]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/uipc_usrreq.c
Add more precise SMR entry asserts.
[FreeBSD/FreeBSD.git] / sys / kern / uipc_usrreq.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *      The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
34  */
35
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *      RDM
56  *      rethink name space problems
57  *      need a proper out-of-band
58  */
59
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62
63 #include "opt_ddb.h"
64
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h>         /* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95
96 #include <net/vnet.h>
97
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101
102 #include <security/mac/mac_framework.h>
103
104 #include <vm/uma.h>
105
106 MALLOC_DECLARE(M_FILECAPS);
107
108 /*
109  * Locking key:
110  * (l)  Locked using list lock
111  * (g)  Locked using linkage lock
112  */
113
114 static uma_zone_t       unp_zone;
115 static unp_gen_t        unp_gencnt;     /* (l) */
116 static u_int            unp_count;      /* (l) Count of local sockets. */
117 static ino_t            unp_ino;        /* Prototype for fake inode numbers. */
118 static int              unp_rights;     /* (g) File descriptors in flight. */
119 static struct unp_head  unp_shead;      /* (l) List of stream sockets. */
120 static struct unp_head  unp_dhead;      /* (l) List of datagram sockets. */
121 static struct unp_head  unp_sphead;     /* (l) List of seqpacket sockets. */
122
123 struct unp_defer {
124         SLIST_ENTRY(unp_defer) ud_link;
125         struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129
130 static const struct sockaddr    sun_noname = { sizeof(sun_noname), AF_LOCAL };
131
132 /*
133  * Garbage collection of cyclic file descriptor/socket references occurs
134  * asynchronously in a taskqueue context in order to avoid recursion and
135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
136  * code.  See unp_gc() for a full description.
137  */
138 static struct timeout_task unp_gc_task;
139
140 /*
141  * The close of unix domain sockets attached as SCM_RIGHTS is
142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
143  * The attached sockets might have another sockets attached.
144  */
145 static struct task      unp_defer_task;
146
147 /*
148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149  * stream sockets, although the total for sender and receiver is actually
150  * only PIPSIZ.
151  *
152  * Datagram sockets really use the sendspace as the maximum datagram size,
153  * and don't really want to reserve the sendspace.  Their recvspace should be
154  * large enough for at least one max-size datagram plus address.
155  */
156 #ifndef PIPSIZ
157 #define PIPSIZ  8192
158 #endif
159 static u_long   unpst_sendspace = PIPSIZ;
160 static u_long   unpst_recvspace = PIPSIZ;
161 static u_long   unpdg_sendspace = 2*1024;       /* really max datagram size */
162 static u_long   unpdg_recvspace = 4*1024;
163 static u_long   unpsp_sendspace = PIPSIZ;       /* really max datagram size */
164 static u_long   unpsp_recvspace = PIPSIZ;
165
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
171     "SOCK_SEQPACKET");
172
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
174            &unpst_sendspace, 0, "Default stream send space.");
175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
176            &unpst_recvspace, 0, "Default stream receive space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
178            &unpdg_sendspace, 0, "Default datagram send space.");
179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
180            &unpdg_recvspace, 0, "Default datagram receive space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
182            &unpsp_sendspace, 0, "Default seqpacket send space.");
183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
184            &unpsp_recvspace, 0, "Default seqpacket receive space.");
185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
186     "File descriptors in flight.");
187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
188     &unp_defers_count, 0,
189     "File descriptors deferred to taskqueue for close.");
190
191 /*
192  * Locking and synchronization:
193  *
194  * Three types of locks exist in the local domain socket implementation: a
195  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
196  * The linkage lock protects the socket count, global generation number,
197  * and stream/datagram global lists.
198  *
199  * The mtxpool lock protects the vnode from being modified while referenced.
200  * Lock ordering requires that it be acquired before any unpcb locks.
201  *
202  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
203  * note is that this includes the unp_conn field. So long as the unpcb lock
204  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
205  * require that the unpcb pointed to by unp_conn remain live in cases where
206  * we need to drop the unp_mtx as when we need to acquire the lock for a
207  * second unpcb the caller must first acquire an additional reference on the
208  * second unpcb and then revalidate any state (typically check that unp_conn
209  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
210  * between unpcbs is the conventional ascending address order. Two helper
211  * routines exist for this:
212  *
213  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
214  *     safe ordering.
215  *
216  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
217  *     when called. If unp is unlocked and unp2 is subsequently freed
218  *     freed will be set to 1.
219  *
220  * The helper routines for references are:
221  *
222  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
223  *     reference to unp.
224  *
225  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
226  *      releasing the last reference, detach must have been called thus
227  *      unp->unp_socket be NULL.
228  *
229  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
230  * allocated in pru_attach() and freed in pru_detach().  The validity of that
231  * pointer is an invariant, so no lock is required to dereference the so_pcb
232  * pointer if a valid socket reference is held by the caller.  In practice,
233  * this is always true during operations performed on a socket.  Each unpcb
234  * has a back-pointer to its socket, unp_socket, which will be stable under
235  * the same circumstances.
236  *
237  * This pointer may only be safely dereferenced as long as a valid reference
238  * to the unpcb is held.  Typically, this reference will be from the socket,
239  * or from another unpcb when the referring unpcb's lock is held (in order
240  * that the reference not be invalidated during use).  For example, to follow
241  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
242  * that detach is not run clearing unp_socket.
243  *
244  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
245  * protocols, bind() is a non-atomic operation, and connect() requires
246  * potential sleeping in the protocol, due to potentially waiting on local or
247  * distributed file systems.  We try to separate "lookup" operations, which
248  * may sleep, and the IPC operations themselves, which typically can occur
249  * with relative atomicity as locks can be held over the entire operation.
250  *
251  * Another tricky issue is simultaneous multi-threaded or multi-process
252  * access to a single UNIX domain socket.  These are handled by the flags
253  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
254  * binding, both of which involve dropping UNIX domain socket locks in order
255  * to perform namei() and other file system operations.
256  */
257 static struct rwlock    unp_link_rwlock;
258 static struct mtx       unp_defers_lock;
259
260 #define UNP_LINK_LOCK_INIT()            rw_init(&unp_link_rwlock,       \
261                                             "unp_link_rwlock")
262
263 #define UNP_LINK_LOCK_ASSERT()          rw_assert(&unp_link_rwlock,     \
264                                             RA_LOCKED)
265 #define UNP_LINK_UNLOCK_ASSERT()        rw_assert(&unp_link_rwlock,     \
266                                             RA_UNLOCKED)
267
268 #define UNP_LINK_RLOCK()                rw_rlock(&unp_link_rwlock)
269 #define UNP_LINK_RUNLOCK()              rw_runlock(&unp_link_rwlock)
270 #define UNP_LINK_WLOCK()                rw_wlock(&unp_link_rwlock)
271 #define UNP_LINK_WUNLOCK()              rw_wunlock(&unp_link_rwlock)
272 #define UNP_LINK_WLOCK_ASSERT()         rw_assert(&unp_link_rwlock,     \
273                                             RA_WLOCKED)
274 #define UNP_LINK_WOWNED()               rw_wowned(&unp_link_rwlock)
275
276 #define UNP_DEFERRED_LOCK_INIT()        mtx_init(&unp_defers_lock, \
277                                             "unp_defer", NULL, MTX_DEF)
278 #define UNP_DEFERRED_LOCK()             mtx_lock(&unp_defers_lock)
279 #define UNP_DEFERRED_UNLOCK()           mtx_unlock(&unp_defers_lock)
280
281 #define UNP_REF_LIST_LOCK()             UNP_DEFERRED_LOCK();
282 #define UNP_REF_LIST_UNLOCK()           UNP_DEFERRED_UNLOCK();
283
284 #define UNP_PCB_LOCK_INIT(unp)          mtx_init(&(unp)->unp_mtx,       \
285                                             "unp", "unp",       \
286                                             MTX_DUPOK|MTX_DEF)
287 #define UNP_PCB_LOCK_DESTROY(unp)       mtx_destroy(&(unp)->unp_mtx)
288 #define UNP_PCB_LOCK(unp)               mtx_lock(&(unp)->unp_mtx)
289 #define UNP_PCB_TRYLOCK(unp)            mtx_trylock(&(unp)->unp_mtx)
290 #define UNP_PCB_UNLOCK(unp)             mtx_unlock(&(unp)->unp_mtx)
291 #define UNP_PCB_OWNED(unp)              mtx_owned(&(unp)->unp_mtx)
292 #define UNP_PCB_LOCK_ASSERT(unp)        mtx_assert(&(unp)->unp_mtx, MA_OWNED)
293 #define UNP_PCB_UNLOCK_ASSERT(unp)      mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
294
295 static int      uipc_connect2(struct socket *, struct socket *);
296 static int      uipc_ctloutput(struct socket *, struct sockopt *);
297 static int      unp_connect(struct socket *, struct sockaddr *,
298                     struct thread *);
299 static int      unp_connectat(int, struct socket *, struct sockaddr *,
300                     struct thread *);
301 static int      unp_connect2(struct socket *so, struct socket *so2, int);
302 static void     unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
303 static void     unp_dispose(struct socket *so);
304 static void     unp_dispose_mbuf(struct mbuf *);
305 static void     unp_shutdown(struct unpcb *);
306 static void     unp_drop(struct unpcb *);
307 static void     unp_gc(__unused void *, int);
308 static void     unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
309 static void     unp_discard(struct file *);
310 static void     unp_freerights(struct filedescent **, int);
311 static void     unp_init(void);
312 static int      unp_internalize(struct mbuf **, struct thread *);
313 static void     unp_internalize_fp(struct file *);
314 static int      unp_externalize(struct mbuf *, struct mbuf **, int);
315 static int      unp_externalize_fp(struct file *);
316 static struct mbuf      *unp_addsockcred(struct thread *, struct mbuf *);
317 static void     unp_process_defers(void * __unused, int);
318
319 static void
320 unp_pcb_hold(struct unpcb *unp)
321 {
322         MPASS(unp->unp_refcount);
323         refcount_acquire(&unp->unp_refcount);
324 }
325
326 static int
327 unp_pcb_rele(struct unpcb *unp)
328 {
329         int freed;
330
331         UNP_PCB_LOCK_ASSERT(unp);
332         MPASS(unp->unp_refcount);
333         if ((freed = refcount_release(&unp->unp_refcount))) {
334                 /* we got here with having detached? */
335                 MPASS(unp->unp_socket == NULL);
336                 UNP_PCB_UNLOCK(unp);
337                 UNP_PCB_LOCK_DESTROY(unp);
338                 uma_zfree(unp_zone, unp);
339         }
340         return (freed);
341 }
342
343 static void
344 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
345 {
346         MPASS(unp != unp2);
347         UNP_PCB_UNLOCK_ASSERT(unp);
348         UNP_PCB_UNLOCK_ASSERT(unp2);
349         if ((uintptr_t)unp2 > (uintptr_t)unp) {
350                 UNP_PCB_LOCK(unp);
351                 UNP_PCB_LOCK(unp2);
352         } else {
353                 UNP_PCB_LOCK(unp2);
354                 UNP_PCB_LOCK(unp);
355         }
356 }
357
358 static __noinline void
359 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p,
360     int *freed)
361 {
362         struct unpcb *unp2;
363
364         unp2 = *unp2p;
365         unp_pcb_hold(unp2);
366         UNP_PCB_UNLOCK(unp);
367         UNP_PCB_LOCK(unp2);
368         UNP_PCB_LOCK(unp);
369         *freed = unp_pcb_rele(unp2);
370         if (*freed)
371                 *unp2p = NULL;
372 }
373
374 #define unp_pcb_owned_lock2(unp, unp2, freed) do {                      \
375         freed = 0;                                                      \
376         UNP_PCB_LOCK_ASSERT(unp);                                       \
377         UNP_PCB_UNLOCK_ASSERT(unp2);                                    \
378         MPASS((unp) != (unp2));                                         \
379         if (__predict_true(UNP_PCB_TRYLOCK(unp2)))                      \
380                 break;                                                  \
381         else if ((uintptr_t)(unp2) > (uintptr_t)(unp))                  \
382                 UNP_PCB_LOCK(unp2);                                     \
383         else                                                            \
384                 unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);   \
385 } while (0)
386
387 /*
388  * Definitions of protocols supported in the LOCAL domain.
389  */
390 static struct domain localdomain;
391 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
392 static struct pr_usrreqs uipc_usrreqs_seqpacket;
393 static struct protosw localsw[] = {
394 {
395         .pr_type =              SOCK_STREAM,
396         .pr_domain =            &localdomain,
397         .pr_flags =             PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
398         .pr_ctloutput =         &uipc_ctloutput,
399         .pr_usrreqs =           &uipc_usrreqs_stream
400 },
401 {
402         .pr_type =              SOCK_DGRAM,
403         .pr_domain =            &localdomain,
404         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_RIGHTS,
405         .pr_ctloutput =         &uipc_ctloutput,
406         .pr_usrreqs =           &uipc_usrreqs_dgram
407 },
408 {
409         .pr_type =              SOCK_SEQPACKET,
410         .pr_domain =            &localdomain,
411
412         /*
413          * XXXRW: For now, PR_ADDR because soreceive will bump into them
414          * due to our use of sbappendaddr.  A new sbappend variants is needed
415          * that supports both atomic record writes and control data.
416          */
417         .pr_flags =             PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
418                                     PR_RIGHTS,
419         .pr_ctloutput =         &uipc_ctloutput,
420         .pr_usrreqs =           &uipc_usrreqs_seqpacket,
421 },
422 };
423
424 static struct domain localdomain = {
425         .dom_family =           AF_LOCAL,
426         .dom_name =             "local",
427         .dom_init =             unp_init,
428         .dom_externalize =      unp_externalize,
429         .dom_dispose =          unp_dispose,
430         .dom_protosw =          localsw,
431         .dom_protoswNPROTOSW =  &localsw[nitems(localsw)]
432 };
433 DOMAIN_SET(local);
434
435 static void
436 uipc_abort(struct socket *so)
437 {
438         struct unpcb *unp, *unp2;
439
440         unp = sotounpcb(so);
441         KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
442         UNP_PCB_UNLOCK_ASSERT(unp);
443
444         UNP_PCB_LOCK(unp);
445         unp2 = unp->unp_conn;
446         if (unp2 != NULL) {
447                 unp_pcb_hold(unp2);
448                 UNP_PCB_UNLOCK(unp);
449                 unp_drop(unp2);
450         } else
451                 UNP_PCB_UNLOCK(unp);
452 }
453
454 static int
455 uipc_accept(struct socket *so, struct sockaddr **nam)
456 {
457         struct unpcb *unp, *unp2;
458         const struct sockaddr *sa;
459
460         /*
461          * Pass back name of connected socket, if it was bound and we are
462          * still connected (our peer may have closed already!).
463          */
464         unp = sotounpcb(so);
465         KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
466
467         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
468         UNP_LINK_RLOCK();
469         unp2 = unp->unp_conn;
470         if (unp2 != NULL && unp2->unp_addr != NULL) {
471                 UNP_PCB_LOCK(unp2);
472                 sa = (struct sockaddr *) unp2->unp_addr;
473                 bcopy(sa, *nam, sa->sa_len);
474                 UNP_PCB_UNLOCK(unp2);
475         } else {
476                 sa = &sun_noname;
477                 bcopy(sa, *nam, sa->sa_len);
478         }
479         UNP_LINK_RUNLOCK();
480         return (0);
481 }
482
483 static int
484 uipc_attach(struct socket *so, int proto, struct thread *td)
485 {
486         u_long sendspace, recvspace;
487         struct unpcb *unp;
488         int error;
489         bool locked;
490
491         KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
492         if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
493                 switch (so->so_type) {
494                 case SOCK_STREAM:
495                         sendspace = unpst_sendspace;
496                         recvspace = unpst_recvspace;
497                         break;
498
499                 case SOCK_DGRAM:
500                         sendspace = unpdg_sendspace;
501                         recvspace = unpdg_recvspace;
502                         break;
503
504                 case SOCK_SEQPACKET:
505                         sendspace = unpsp_sendspace;
506                         recvspace = unpsp_recvspace;
507                         break;
508
509                 default:
510                         panic("uipc_attach");
511                 }
512                 error = soreserve(so, sendspace, recvspace);
513                 if (error)
514                         return (error);
515         }
516         unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
517         if (unp == NULL)
518                 return (ENOBUFS);
519         LIST_INIT(&unp->unp_refs);
520         UNP_PCB_LOCK_INIT(unp);
521         unp->unp_socket = so;
522         so->so_pcb = unp;
523         unp->unp_refcount = 1;
524         if (so->so_listen != NULL)
525                 unp->unp_flags |= UNP_NASCENT;
526
527         if ((locked = UNP_LINK_WOWNED()) == false)
528                 UNP_LINK_WLOCK();
529
530         unp->unp_gencnt = ++unp_gencnt;
531         unp->unp_ino = ++unp_ino;
532         unp_count++;
533         switch (so->so_type) {
534         case SOCK_STREAM:
535                 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
536                 break;
537
538         case SOCK_DGRAM:
539                 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
540                 break;
541
542         case SOCK_SEQPACKET:
543                 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
544                 break;
545
546         default:
547                 panic("uipc_attach");
548         }
549
550         if (locked == false)
551                 UNP_LINK_WUNLOCK();
552
553         return (0);
554 }
555
556 static int
557 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
558 {
559         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
560         struct vattr vattr;
561         int error, namelen;
562         struct nameidata nd;
563         struct unpcb *unp;
564         struct vnode *vp;
565         struct mount *mp;
566         cap_rights_t rights;
567         char *buf;
568
569         if (nam->sa_family != AF_UNIX)
570                 return (EAFNOSUPPORT);
571
572         unp = sotounpcb(so);
573         KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
574
575         if (soun->sun_len > sizeof(struct sockaddr_un))
576                 return (EINVAL);
577         namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
578         if (namelen <= 0)
579                 return (EINVAL);
580
581         /*
582          * We don't allow simultaneous bind() calls on a single UNIX domain
583          * socket, so flag in-progress operations, and return an error if an
584          * operation is already in progress.
585          *
586          * Historically, we have not allowed a socket to be rebound, so this
587          * also returns an error.  Not allowing re-binding simplifies the
588          * implementation and avoids a great many possible failure modes.
589          */
590         UNP_PCB_LOCK(unp);
591         if (unp->unp_vnode != NULL) {
592                 UNP_PCB_UNLOCK(unp);
593                 return (EINVAL);
594         }
595         if (unp->unp_flags & UNP_BINDING) {
596                 UNP_PCB_UNLOCK(unp);
597                 return (EALREADY);
598         }
599         unp->unp_flags |= UNP_BINDING;
600         UNP_PCB_UNLOCK(unp);
601
602         buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
603         bcopy(soun->sun_path, buf, namelen);
604         buf[namelen] = 0;
605
606 restart:
607         NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
608             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
609 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
610         error = namei(&nd);
611         if (error)
612                 goto error;
613         vp = nd.ni_vp;
614         if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
615                 NDFREE(&nd, NDF_ONLY_PNBUF);
616                 if (nd.ni_dvp == vp)
617                         vrele(nd.ni_dvp);
618                 else
619                         vput(nd.ni_dvp);
620                 if (vp != NULL) {
621                         vrele(vp);
622                         error = EADDRINUSE;
623                         goto error;
624                 }
625                 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
626                 if (error)
627                         goto error;
628                 goto restart;
629         }
630         VATTR_NULL(&vattr);
631         vattr.va_type = VSOCK;
632         vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
633 #ifdef MAC
634         error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
635             &vattr);
636 #endif
637         if (error == 0)
638                 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
639         NDFREE(&nd, NDF_ONLY_PNBUF);
640         vput(nd.ni_dvp);
641         if (error) {
642                 vn_finished_write(mp);
643                 goto error;
644         }
645         vp = nd.ni_vp;
646         ASSERT_VOP_ELOCKED(vp, "uipc_bind");
647         soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
648
649         UNP_PCB_LOCK(unp);
650         VOP_UNP_BIND(vp, unp);
651         unp->unp_vnode = vp;
652         unp->unp_addr = soun;
653         unp->unp_flags &= ~UNP_BINDING;
654         UNP_PCB_UNLOCK(unp);
655         VOP_UNLOCK(vp);
656         vn_finished_write(mp);
657         free(buf, M_TEMP);
658         return (0);
659
660 error:
661         UNP_PCB_LOCK(unp);
662         unp->unp_flags &= ~UNP_BINDING;
663         UNP_PCB_UNLOCK(unp);
664         free(buf, M_TEMP);
665         return (error);
666 }
667
668 static int
669 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
670 {
671
672         return (uipc_bindat(AT_FDCWD, so, nam, td));
673 }
674
675 static int
676 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
677 {
678         int error;
679
680         KASSERT(td == curthread, ("uipc_connect: td != curthread"));
681         error = unp_connect(so, nam, td);
682         return (error);
683 }
684
685 static int
686 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
687     struct thread *td)
688 {
689         int error;
690
691         KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
692         error = unp_connectat(fd, so, nam, td);
693         return (error);
694 }
695
696 static void
697 uipc_close(struct socket *so)
698 {
699         struct unpcb *unp, *unp2;
700         struct vnode *vp = NULL;
701         struct mtx *vplock;
702         int freed;
703         unp = sotounpcb(so);
704         KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
705
706         vplock = NULL;
707         if ((vp = unp->unp_vnode) != NULL) {
708                 vplock = mtx_pool_find(mtxpool_sleep, vp);
709                 mtx_lock(vplock);
710         }
711         UNP_PCB_LOCK(unp);
712         if (vp && unp->unp_vnode == NULL) {
713                 mtx_unlock(vplock);
714                 vp = NULL;
715         }
716         if (vp != NULL) {
717                 VOP_UNP_DETACH(vp);
718                 unp->unp_vnode = NULL;
719         }
720         unp2 = unp->unp_conn;
721         unp_pcb_hold(unp);
722         if (__predict_false(unp == unp2)) {
723                 unp_disconnect(unp, unp2);
724         } else if (unp2 != NULL) {
725                 unp_pcb_hold(unp2);
726                 unp_pcb_owned_lock2(unp, unp2, freed);
727                 unp_disconnect(unp, unp2);
728                 if (unp_pcb_rele(unp2) == 0)
729                         UNP_PCB_UNLOCK(unp2);
730         }
731         if (unp_pcb_rele(unp) == 0)
732                 UNP_PCB_UNLOCK(unp);
733         if (vp) {
734                 mtx_unlock(vplock);
735                 vrele(vp);
736         }
737 }
738
739 static int
740 uipc_connect2(struct socket *so1, struct socket *so2)
741 {
742         struct unpcb *unp, *unp2;
743         int error;
744
745         unp = so1->so_pcb;
746         KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
747         unp2 = so2->so_pcb;
748         KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
749         if (unp != unp2)
750                 unp_pcb_lock2(unp, unp2);
751         else
752                 UNP_PCB_LOCK(unp);
753         error = unp_connect2(so1, so2, PRU_CONNECT2);
754         if (unp != unp2)
755                 UNP_PCB_UNLOCK(unp2);
756         UNP_PCB_UNLOCK(unp);
757         return (error);
758 }
759
760 static void
761 uipc_detach(struct socket *so)
762 {
763         struct unpcb *unp, *unp2;
764         struct mtx *vplock;
765         struct sockaddr_un *saved_unp_addr;
766         struct vnode *vp;
767         int freeunp, local_unp_rights;
768
769         unp = sotounpcb(so);
770         KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
771
772         vp = NULL;
773         vplock = NULL;
774         local_unp_rights = 0;
775
776         UNP_LINK_WLOCK();
777         LIST_REMOVE(unp, unp_link);
778         if (unp->unp_gcflag & UNPGC_DEAD)
779                 LIST_REMOVE(unp, unp_dead);
780         unp->unp_gencnt = ++unp_gencnt;
781         --unp_count;
782         UNP_LINK_WUNLOCK();
783
784         UNP_PCB_UNLOCK_ASSERT(unp);
785  restart:
786         if ((vp = unp->unp_vnode) != NULL) {
787                 vplock = mtx_pool_find(mtxpool_sleep, vp);
788                 mtx_lock(vplock);
789         }
790         UNP_PCB_LOCK(unp);
791         if (unp->unp_vnode != vp &&
792                 unp->unp_vnode != NULL) {
793                 if (vplock)
794                         mtx_unlock(vplock);
795                 UNP_PCB_UNLOCK(unp);
796                 goto restart;
797         }
798         if ((unp->unp_flags & UNP_NASCENT) != 0) {
799                 goto teardown;
800         }
801         if ((vp = unp->unp_vnode) != NULL) {
802                 VOP_UNP_DETACH(vp);
803                 unp->unp_vnode = NULL;
804         }
805         if (__predict_false(unp == unp->unp_conn)) {
806                 unp_disconnect(unp, unp);
807                 unp2 = NULL;
808                 goto connect_self;
809         }
810         if ((unp2 = unp->unp_conn) != NULL) {
811                 unp_pcb_owned_lock2(unp, unp2, freeunp);
812                 if (freeunp)
813                         unp2 = NULL;
814         }
815         unp_pcb_hold(unp);
816         if (unp2 != NULL) {
817                 unp_pcb_hold(unp2);
818                 unp_disconnect(unp, unp2);
819                 if (unp_pcb_rele(unp2) == 0)
820                         UNP_PCB_UNLOCK(unp2);
821         }
822  connect_self:
823         UNP_PCB_UNLOCK(unp);
824         UNP_REF_LIST_LOCK();
825         while (!LIST_EMPTY(&unp->unp_refs)) {
826                 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
827
828                 unp_pcb_hold(ref);
829                 UNP_REF_LIST_UNLOCK();
830
831                 MPASS(ref != unp);
832                 UNP_PCB_UNLOCK_ASSERT(ref);
833                 unp_drop(ref);
834                 UNP_REF_LIST_LOCK();
835         }
836
837         UNP_REF_LIST_UNLOCK();
838         UNP_PCB_LOCK(unp);
839         freeunp = unp_pcb_rele(unp);
840         MPASS(freeunp == 0);
841         local_unp_rights = unp_rights;
842 teardown:
843         unp->unp_socket->so_pcb = NULL;
844         saved_unp_addr = unp->unp_addr;
845         unp->unp_addr = NULL;
846         unp->unp_socket = NULL;
847         freeunp = unp_pcb_rele(unp);
848         if (saved_unp_addr != NULL)
849                 free(saved_unp_addr, M_SONAME);
850         if (!freeunp)
851                 UNP_PCB_UNLOCK(unp);
852         if (vp) {
853                 mtx_unlock(vplock);
854                 vrele(vp);
855         }
856         if (local_unp_rights)
857                 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
858 }
859
860 static int
861 uipc_disconnect(struct socket *so)
862 {
863         struct unpcb *unp, *unp2;
864         int freed;
865
866         unp = sotounpcb(so);
867         KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
868
869         UNP_PCB_LOCK(unp);
870         if ((unp2 = unp->unp_conn) == NULL) {
871                 UNP_PCB_UNLOCK(unp);
872                 return (0);
873         }
874         if (__predict_true(unp != unp2)) {
875                 unp_pcb_owned_lock2(unp, unp2, freed);
876                 if (__predict_false(freed)) {
877                         UNP_PCB_UNLOCK(unp);
878                         return (0);
879                 }
880                 unp_pcb_hold(unp2);
881         }
882         unp_pcb_hold(unp);
883         unp_disconnect(unp, unp2);
884         if (unp_pcb_rele(unp) == 0)
885                 UNP_PCB_UNLOCK(unp);
886         if ((unp != unp2) && unp_pcb_rele(unp2) == 0)
887                 UNP_PCB_UNLOCK(unp2);
888         return (0);
889 }
890
891 static int
892 uipc_listen(struct socket *so, int backlog, struct thread *td)
893 {
894         struct unpcb *unp;
895         int error;
896
897         if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
898                 return (EOPNOTSUPP);
899
900         unp = sotounpcb(so);
901         KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
902
903         UNP_PCB_LOCK(unp);
904         if (unp->unp_vnode == NULL) {
905                 /* Already connected or not bound to an address. */
906                 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
907                 UNP_PCB_UNLOCK(unp);
908                 return (error);
909         }
910
911         SOCK_LOCK(so);
912         error = solisten_proto_check(so);
913         if (error == 0) {
914                 cru2xt(td, &unp->unp_peercred);
915                 solisten_proto(so, backlog);
916         }
917         SOCK_UNLOCK(so);
918         UNP_PCB_UNLOCK(unp);
919         return (error);
920 }
921
922 static int
923 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
924 {
925         struct unpcb *unp, *unp2;
926         const struct sockaddr *sa;
927
928         unp = sotounpcb(so);
929         KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
930
931         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
932         UNP_LINK_RLOCK();
933         /*
934          * XXX: It seems that this test always fails even when connection is
935          * established.  So, this else clause is added as workaround to
936          * return PF_LOCAL sockaddr.
937          */
938         unp2 = unp->unp_conn;
939         if (unp2 != NULL) {
940                 UNP_PCB_LOCK(unp2);
941                 if (unp2->unp_addr != NULL)
942                         sa = (struct sockaddr *) unp2->unp_addr;
943                 else
944                         sa = &sun_noname;
945                 bcopy(sa, *nam, sa->sa_len);
946                 UNP_PCB_UNLOCK(unp2);
947         } else {
948                 sa = &sun_noname;
949                 bcopy(sa, *nam, sa->sa_len);
950         }
951         UNP_LINK_RUNLOCK();
952         return (0);
953 }
954
955 static int
956 uipc_rcvd(struct socket *so, int flags)
957 {
958         struct unpcb *unp, *unp2;
959         struct socket *so2;
960         u_int mbcnt, sbcc;
961
962         unp = sotounpcb(so);
963         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
964         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
965             ("%s: socktype %d", __func__, so->so_type));
966
967         /*
968          * Adjust backpressure on sender and wakeup any waiting to write.
969          *
970          * The unp lock is acquired to maintain the validity of the unp_conn
971          * pointer; no lock on unp2 is required as unp2->unp_socket will be
972          * static as long as we don't permit unp2 to disconnect from unp,
973          * which is prevented by the lock on unp.  We cache values from
974          * so_rcv to avoid holding the so_rcv lock over the entire
975          * transaction on the remote so_snd.
976          */
977         SOCKBUF_LOCK(&so->so_rcv);
978         mbcnt = so->so_rcv.sb_mbcnt;
979         sbcc = sbavail(&so->so_rcv);
980         SOCKBUF_UNLOCK(&so->so_rcv);
981         /*
982          * There is a benign race condition at this point.  If we're planning to
983          * clear SB_STOP, but uipc_send is called on the connected socket at
984          * this instant, it might add data to the sockbuf and set SB_STOP.  Then
985          * we would erroneously clear SB_STOP below, even though the sockbuf is
986          * full.  The race is benign because the only ill effect is to allow the
987          * sockbuf to exceed its size limit, and the size limits are not
988          * strictly guaranteed anyway.
989          */
990         UNP_PCB_LOCK(unp);
991         unp2 = unp->unp_conn;
992         if (unp2 == NULL) {
993                 UNP_PCB_UNLOCK(unp);
994                 return (0);
995         }
996         so2 = unp2->unp_socket;
997         SOCKBUF_LOCK(&so2->so_snd);
998         if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
999                 so2->so_snd.sb_flags &= ~SB_STOP;
1000         sowwakeup_locked(so2);
1001         UNP_PCB_UNLOCK(unp);
1002         return (0);
1003 }
1004
1005 static int
1006 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
1007 {
1008         int error;
1009         struct unpcb *unp;
1010
1011         unp = so->so_pcb;
1012         if (unp->unp_conn != NULL)
1013                 return (EISCONN);
1014         error = unp_connect(so, nam, td);
1015         if (error)
1016                 return (error);
1017         UNP_PCB_LOCK(unp);
1018         if (unp->unp_conn == NULL) {
1019                 UNP_PCB_UNLOCK(unp);
1020                 if (error == 0)
1021                         error = ENOTCONN;
1022         }
1023         return (error);
1024 }
1025
1026 static int
1027 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1028     struct mbuf *control, struct thread *td)
1029 {
1030         struct unpcb *unp, *unp2;
1031         struct socket *so2;
1032         u_int mbcnt, sbcc;
1033         int freed, error;
1034
1035         unp = sotounpcb(so);
1036         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1037         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1038             so->so_type == SOCK_SEQPACKET,
1039             ("%s: socktype %d", __func__, so->so_type));
1040
1041         freed = error = 0;
1042         if (flags & PRUS_OOB) {
1043                 error = EOPNOTSUPP;
1044                 goto release;
1045         }
1046         if (control != NULL && (error = unp_internalize(&control, td)))
1047                 goto release;
1048
1049         unp2 = NULL;
1050         switch (so->so_type) {
1051         case SOCK_DGRAM:
1052         {
1053                 const struct sockaddr *from;
1054
1055                 if (nam != NULL) {
1056                         /*
1057                          * We return with UNP_PCB_LOCK_HELD so we know that
1058                          * the reference is live if the pointer is valid.
1059                          */
1060                         if ((error = connect_internal(so, nam, td)))
1061                                 break;
1062                         MPASS(unp->unp_conn != NULL);
1063                         unp2 = unp->unp_conn;
1064                 } else  {
1065                         UNP_PCB_LOCK(unp);
1066
1067                         /*
1068                          * Because connect() and send() are non-atomic in a sendto()
1069                          * with a target address, it's possible that the socket will
1070                          * have disconnected before the send() can run.  In that case
1071                          * return the slightly counter-intuitive but otherwise
1072                          * correct error that the socket is not connected.
1073                          */
1074                         if ((unp2 = unp->unp_conn)  == NULL) {
1075                                 UNP_PCB_UNLOCK(unp);
1076                                 error = ENOTCONN;
1077                                 break;
1078                         }
1079                 }
1080                 if (__predict_false(unp == unp2)) {
1081                         if (unp->unp_socket == NULL) {
1082                                 error = ENOTCONN;
1083                                 break;
1084                         }
1085                         goto connect_self;
1086                 }
1087                 unp_pcb_owned_lock2(unp, unp2, freed);
1088                 if (__predict_false(freed)) {
1089                         UNP_PCB_UNLOCK(unp);
1090                         error = ENOTCONN;
1091                         break;
1092                 }
1093                 /*
1094                  * The socket referencing unp2 may have been closed
1095                  * or unp may have been disconnected if the unp lock
1096                  * was dropped to acquire unp2.
1097                  */
1098                 if (__predict_false(unp->unp_conn == NULL) ||
1099                         unp2->unp_socket == NULL) {
1100                         UNP_PCB_UNLOCK(unp);
1101                         if (unp_pcb_rele(unp2) == 0)
1102                                 UNP_PCB_UNLOCK(unp2);
1103                         error = ENOTCONN;
1104                         break;
1105                 }
1106         connect_self:
1107                 if (unp2->unp_flags & UNP_WANTCRED)
1108                         control = unp_addsockcred(td, control);
1109                 if (unp->unp_addr != NULL)
1110                         from = (struct sockaddr *)unp->unp_addr;
1111                 else
1112                         from = &sun_noname;
1113                 so2 = unp2->unp_socket;
1114                 SOCKBUF_LOCK(&so2->so_rcv);
1115                 if (sbappendaddr_locked(&so2->so_rcv, from, m,
1116                     control)) {
1117                         sorwakeup_locked(so2);
1118                         m = NULL;
1119                         control = NULL;
1120                 } else {
1121                         SOCKBUF_UNLOCK(&so2->so_rcv);
1122                         error = ENOBUFS;
1123                 }
1124                 if (nam != NULL)
1125                         unp_disconnect(unp, unp2);
1126                 if (__predict_true(unp != unp2))
1127                         UNP_PCB_UNLOCK(unp2);
1128                 UNP_PCB_UNLOCK(unp);
1129                 break;
1130         }
1131
1132         case SOCK_SEQPACKET:
1133         case SOCK_STREAM:
1134                 if ((so->so_state & SS_ISCONNECTED) == 0) {
1135                         if (nam != NULL) {
1136                                 if ((error = connect_internal(so, nam, td)))
1137                                         break;
1138                         } else  {
1139                                 error = ENOTCONN;
1140                                 break;
1141                         }
1142                 } else if ((unp2 = unp->unp_conn) == NULL) {
1143                         error = ENOTCONN;
1144                         break;
1145                 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1146                         error = EPIPE;
1147                         break;
1148                 } else {
1149                         UNP_PCB_LOCK(unp);
1150                         if ((unp2 = unp->unp_conn) == NULL) {
1151                                 UNP_PCB_UNLOCK(unp);
1152                                 error = ENOTCONN;
1153                                 break;
1154                         }
1155                 }
1156                 unp_pcb_owned_lock2(unp, unp2, freed);
1157                 UNP_PCB_UNLOCK(unp);
1158                 if (__predict_false(freed)) {
1159                         error = ENOTCONN;
1160                         break;
1161                 }
1162                 if ((so2 = unp2->unp_socket) == NULL) {
1163                         UNP_PCB_UNLOCK(unp2);
1164                         error = ENOTCONN;
1165                         break;
1166                 }
1167                 SOCKBUF_LOCK(&so2->so_rcv);
1168                 if (unp2->unp_flags & UNP_WANTCRED) {
1169                         /*
1170                          * Credentials are passed only once on SOCK_STREAM
1171                          * and SOCK_SEQPACKET.
1172                          */
1173                         unp2->unp_flags &= ~UNP_WANTCRED;
1174                         control = unp_addsockcred(td, control);
1175                 }
1176
1177                 /*
1178                  * Send to paired receive port and wake up readers.  Don't
1179                  * check for space available in the receive buffer if we're
1180                  * attaching ancillary data; Unix domain sockets only check
1181                  * for space in the sending sockbuf, and that check is
1182                  * performed one level up the stack.  At that level we cannot
1183                  * precisely account for the amount of buffer space used
1184                  * (e.g., because control messages are not yet internalized).
1185                  */
1186                 switch (so->so_type) {
1187                 case SOCK_STREAM:
1188                         if (control != NULL) {
1189                                 sbappendcontrol_locked(&so2->so_rcv, m,
1190                                     control);
1191                                 control = NULL;
1192                         } else
1193                                 sbappend_locked(&so2->so_rcv, m, flags);
1194                         break;
1195
1196                 case SOCK_SEQPACKET: {
1197                         const struct sockaddr *from;
1198
1199                         from = &sun_noname;
1200                         if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1201                             from, m, control))
1202                                 control = NULL;
1203                         break;
1204                         }
1205                 }
1206
1207                 mbcnt = so2->so_rcv.sb_mbcnt;
1208                 sbcc = sbavail(&so2->so_rcv);
1209                 if (sbcc)
1210                         sorwakeup_locked(so2);
1211                 else
1212                         SOCKBUF_UNLOCK(&so2->so_rcv);
1213
1214                 /*
1215                  * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1216                  * it would be possible for uipc_rcvd to be called at this
1217                  * point, drain the receiving sockbuf, clear SB_STOP, and then
1218                  * we would set SB_STOP below.  That could lead to an empty
1219                  * sockbuf having SB_STOP set
1220                  */
1221                 SOCKBUF_LOCK(&so->so_snd);
1222                 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1223                         so->so_snd.sb_flags |= SB_STOP;
1224                 SOCKBUF_UNLOCK(&so->so_snd);
1225                 UNP_PCB_UNLOCK(unp2);
1226                 m = NULL;
1227                 break;
1228         }
1229
1230         /*
1231          * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1232          */
1233         if (flags & PRUS_EOF) {
1234                 UNP_PCB_LOCK(unp);
1235                 socantsendmore(so);
1236                 unp_shutdown(unp);
1237                 UNP_PCB_UNLOCK(unp);
1238         }
1239         if (control != NULL && error != 0)
1240                 unp_dispose_mbuf(control);
1241
1242 release:
1243         if (control != NULL)
1244                 m_freem(control);
1245         /*
1246          * In case of PRUS_NOTREADY, uipc_ready() is responsible
1247          * for freeing memory.
1248          */   
1249         if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1250                 m_freem(m);
1251         return (error);
1252 }
1253
1254 static int
1255 uipc_ready(struct socket *so, struct mbuf *m, int count)
1256 {
1257         struct unpcb *unp, *unp2;
1258         struct socket *so2;
1259         int error;
1260
1261         unp = sotounpcb(so);
1262
1263         UNP_PCB_LOCK(unp);
1264         if ((unp2 = unp->unp_conn) == NULL) {
1265                 UNP_PCB_UNLOCK(unp);
1266                 goto error;
1267         }
1268         if (unp != unp2) {
1269                 if (UNP_PCB_TRYLOCK(unp2) == 0) {
1270                         unp_pcb_hold(unp2);
1271                         UNP_PCB_UNLOCK(unp);
1272                         UNP_PCB_LOCK(unp2);
1273                         if (unp_pcb_rele(unp2))
1274                                 goto error;
1275                 } else
1276                         UNP_PCB_UNLOCK(unp);
1277         }
1278         so2 = unp2->unp_socket;
1279
1280         SOCKBUF_LOCK(&so2->so_rcv);
1281         if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1282                 sorwakeup_locked(so2);
1283         else
1284                 SOCKBUF_UNLOCK(&so2->so_rcv);
1285
1286         UNP_PCB_UNLOCK(unp2);
1287
1288         return (error);
1289  error:
1290         for (int i = 0; i < count; i++)
1291                 m = m_free(m);
1292         return (ECONNRESET);
1293 }
1294
1295 static int
1296 uipc_sense(struct socket *so, struct stat *sb)
1297 {
1298         struct unpcb *unp;
1299
1300         unp = sotounpcb(so);
1301         KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1302
1303         sb->st_blksize = so->so_snd.sb_hiwat;
1304         sb->st_dev = NODEV;
1305         sb->st_ino = unp->unp_ino;
1306         return (0);
1307 }
1308
1309 static int
1310 uipc_shutdown(struct socket *so)
1311 {
1312         struct unpcb *unp;
1313
1314         unp = sotounpcb(so);
1315         KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1316
1317         UNP_PCB_LOCK(unp);
1318         socantsendmore(so);
1319         unp_shutdown(unp);
1320         UNP_PCB_UNLOCK(unp);
1321         return (0);
1322 }
1323
1324 static int
1325 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1326 {
1327         struct unpcb *unp;
1328         const struct sockaddr *sa;
1329
1330         unp = sotounpcb(so);
1331         KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1332
1333         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1334         UNP_PCB_LOCK(unp);
1335         if (unp->unp_addr != NULL)
1336                 sa = (struct sockaddr *) unp->unp_addr;
1337         else
1338                 sa = &sun_noname;
1339         bcopy(sa, *nam, sa->sa_len);
1340         UNP_PCB_UNLOCK(unp);
1341         return (0);
1342 }
1343
1344 static struct pr_usrreqs uipc_usrreqs_dgram = {
1345         .pru_abort =            uipc_abort,
1346         .pru_accept =           uipc_accept,
1347         .pru_attach =           uipc_attach,
1348         .pru_bind =             uipc_bind,
1349         .pru_bindat =           uipc_bindat,
1350         .pru_connect =          uipc_connect,
1351         .pru_connectat =        uipc_connectat,
1352         .pru_connect2 =         uipc_connect2,
1353         .pru_detach =           uipc_detach,
1354         .pru_disconnect =       uipc_disconnect,
1355         .pru_listen =           uipc_listen,
1356         .pru_peeraddr =         uipc_peeraddr,
1357         .pru_rcvd =             uipc_rcvd,
1358         .pru_send =             uipc_send,
1359         .pru_sense =            uipc_sense,
1360         .pru_shutdown =         uipc_shutdown,
1361         .pru_sockaddr =         uipc_sockaddr,
1362         .pru_soreceive =        soreceive_dgram,
1363         .pru_close =            uipc_close,
1364 };
1365
1366 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1367         .pru_abort =            uipc_abort,
1368         .pru_accept =           uipc_accept,
1369         .pru_attach =           uipc_attach,
1370         .pru_bind =             uipc_bind,
1371         .pru_bindat =           uipc_bindat,
1372         .pru_connect =          uipc_connect,
1373         .pru_connectat =        uipc_connectat,
1374         .pru_connect2 =         uipc_connect2,
1375         .pru_detach =           uipc_detach,
1376         .pru_disconnect =       uipc_disconnect,
1377         .pru_listen =           uipc_listen,
1378         .pru_peeraddr =         uipc_peeraddr,
1379         .pru_rcvd =             uipc_rcvd,
1380         .pru_send =             uipc_send,
1381         .pru_sense =            uipc_sense,
1382         .pru_shutdown =         uipc_shutdown,
1383         .pru_sockaddr =         uipc_sockaddr,
1384         .pru_soreceive =        soreceive_generic,      /* XXX: or...? */
1385         .pru_close =            uipc_close,
1386 };
1387
1388 static struct pr_usrreqs uipc_usrreqs_stream = {
1389         .pru_abort =            uipc_abort,
1390         .pru_accept =           uipc_accept,
1391         .pru_attach =           uipc_attach,
1392         .pru_bind =             uipc_bind,
1393         .pru_bindat =           uipc_bindat,
1394         .pru_connect =          uipc_connect,
1395         .pru_connectat =        uipc_connectat,
1396         .pru_connect2 =         uipc_connect2,
1397         .pru_detach =           uipc_detach,
1398         .pru_disconnect =       uipc_disconnect,
1399         .pru_listen =           uipc_listen,
1400         .pru_peeraddr =         uipc_peeraddr,
1401         .pru_rcvd =             uipc_rcvd,
1402         .pru_send =             uipc_send,
1403         .pru_ready =            uipc_ready,
1404         .pru_sense =            uipc_sense,
1405         .pru_shutdown =         uipc_shutdown,
1406         .pru_sockaddr =         uipc_sockaddr,
1407         .pru_soreceive =        soreceive_generic,
1408         .pru_close =            uipc_close,
1409 };
1410
1411 static int
1412 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1413 {
1414         struct unpcb *unp;
1415         struct xucred xu;
1416         int error, optval;
1417
1418         if (sopt->sopt_level != 0)
1419                 return (EINVAL);
1420
1421         unp = sotounpcb(so);
1422         KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1423         error = 0;
1424         switch (sopt->sopt_dir) {
1425         case SOPT_GET:
1426                 switch (sopt->sopt_name) {
1427                 case LOCAL_PEERCRED:
1428                         UNP_PCB_LOCK(unp);
1429                         if (unp->unp_flags & UNP_HAVEPC)
1430                                 xu = unp->unp_peercred;
1431                         else {
1432                                 if (so->so_type == SOCK_STREAM)
1433                                         error = ENOTCONN;
1434                                 else
1435                                         error = EINVAL;
1436                         }
1437                         UNP_PCB_UNLOCK(unp);
1438                         if (error == 0)
1439                                 error = sooptcopyout(sopt, &xu, sizeof(xu));
1440                         break;
1441
1442                 case LOCAL_CREDS:
1443                         /* Unlocked read. */
1444                         optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1445                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1446                         break;
1447
1448                 case LOCAL_CONNWAIT:
1449                         /* Unlocked read. */
1450                         optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1451                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1452                         break;
1453
1454                 default:
1455                         error = EOPNOTSUPP;
1456                         break;
1457                 }
1458                 break;
1459
1460         case SOPT_SET:
1461                 switch (sopt->sopt_name) {
1462                 case LOCAL_CREDS:
1463                 case LOCAL_CONNWAIT:
1464                         error = sooptcopyin(sopt, &optval, sizeof(optval),
1465                                             sizeof(optval));
1466                         if (error)
1467                                 break;
1468
1469 #define OPTSET(bit) do {                                                \
1470         UNP_PCB_LOCK(unp);                                              \
1471         if (optval)                                                     \
1472                 unp->unp_flags |= bit;                                  \
1473         else                                                            \
1474                 unp->unp_flags &= ~bit;                                 \
1475         UNP_PCB_UNLOCK(unp);                                            \
1476 } while (0)
1477
1478                         switch (sopt->sopt_name) {
1479                         case LOCAL_CREDS:
1480                                 OPTSET(UNP_WANTCRED);
1481                                 break;
1482
1483                         case LOCAL_CONNWAIT:
1484                                 OPTSET(UNP_CONNWAIT);
1485                                 break;
1486
1487                         default:
1488                                 break;
1489                         }
1490                         break;
1491 #undef  OPTSET
1492                 default:
1493                         error = ENOPROTOOPT;
1494                         break;
1495                 }
1496                 break;
1497
1498         default:
1499                 error = EOPNOTSUPP;
1500                 break;
1501         }
1502         return (error);
1503 }
1504
1505 static int
1506 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1507 {
1508
1509         return (unp_connectat(AT_FDCWD, so, nam, td));
1510 }
1511
1512 static int
1513 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1514     struct thread *td)
1515 {
1516         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1517         struct vnode *vp;
1518         struct socket *so2;
1519         struct unpcb *unp, *unp2, *unp3;
1520         struct nameidata nd;
1521         char buf[SOCK_MAXADDRLEN];
1522         struct sockaddr *sa;
1523         cap_rights_t rights;
1524         int error, len, freed;
1525         struct mtx *vplock;
1526
1527         if (nam->sa_family != AF_UNIX)
1528                 return (EAFNOSUPPORT);
1529         if (nam->sa_len > sizeof(struct sockaddr_un))
1530                 return (EINVAL);
1531         len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1532         if (len <= 0)
1533                 return (EINVAL);
1534         bcopy(soun->sun_path, buf, len);
1535         buf[len] = 0;
1536
1537         unp = sotounpcb(so);
1538         UNP_PCB_LOCK(unp);
1539         if (unp->unp_flags & UNP_CONNECTING) {
1540                 UNP_PCB_UNLOCK(unp);
1541                 return (EALREADY);
1542         }
1543         unp->unp_flags |= UNP_CONNECTING;
1544         UNP_PCB_UNLOCK(unp);
1545
1546         sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1547         NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1548             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1549         error = namei(&nd);
1550         if (error)
1551                 vp = NULL;
1552         else
1553                 vp = nd.ni_vp;
1554         ASSERT_VOP_LOCKED(vp, "unp_connect");
1555         NDFREE(&nd, NDF_ONLY_PNBUF);
1556         if (error)
1557                 goto bad;
1558
1559         if (vp->v_type != VSOCK) {
1560                 error = ENOTSOCK;
1561                 goto bad;
1562         }
1563 #ifdef MAC
1564         error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1565         if (error)
1566                 goto bad;
1567 #endif
1568         error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1569         if (error)
1570                 goto bad;
1571
1572         unp = sotounpcb(so);
1573         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1574
1575         vplock = mtx_pool_find(mtxpool_sleep, vp);
1576         mtx_lock(vplock);
1577         VOP_UNP_CONNECT(vp, &unp2);
1578         if (unp2 == NULL) {
1579                 error = ECONNREFUSED;
1580                 goto bad2;
1581         }
1582         so2 = unp2->unp_socket;
1583         if (so->so_type != so2->so_type) {
1584                 error = EPROTOTYPE;
1585                 goto bad2;
1586         }
1587         if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1588                 if (so2->so_options & SO_ACCEPTCONN) {
1589                         CURVNET_SET(so2->so_vnet);
1590                         so2 = sonewconn(so2, 0);
1591                         CURVNET_RESTORE();
1592                 } else
1593                         so2 = NULL;
1594                 if (so2 == NULL) {
1595                         error = ECONNREFUSED;
1596                         goto bad2;
1597                 }
1598                 unp3 = sotounpcb(so2);
1599                 unp_pcb_lock2(unp2, unp3);
1600                 if (unp2->unp_addr != NULL) {
1601                         bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1602                         unp3->unp_addr = (struct sockaddr_un *) sa;
1603                         sa = NULL;
1604                 }
1605
1606                 unp_copy_peercred(td, unp3, unp, unp2);
1607
1608                 UNP_PCB_UNLOCK(unp2);
1609                 unp2 = unp3;
1610                 unp_pcb_owned_lock2(unp2, unp, freed);
1611                 if (__predict_false(freed)) {
1612                         UNP_PCB_UNLOCK(unp2);
1613                         error = ECONNREFUSED;
1614                         goto bad2;
1615                 }
1616 #ifdef MAC
1617                 mac_socketpeer_set_from_socket(so, so2);
1618                 mac_socketpeer_set_from_socket(so2, so);
1619 #endif
1620         } else {
1621                 if (unp == unp2)
1622                         UNP_PCB_LOCK(unp);
1623                 else
1624                         unp_pcb_lock2(unp, unp2);
1625         }
1626         KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1627             sotounpcb(so2) == unp2,
1628             ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1629         error = unp_connect2(so, so2, PRU_CONNECT);
1630         if (unp != unp2)
1631                 UNP_PCB_UNLOCK(unp2);
1632         UNP_PCB_UNLOCK(unp);
1633 bad2:
1634         mtx_unlock(vplock);
1635 bad:
1636         if (vp != NULL) {
1637                 vput(vp);
1638         }
1639         free(sa, M_SONAME);
1640         UNP_PCB_LOCK(unp);
1641         unp->unp_flags &= ~UNP_CONNECTING;
1642         UNP_PCB_UNLOCK(unp);
1643         return (error);
1644 }
1645
1646 /*
1647  * Set socket peer credentials at connection time.
1648  *
1649  * The client's PCB credentials are copied from its process structure.  The
1650  * server's PCB credentials are copied from the socket on which it called
1651  * listen(2).  uipc_listen cached that process's credentials at the time.
1652  */
1653 void
1654 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1655     struct unpcb *server_unp, struct unpcb *listen_unp)
1656 {
1657         cru2xt(td, &client_unp->unp_peercred);
1658         client_unp->unp_flags |= UNP_HAVEPC;
1659
1660         memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1661             sizeof(server_unp->unp_peercred));
1662         server_unp->unp_flags |= UNP_HAVEPC;
1663         if (listen_unp->unp_flags & UNP_WANTCRED)
1664                 client_unp->unp_flags |= UNP_WANTCRED;
1665 }
1666
1667 static int
1668 unp_connect2(struct socket *so, struct socket *so2, int req)
1669 {
1670         struct unpcb *unp;
1671         struct unpcb *unp2;
1672
1673         unp = sotounpcb(so);
1674         KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1675         unp2 = sotounpcb(so2);
1676         KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1677
1678         UNP_PCB_LOCK_ASSERT(unp);
1679         UNP_PCB_LOCK_ASSERT(unp2);
1680
1681         if (so2->so_type != so->so_type)
1682                 return (EPROTOTYPE);
1683         unp2->unp_flags &= ~UNP_NASCENT;
1684         unp->unp_conn = unp2;
1685         unp_pcb_hold(unp2);
1686         unp_pcb_hold(unp);
1687         switch (so->so_type) {
1688         case SOCK_DGRAM:
1689                 UNP_REF_LIST_LOCK();
1690                 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1691                 UNP_REF_LIST_UNLOCK();
1692                 soisconnected(so);
1693                 break;
1694
1695         case SOCK_STREAM:
1696         case SOCK_SEQPACKET:
1697                 unp2->unp_conn = unp;
1698                 if (req == PRU_CONNECT &&
1699                     ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1700                         soisconnecting(so);
1701                 else
1702                         soisconnected(so);
1703                 soisconnected(so2);
1704                 break;
1705
1706         default:
1707                 panic("unp_connect2");
1708         }
1709         return (0);
1710 }
1711
1712 static void
1713 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1714 {
1715         struct socket *so, *so2;
1716         int freed __unused;
1717
1718         KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1719
1720         UNP_PCB_LOCK_ASSERT(unp);
1721         UNP_PCB_LOCK_ASSERT(unp2);
1722
1723         if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1724                 return;
1725
1726         MPASS(unp->unp_conn == unp2);
1727         unp->unp_conn = NULL;
1728         so = unp->unp_socket;
1729         so2 = unp2->unp_socket;
1730         switch (unp->unp_socket->so_type) {
1731         case SOCK_DGRAM:
1732                 UNP_REF_LIST_LOCK();
1733                 LIST_REMOVE(unp, unp_reflink);
1734                 UNP_REF_LIST_UNLOCK();
1735                 if (so) {
1736                         SOCK_LOCK(so);
1737                         so->so_state &= ~SS_ISCONNECTED;
1738                         SOCK_UNLOCK(so);
1739                 }
1740                 break;
1741
1742         case SOCK_STREAM:
1743         case SOCK_SEQPACKET:
1744                 if (so)
1745                         soisdisconnected(so);
1746                 MPASS(unp2->unp_conn == unp);
1747                 unp2->unp_conn = NULL;
1748                 if (so2)
1749                         soisdisconnected(so2);
1750                 break;
1751         }
1752         freed = unp_pcb_rele(unp);
1753         MPASS(freed == 0);
1754         freed = unp_pcb_rele(unp2);
1755         MPASS(freed == 0);
1756 }
1757
1758 /*
1759  * unp_pcblist() walks the global list of struct unpcb's to generate a
1760  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1761  * sequentially, validating the generation number on each to see if it has
1762  * been detached.  All of this is necessary because copyout() may sleep on
1763  * disk I/O.
1764  */
1765 static int
1766 unp_pcblist(SYSCTL_HANDLER_ARGS)
1767 {
1768         struct unpcb *unp, **unp_list;
1769         unp_gen_t gencnt;
1770         struct xunpgen *xug;
1771         struct unp_head *head;
1772         struct xunpcb *xu;
1773         u_int i;
1774         int error, freeunp, n;
1775
1776         switch ((intptr_t)arg1) {
1777         case SOCK_STREAM:
1778                 head = &unp_shead;
1779                 break;
1780
1781         case SOCK_DGRAM:
1782                 head = &unp_dhead;
1783                 break;
1784
1785         case SOCK_SEQPACKET:
1786                 head = &unp_sphead;
1787                 break;
1788
1789         default:
1790                 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1791         }
1792
1793         /*
1794          * The process of preparing the PCB list is too time-consuming and
1795          * resource-intensive to repeat twice on every request.
1796          */
1797         if (req->oldptr == NULL) {
1798                 n = unp_count;
1799                 req->oldidx = 2 * (sizeof *xug)
1800                         + (n + n/8) * sizeof(struct xunpcb);
1801                 return (0);
1802         }
1803
1804         if (req->newptr != NULL)
1805                 return (EPERM);
1806
1807         /*
1808          * OK, now we're committed to doing something.
1809          */
1810         xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1811         UNP_LINK_RLOCK();
1812         gencnt = unp_gencnt;
1813         n = unp_count;
1814         UNP_LINK_RUNLOCK();
1815
1816         xug->xug_len = sizeof *xug;
1817         xug->xug_count = n;
1818         xug->xug_gen = gencnt;
1819         xug->xug_sogen = so_gencnt;
1820         error = SYSCTL_OUT(req, xug, sizeof *xug);
1821         if (error) {
1822                 free(xug, M_TEMP);
1823                 return (error);
1824         }
1825
1826         unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1827
1828         UNP_LINK_RLOCK();
1829         for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1830              unp = LIST_NEXT(unp, unp_link)) {
1831                 UNP_PCB_LOCK(unp);
1832                 if (unp->unp_gencnt <= gencnt) {
1833                         if (cr_cansee(req->td->td_ucred,
1834                             unp->unp_socket->so_cred)) {
1835                                 UNP_PCB_UNLOCK(unp);
1836                                 continue;
1837                         }
1838                         unp_list[i++] = unp;
1839                         unp_pcb_hold(unp);
1840                 }
1841                 UNP_PCB_UNLOCK(unp);
1842         }
1843         UNP_LINK_RUNLOCK();
1844         n = i;                  /* In case we lost some during malloc. */
1845
1846         error = 0;
1847         xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1848         for (i = 0; i < n; i++) {
1849                 unp = unp_list[i];
1850                 UNP_PCB_LOCK(unp);
1851                 freeunp = unp_pcb_rele(unp);
1852
1853                 if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1854                         xu->xu_len = sizeof *xu;
1855                         xu->xu_unpp = (uintptr_t)unp;
1856                         /*
1857                          * XXX - need more locking here to protect against
1858                          * connect/disconnect races for SMP.
1859                          */
1860                         if (unp->unp_addr != NULL)
1861                                 bcopy(unp->unp_addr, &xu->xu_addr,
1862                                       unp->unp_addr->sun_len);
1863                         else
1864                                 bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1865                         if (unp->unp_conn != NULL &&
1866                             unp->unp_conn->unp_addr != NULL)
1867                                 bcopy(unp->unp_conn->unp_addr,
1868                                       &xu->xu_caddr,
1869                                       unp->unp_conn->unp_addr->sun_len);
1870                         else
1871                                 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1872                         xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1873                         xu->unp_conn = (uintptr_t)unp->unp_conn;
1874                         xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1875                         xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1876                         xu->unp_gencnt = unp->unp_gencnt;
1877                         sotoxsocket(unp->unp_socket, &xu->xu_socket);
1878                         UNP_PCB_UNLOCK(unp);
1879                         error = SYSCTL_OUT(req, xu, sizeof *xu);
1880                 } else  if (freeunp == 0)
1881                         UNP_PCB_UNLOCK(unp);
1882         }
1883         free(xu, M_TEMP);
1884         if (!error) {
1885                 /*
1886                  * Give the user an updated idea of our state.  If the
1887                  * generation differs from what we told her before, she knows
1888                  * that something happened while we were processing this
1889                  * request, and it might be necessary to retry.
1890                  */
1891                 xug->xug_gen = unp_gencnt;
1892                 xug->xug_sogen = so_gencnt;
1893                 xug->xug_count = unp_count;
1894                 error = SYSCTL_OUT(req, xug, sizeof *xug);
1895         }
1896         free(unp_list, M_TEMP);
1897         free(xug, M_TEMP);
1898         return (error);
1899 }
1900
1901 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1902     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1903     "List of active local datagram sockets");
1904 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1905     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1906     "List of active local stream sockets");
1907 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1908     CTLTYPE_OPAQUE | CTLFLAG_RD,
1909     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1910     "List of active local seqpacket sockets");
1911
1912 static void
1913 unp_shutdown(struct unpcb *unp)
1914 {
1915         struct unpcb *unp2;
1916         struct socket *so;
1917
1918         UNP_PCB_LOCK_ASSERT(unp);
1919
1920         unp2 = unp->unp_conn;
1921         if ((unp->unp_socket->so_type == SOCK_STREAM ||
1922             (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1923                 so = unp2->unp_socket;
1924                 if (so != NULL)
1925                         socantrcvmore(so);
1926         }
1927 }
1928
1929 static void
1930 unp_drop(struct unpcb *unp)
1931 {
1932         struct socket *so = unp->unp_socket;
1933         struct unpcb *unp2;
1934         int freed;
1935
1936         /*
1937          * Regardless of whether the socket's peer dropped the connection
1938          * with this socket by aborting or disconnecting, POSIX requires
1939          * that ECONNRESET is returned.
1940          */
1941         /* acquire a reference so that unp isn't freed from underneath us */
1942
1943         UNP_PCB_LOCK(unp);
1944         if (so)
1945                 so->so_error = ECONNRESET;
1946         unp2 = unp->unp_conn;
1947         if (unp2 == unp) {
1948                 unp_disconnect(unp, unp2);
1949         } else if (unp2 != NULL) {
1950                 unp_pcb_hold(unp2);
1951                 unp_pcb_owned_lock2(unp, unp2, freed);
1952                 unp_disconnect(unp, unp2);
1953                 if (unp_pcb_rele(unp2) == 0)
1954                         UNP_PCB_UNLOCK(unp2);
1955         }
1956         if (unp_pcb_rele(unp) == 0)
1957                 UNP_PCB_UNLOCK(unp);
1958 }
1959
1960 static void
1961 unp_freerights(struct filedescent **fdep, int fdcount)
1962 {
1963         struct file *fp;
1964         int i;
1965
1966         KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1967
1968         for (i = 0; i < fdcount; i++) {
1969                 fp = fdep[i]->fde_file;
1970                 filecaps_free(&fdep[i]->fde_caps);
1971                 unp_discard(fp);
1972         }
1973         free(fdep[0], M_FILECAPS);
1974 }
1975
1976 static int
1977 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1978 {
1979         struct thread *td = curthread;          /* XXX */
1980         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1981         int i;
1982         int *fdp;
1983         struct filedesc *fdesc = td->td_proc->p_fd;
1984         struct filedescent **fdep;
1985         void *data;
1986         socklen_t clen = control->m_len, datalen;
1987         int error, newfds;
1988         u_int newlen;
1989
1990         UNP_LINK_UNLOCK_ASSERT();
1991
1992         error = 0;
1993         if (controlp != NULL) /* controlp == NULL => free control messages */
1994                 *controlp = NULL;
1995         while (cm != NULL) {
1996                 if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1997                         error = EINVAL;
1998                         break;
1999                 }
2000                 data = CMSG_DATA(cm);
2001                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2002                 if (cm->cmsg_level == SOL_SOCKET
2003                     && cm->cmsg_type == SCM_RIGHTS) {
2004                         newfds = datalen / sizeof(*fdep);
2005                         if (newfds == 0)
2006                                 goto next;
2007                         fdep = data;
2008
2009                         /* If we're not outputting the descriptors free them. */
2010                         if (error || controlp == NULL) {
2011                                 unp_freerights(fdep, newfds);
2012                                 goto next;
2013                         }
2014                         FILEDESC_XLOCK(fdesc);
2015
2016                         /*
2017                          * Now change each pointer to an fd in the global
2018                          * table to an integer that is the index to the local
2019                          * fd table entry that we set up to point to the
2020                          * global one we are transferring.
2021                          */
2022                         newlen = newfds * sizeof(int);
2023                         *controlp = sbcreatecontrol(NULL, newlen,
2024                             SCM_RIGHTS, SOL_SOCKET);
2025                         if (*controlp == NULL) {
2026                                 FILEDESC_XUNLOCK(fdesc);
2027                                 error = E2BIG;
2028                                 unp_freerights(fdep, newfds);
2029                                 goto next;
2030                         }
2031
2032                         fdp = (int *)
2033                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2034                         if (fdallocn(td, 0, fdp, newfds) != 0) {
2035                                 FILEDESC_XUNLOCK(fdesc);
2036                                 error = EMSGSIZE;
2037                                 unp_freerights(fdep, newfds);
2038                                 m_freem(*controlp);
2039                                 *controlp = NULL;
2040                                 goto next;
2041                         }
2042                         for (i = 0; i < newfds; i++, fdp++) {
2043                                 _finstall(fdesc, fdep[i]->fde_file, *fdp,
2044                                     (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2045                                     &fdep[i]->fde_caps);
2046                                 unp_externalize_fp(fdep[i]->fde_file);
2047                         }
2048
2049                         /*
2050                          * The new type indicates that the mbuf data refers to
2051                          * kernel resources that may need to be released before
2052                          * the mbuf is freed.
2053                          */
2054                         m_chtype(*controlp, MT_EXTCONTROL);
2055                         FILEDESC_XUNLOCK(fdesc);
2056                         free(fdep[0], M_FILECAPS);
2057                 } else {
2058                         /* We can just copy anything else across. */
2059                         if (error || controlp == NULL)
2060                                 goto next;
2061                         *controlp = sbcreatecontrol(NULL, datalen,
2062                             cm->cmsg_type, cm->cmsg_level);
2063                         if (*controlp == NULL) {
2064                                 error = ENOBUFS;
2065                                 goto next;
2066                         }
2067                         bcopy(data,
2068                             CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2069                             datalen);
2070                 }
2071                 controlp = &(*controlp)->m_next;
2072
2073 next:
2074                 if (CMSG_SPACE(datalen) < clen) {
2075                         clen -= CMSG_SPACE(datalen);
2076                         cm = (struct cmsghdr *)
2077                             ((caddr_t)cm + CMSG_SPACE(datalen));
2078                 } else {
2079                         clen = 0;
2080                         cm = NULL;
2081                 }
2082         }
2083
2084         m_freem(control);
2085         return (error);
2086 }
2087
2088 static void
2089 unp_zone_change(void *tag)
2090 {
2091
2092         uma_zone_set_max(unp_zone, maxsockets);
2093 }
2094
2095 static void
2096 unp_init(void)
2097 {
2098
2099 #ifdef VIMAGE
2100         if (!IS_DEFAULT_VNET(curvnet))
2101                 return;
2102 #endif
2103         unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2104             NULL, NULL, UMA_ALIGN_CACHE, 0);
2105         if (unp_zone == NULL)
2106                 panic("unp_init");
2107         uma_zone_set_max(unp_zone, maxsockets);
2108         uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2109         EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2110             NULL, EVENTHANDLER_PRI_ANY);
2111         LIST_INIT(&unp_dhead);
2112         LIST_INIT(&unp_shead);
2113         LIST_INIT(&unp_sphead);
2114         SLIST_INIT(&unp_defers);
2115         TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2116         TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2117         UNP_LINK_LOCK_INIT();
2118         UNP_DEFERRED_LOCK_INIT();
2119 }
2120
2121 static void
2122 unp_internalize_cleanup_rights(struct mbuf *control)
2123 {
2124         struct cmsghdr *cp;
2125         struct mbuf *m;
2126         void *data;
2127         socklen_t datalen;
2128
2129         for (m = control; m != NULL; m = m->m_next) {
2130                 cp = mtod(m, struct cmsghdr *);
2131                 if (cp->cmsg_level != SOL_SOCKET ||
2132                     cp->cmsg_type != SCM_RIGHTS)
2133                         continue;
2134                 data = CMSG_DATA(cp);
2135                 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2136                 unp_freerights(data, datalen / sizeof(struct filedesc *));
2137         }
2138 }
2139
2140 static int
2141 unp_internalize(struct mbuf **controlp, struct thread *td)
2142 {
2143         struct mbuf *control, **initial_controlp;
2144         struct proc *p;
2145         struct filedesc *fdesc;
2146         struct bintime *bt;
2147         struct cmsghdr *cm;
2148         struct cmsgcred *cmcred;
2149         struct filedescent *fde, **fdep, *fdev;
2150         struct file *fp;
2151         struct timeval *tv;
2152         struct timespec *ts;
2153         void *data;
2154         socklen_t clen, datalen;
2155         int i, j, error, *fdp, oldfds;
2156         u_int newlen;
2157
2158         UNP_LINK_UNLOCK_ASSERT();
2159
2160         p = td->td_proc;
2161         fdesc = p->p_fd;
2162         error = 0;
2163         control = *controlp;
2164         clen = control->m_len;
2165         *controlp = NULL;
2166         initial_controlp = controlp;
2167         for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2168                 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2169                     || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2170                         error = EINVAL;
2171                         goto out;
2172                 }
2173                 data = CMSG_DATA(cm);
2174                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2175
2176                 switch (cm->cmsg_type) {
2177                 /*
2178                  * Fill in credential information.
2179                  */
2180                 case SCM_CREDS:
2181                         *controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2182                             SCM_CREDS, SOL_SOCKET);
2183                         if (*controlp == NULL) {
2184                                 error = ENOBUFS;
2185                                 goto out;
2186                         }
2187                         cmcred = (struct cmsgcred *)
2188                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2189                         cmcred->cmcred_pid = p->p_pid;
2190                         cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2191                         cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2192                         cmcred->cmcred_euid = td->td_ucred->cr_uid;
2193                         cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2194                             CMGROUP_MAX);
2195                         for (i = 0; i < cmcred->cmcred_ngroups; i++)
2196                                 cmcred->cmcred_groups[i] =
2197                                     td->td_ucred->cr_groups[i];
2198                         break;
2199
2200                 case SCM_RIGHTS:
2201                         oldfds = datalen / sizeof (int);
2202                         if (oldfds == 0)
2203                                 break;
2204                         /*
2205                          * Check that all the FDs passed in refer to legal
2206                          * files.  If not, reject the entire operation.
2207                          */
2208                         fdp = data;
2209                         FILEDESC_SLOCK(fdesc);
2210                         for (i = 0; i < oldfds; i++, fdp++) {
2211                                 fp = fget_locked(fdesc, *fdp);
2212                                 if (fp == NULL) {
2213                                         FILEDESC_SUNLOCK(fdesc);
2214                                         error = EBADF;
2215                                         goto out;
2216                                 }
2217                                 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2218                                         FILEDESC_SUNLOCK(fdesc);
2219                                         error = EOPNOTSUPP;
2220                                         goto out;
2221                                 }
2222
2223                         }
2224
2225                         /*
2226                          * Now replace the integer FDs with pointers to the
2227                          * file structure and capability rights.
2228                          */
2229                         newlen = oldfds * sizeof(fdep[0]);
2230                         *controlp = sbcreatecontrol(NULL, newlen,
2231                             SCM_RIGHTS, SOL_SOCKET);
2232                         if (*controlp == NULL) {
2233                                 FILEDESC_SUNLOCK(fdesc);
2234                                 error = E2BIG;
2235                                 goto out;
2236                         }
2237                         fdp = data;
2238                         for (i = 0; i < oldfds; i++, fdp++) {
2239                                 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2240                                         fdp = data;
2241                                         for (j = 0; j < i; j++, fdp++) {
2242                                                 fdrop(fdesc->fd_ofiles[*fdp].
2243                                                     fde_file, td);
2244                                         }
2245                                         FILEDESC_SUNLOCK(fdesc);
2246                                         error = EBADF;
2247                                         goto out;
2248                                 }
2249                         }
2250                         fdp = data;
2251                         fdep = (struct filedescent **)
2252                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2253                         fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2254                             M_WAITOK);
2255                         for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2256                                 fde = &fdesc->fd_ofiles[*fdp];
2257                                 fdep[i] = fdev;
2258                                 fdep[i]->fde_file = fde->fde_file;
2259                                 filecaps_copy(&fde->fde_caps,
2260                                     &fdep[i]->fde_caps, true);
2261                                 unp_internalize_fp(fdep[i]->fde_file);
2262                         }
2263                         FILEDESC_SUNLOCK(fdesc);
2264                         break;
2265
2266                 case SCM_TIMESTAMP:
2267                         *controlp = sbcreatecontrol(NULL, sizeof(*tv),
2268                             SCM_TIMESTAMP, SOL_SOCKET);
2269                         if (*controlp == NULL) {
2270                                 error = ENOBUFS;
2271                                 goto out;
2272                         }
2273                         tv = (struct timeval *)
2274                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2275                         microtime(tv);
2276                         break;
2277
2278                 case SCM_BINTIME:
2279                         *controlp = sbcreatecontrol(NULL, sizeof(*bt),
2280                             SCM_BINTIME, SOL_SOCKET);
2281                         if (*controlp == NULL) {
2282                                 error = ENOBUFS;
2283                                 goto out;
2284                         }
2285                         bt = (struct bintime *)
2286                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2287                         bintime(bt);
2288                         break;
2289
2290                 case SCM_REALTIME:
2291                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2292                             SCM_REALTIME, SOL_SOCKET);
2293                         if (*controlp == NULL) {
2294                                 error = ENOBUFS;
2295                                 goto out;
2296                         }
2297                         ts = (struct timespec *)
2298                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2299                         nanotime(ts);
2300                         break;
2301
2302                 case SCM_MONOTONIC:
2303                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2304                             SCM_MONOTONIC, SOL_SOCKET);
2305                         if (*controlp == NULL) {
2306                                 error = ENOBUFS;
2307                                 goto out;
2308                         }
2309                         ts = (struct timespec *)
2310                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2311                         nanouptime(ts);
2312                         break;
2313
2314                 default:
2315                         error = EINVAL;
2316                         goto out;
2317                 }
2318
2319                 if (*controlp != NULL)
2320                         controlp = &(*controlp)->m_next;
2321                 if (CMSG_SPACE(datalen) < clen) {
2322                         clen -= CMSG_SPACE(datalen);
2323                         cm = (struct cmsghdr *)
2324                             ((caddr_t)cm + CMSG_SPACE(datalen));
2325                 } else {
2326                         clen = 0;
2327                         cm = NULL;
2328                 }
2329         }
2330
2331 out:
2332         if (error != 0 && initial_controlp != NULL)
2333                 unp_internalize_cleanup_rights(*initial_controlp);
2334         m_freem(control);
2335         return (error);
2336 }
2337
2338 static struct mbuf *
2339 unp_addsockcred(struct thread *td, struct mbuf *control)
2340 {
2341         struct mbuf *m, *n, *n_prev;
2342         struct sockcred *sc;
2343         const struct cmsghdr *cm;
2344         int ngroups;
2345         int i;
2346
2347         ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2348         m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2349         if (m == NULL)
2350                 return (control);
2351
2352         sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2353         sc->sc_uid = td->td_ucred->cr_ruid;
2354         sc->sc_euid = td->td_ucred->cr_uid;
2355         sc->sc_gid = td->td_ucred->cr_rgid;
2356         sc->sc_egid = td->td_ucred->cr_gid;
2357         sc->sc_ngroups = ngroups;
2358         for (i = 0; i < sc->sc_ngroups; i++)
2359                 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2360
2361         /*
2362          * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2363          * created SCM_CREDS control message (struct sockcred) has another
2364          * format.
2365          */
2366         if (control != NULL)
2367                 for (n = control, n_prev = NULL; n != NULL;) {
2368                         cm = mtod(n, struct cmsghdr *);
2369                         if (cm->cmsg_level == SOL_SOCKET &&
2370                             cm->cmsg_type == SCM_CREDS) {
2371                                 if (n_prev == NULL)
2372                                         control = n->m_next;
2373                                 else
2374                                         n_prev->m_next = n->m_next;
2375                                 n = m_free(n);
2376                         } else {
2377                                 n_prev = n;
2378                                 n = n->m_next;
2379                         }
2380                 }
2381
2382         /* Prepend it to the head. */
2383         m->m_next = control;
2384         return (m);
2385 }
2386
2387 static struct unpcb *
2388 fptounp(struct file *fp)
2389 {
2390         struct socket *so;
2391
2392         if (fp->f_type != DTYPE_SOCKET)
2393                 return (NULL);
2394         if ((so = fp->f_data) == NULL)
2395                 return (NULL);
2396         if (so->so_proto->pr_domain != &localdomain)
2397                 return (NULL);
2398         return sotounpcb(so);
2399 }
2400
2401 static void
2402 unp_discard(struct file *fp)
2403 {
2404         struct unp_defer *dr;
2405
2406         if (unp_externalize_fp(fp)) {
2407                 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2408                 dr->ud_fp = fp;
2409                 UNP_DEFERRED_LOCK();
2410                 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2411                 UNP_DEFERRED_UNLOCK();
2412                 atomic_add_int(&unp_defers_count, 1);
2413                 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2414         } else
2415                 (void) closef(fp, (struct thread *)NULL);
2416 }
2417
2418 static void
2419 unp_process_defers(void *arg __unused, int pending)
2420 {
2421         struct unp_defer *dr;
2422         SLIST_HEAD(, unp_defer) drl;
2423         int count;
2424
2425         SLIST_INIT(&drl);
2426         for (;;) {
2427                 UNP_DEFERRED_LOCK();
2428                 if (SLIST_FIRST(&unp_defers) == NULL) {
2429                         UNP_DEFERRED_UNLOCK();
2430                         break;
2431                 }
2432                 SLIST_SWAP(&unp_defers, &drl, unp_defer);
2433                 UNP_DEFERRED_UNLOCK();
2434                 count = 0;
2435                 while ((dr = SLIST_FIRST(&drl)) != NULL) {
2436                         SLIST_REMOVE_HEAD(&drl, ud_link);
2437                         closef(dr->ud_fp, NULL);
2438                         free(dr, M_TEMP);
2439                         count++;
2440                 }
2441                 atomic_add_int(&unp_defers_count, -count);
2442         }
2443 }
2444
2445 static void
2446 unp_internalize_fp(struct file *fp)
2447 {
2448         struct unpcb *unp;
2449
2450         UNP_LINK_WLOCK();
2451         if ((unp = fptounp(fp)) != NULL) {
2452                 unp->unp_file = fp;
2453                 unp->unp_msgcount++;
2454         }
2455         unp_rights++;
2456         UNP_LINK_WUNLOCK();
2457 }
2458
2459 static int
2460 unp_externalize_fp(struct file *fp)
2461 {
2462         struct unpcb *unp;
2463         int ret;
2464
2465         UNP_LINK_WLOCK();
2466         if ((unp = fptounp(fp)) != NULL) {
2467                 unp->unp_msgcount--;
2468                 ret = 1;
2469         } else
2470                 ret = 0;
2471         unp_rights--;
2472         UNP_LINK_WUNLOCK();
2473         return (ret);
2474 }
2475
2476 /*
2477  * unp_defer indicates whether additional work has been defered for a future
2478  * pass through unp_gc().  It is thread local and does not require explicit
2479  * synchronization.
2480  */
2481 static int      unp_marked;
2482
2483 static void
2484 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2485 {
2486         struct unpcb *unp;
2487         struct file *fp;
2488         int i;
2489
2490         /*
2491          * This function can only be called from the gc task.
2492          */
2493         KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2494             ("%s: not on gc callout", __func__));
2495         UNP_LINK_LOCK_ASSERT();
2496
2497         for (i = 0; i < fdcount; i++) {
2498                 fp = fdep[i]->fde_file;
2499                 if ((unp = fptounp(fp)) == NULL)
2500                         continue;
2501                 if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2502                         continue;
2503                 unp->unp_gcrefs--;
2504         }
2505 }
2506
2507 static void
2508 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2509 {
2510         struct unpcb *unp;
2511         struct file *fp;
2512         int i;
2513
2514         /*
2515          * This function can only be called from the gc task.
2516          */
2517         KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2518             ("%s: not on gc callout", __func__));
2519         UNP_LINK_LOCK_ASSERT();
2520
2521         for (i = 0; i < fdcount; i++) {
2522                 fp = fdep[i]->fde_file;
2523                 if ((unp = fptounp(fp)) == NULL)
2524                         continue;
2525                 if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2526                         continue;
2527                 unp->unp_gcrefs++;
2528                 unp_marked++;
2529         }
2530 }
2531
2532 static void
2533 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2534 {
2535         struct socket *so, *soa;
2536
2537         so = unp->unp_socket;
2538         SOCK_LOCK(so);
2539         if (SOLISTENING(so)) {
2540                 /*
2541                  * Mark all sockets in our accept queue.
2542                  */
2543                 TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2544                         if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2545                                 continue;
2546                         SOCKBUF_LOCK(&soa->so_rcv);
2547                         unp_scan(soa->so_rcv.sb_mb, op);
2548                         SOCKBUF_UNLOCK(&soa->so_rcv);
2549                 }
2550         } else {
2551                 /*
2552                  * Mark all sockets we reference with RIGHTS.
2553                  */
2554                 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2555                         SOCKBUF_LOCK(&so->so_rcv);
2556                         unp_scan(so->so_rcv.sb_mb, op);
2557                         SOCKBUF_UNLOCK(&so->so_rcv);
2558                 }
2559         }
2560         SOCK_UNLOCK(so);
2561 }
2562
2563 static int unp_recycled;
2564 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 
2565     "Number of unreachable sockets claimed by the garbage collector.");
2566
2567 static int unp_taskcount;
2568 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 
2569     "Number of times the garbage collector has run.");
2570
2571 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 
2572     "Number of active local sockets.");
2573
2574 static void
2575 unp_gc(__unused void *arg, int pending)
2576 {
2577         struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2578                                     NULL };
2579         struct unp_head **head;
2580         struct unp_head unp_deadhead;   /* List of potentially-dead sockets. */
2581         struct file *f, **unref;
2582         struct unpcb *unp, *unptmp;
2583         int i, total, unp_unreachable;
2584
2585         LIST_INIT(&unp_deadhead);
2586         unp_taskcount++;
2587         UNP_LINK_RLOCK();
2588         /*
2589          * First determine which sockets may be in cycles.
2590          */
2591         unp_unreachable = 0;
2592
2593         for (head = heads; *head != NULL; head++)
2594                 LIST_FOREACH(unp, *head, unp_link) {
2595
2596                         KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2597                             ("%s: unp %p has unexpected gc flags 0x%x",
2598                             __func__, unp, (unsigned int)unp->unp_gcflag));
2599
2600                         f = unp->unp_file;
2601
2602                         /*
2603                          * Check for an unreachable socket potentially in a
2604                          * cycle.  It must be in a queue as indicated by
2605                          * msgcount, and this must equal the file reference
2606                          * count.  Note that when msgcount is 0 the file is
2607                          * NULL.
2608                          */
2609                         if (f != NULL && unp->unp_msgcount != 0 &&
2610                             f->f_count == unp->unp_msgcount) {
2611                                 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2612                                 unp->unp_gcflag |= UNPGC_DEAD;
2613                                 unp->unp_gcrefs = unp->unp_msgcount;
2614                                 unp_unreachable++;
2615                         }
2616                 }
2617
2618         /*
2619          * Scan all sockets previously marked as potentially being in a cycle
2620          * and remove the references each socket holds on any UNPGC_DEAD
2621          * sockets in its queue.  After this step, all remaining references on
2622          * sockets marked UNPGC_DEAD should not be part of any cycle.
2623          */
2624         LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2625                 unp_gc_scan(unp, unp_remove_dead_ref);
2626
2627         /*
2628          * If a socket still has a non-negative refcount, it cannot be in a
2629          * cycle.  In this case increment refcount of all children iteratively.
2630          * Stop the scan once we do a complete loop without discovering
2631          * a new reachable socket.
2632          */
2633         do {
2634                 unp_marked = 0;
2635                 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2636                         if (unp->unp_gcrefs > 0) {
2637                                 unp->unp_gcflag &= ~UNPGC_DEAD;
2638                                 LIST_REMOVE(unp, unp_dead);
2639                                 KASSERT(unp_unreachable > 0,
2640                                     ("%s: unp_unreachable underflow.",
2641                                     __func__));
2642                                 unp_unreachable--;
2643                                 unp_gc_scan(unp, unp_restore_undead_ref);
2644                         }
2645         } while (unp_marked);
2646
2647         UNP_LINK_RUNLOCK();
2648
2649         if (unp_unreachable == 0)
2650                 return;
2651
2652         /*
2653          * Allocate space for a local array of dead unpcbs.
2654          * TODO: can this path be simplified by instead using the local
2655          * dead list at unp_deadhead, after taking out references
2656          * on the file object and/or unpcb and dropping the link lock?
2657          */
2658         unref = malloc(unp_unreachable * sizeof(struct file *),
2659             M_TEMP, M_WAITOK);
2660
2661         /*
2662          * Iterate looking for sockets which have been specifically marked
2663          * as unreachable and store them locally.
2664          */
2665         UNP_LINK_RLOCK();
2666         total = 0;
2667         LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2668                 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2669                     ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2670                 unp->unp_gcflag &= ~UNPGC_DEAD;
2671                 f = unp->unp_file;
2672                 if (unp->unp_msgcount == 0 || f == NULL ||
2673                     f->f_count != unp->unp_msgcount ||
2674                     !fhold(f))
2675                         continue;
2676                 unref[total++] = f;
2677                 KASSERT(total <= unp_unreachable,
2678                     ("%s: incorrect unreachable count.", __func__));
2679         }
2680         UNP_LINK_RUNLOCK();
2681
2682         /*
2683          * Now flush all sockets, free'ing rights.  This will free the
2684          * struct files associated with these sockets but leave each socket
2685          * with one remaining ref.
2686          */
2687         for (i = 0; i < total; i++) {
2688                 struct socket *so;
2689
2690                 so = unref[i]->f_data;
2691                 CURVNET_SET(so->so_vnet);
2692                 sorflush(so);
2693                 CURVNET_RESTORE();
2694         }
2695
2696         /*
2697          * And finally release the sockets so they can be reclaimed.
2698          */
2699         for (i = 0; i < total; i++)
2700                 fdrop(unref[i], NULL);
2701         unp_recycled += total;
2702         free(unref, M_TEMP);
2703 }
2704
2705 static void
2706 unp_dispose_mbuf(struct mbuf *m)
2707 {
2708
2709         if (m)
2710                 unp_scan(m, unp_freerights);
2711 }
2712
2713 /*
2714  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2715  */
2716 static void
2717 unp_dispose(struct socket *so)
2718 {
2719         struct unpcb *unp;
2720
2721         unp = sotounpcb(so);
2722         UNP_LINK_WLOCK();
2723         unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2724         UNP_LINK_WUNLOCK();
2725         if (!SOLISTENING(so))
2726                 unp_dispose_mbuf(so->so_rcv.sb_mb);
2727 }
2728
2729 static void
2730 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2731 {
2732         struct mbuf *m;
2733         struct cmsghdr *cm;
2734         void *data;
2735         socklen_t clen, datalen;
2736
2737         while (m0 != NULL) {
2738                 for (m = m0; m; m = m->m_next) {
2739                         if (m->m_type != MT_CONTROL)
2740                                 continue;
2741
2742                         cm = mtod(m, struct cmsghdr *);
2743                         clen = m->m_len;
2744
2745                         while (cm != NULL) {
2746                                 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2747                                         break;
2748
2749                                 data = CMSG_DATA(cm);
2750                                 datalen = (caddr_t)cm + cm->cmsg_len
2751                                     - (caddr_t)data;
2752
2753                                 if (cm->cmsg_level == SOL_SOCKET &&
2754                                     cm->cmsg_type == SCM_RIGHTS) {
2755                                         (*op)(data, datalen /
2756                                             sizeof(struct filedescent *));
2757                                 }
2758
2759                                 if (CMSG_SPACE(datalen) < clen) {
2760                                         clen -= CMSG_SPACE(datalen);
2761                                         cm = (struct cmsghdr *)
2762                                             ((caddr_t)cm + CMSG_SPACE(datalen));
2763                                 } else {
2764                                         clen = 0;
2765                                         cm = NULL;
2766                                 }
2767                         }
2768                 }
2769                 m0 = m0->m_nextpkt;
2770         }
2771 }
2772
2773 /*
2774  * A helper function called by VFS before socket-type vnode reclamation.
2775  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2776  * use count.
2777  */
2778 void
2779 vfs_unp_reclaim(struct vnode *vp)
2780 {
2781         struct unpcb *unp;
2782         int active;
2783         struct mtx *vplock;
2784
2785         ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2786         KASSERT(vp->v_type == VSOCK,
2787             ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2788
2789         active = 0;
2790         vplock = mtx_pool_find(mtxpool_sleep, vp);
2791         mtx_lock(vplock);
2792         VOP_UNP_CONNECT(vp, &unp);
2793         if (unp == NULL)
2794                 goto done;
2795         UNP_PCB_LOCK(unp);
2796         if (unp->unp_vnode == vp) {
2797                 VOP_UNP_DETACH(vp);
2798                 unp->unp_vnode = NULL;
2799                 active = 1;
2800         }
2801         UNP_PCB_UNLOCK(unp);
2802  done:
2803         mtx_unlock(vplock);
2804         if (active)
2805                 vunref(vp);
2806 }
2807
2808 #ifdef DDB
2809 static void
2810 db_print_indent(int indent)
2811 {
2812         int i;
2813
2814         for (i = 0; i < indent; i++)
2815                 db_printf(" ");
2816 }
2817
2818 static void
2819 db_print_unpflags(int unp_flags)
2820 {
2821         int comma;
2822
2823         comma = 0;
2824         if (unp_flags & UNP_HAVEPC) {
2825                 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2826                 comma = 1;
2827         }
2828         if (unp_flags & UNP_WANTCRED) {
2829                 db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2830                 comma = 1;
2831         }
2832         if (unp_flags & UNP_CONNWAIT) {
2833                 db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2834                 comma = 1;
2835         }
2836         if (unp_flags & UNP_CONNECTING) {
2837                 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2838                 comma = 1;
2839         }
2840         if (unp_flags & UNP_BINDING) {
2841                 db_printf("%sUNP_BINDING", comma ? ", " : "");
2842                 comma = 1;
2843         }
2844 }
2845
2846 static void
2847 db_print_xucred(int indent, struct xucred *xu)
2848 {
2849         int comma, i;
2850
2851         db_print_indent(indent);
2852         db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2853             xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2854         db_print_indent(indent);
2855         db_printf("cr_groups: ");
2856         comma = 0;
2857         for (i = 0; i < xu->cr_ngroups; i++) {
2858                 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2859                 comma = 1;
2860         }
2861         db_printf("\n");
2862 }
2863
2864 static void
2865 db_print_unprefs(int indent, struct unp_head *uh)
2866 {
2867         struct unpcb *unp;
2868         int counter;
2869
2870         counter = 0;
2871         LIST_FOREACH(unp, uh, unp_reflink) {
2872                 if (counter % 4 == 0)
2873                         db_print_indent(indent);
2874                 db_printf("%p  ", unp);
2875                 if (counter % 4 == 3)
2876                         db_printf("\n");
2877                 counter++;
2878         }
2879         if (counter != 0 && counter % 4 != 0)
2880                 db_printf("\n");
2881 }
2882
2883 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2884 {
2885         struct unpcb *unp;
2886
2887         if (!have_addr) {
2888                 db_printf("usage: show unpcb <addr>\n");
2889                 return;
2890         }
2891         unp = (struct unpcb *)addr;
2892
2893         db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2894             unp->unp_vnode);
2895
2896         db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2897             unp->unp_conn);
2898
2899         db_printf("unp_refs:\n");
2900         db_print_unprefs(2, &unp->unp_refs);
2901
2902         /* XXXRW: Would be nice to print the full address, if any. */
2903         db_printf("unp_addr: %p\n", unp->unp_addr);
2904
2905         db_printf("unp_gencnt: %llu\n",
2906             (unsigned long long)unp->unp_gencnt);
2907
2908         db_printf("unp_flags: %x (", unp->unp_flags);
2909         db_print_unpflags(unp->unp_flags);
2910         db_printf(")\n");
2911
2912         db_printf("unp_peercred:\n");
2913         db_print_xucred(2, &unp->unp_peercred);
2914
2915         db_printf("unp_refcount: %u\n", unp->unp_refcount);
2916 }
2917 #endif