error);
834 }
835 #endif
836
837 /*
838  * Common code used when first enabling ifnet TLS on a connection or
839  * when allocating a new ifnet TLS session due to a routing change.
840  * This function allocates a new TLS send tag on whatever interface
841  * the connection is currently routed over.
842  */
843 static int
844 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
845     struct m_snd_tag **mstp)
846 {
847         union if_snd_tag_alloc_params params;
848         struct ifnet *ifp;
849         struct nhop_object *nh;
850         struct tcpcb *tp;
851         int error;
852
853         INP_RLOCK(inp);
854         if (inp->inp_flags2 & INP_FREED) {
855                 INP_RUNLOCK(inp);
856                 return (ECONNRESET);
857         }
858         if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
859                 INP_RUNLOCK(inp);
860                 return (ECONNRESET);
861         }
862         if (inp->inp_socket == NULL) {
863                 INP_RUNLOCK(inp);
864                 return (ECONNRESET);
865         }
866         tp = intotcpcb(inp);
867
868         /*
869          * Check administrative controls on ifnet TLS to determine if
870          * ifnet TLS should be denied.
871          *
872          * - Always permit 'force' requests.
873          * - ktls_ifnet_permitted == 0: always deny.
874          */
875         if (!force && ktls_ifnet_permitted == 0) {
876                 INP_RUNLOCK(inp);
877                 return (ENXIO);
878         }
879
880         /*
881          * XXX: Use the cached route in the inpcb to find the
882          * interface.  This should perhaps instead use
883          * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
884          * enabled after a connection has completed key negotiation in
885          * userland, the cached route will be present in practice.
886          */
887         nh = inp->inp_route.ro_nh;
888         if (nh == NULL) {
889                 INP_RUNLOCK(inp);
890                 return (ENXIO);
891         }
892         ifp = nh->nh_ifp;
893         if_ref(ifp);
894
895         /*
896          * Allocate a TLS + ratelimit tag if the connection has an
897          * existing pacing rate.
898          */
899         if (tp->t_pacing_rate != -1 &&
900             (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) {
901                 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
902                 params.tls_rate_limit.inp = inp;
903                 params.tls_rate_limit.tls = tls;
904                 params.tls_rate_limit.max_rate = tp->t_pacing_rate;
905         } else {
906                 params.hdr.type = IF_SND_TAG_TYPE_TLS;
907                 params.tls.inp = inp;
908                 params.tls.tls = tls;
909         }
910         params.hdr.flowid = inp->inp_flowid;
911         params.hdr.flowtype = inp->inp_flowtype;
912         params.hdr.numa_domain = inp->inp_numa_domain;
913         INP_RUNLOCK(inp);
914
915         if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
916                 error = EOPNOTSUPP;
917                 goto out;
918         }
919         if (inp->inp_vflag & INP_IPV6) {
920                 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
921                         error = EOPNOTSUPP;
922                         goto out;
923                 }
924         } else {
925                 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
926                         error = EOPNOTSUPP;
927                         goto out;
928                 }
929         }
930         error = m_snd_tag_alloc(ifp, &params, mstp);
931 out:
932         if_rele(ifp);
933         return (error);
934 }
935
936 static int
937 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
938 {
939         struct m_snd_tag *mst;
940         int error;
941
942         error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
943         if (error == 0) {
944                 tls->mode = TCP_TLS_MODE_IFNET;
945                 tls->snd_tag = mst;
946                 switch (tls->params.cipher_algorithm) {
947                 case CRYPTO_AES_CBC:
948                         counter_u64_add(ktls_ifnet_cbc, 1);
949                         break;
950                 case CRYPTO_AES_NIST_GCM_16:
951                         counter_u64_add(ktls_ifnet_gcm, 1);
952                         break;
953                 case CRYPTO_CHACHA20_POLY1305:
954                         counter_u64_add(ktls_ifnet_chacha20, 1);
955                         break;
956                 }
957         }
958         return (error);
959 }
960
961 static int
962 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
963 {
964         struct rm_priotracker prio;
965         struct ktls_crypto_backend *be;
966
967         /*
968          * Choose the best software crypto backend.  Backends are
969          * stored in sorted priority order (larget value == most
970          * important at the head of the list), so this just stops on
971          * the first backend that claims the session by returning
972          * success.
973          */
974         if (ktls_allow_unload)
975                 rm_rlock(&ktls_backends_lock, &prio);
976         LIST_FOREACH(be, &ktls_backends, next) {
977                 if (be->try(so, tls, direction) == 0)
978                         break;
979                 KASSERT(tls->cipher == NULL,
980                     ("ktls backend leaked a cipher pointer"));
981         }
982         if (be != NULL) {
983                 if (ktls_allow_unload)
984                         be->use_count++;
985                 tls->be = be;
986         }
987         if (ktls_allow_unload)
988                 rm_runlock(&ktls_backends_lock, &prio);
989         if (be == NULL)
990                 return (EOPNOTSUPP);
991         tls->mode = TCP_TLS_MODE_SW;
992         switch (tls->params.cipher_algorithm) {
993         case CRYPTO_AES_CBC:
994                 counter_u64_add(ktls_sw_cbc, 1);
995                 break;
996         case CRYPTO_AES_NIST_GCM_16:
997                 counter_u64_add(ktls_sw_gcm, 1);
998                 break;
999         case CRYPTO_CHACHA20_POLY1305:
1000                 counter_u64_add(ktls_sw_chacha20, 1);
1001                 break;
1002         }
1003         return (0);
1004 }
1005
1006 /*
1007  * KTLS RX stores data in the socket buffer as a list of TLS records,
1008  * where each record is stored as a control message containg the TLS
1009  * header followed by data mbufs containing the decrypted data.  This
1010  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
1011  * both encrypted and decrypted data.  TLS records decrypted by a NIC
1012  * should be queued to the socket buffer as records, but encrypted
1013  * data which needs to be decrypted by software arrives as a stream of
1014  * regular mbufs which need to be converted.  In addition, there may
1015  * already be pending encrypted data in the socket buffer when KTLS RX
1016  * is enabled.
1017  *
1018  * To manage not-yet-decrypted data for KTLS RX, the following scheme
1019  * is used:
1020  *
1021  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
1022  *
1023  * - ktls_check_rx checks this chain of mbufs reading the TLS header
1024  *   from the first mbuf.  Once all of the data for that TLS record is
1025  *   queued, the socket is queued to a worker thread.
1026  *
1027  * - The worker thread calls ktls_decrypt to decrypt TLS records in
1028  *   the TLS chain.  Each TLS record is detached from the TLS chain,
1029  *   decrypted, and inserted into the regular socket buffer chain as
1030  *   record starting with a control message holding the TLS header and
1031  *   a chain of mbufs holding the encrypted data.
1032  */
1033
1034 static void
1035 sb_mark_notready(struct sockbuf *sb)
1036 {
1037         struct mbuf *m;
1038
1039         m = sb->sb_mb;
1040         sb->sb_mtls = m;
1041         sb->sb_mb = NULL;
1042         sb->sb_mbtail = NULL;
1043         sb->sb_lastrecord = NULL;
1044         for (; m != NULL; m = m->m_next) {
1045                 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
1046                     __func__));
1047                 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
1048                     __func__));
1049                 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
1050                     __func__));
1051                 m->m_flags |= M_NOTREADY;
1052                 sb->sb_acc -= m->m_len;
1053                 sb->sb_tlscc += m->m_len;
1054                 sb->sb_mtlstail = m;
1055         }
1056         KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1057             ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1058             sb->sb_ccc));
1059 }
1060
1061 int
1062 ktls_enable_rx(struct socket *so, struct tls_enable *en)
1063 {
1064         struct ktls_session *tls;
1065         int error;
1066
1067         if (!ktls_offload_enable)
1068                 return (ENOTSUP);
1069         if (SOLISTENING(so))
1070                 return (EINVAL);
1071
1072         counter_u64_add(ktls_offload_enable_calls, 1);
1073
1074         /*
1075          * This should always be true since only the TCP socket option
1076          * invokes this function.
1077          */
1078         if (so->so_proto->pr_protocol != IPPROTO_TCP)
1079                 return (EINVAL);
1080
1081         /*
1082          * XXX: Don't overwrite existing sessions.  We should permit
1083          * this to support rekeying in the future.
1084          */
1085         if (so->so_rcv.sb_tls_info != NULL)
1086                 return (EALREADY);
1087
1088         if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1089                 return (ENOTSUP);
1090
1091         error = ktls_create_session(so, en, &tls);
1092         if (error)
1093                 return (error);
1094
1095 #ifdef TCP_OFFLOAD
1096         error = ktls_try_toe(so, tls, KTLS_RX);
1097         if (error)
1098 #endif
1099                 error = ktls_try_sw(so, tls, KTLS_RX);
1100
1101         if (error) {
1102                 ktls_free(tls);
1103                 return (error);
1104         }
1105
1106         /* Mark the socket as using TLS offload. */
1107         SOCKBUF_LOCK(&so->so_rcv);
1108         so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1109         so->so_rcv.sb_tls_info = tls;
1110         so->so_rcv.sb_flags |= SB_TLS_RX;
1111
1112         /* Mark existing data as not ready until it can be decrypted. */
1113         if (tls->mode != TCP_TLS_MODE_TOE) {
1114                 sb_mark_notready(&so->so_rcv);
1115                 ktls_check_rx(&so->so_rcv);
1116         }
1117         SOCKBUF_UNLOCK(&so->so_rcv);
1118
1119         counter_u64_add(ktls_offload_total, 1);
1120
1121         return (0);
1122 }
1123
1124 int
1125 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1126 {
1127         struct ktls_session *tls;
1128         struct inpcb *inp;
1129         int error;
1130
1131         if (!ktls_offload_enable)
1132                 return (ENOTSUP);
1133         if (SOLISTENING(so))
1134                 return (EINVAL);
1135
1136         counter_u64_add(ktls_offload_enable_calls, 1);
1137
1138         /*
1139          * This should always be true since only the TCP socket option
1140          * invokes this function.
1141          */
1142         if (so->so_proto->pr_protocol != IPPROTO_TCP)
1143                 return (EINVAL);
1144
1145         /*
1146          * XXX: Don't overwrite existing sessions.  We should permit
1147          * this to support rekeying in the future.
1148          */
1149         if (so->so_snd.sb_tls_info != NULL)
1150                 return (EALREADY);
1151
1152         if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1153                 return (ENOTSUP);
1154
1155         /* TLS requires ext pgs */
1156         if (mb_use_ext_pgs == 0)
1157                 return (ENXIO);
1158
1159         error = ktls_create_session(so, en, &tls);
1160         if (error)
1161                 return (error);
1162
1163         /* Prefer TOE -> ifnet TLS -> software TLS. */
1164 #ifdef TCP_OFFLOAD
1165         error = ktls_try_toe(so, tls, KTLS_TX);
1166         if (error)
1167 #endif
1168                 error = ktls_try_ifnet(so, tls, false);
1169         if (error)
1170                 error = ktls_try_sw(so, tls, KTLS_TX);
1171
1172         if (error) {
1173                 ktls_free(tls);
1174                 return (error);
1175         }
1176
1177         error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1178         if (error) {
1179                 ktls_free(tls);
1180                 return (error);
1181         }
1182
1183         /*
1184          * Write lock the INP when setting sb_tls_info so that
1185          * routines in tcp_ratelimit.c can read sb_tls_info while
1186          * holding the INP lock.
1187          */
1188         inp = so->so_pcb;
1189         INP_WLOCK(inp);
1190         SOCKBUF_LOCK(&so->so_snd);
1191         so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1192         so->so_snd.sb_tls_info = tls;
1193         if (tls->mode != TCP_TLS_MODE_SW)
1194                 so->so_snd.sb_flags |= SB_TLS_IFNET;
1195         SOCKBUF_UNLOCK(&so->so_snd);
1196         INP_WUNLOCK(inp);
1197         SOCK_IO_SEND_UNLOCK(so);
1198
1199         counter_u64_add(ktls_offload_total, 1);
1200
1201         return (0);
1202 }
1203
1204 int
1205 ktls_get_rx_mode(struct socket *so)
1206 {
1207         struct ktls_session *tls;
1208         struct inpcb *inp;
1209         int mode;
1210
1211         if (SOLISTENING(so))
1212                 return (EINVAL);
1213         inp = so->so_pcb;
1214         INP_WLOCK_ASSERT(inp);
1215         SOCKBUF_LOCK(&so->so_rcv);
1216         tls = so->so_rcv.sb_tls_info;
1217         if (tls == NULL)
1218                 mode = TCP_TLS_MODE_NONE;
1219         else
1220                 mode = tls->mode;
1221         SOCKBUF_UNLOCK(&so->so_rcv);
1222         return (mode);
1223 }
1224
1225 int
1226 ktls_get_tx_mode(struct socket *so)
1227 {
1228         struct ktls_session *tls;
1229         struct inpcb *inp;
1230         int mode;
1231
1232         if (SOLISTENING(so))
1233                 return (EINVAL);
1234         inp = so->so_pcb;
1235         INP_WLOCK_ASSERT(inp);
1236         SOCKBUF_LOCK(&so->so_snd);
1237         tls = so->so_snd.sb_tls_info;
1238         if (tls == NULL)
1239                 mode = TCP_TLS_MODE_NONE;
1240         else
1241                 mode = tls->mode;
1242         SOCKBUF_UNLOCK(&so->so_snd);
1243         return (mode);
1244 }
1245
1246 /*
1247  * Switch between SW and ifnet TLS sessions as requested.
1248  */
1249 int
1250 ktls_set_tx_mode(struct socket *so, int mode)
1251 {
1252         struct ktls_session *tls, *tls_new;
1253         struct inpcb *inp;
1254         int error;
1255
1256         if (SOLISTENING(so))
1257                 return (EINVAL);
1258         switch (mode) {
1259         case TCP_TLS_MODE_SW:
1260         case TCP_TLS_MODE_IFNET:
1261                 break;
1262         default:
1263                 return (EINVAL);
1264         }
1265
1266         inp = so->so_pcb;
1267         INP_WLOCK_ASSERT(inp);
1268         SOCKBUF_LOCK(&so->so_snd);
1269         tls = so->so_snd.sb_tls_info;
1270         if (tls == NULL) {
1271                 SOCKBUF_UNLOCK(&so->so_snd);
1272                 return (0);
1273         }
1274
1275         if (tls->mode == mode) {
1276                 SOCKBUF_UNLOCK(&so->so_snd);
1277                 return (0);
1278         }
1279
1280         tls = ktls_hold(tls);
1281         SOCKBUF_UNLOCK(&so->so_snd);
1282         INP_WUNLOCK(inp);
1283
1284         tls_new = ktls_clone_session(tls);
1285
1286         if (mode == TCP_TLS_MODE_IFNET)
1287                 error = ktls_try_ifnet(so, tls_new, true);
1288         else
1289                 error = ktls_try_sw(so, tls_new, KTLS_TX);
1290         if (error) {
1291                 counter_u64_add(ktls_switch_failed, 1);
1292                 ktls_free(tls_new);
1293                 ktls_free(tls);
1294                 INP_WLOCK(inp);
1295                 return (error);
1296         }
1297
1298         error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1299         if (error) {
1300                 counter_u64_add(ktls_switch_failed, 1);
1301                 ktls_free(tls_new);
1302                 ktls_free(tls);
1303                 INP_WLOCK(inp);
1304                 return (error);
1305         }
1306
1307         /*
1308          * If we raced with another session change, keep the existing
1309          * session.
1310          */
1311         if (tls != so->so_snd.sb_tls_info) {
1312                 counter_u64_add(ktls_switch_failed, 1);
1313                 SOCK_IO_SEND_UNLOCK(so);
1314                 ktls_free(tls_new);
1315                 ktls_free(tls);
1316                 INP_WLOCK(inp);
1317                 return (EBUSY);
1318         }
1319
1320         INP_WLOCK(inp);
1321         SOCKBUF_LOCK(&so->so_snd);
1322         so->so_snd.sb_tls_info = tls_new;
1323         if (tls_new->mode != TCP_TLS_MODE_SW)
1324                 so->so_snd.sb_flags |= SB_TLS_IFNET;
1325         SOCKBUF_UNLOCK(&so->so_snd);
1326         SOCK_IO_SEND_UNLOCK(so);
1327
1328         /*
1329          * Drop two references on 'tls'.  The first is for the
1330          * ktls_hold() above.  The second drops the reference from the
1331          * socket buffer.
1332          */
1333         KASSERT(tls->refcount >= 2, ("too few references on old session"));
1334         ktls_free(tls);
1335         ktls_free(tls);
1336
1337         if (mode == TCP_TLS_MODE_IFNET)
1338                 counter_u64_add(ktls_switch_to_ifnet, 1);
1339         else
1340                 counter_u64_add(ktls_switch_to_sw, 1);
1341
1342         return (0);
1343 }
1344
1345 /*
1346  * Try to allocate a new TLS send tag.  This task is scheduled when
1347  * ip_output detects a route change while trying to transmit a packet
1348  * holding a TLS record.  If a new tag is allocated, replace the tag
1349  * in the TLS session.  Subsequent packets on the connection will use
1350  * the new tag.  If a new tag cannot be allocated, drop the
1351  * connection.
1352  */
1353 static void
1354 ktls_reset_send_tag(void *context, int pending)
1355 {
1356         struct epoch_tracker et;
1357         struct ktls_session *tls;
1358         struct m_snd_tag *old, *new;
1359         struct inpcb *inp;
1360         struct tcpcb *tp;
1361         int error;
1362
1363         MPASS(pending == 1);
1364
1365         tls = context;
1366         inp = tls->inp;
1367
1368         /*
1369          * Free the old tag first before allocating a new one.
1370          * ip[6]_output_send() will treat a NULL send tag the same as
1371          * an ifp mismatch and drop packets until a new tag is
1372          * allocated.
1373          *
1374          * Write-lock the INP when changing tls->snd_tag since
1375          * ip[6]_output_send() holds a read-lock when reading the
1376          * pointer.
1377          */
1378         INP_WLOCK(inp);
1379         old = tls->snd_tag;
1380         tls->snd_tag = NULL;
1381         INP_WUNLOCK(inp);
1382         if (old != NULL)
1383                 m_snd_tag_rele(old);
1384
1385         error = ktls_alloc_snd_tag(inp, tls, true, &new);
1386
1387         if (error == 0) {
1388                 INP_WLOCK(inp);
1389                 tls->snd_tag = new;
1390                 mtx_pool_lock(mtxpool_sleep, tls);
1391                 tls->reset_pending = false;
1392                 mtx_pool_unlock(mtxpool_sleep, tls);
1393                 if (!in_pcbrele_wlocked(inp))
1394                         INP_WUNLOCK(inp);
1395
1396                 counter_u64_add(ktls_ifnet_reset, 1);
1397
1398                 /*
1399                  * XXX: Should we kick tcp_output explicitly now that
1400                  * the send tag is fixed or just rely on timers?
1401                  */
1402         } else {
1403                 NET_EPOCH_ENTER(et);
1404                 INP_WLOCK(inp);
1405                 if (!in_pcbrele_wlocked(inp)) {
1406                         if (!(inp->inp_flags & INP_TIMEWAIT) &&
1407                             !(inp->inp_flags & INP_DROPPED)) {
1408                                 tp = intotcpcb(inp);
1409                                 CURVNET_SET(tp->t_vnet);
1410                                 tp = tcp_drop(tp, ECONNABORTED);
1411                                 CURVNET_RESTORE();
1412                                 if (tp != NULL)
1413                                         INP_WUNLOCK(inp);
1414                                 counter_u64_add(ktls_ifnet_reset_dropped, 1);
1415                         } else
1416                                 INP_WUNLOCK(inp);
1417                 }
1418                 NET_EPOCH_EXIT(et);
1419
1420                 counter_u64_add(ktls_ifnet_reset_failed, 1);
1421
1422                 /*
1423                  * Leave reset_pending true to avoid future tasks while
1424                  * the socket goes away.
1425                  */
1426         }
1427
1428         ktls_free(tls);
1429 }
1430
1431 int
1432 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1433 {
1434
1435         if (inp == NULL)
1436                 return (ENOBUFS);
1437
1438         INP_LOCK_ASSERT(inp);
1439
1440         /*
1441          * See if we should schedule a task to update the send tag for
1442          * this session.
1443          */
1444         mtx_pool_lock(mtxpool_sleep, tls);
1445         if (!tls->reset_pending) {
1446                 (void) ktls_hold(tls);
1447                 in_pcbref(inp);
1448                 tls->inp = inp;
1449                 tls->reset_pending = true;
1450                 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1451         }
1452         mtx_pool_unlock(mtxpool_sleep, tls);
1453         return (ENOBUFS);
1454 }
1455
1456 #ifdef RATELIMIT
1457 int
1458 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1459 {
1460         union if_snd_tag_modify_params params = {
1461                 .rate_limit.max_rate = max_pacing_rate,
1462                 .rate_limit.flags = M_NOWAIT,
1463         };
1464         struct m_snd_tag *mst;
1465         struct ifnet *ifp;
1466         int error;
1467
1468         /* Can't get to the inp, but it should be locked. */
1469         /* INP_LOCK_ASSERT(inp); */
1470
1471         MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1472
1473         if (tls->snd_tag == NULL) {
1474                 /*
1475                  * Resetting send tag, ignore this change.  The
1476                  * pending reset may or may not see this updated rate
1477                  * in the tcpcb.  If it doesn't, we will just lose
1478                  * this rate change.
1479                  */
1480                 return (0);
1481         }
1482
1483         mst = tls->snd_tag;
1484
1485         MPASS(mst != NULL);
1486         MPASS(mst->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1487
1488         ifp = mst->ifp;
1489         return (ifp->if_snd_tag_modify(mst, &params));
1490 }
1491 #endif
1492 #endif
1493
1494 void
1495 ktls_destroy(struct ktls_session *tls)
1496 {
1497         struct rm_priotracker prio;
1498
1499         if (tls->sequential_records) {
1500                 struct mbuf *m, *n;
1501                 int page_count;
1502
1503                 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
1504                         page_count = m->m_epg_enc_cnt;
1505                         while (page_count > 0) {
1506                                 KASSERT(page_count >= m->m_epg_nrdy,
1507                                     ("%s: too few pages", __func__));
1508                                 page_count -= m->m_epg_nrdy;
1509                                 m = m_free(m);
1510                         }
1511                 }
1512         }
1513         ktls_cleanup(tls);
1514         if (tls->be != NULL && ktls_allow_unload) {
1515                 rm_rlock(&ktls_backends_lock, &prio);
1516                 tls->be->use_count--;
1517                 rm_runlock(&ktls_backends_lock, &prio);
1518         }
1519         uma_zfree(ktls_session_zone, tls);
1520 }
1521
1522 void
1523 ktls_seq(struct sockbuf *sb, struct mbuf *m)
1524 {
1525
1526         for (; m != NULL; m = m->m_next) {
1527                 KASSERT((m->m_flags & M_EXTPG) != 0,
1528                     ("ktls_seq: mapped mbuf %p", m));
1529
1530                 m->m_epg_seqno = sb->sb_tls_seqno;
1531                 sb->sb_tls_seqno++;
1532         }
1533 }
1534
1535 /*
1536  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
1537  * mbuf in the chain must be an unmapped mbuf.  The payload of the
1538  * mbuf must be populated with the payload of each TLS record.
1539  *
1540  * The record_type argument specifies the TLS record type used when
1541  * populating the TLS header.
1542  *
1543  * The enq_count argument on return is set to the number of pages of
1544  * payload data for this entire chain that need to be encrypted via SW
1545  * encryption.  The returned value should be passed to ktls_enqueue
1546  * when scheduling encryption of this chain of mbufs.  To handle the
1547  * special case of empty fragments for TLS 1.0 sessions, an empty
1548  * fragment counts as one page.
1549  */
1550 void
1551 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
1552     uint8_t record_type)
1553 {
1554         struct tls_record_layer *tlshdr;
1555         struct mbuf *m;
1556         uint64_t *noncep;
1557         uint16_t tls_len;
1558         int maxlen;
1559
1560         maxlen = tls->params.max_frame_len;
1561         *enq_cnt = 0;
1562         for (m = top; m != NULL; m = m->m_next) {
1563                 /*
1564                  * All mbufs in the chain should be TLS records whose
1565                  * payload does not exceed the maximum frame length.
1566                  *
1567                  * Empty TLS 1.0 records are permitted when using CBC.
1568                  */
1569                 KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
1570                     (m->m_len > 0 || ktls_permit_empty_frames(tls)),
1571                     ("ktls_frame: m %p len %d", m, m->m_len));
1572
1573                 /*
1574                  * TLS frames require unmapped mbufs to store session
1575                  * info.
1576                  */
1577                 KASSERT((m->m_flags & M_EXTPG) != 0,
1578                     ("ktls_frame: mapped mbuf %p (top = %p)", m, top));
1579
1580                 tls_len = m->m_len;
1581
1582                 /* Save a reference to the session. */
1583                 m->m_epg_tls = ktls_hold(tls);
1584
1585                 m->m_epg_hdrlen = tls->params.tls_hlen;
1586                 m->m_epg_trllen = tls->params.tls_tlen;
1587                 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
1588                         int bs, delta;
1589
1590                         /*
1591                          * AES-CBC pads messages to a multiple of the
1592                          * block size.  Note that the padding is
1593                          * applied after the digest and the encryption
1594                          * is done on the "plaintext || mac || padding".
1595                          * At least one byte of padding is always
1596                          * present.
1597                          *
1598                          * Compute the final trailer length assuming
1599                          * at most one block of padding.
1600                          * tls->params.sb_tls_tlen is the maximum
1601                          * possible trailer length (padding + digest).
1602                          * delta holds the number of excess padding
1603                          * bytes if the maximum were used.  Those
1604                          * extra bytes are removed.
1605                          */
1606                         bs = tls->params.tls_bs;
1607                         delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
1608                         m->m_epg_trllen -= delta;
1609                 }
1610                 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
1611
1612                 /* Populate the TLS header. */
1613                 tlshdr = (void *)m->m_epg_hdr;
1614                 tlshdr->tls_vmajor = tls->params.tls_vmajor;
1615
1616                 /*
1617                  * TLS 1.3 masquarades as TLS 1.2 with a record type
1618                  * of TLS_RLTYPE_APP.
1619                  */
1620                 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
1621                     tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
1622                         tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
1623                         tlshdr->tls_type = TLS_RLTYPE_APP;
1624                         /* save the real record type for later */
1625                         m->m_epg_record_type = record_type;
1626                         m->m_epg_trail[0] = record_type;
1627                 } else {
1628                         tlshdr->tls_vminor = tls->params.tls_vminor;
1629                         tlshdr->tls_type = record_type;
1630                 }
1631                 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
1632
1633                 /*
1634                  * Store nonces / explicit IVs after the end of the
1635                  * TLS header.
1636                  *
1637                  * For GCM with TLS 1.2, an 8 byte nonce is copied
1638                  * from the end of the IV.  The nonce is then
1639                  * incremented for use by the next record.
1640                  *
1641                  * For CBC, a random nonce is inserted for TLS 1.1+.
1642                  */
1643                 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
1644                     tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
1645                         noncep = (uint64_t *)(tls->params.iv + 8);
1646                         be64enc(tlshdr + 1, *noncep);
1647                         (*noncep)++;
1648                 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1649                     tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
1650                         arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
1651
1652                 /*
1653                  * When using SW encryption, mark the mbuf not ready.
1654                  * It will be marked ready via sbready() after the
1655                  * record has been encrypted.
1656                  *
1657                  * When using ifnet TLS, unencrypted TLS records are
1658                  * sent down the stack to the NIC.
1659                  */
1660                 if (tls->mode == TCP_TLS_MODE_SW) {
1661                         m->m_flags |= M_NOTREADY;
1662                         if (__predict_false(tls_len == 0)) {
1663                                 /* TLS 1.0 empty fragment. */
1664                                 m->m_epg_nrdy = 1;
1665                         } else
1666                                 m->m_epg_nrdy = m->m_epg_npgs;
1667                         *enq_cnt += m->m_epg_nrdy;
1668                 }
1669         }
1670 }
1671
1672 bool
1673 ktls_permit_empty_frames(struct ktls_session *tls)
1674 {
1675         return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1676             tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
1677 }
1678
1679 void
1680 ktls_check_rx(struct sockbuf *sb)
1681 {
1682         struct tls_record_layer hdr;
1683         struct ktls_wq *wq;
1684         struct socket *so;
1685         bool running;
1686
1687         SOCKBUF_LOCK_ASSERT(sb);
1688         KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1689             __func__, sb));
1690         so = __containerof(sb, struct socket, so_rcv);
1691
1692         if (sb->sb_flags & SB_TLS_RX_RUNNING)
1693                 return;
1694
1695         /* Is there enough queued for a TLS header? */
1696         if (sb->sb_tlscc < sizeof(hdr)) {
1697                 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
1698                         so->so_error = EMSGSIZE;
1699                 return;
1700         }
1701
1702         m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
1703
1704         /* Is the entire record queued? */
1705         if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
1706                 if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
1707                         so->so_error = EMSGSIZE;
1708                 return;
1709         }
1710
1711         sb->sb_flags |= SB_TLS_RX_RUNNING;
1712
1713         soref(so);
1714         wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
1715         mtx_lock(&wq->mtx);
1716         STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
1717         running = wq->running;
1718         mtx_unlock(&wq->mtx);
1719         if (!running)
1720                 wakeup(wq);
1721         counter_u64_add(ktls_cnt_rx_queued, 1);
1722 }
1723
1724 static struct mbuf *
1725 ktls_detach_record(struct sockbuf *sb, int len)
1726 {
1727         struct mbuf *m, *n, *top;
1728         int remain;
1729
1730         SOCKBUF_LOCK_ASSERT(sb);
1731         MPASS(len <= sb->sb_tlscc);
1732
1733         /*
1734          * If TLS chain is the exact size of the record,
1735          * just grab the whole record.
1736          */
1737         top = sb->sb_mtls;
1738         if (sb->sb_tlscc == len) {
1739                 sb->sb_mtls = NULL;
1740                 sb->sb_mtlstail = NULL;
1741                 goto out;
1742         }
1743
1744         /*
1745          * While it would be nice to use m_split() here, we need
1746          * to know exactly what m_split() allocates to update the
1747          * accounting, so do it inline instead.
1748          */
1749         remain = len;
1750         for (m = top; remain > m->m_len; m = m->m_next)
1751                 remain -= m->m_len;
1752
1753         /* Easy case: don't have to split 'm'. */
1754         if (remain == m->m_len) {
1755                 sb->sb_mtls = m->m_next;
1756                 if (sb->sb_mtls == NULL)
1757                         sb->sb_mtlstail = NULL;
1758                 m->m_next = NULL;
1759                 goto out;
1760         }
1761
1762         /*
1763          * Need to allocate an mbuf to hold the remainder of 'm'.  Try
1764          * with M_NOWAIT first.
1765          */
1766         n = m_get(M_NOWAIT, MT_DATA);
1767         if (n == NULL) {
1768                 /*
1769                  * Use M_WAITOK with socket buffer unlocked.  If
1770                  * 'sb_mtls' changes while the lock is dropped, return
1771                  * NULL to force the caller to retry.
1772                  */
1773                 SOCKBUF_UNLOCK(sb);
1774
1775                 n = m_get(M_WAITOK, MT_DATA);
1776
1777                 SOCKBUF_LOCK(sb);
1778                 if (sb->sb_mtls != top) {
1779                         m_free(n);
1780                         return (NULL);
1781                 }
1782         }
1783         n->m_flags |= M_NOTREADY;
1784
1785         /* Store remainder in 'n'. */
1786         n->m_len = m->m_len - remain;
1787         if (m->m_flags & M_EXT) {
1788                 n->m_data = m->m_data + remain;
1789                 mb_dupcl(n, m);
1790         } else {
1791                 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
1792         }
1793
1794         /* Trim 'm' and update accounting. */
1795         m->m_len -= n->m_len;
1796         sb->sb_tlscc -= n->m_len;
1797         sb->sb_ccc -= n->m_len;
1798
1799         /* Account for 'n'. */
1800         sballoc_ktls_rx(sb, n);
1801
1802         /* Insert 'n' into the TLS chain. */
1803         sb->sb_mtls = n;
1804         n->m_next = m->m_next;
1805         if (sb->sb_mtlstail == m)
1806                 sb->sb_mtlstail = n;
1807
1808         /* Detach the record from the TLS chain. */
1809         m->m_next = NULL;
1810
1811 out:
1812         MPASS(m_length(top, NULL) == len);
1813         for (m = top; m != NULL; m = m->m_next)
1814                 sbfree_ktls_rx(sb, m);
1815         sb->sb_tlsdcc = len;
1816         sb->sb_ccc += len;
1817         SBCHECK(sb);
1818         return (top);
1819 }
1820
1821 /*
1822  * Determine the length of the trailing zero padding and find the real
1823  * record type in the byte before the padding.
1824  *
1825  * Walking the mbuf chain backwards is clumsy, so another option would
1826  * be to scan forwards remembering the last non-zero byte before the
1827  * trailer.  However, it would be expensive to scan the entire record.
1828  * Instead, find the last non-zero byte of each mbuf in the chain
1829  * keeping track of the relative offset of that nonzero byte.
1830  *
1831  * trail_len is the size of the MAC/tag on input and is set to the
1832  * size of the full trailer including padding and the record type on
1833  * return.
1834  */
1835 static int
1836 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
1837     int *trailer_len, uint8_t *record_typep)
1838 {
1839         char *cp;
1840         u_int digest_start, last_offset, m_len, offset;
1841         uint8_t record_type;
1842
1843         digest_start = tls_len - *trailer_len;
1844         last_offset = 0;
1845         offset = 0;
1846         for (; m != NULL && offset < digest_start;
1847              offset += m->m_len, m = m->m_next) {
1848                 /* Don't look for padding in the tag. */
1849                 m_len = min(digest_start - offset, m->m_len);
1850                 cp = mtod(m, char *);
1851
1852                 /* Find last non-zero byte in this mbuf. */
1853                 while (m_len > 0 && cp[m_len - 1] == 0)
1854                         m_len--;
1855                 if (m_len > 0) {
1856                         record_type = cp[m_len - 1];
1857                         last_offset = offset + m_len;
1858                 }
1859         }
1860         if (last_offset < tls->params.tls_hlen)
1861                 return (EBADMSG);
1862
1863         *record_typep = record_type;
1864         *trailer_len = tls_len - last_offset + 1;
1865         return (0);
1866 }
1867
1868 static void
1869 ktls_drop(struct socket *so, int error)
1870 {
1871         struct epoch_tracker et;
1872         struct inpcb *inp = sotoinpcb(so);
1873         struct tcpcb *tp;
1874
1875         NET_EPOCH_ENTER(et);
1876         INP_WLOCK(inp);
1877         if (!(inp->inp_flags & INP_DROPPED)) {
1878                 tp = intotcpcb(inp);
1879                 CURVNET_SET(inp->inp_vnet);
1880                 tp = tcp_drop(tp, error);
1881                 CURVNET_RESTORE();
1882                 if (tp != NULL)
1883                         INP_WUNLOCK(inp);
1884         } else
1885                 INP_WUNLOCK(inp);
1886         NET_EPOCH_EXIT(et);
1887 }
1888
1889 static void
1890 ktls_decrypt(struct socket *so)
1891 {
1892         char tls_header[MBUF_PEXT_HDR_LEN];
1893         struct ktls_session *tls;
1894         struct sockbuf *sb;
1895         struct tls_record_layer *hdr;
1896         struct tls_get_record tgr;
1897         struct mbuf *control, *data, *m;
1898         uint64_t seqno;
1899         int error, remain, tls_len, trail_len;
1900         bool tls13;
1901         uint8_t vminor, record_type;
1902
1903         hdr = (struct tls_record_layer *)tls_header;
1904         sb = &so->so_rcv;
1905         SOCKBUF_LOCK(sb);
1906         KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
1907             ("%s: socket %p not running", __func__, so));
1908
1909         tls = sb->sb_tls_info;
1910         MPASS(tls != NULL);
1911
1912         tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
1913         if (tls13)
1914                 vminor = TLS_MINOR_VER_TWO;
1915         else
1916                 vminor = tls->params.tls_vminor;
1917         for (;;) {
1918                 /* Is there enough queued for a TLS header? */
1919                 if (sb->sb_tlscc < tls->params.tls_hlen)
1920                         break;
1921
1922                 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
1923                 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
1924
1925                 if (hdr->tls_vmajor != tls->params.tls_vmajor ||
1926                     hdr->tls_vminor != vminor)
1927                         error = EINVAL;
1928                 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
1929                         error = EINVAL;
1930                 else if (tls_len < tls->params.tls_hlen || tls_len >
1931                     tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
1932                     tls->params.tls_tlen)
1933                         error = EMSGSIZE;
1934                 else
1935                         error = 0;
1936                 if (__predict_false(error != 0)) {
1937                         /*
1938                          * We have a corrupted record and are likely
1939                          * out of sync.  The connection isn't
1940                          * recoverable at this point, so abort it.
1941                          */
1942                         SOCKBUF_UNLOCK(sb);
1943                         counter_u64_add(ktls_offload_corrupted_records, 1);
1944
1945                         ktls_drop(so, error);
1946                         goto deref;
1947                 }
1948
1949                 /* Is the entire record queued? */
1950                 if (sb->sb_tlscc < tls_len)
1951                         break;
1952
1953                 /*
1954                  * Split out the portion of the mbuf chain containing
1955                  * this TLS record.
1956                  */
1957                 data = ktls_detach_record(sb, tls_len);
1958                 if (data == NULL)
1959                         continue;
1960                 MPASS(sb->sb_tlsdcc == tls_len);
1961
1962                 seqno = sb->sb_tls_seqno;
1963                 sb->sb_tls_seqno++;
1964                 SBCHECK(sb);
1965                 SOCKBUF_UNLOCK(sb);
1966
1967                 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len);
1968                 if (error == 0) {
1969                         if (tls13)
1970                                 error = tls13_find_record_type(tls, data,
1971                                     tls_len, &trail_len, &record_type);
1972                         else
1973                                 record_type = hdr->tls_type;
1974                 }
1975                 if (error) {
1976                         counter_u64_add(ktls_offload_failed_crypto, 1);
1977
1978                         SOCKBUF_LOCK(sb);
1979                         if (sb->sb_tlsdcc == 0) {
1980                                 /*
1981                                  * sbcut/drop/flush discarded these
1982                                  * mbufs.
1983                                  */
1984                                 m_freem(data);
1985                                 break;
1986                         }
1987
1988                         /*
1989                          * Drop this TLS record's data, but keep
1990                          * decrypting subsequent records.
1991                          */
1992                         sb->sb_ccc -= tls_len;
1993                         sb->sb_tlsdcc = 0;
1994
1995                         CURVNET_SET(so->so_vnet);
1996                         so->so_error = EBADMSG;
1997                         sorwakeup_locked(so);
1998                         CURVNET_RESTORE();
1999
2000                         m_freem(data);
2001
2002                         SOCKBUF_LOCK(sb);
2003                         continue;
2004                 }
2005
2006                 /* Allocate the control mbuf. */
2007                 memset(&tgr, 0, sizeof(tgr));
2008                 tgr.tls_type = record_type;
2009                 tgr.tls_vmajor = hdr->tls_vmajor;
2010                 tgr.tls_vminor = hdr->tls_vminor;
2011                 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
2012                     trail_len);
2013                 control = sbcreatecontrol_how(&tgr, sizeof(tgr),
2014                     TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
2015
2016                 SOCKBUF_LOCK(sb);
2017                 if (sb->sb_tlsdcc == 0) {
2018                         /* sbcut/drop/flush discarded these mbufs. */
2019                         MPASS(sb->sb_tlscc == 0);
2020                         m_freem(data);
2021                         m_freem(control);
2022                         break;
2023                 }
2024
2025                 /*
2026                  * Clear the 'dcc' accounting in preparation for
2027                  * adding the decrypted record.
2028                  */
2029                 sb->sb_ccc -= tls_len;
2030                 sb->sb_tlsdcc = 0;
2031                 SBCHECK(sb);
2032
2033                 /* If there is no payload, drop all of the data. */
2034                 if (tgr.tls_length == htobe16(0)) {
2035                         m_freem(data);
2036                         data = NULL;
2037                 } else {
2038                         /* Trim header. */
2039                         remain = tls->params.tls_hlen;
2040                         while (remain > 0) {
2041                                 if (data->m_len > remain) {
2042                                         data->m_data += remain;
2043                                         data->m_len -= remain;
2044                                         break;
2045                                 }
2046                                 remain -= data->m_len;
2047                                 data = m_free(data);
2048                         }
2049
2050                         /* Trim trailer and clear M_NOTREADY. */
2051                         remain = be16toh(tgr.tls_length);
2052                         m = data;
2053                         for (m = data; remain > m->m_len; m = m->m_next) {
2054                                 m->m_flags &= ~M_NOTREADY;
2055                                 remain -= m->m_len;
2056                         }
2057                         m->m_len = remain;
2058                         m_freem(m->m_next);
2059                         m->m_next = NULL;
2060                         m->m_flags &= ~M_NOTREADY;
2061
2062                         /* Set EOR on the final mbuf. */
2063                         m->m_flags |= M_EOR;
2064                 }
2065
2066                 sbappendcontrol_locked(sb, data, control, 0);
2067         }
2068
2069         sb->sb_flags &= ~SB_TLS_RX_RUNNING;
2070
2071         if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
2072                 so->so_error = EMSGSIZE;
2073
2074         sorwakeup_locked(so);
2075
2076 deref:
2077         SOCKBUF_UNLOCK_ASSERT(sb);
2078
2079         CURVNET_SET(so->so_vnet);
2080         SOCK_LOCK(so);
2081         sorele(so);
2082         CURVNET_RESTORE();
2083 }
2084
2085 void
2086 ktls_enqueue_to_free(struct mbuf *m)
2087 {
2088         struct ktls_wq *wq;
2089         bool running;
2090
2091         /* Mark it for freeing. */
2092         m->m_epg_flags |= EPG_FLAG_2FREE;
2093         wq = &ktls_wq[m->m_epg_tls->wq_index];
2094         mtx_lock(&wq->mtx);
2095         STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2096         running = wq->running;
2097         mtx_unlock(&wq->mtx);
2098         if (!running)
2099                 wakeup(wq);
2100 }
2101
2102 /* Number of TLS records in a batch passed to ktls_enqueue(). */
2103 static u_int
2104 ktls_batched_records(struct mbuf *m)
2105 {
2106         int page_count, records;
2107
2108         records = 0;
2109         page_count = m->m_epg_enc_cnt;
2110         while (page_count > 0) {
2111                 records++;
2112                 page_count -= m->m_epg_nrdy;
2113                 m = m->m_next;
2114         }
2115         KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
2116         return (records);
2117 }
2118
2119 void
2120 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
2121 {
2122         struct ktls_session *tls;
2123         struct ktls_wq *wq;
2124         int queued;
2125         bool running;
2126
2127         KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2128             (M_EXTPG | M_NOTREADY)),
2129             ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
2130         KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
2131
2132         KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
2133
2134         m->m_epg_enc_cnt = page_count;
2135
2136         /*
2137          * Save a pointer to the socket.  The caller is responsible
2138          * for taking an additional reference via soref().
2139          */
2140         m->m_epg_so = so;
2141
2142         queued = 1;
2143         tls = m->m_epg_tls;
2144         wq = &ktls_wq[tls->wq_index];
2145         mtx_lock(&wq->mtx);
2146         if (__predict_false(tls->sequential_records)) {
2147                 /*
2148                  * For TLS 1.0, records must be encrypted
2149                  * sequentially.  For a given connection, all records
2150                  * queued to the associated work queue are processed
2151                  * sequentially.  However, sendfile(2) might complete
2152                  * I/O requests spanning multiple TLS records out of
2153                  * order.  Here we ensure TLS records are enqueued to
2154                  * the work queue in FIFO order.
2155                  *
2156                  * tls->next_seqno holds the sequence number of the
2157                  * next TLS record that should be enqueued to the work
2158                  * queue.  If this next record is not tls->next_seqno,
2159                  * it must be a future record, so insert it, sorted by
2160                  * TLS sequence number, into tls->pending_records and
2161                  * return.
2162                  *
2163                  * If this TLS record matches tls->next_seqno, place
2164                  * it in the work queue and then check
2165                  * tls->pending_records to see if any
2166                  * previously-queued records are now ready for
2167                  * encryption.
2168                  */
2169                 if (m->m_epg_seqno != tls->next_seqno) {
2170                         struct mbuf *n, *p;
2171
2172                         p = NULL;
2173                         STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
2174                                 if (n->m_epg_seqno > m->m_epg_seqno)
2175                                         break;
2176                                 p = n;
2177                         }
2178                         if (n == NULL)
2179                                 STAILQ_INSERT_TAIL(&tls->pending_records, m,
2180                                     m_epg_stailq);
2181                         else if (p == NULL)
2182                                 STAILQ_INSERT_HEAD(&tls->pending_records, m,
2183                                     m_epg_stailq);
2184                         else
2185                                 STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
2186                                     m_epg_stailq);
2187                         mtx_unlock(&wq->mtx);
2188                         counter_u64_add(ktls_cnt_tx_pending, 1);
2189                         return;
2190                 }
2191
2192                 tls->next_seqno += ktls_batched_records(m);
2193                 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2194
2195                 while (!STAILQ_EMPTY(&tls->pending_records)) {
2196                         struct mbuf *n;
2197
2198                         n = STAILQ_FIRST(&tls->pending_records);
2199                         if (n->m_epg_seqno != tls->next_seqno)
2200                                 break;
2201
2202                         queued++;
2203                         STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
2204                         tls->next_seqno += ktls_batched_records(n);
2205                         STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
2206                 }
2207                 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
2208         } else
2209                 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2210
2211         running = wq->running;
2212         mtx_unlock(&wq->mtx);
2213         if (!running)
2214                 wakeup(wq);
2215         counter_u64_add(ktls_cnt_tx_queued, queued);
2216 }
2217
2218 static __noinline void
2219 ktls_encrypt(struct mbuf *top)
2220 {
2221         struct ktls_session *tls;
2222         struct socket *so;
2223         struct mbuf *m;
2224         vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
2225         struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
2226         struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
2227         vm_page_t pg;
2228         int error, i, len, npages, off, total_pages;
2229         bool is_anon;
2230
2231         so = top->m_epg_so;
2232         tls = top->m_epg_tls;
2233         KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
2234         KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
2235 #ifdef INVARIANTS
2236         top->m_epg_so = NULL;
2237 #endif
2238         total_pages = top->m_epg_enc_cnt;
2239         npages = 0;
2240
2241         /*
2242          * Encrypt the TLS records in the chain of mbufs starting with
2243          * 'top'.  'total_pages' gives us a total count of pages and is
2244          * used to know when we have finished encrypting the TLS
2245          * records originally queued with 'top'.
2246          *
2247          * NB: These mbufs are queued in the socket buffer and
2248          * 'm_next' is traversing the mbufs in the socket buffer.  The
2249          * socket buffer lock is not held while traversing this chain.
2250          * Since the mbufs are all marked M_NOTREADY their 'm_next'
2251          * pointers should be stable.  However, the 'm_next' of the
2252          * last mbuf encrypted is not necessarily NULL.  It can point
2253          * to other mbufs appended while 'top' was on the TLS work
2254          * queue.
2255          *
2256          * Each mbuf holds an entire TLS record.
2257          */
2258         error = 0;
2259         for (m = top; npages != total_pages; m = m->m_next) {
2260                 KASSERT(m->m_epg_tls == tls,
2261                     ("different TLS sessions in a single mbuf chain: %p vs %p",
2262                     tls, m->m_epg_tls));
2263                 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2264                     (M_EXTPG | M_NOTREADY),
2265                     ("%p not unready & nomap mbuf (top = %p)\n", m, top));
2266                 KASSERT(npages + m->m_epg_npgs <= total_pages,
2267                     ("page count mismatch: top %p, total_pages %d, m %p", top,
2268                     total_pages, m));
2269
2270                 /*
2271                  * Generate source and destination ivoecs to pass to
2272                  * the SW encryption backend.  For writable mbufs, the
2273                  * destination iovec is a copy of the source and
2274                  * encryption is done in place.  For file-backed mbufs
2275                  * (from sendfile), anonymous wired pages are
2276                  * allocated and assigned to the destination iovec.
2277                  */
2278                 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0;
2279
2280                 off = m->m_epg_1st_off;
2281                 for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2282                         len = m_epg_pagelen(m, i, off);
2283                         src_iov[i].iov_len = len;
2284                         src_iov[i].iov_base =
2285                             (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) +
2286                                 off;
2287
2288                         if (is_anon) {
2289                                 dst_iov[i].iov_base = src_iov[i].iov_base;
2290                                 dst_iov[i].iov_len = src_iov[i].iov_len;
2291                                 continue;
2292                         }
2293 retry_page:
2294                         pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
2295                             VM_ALLOC_WIRED);
2296                         if (pg == NULL) {
2297                                 vm_wait(NULL);
2298                                 goto retry_page;
2299                         }
2300                         parray[i] = VM_PAGE_TO_PHYS(pg);
2301                         dst_iov[i].iov_base =
2302                             (char *)(void *)PHYS_TO_DMAP(parray[i]) + off;
2303                         dst_iov[i].iov_len = len;
2304                 }
2305
2306                 npages += m->m_epg_nrdy;
2307
2308                 error = (*tls->sw_encrypt)(tls,
2309                     (const struct tls_record_layer *)m->m_epg_hdr,
2310                     m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno,
2311                     m->m_epg_record_type);
2312                 if (error) {
2313                         counter_u64_add(ktls_offload_failed_crypto, 1);
2314                         break;
2315                 }
2316
2317                 /*
2318                  * For file-backed mbufs, release the file-backed
2319                  * pages and replace them in the ext_pgs array with
2320                  * the anonymous wired pages allocated above.
2321                  */
2322                 if (!is_anon) {
2323                         /* Free the old pages. */
2324                         m->m_ext.ext_free(m);
2325
2326                         /* Replace them with the new pages. */
2327                         for (i = 0; i < m->m_epg_npgs; i++)
2328                                 m->m_epg_pa[i] = parray[i];
2329
2330                         /* Use the basic free routine. */
2331                         m->m_ext.ext_free = mb_free_mext_pgs;
2332
2333                         /* Pages are now writable. */
2334                         m->m_epg_flags |= EPG_FLAG_ANON;
2335                 }
2336
2337                 /*
2338                  * Drop a reference to the session now that it is no
2339                  * longer needed.  Existing code depends on encrypted
2340                  * records having no associated session vs
2341                  * yet-to-be-encrypted records having an associated
2342                  * session.
2343                  */
2344                 m->m_epg_tls = NULL;
2345                 ktls_free(tls);
2346         }
2347
2348         CURVNET_SET(so->so_vnet);
2349         if (error == 0) {
2350                 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
2351         } else {
2352                 ktls_drop(so, EIO);
2353                 mb_free_notready(top, total_pages);
2354         }
2355
2356         SOCK_LOCK(so);
2357         sorele(so);
2358         CURVNET_RESTORE();
2359 }
2360
2361 static void
2362 ktls_work_thread(void *ctx)
2363 {
2364         struct ktls_wq *wq = ctx;
2365         struct mbuf *m, *n;
2366         struct socket *so, *son;
2367         STAILQ_HEAD(, mbuf) local_m_head;
2368         STAILQ_HEAD(, socket) local_so_head;
2369
2370         if (ktls_bind_threads > 1) {
2371                 curthread->td_domain.dr_policy =
2372                         DOMAINSET_PREF(PCPU_GET(domain));
2373         }
2374 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
2375         fpu_kern_thread(0);
2376 #endif
2377         for (;;) {
2378                 mtx_lock(&wq->mtx);
2379                 while (STAILQ_EMPTY(&wq->m_head) &&
2380                     STAILQ_EMPTY(&wq->so_head)) {
2381                         wq->running = false;
2382                         mtx_sleep(wq, &wq->mtx, 0, "-", 0);
2383                         wq->running = true;
2384                 }
2385
2386                 STAILQ_INIT(&local_m_head);
2387                 STAILQ_CONCAT(&local_m_head, &wq->m_head);
2388                 STAILQ_INIT(&local_so_head);
2389                 STAILQ_CONCAT(&local_so_head, &wq->so_head);
2390                 mtx_unlock(&wq->mtx);
2391
2392                 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
2393                         if (m->m_epg_flags & EPG_FLAG_2FREE) {
2394                                 ktls_free(m->m_epg_tls);
2395                                 m_free_raw(m);
2396                         } else {
2397                                 ktls_encrypt(m);
2398                                 counter_u64_add(ktls_cnt_tx_queued, -1);
2399                         }
2400                 }
2401
2402                 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
2403                         ktls_decrypt(so);
2404                         counter_u64_add(ktls_cnt_rx_queued, -1);
2405                 }
2406         }
2407 }