]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/uipc_usrreq.c
For UNIX sockets make vnode point not to the socket, but to the UNIX PCB,
[FreeBSD/FreeBSD.git] / sys / kern / uipc_usrreq.c
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *      The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
32  */
33
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *      RDM
54  *      rethink name space problems
55  *      need a proper out-of-band
56  */
57
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60
61 #include "opt_ddb.h"
62
63 #include <sys/param.h>
64 #include <sys/capsicum.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>         /* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93
94 #include <net/vnet.h>
95
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99
100 #include <security/mac/mac_framework.h>
101
102 #include <vm/uma.h>
103
104 MALLOC_DECLARE(M_FILECAPS);
105
106 /*
107  * Locking key:
108  * (l)  Locked using list lock
109  * (g)  Locked using linkage lock
110  */
111
112 static uma_zone_t       unp_zone;
113 static unp_gen_t        unp_gencnt;     /* (l) */
114 static u_int            unp_count;      /* (l) Count of local sockets. */
115 static ino_t            unp_ino;        /* Prototype for fake inode numbers. */
116 static int              unp_rights;     /* (g) File descriptors in flight. */
117 static struct unp_head  unp_shead;      /* (l) List of stream sockets. */
118 static struct unp_head  unp_dhead;      /* (l) List of datagram sockets. */
119 static struct unp_head  unp_sphead;     /* (l) List of seqpacket sockets. */
120
121 struct unp_defer {
122         SLIST_ENTRY(unp_defer) ud_link;
123         struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127
128 static const struct sockaddr    sun_noname = { sizeof(sun_noname), AF_LOCAL };
129
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task      unp_defer_task;
144
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define PIPSIZ  8192
156 #endif
157 static u_long   unpst_sendspace = PIPSIZ;
158 static u_long   unpst_recvspace = PIPSIZ;
159 static u_long   unpdg_sendspace = 2*1024;       /* really max datagram size */
160 static u_long   unpdg_recvspace = 4*1024;
161 static u_long   unpsp_sendspace = PIPSIZ;       /* really max datagram size */
162 static u_long   unpsp_recvspace = PIPSIZ;
163
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
169     "SOCK_SEQPACKET");
170
171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
172            &unpst_sendspace, 0, "Default stream send space.");
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
174            &unpst_recvspace, 0, "Default stream receive space.");
175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
176            &unpdg_sendspace, 0, "Default datagram send space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
178            &unpdg_recvspace, 0, "Default datagram receive space.");
179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
180            &unpsp_sendspace, 0, "Default seqpacket send space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
182            &unpsp_recvspace, 0, "Default seqpacket receive space.");
183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184     "File descriptors in flight.");
185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
186     &unp_defers_count, 0,
187     "File descriptors deferred to taskqueue for close.");
188
189 /*
190  * Locking and synchronization:
191  *
192  * Three types of locks exit in the local domain socket implementation: a
193  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
194  * global locks, the list lock protects the socket count, global generation
195  * number, and stream/datagram global lists.  The linkage lock protects the
196  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
197  * held exclusively over the acquisition of multiple unpcb locks to prevent
198  * deadlock.
199  *
200  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
201  * allocated in pru_attach() and freed in pru_detach().  The validity of that
202  * pointer is an invariant, so no lock is required to dereference the so_pcb
203  * pointer if a valid socket reference is held by the caller.  In practice,
204  * this is always true during operations performed on a socket.  Each unpcb
205  * has a back-pointer to its socket, unp_socket, which will be stable under
206  * the same circumstances.
207  *
208  * This pointer may only be safely dereferenced as long as a valid reference
209  * to the unpcb is held.  Typically, this reference will be from the socket,
210  * or from another unpcb when the referring unpcb's lock is held (in order
211  * that the reference not be invalidated during use).  For example, to follow
212  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
213  * as unp_socket remains valid as long as the reference to unp_conn is valid.
214  *
215  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
216  * atomic reads without the lock may be performed "lockless", but more
217  * complex reads and read-modify-writes require the mutex to be held.  No
218  * lock order is defined between unpcb locks -- multiple unpcb locks may be
219  * acquired at the same time only when holding the linkage rwlock
220  * exclusively, which prevents deadlocks.
221  *
222  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
223  * protocols, bind() is a non-atomic operation, and connect() requires
224  * potential sleeping in the protocol, due to potentially waiting on local or
225  * distributed file systems.  We try to separate "lookup" operations, which
226  * may sleep, and the IPC operations themselves, which typically can occur
227  * with relative atomicity as locks can be held over the entire operation.
228  *
229  * Another tricky issue is simultaneous multi-threaded or multi-process
230  * access to a single UNIX domain socket.  These are handled by the flags
231  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
232  * binding, both of which involve dropping UNIX domain socket locks in order
233  * to perform namei() and other file system operations.
234  */
235 static struct rwlock    unp_link_rwlock;
236 static struct mtx       unp_list_lock;
237 static struct mtx       unp_defers_lock;
238
239 #define UNP_LINK_LOCK_INIT()            rw_init(&unp_link_rwlock,       \
240                                             "unp_link_rwlock")
241
242 #define UNP_LINK_LOCK_ASSERT()  rw_assert(&unp_link_rwlock,     \
243                                             RA_LOCKED)
244 #define UNP_LINK_UNLOCK_ASSERT()        rw_assert(&unp_link_rwlock,     \
245                                             RA_UNLOCKED)
246
247 #define UNP_LINK_RLOCK()                rw_rlock(&unp_link_rwlock)
248 #define UNP_LINK_RUNLOCK()              rw_runlock(&unp_link_rwlock)
249 #define UNP_LINK_WLOCK()                rw_wlock(&unp_link_rwlock)
250 #define UNP_LINK_WUNLOCK()              rw_wunlock(&unp_link_rwlock)
251 #define UNP_LINK_WLOCK_ASSERT()         rw_assert(&unp_link_rwlock,     \
252                                             RA_WLOCKED)
253
254 #define UNP_LIST_LOCK_INIT()            mtx_init(&unp_list_lock,        \
255                                             "unp_list_lock", NULL, MTX_DEF)
256 #define UNP_LIST_LOCK()                 mtx_lock(&unp_list_lock)
257 #define UNP_LIST_UNLOCK()               mtx_unlock(&unp_list_lock)
258
259 #define UNP_DEFERRED_LOCK_INIT()        mtx_init(&unp_defers_lock, \
260                                             "unp_defer", NULL, MTX_DEF)
261 #define UNP_DEFERRED_LOCK()             mtx_lock(&unp_defers_lock)
262 #define UNP_DEFERRED_UNLOCK()           mtx_unlock(&unp_defers_lock)
263
264 #define UNP_PCB_LOCK_INIT(unp)          mtx_init(&(unp)->unp_mtx,       \
265                                             "unp_mtx", "unp_mtx",       \
266                                             MTX_DUPOK|MTX_DEF|MTX_RECURSE)
267 #define UNP_PCB_LOCK_DESTROY(unp)       mtx_destroy(&(unp)->unp_mtx)
268 #define UNP_PCB_LOCK(unp)               mtx_lock(&(unp)->unp_mtx)
269 #define UNP_PCB_UNLOCK(unp)             mtx_unlock(&(unp)->unp_mtx)
270 #define UNP_PCB_LOCK_ASSERT(unp)        mtx_assert(&(unp)->unp_mtx, MA_OWNED)
271
272 static int      uipc_connect2(struct socket *, struct socket *);
273 static int      uipc_ctloutput(struct socket *, struct sockopt *);
274 static int      unp_connect(struct socket *, struct sockaddr *,
275                     struct thread *);
276 static int      unp_connectat(int, struct socket *, struct sockaddr *,
277                     struct thread *);
278 static int      unp_connect2(struct socket *so, struct socket *so2, int);
279 static void     unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
280 static void     unp_dispose(struct socket *so);
281 static void     unp_dispose_mbuf(struct mbuf *);
282 static void     unp_shutdown(struct unpcb *);
283 static void     unp_drop(struct unpcb *);
284 static void     unp_gc(__unused void *, int);
285 static void     unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
286 static void     unp_discard(struct file *);
287 static void     unp_freerights(struct filedescent **, int);
288 static void     unp_init(void);
289 static int      unp_internalize(struct mbuf **, struct thread *);
290 static void     unp_internalize_fp(struct file *);
291 static int      unp_externalize(struct mbuf *, struct mbuf **, int);
292 static int      unp_externalize_fp(struct file *);
293 static struct mbuf      *unp_addsockcred(struct thread *, struct mbuf *);
294 static void     unp_process_defers(void * __unused, int);
295
296 /*
297  * Definitions of protocols supported in the LOCAL domain.
298  */
299 static struct domain localdomain;
300 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
301 static struct pr_usrreqs uipc_usrreqs_seqpacket;
302 static struct protosw localsw[] = {
303 {
304         .pr_type =              SOCK_STREAM,
305         .pr_domain =            &localdomain,
306         .pr_flags =             PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
307         .pr_ctloutput =         &uipc_ctloutput,
308         .pr_usrreqs =           &uipc_usrreqs_stream
309 },
310 {
311         .pr_type =              SOCK_DGRAM,
312         .pr_domain =            &localdomain,
313         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_RIGHTS,
314         .pr_ctloutput =         &uipc_ctloutput,
315         .pr_usrreqs =           &uipc_usrreqs_dgram
316 },
317 {
318         .pr_type =              SOCK_SEQPACKET,
319         .pr_domain =            &localdomain,
320
321         /*
322          * XXXRW: For now, PR_ADDR because soreceive will bump into them
323          * due to our use of sbappendaddr.  A new sbappend variants is needed
324          * that supports both atomic record writes and control data.
325          */
326         .pr_flags =             PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
327                                     PR_RIGHTS,
328         .pr_ctloutput =         &uipc_ctloutput,
329         .pr_usrreqs =           &uipc_usrreqs_seqpacket,
330 },
331 };
332
333 static struct domain localdomain = {
334         .dom_family =           AF_LOCAL,
335         .dom_name =             "local",
336         .dom_init =             unp_init,
337         .dom_externalize =      unp_externalize,
338         .dom_dispose =          unp_dispose,
339         .dom_protosw =          localsw,
340         .dom_protoswNPROTOSW =  &localsw[nitems(localsw)]
341 };
342 DOMAIN_SET(local);
343
344 static void
345 uipc_abort(struct socket *so)
346 {
347         struct unpcb *unp, *unp2;
348
349         unp = sotounpcb(so);
350         KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
351
352         UNP_LINK_WLOCK();
353         UNP_PCB_LOCK(unp);
354         unp2 = unp->unp_conn;
355         if (unp2 != NULL) {
356                 UNP_PCB_LOCK(unp2);
357                 unp_drop(unp2);
358                 UNP_PCB_UNLOCK(unp2);
359         }
360         UNP_PCB_UNLOCK(unp);
361         UNP_LINK_WUNLOCK();
362 }
363
364 static int
365 uipc_accept(struct socket *so, struct sockaddr **nam)
366 {
367         struct unpcb *unp, *unp2;
368         const struct sockaddr *sa;
369
370         /*
371          * Pass back name of connected socket, if it was bound and we are
372          * still connected (our peer may have closed already!).
373          */
374         unp = sotounpcb(so);
375         KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
376
377         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
378         UNP_LINK_RLOCK();
379         unp2 = unp->unp_conn;
380         if (unp2 != NULL && unp2->unp_addr != NULL) {
381                 UNP_PCB_LOCK(unp2);
382                 sa = (struct sockaddr *) unp2->unp_addr;
383                 bcopy(sa, *nam, sa->sa_len);
384                 UNP_PCB_UNLOCK(unp2);
385         } else {
386                 sa = &sun_noname;
387                 bcopy(sa, *nam, sa->sa_len);
388         }
389         UNP_LINK_RUNLOCK();
390         return (0);
391 }
392
393 static int
394 uipc_attach(struct socket *so, int proto, struct thread *td)
395 {
396         u_long sendspace, recvspace;
397         struct unpcb *unp;
398         int error;
399
400         KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
401         if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
402                 switch (so->so_type) {
403                 case SOCK_STREAM:
404                         sendspace = unpst_sendspace;
405                         recvspace = unpst_recvspace;
406                         break;
407
408                 case SOCK_DGRAM:
409                         sendspace = unpdg_sendspace;
410                         recvspace = unpdg_recvspace;
411                         break;
412
413                 case SOCK_SEQPACKET:
414                         sendspace = unpsp_sendspace;
415                         recvspace = unpsp_recvspace;
416                         break;
417
418                 default:
419                         panic("uipc_attach");
420                 }
421                 error = soreserve(so, sendspace, recvspace);
422                 if (error)
423                         return (error);
424         }
425         unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
426         if (unp == NULL)
427                 return (ENOBUFS);
428         LIST_INIT(&unp->unp_refs);
429         UNP_PCB_LOCK_INIT(unp);
430         unp->unp_socket = so;
431         so->so_pcb = unp;
432         unp->unp_refcount = 1;
433         if (so->so_head != NULL)
434                 unp->unp_flags |= UNP_NASCENT;
435
436         UNP_LIST_LOCK();
437         unp->unp_gencnt = ++unp_gencnt;
438         unp_count++;
439         switch (so->so_type) {
440         case SOCK_STREAM:
441                 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
442                 break;
443
444         case SOCK_DGRAM:
445                 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
446                 break;
447
448         case SOCK_SEQPACKET:
449                 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
450                 break;
451
452         default:
453                 panic("uipc_attach");
454         }
455         UNP_LIST_UNLOCK();
456
457         return (0);
458 }
459
460 static int
461 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
462 {
463         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
464         struct vattr vattr;
465         int error, namelen;
466         struct nameidata nd;
467         struct unpcb *unp;
468         struct vnode *vp;
469         struct mount *mp;
470         cap_rights_t rights;
471         char *buf;
472
473         if (nam->sa_family != AF_UNIX)
474                 return (EAFNOSUPPORT);
475
476         unp = sotounpcb(so);
477         KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
478
479         if (soun->sun_len > sizeof(struct sockaddr_un))
480                 return (EINVAL);
481         namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
482         if (namelen <= 0)
483                 return (EINVAL);
484
485         /*
486          * We don't allow simultaneous bind() calls on a single UNIX domain
487          * socket, so flag in-progress operations, and return an error if an
488          * operation is already in progress.
489          *
490          * Historically, we have not allowed a socket to be rebound, so this
491          * also returns an error.  Not allowing re-binding simplifies the
492          * implementation and avoids a great many possible failure modes.
493          */
494         UNP_PCB_LOCK(unp);
495         if (unp->unp_vnode != NULL) {
496                 UNP_PCB_UNLOCK(unp);
497                 return (EINVAL);
498         }
499         if (unp->unp_flags & UNP_BINDING) {
500                 UNP_PCB_UNLOCK(unp);
501                 return (EALREADY);
502         }
503         unp->unp_flags |= UNP_BINDING;
504         UNP_PCB_UNLOCK(unp);
505
506         buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
507         bcopy(soun->sun_path, buf, namelen);
508         buf[namelen] = 0;
509
510 restart:
511         NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
512             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
513 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
514         error = namei(&nd);
515         if (error)
516                 goto error;
517         vp = nd.ni_vp;
518         if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
519                 NDFREE(&nd, NDF_ONLY_PNBUF);
520                 if (nd.ni_dvp == vp)
521                         vrele(nd.ni_dvp);
522                 else
523                         vput(nd.ni_dvp);
524                 if (vp != NULL) {
525                         vrele(vp);
526                         error = EADDRINUSE;
527                         goto error;
528                 }
529                 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
530                 if (error)
531                         goto error;
532                 goto restart;
533         }
534         VATTR_NULL(&vattr);
535         vattr.va_type = VSOCK;
536         vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
537 #ifdef MAC
538         error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
539             &vattr);
540 #endif
541         if (error == 0)
542                 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
543         NDFREE(&nd, NDF_ONLY_PNBUF);
544         vput(nd.ni_dvp);
545         if (error) {
546                 vn_finished_write(mp);
547                 goto error;
548         }
549         vp = nd.ni_vp;
550         ASSERT_VOP_ELOCKED(vp, "uipc_bind");
551         soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
552
553         UNP_LINK_WLOCK();
554         UNP_PCB_LOCK(unp);
555         VOP_UNP_BIND(vp, unp);
556         unp->unp_vnode = vp;
557         unp->unp_addr = soun;
558         unp->unp_flags &= ~UNP_BINDING;
559         UNP_PCB_UNLOCK(unp);
560         UNP_LINK_WUNLOCK();
561         VOP_UNLOCK(vp, 0);
562         vn_finished_write(mp);
563         free(buf, M_TEMP);
564         return (0);
565
566 error:
567         UNP_PCB_LOCK(unp);
568         unp->unp_flags &= ~UNP_BINDING;
569         UNP_PCB_UNLOCK(unp);
570         free(buf, M_TEMP);
571         return (error);
572 }
573
574 static int
575 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
576 {
577
578         return (uipc_bindat(AT_FDCWD, so, nam, td));
579 }
580
581 static int
582 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
583 {
584         int error;
585
586         KASSERT(td == curthread, ("uipc_connect: td != curthread"));
587         UNP_LINK_WLOCK();
588         error = unp_connect(so, nam, td);
589         UNP_LINK_WUNLOCK();
590         return (error);
591 }
592
593 static int
594 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
595     struct thread *td)
596 {
597         int error;
598
599         KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
600         UNP_LINK_WLOCK();
601         error = unp_connectat(fd, so, nam, td);
602         UNP_LINK_WUNLOCK();
603         return (error);
604 }
605
606 static void
607 uipc_close(struct socket *so)
608 {
609         struct unpcb *unp, *unp2;
610
611         unp = sotounpcb(so);
612         KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
613
614         UNP_LINK_WLOCK();
615         UNP_PCB_LOCK(unp);
616         unp2 = unp->unp_conn;
617         if (unp2 != NULL) {
618                 UNP_PCB_LOCK(unp2);
619                 unp_disconnect(unp, unp2);
620                 UNP_PCB_UNLOCK(unp2);
621         }
622         UNP_PCB_UNLOCK(unp);
623         UNP_LINK_WUNLOCK();
624 }
625
626 static int
627 uipc_connect2(struct socket *so1, struct socket *so2)
628 {
629         struct unpcb *unp, *unp2;
630         int error;
631
632         UNP_LINK_WLOCK();
633         unp = so1->so_pcb;
634         KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
635         UNP_PCB_LOCK(unp);
636         unp2 = so2->so_pcb;
637         KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
638         UNP_PCB_LOCK(unp2);
639         error = unp_connect2(so1, so2, PRU_CONNECT2);
640         UNP_PCB_UNLOCK(unp2);
641         UNP_PCB_UNLOCK(unp);
642         UNP_LINK_WUNLOCK();
643         return (error);
644 }
645
646 static void
647 uipc_detach(struct socket *so)
648 {
649         struct unpcb *unp, *unp2;
650         struct sockaddr_un *saved_unp_addr;
651         struct vnode *vp;
652         int freeunp, local_unp_rights;
653
654         unp = sotounpcb(so);
655         KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
656
657         vp = NULL;
658         local_unp_rights = 0;
659
660         UNP_LIST_LOCK();
661         LIST_REMOVE(unp, unp_link);
662         unp->unp_gencnt = ++unp_gencnt;
663         --unp_count;
664         UNP_LIST_UNLOCK();
665
666         if ((unp->unp_flags & UNP_NASCENT) != 0) {
667                 UNP_PCB_LOCK(unp);
668                 goto teardown;
669         }
670         UNP_LINK_WLOCK();
671         UNP_PCB_LOCK(unp);
672
673         if ((vp = unp->unp_vnode) != NULL) {
674                 VOP_UNP_DETACH(vp);
675                 unp->unp_vnode = NULL;
676         }
677         unp2 = unp->unp_conn;
678         if (unp2 != NULL) {
679                 UNP_PCB_LOCK(unp2);
680                 unp_disconnect(unp, unp2);
681                 UNP_PCB_UNLOCK(unp2);
682         }
683
684         /*
685          * We hold the linkage lock exclusively, so it's OK to acquire
686          * multiple pcb locks at a time.
687          */
688         while (!LIST_EMPTY(&unp->unp_refs)) {
689                 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
690
691                 UNP_PCB_LOCK(ref);
692                 unp_drop(ref);
693                 UNP_PCB_UNLOCK(ref);
694         }
695         local_unp_rights = unp_rights;
696         UNP_LINK_WUNLOCK();
697 teardown:
698         unp->unp_socket->so_pcb = NULL;
699         saved_unp_addr = unp->unp_addr;
700         unp->unp_addr = NULL;
701         unp->unp_refcount--;
702         freeunp = (unp->unp_refcount == 0);
703         if (saved_unp_addr != NULL)
704                 free(saved_unp_addr, M_SONAME);
705         if (freeunp) {
706                 UNP_PCB_LOCK_DESTROY(unp);
707                 uma_zfree(unp_zone, unp);
708         } else
709                 UNP_PCB_UNLOCK(unp);
710         if (vp)
711                 vrele(vp);
712         if (local_unp_rights)
713                 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
714 }
715
716 static int
717 uipc_disconnect(struct socket *so)
718 {
719         struct unpcb *unp, *unp2;
720
721         unp = sotounpcb(so);
722         KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
723
724         UNP_LINK_WLOCK();
725         UNP_PCB_LOCK(unp);
726         unp2 = unp->unp_conn;
727         if (unp2 != NULL) {
728                 UNP_PCB_LOCK(unp2);
729                 unp_disconnect(unp, unp2);
730                 UNP_PCB_UNLOCK(unp2);
731         }
732         UNP_PCB_UNLOCK(unp);
733         UNP_LINK_WUNLOCK();
734         return (0);
735 }
736
737 static int
738 uipc_listen(struct socket *so, int backlog, struct thread *td)
739 {
740         struct unpcb *unp;
741         int error;
742
743         if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
744                 return (EOPNOTSUPP);
745
746         unp = sotounpcb(so);
747         KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
748
749         UNP_PCB_LOCK(unp);
750         if (unp->unp_vnode == NULL) {
751                 /* Already connected or not bound to an address. */
752                 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
753                 UNP_PCB_UNLOCK(unp);
754                 return (error);
755         }
756
757         SOCK_LOCK(so);
758         error = solisten_proto_check(so);
759         if (error == 0) {
760                 cru2x(td->td_ucred, &unp->unp_peercred);
761                 unp->unp_flags |= UNP_HAVEPCCACHED;
762                 solisten_proto(so, backlog);
763         }
764         SOCK_UNLOCK(so);
765         UNP_PCB_UNLOCK(unp);
766         return (error);
767 }
768
769 static int
770 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
771 {
772         struct unpcb *unp, *unp2;
773         const struct sockaddr *sa;
774
775         unp = sotounpcb(so);
776         KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
777
778         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
779         UNP_LINK_RLOCK();
780         /*
781          * XXX: It seems that this test always fails even when connection is
782          * established.  So, this else clause is added as workaround to
783          * return PF_LOCAL sockaddr.
784          */
785         unp2 = unp->unp_conn;
786         if (unp2 != NULL) {
787                 UNP_PCB_LOCK(unp2);
788                 if (unp2->unp_addr != NULL)
789                         sa = (struct sockaddr *) unp2->unp_addr;
790                 else
791                         sa = &sun_noname;
792                 bcopy(sa, *nam, sa->sa_len);
793                 UNP_PCB_UNLOCK(unp2);
794         } else {
795                 sa = &sun_noname;
796                 bcopy(sa, *nam, sa->sa_len);
797         }
798         UNP_LINK_RUNLOCK();
799         return (0);
800 }
801
802 static int
803 uipc_rcvd(struct socket *so, int flags)
804 {
805         struct unpcb *unp, *unp2;
806         struct socket *so2;
807         u_int mbcnt, sbcc;
808
809         unp = sotounpcb(so);
810         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
811         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
812             ("%s: socktype %d", __func__, so->so_type));
813
814         /*
815          * Adjust backpressure on sender and wakeup any waiting to write.
816          *
817          * The unp lock is acquired to maintain the validity of the unp_conn
818          * pointer; no lock on unp2 is required as unp2->unp_socket will be
819          * static as long as we don't permit unp2 to disconnect from unp,
820          * which is prevented by the lock on unp.  We cache values from
821          * so_rcv to avoid holding the so_rcv lock over the entire
822          * transaction on the remote so_snd.
823          */
824         SOCKBUF_LOCK(&so->so_rcv);
825         mbcnt = so->so_rcv.sb_mbcnt;
826         sbcc = sbavail(&so->so_rcv);
827         SOCKBUF_UNLOCK(&so->so_rcv);
828         /*
829          * There is a benign race condition at this point.  If we're planning to
830          * clear SB_STOP, but uipc_send is called on the connected socket at
831          * this instant, it might add data to the sockbuf and set SB_STOP.  Then
832          * we would erroneously clear SB_STOP below, even though the sockbuf is
833          * full.  The race is benign because the only ill effect is to allow the
834          * sockbuf to exceed its size limit, and the size limits are not
835          * strictly guaranteed anyway.
836          */
837         UNP_PCB_LOCK(unp);
838         unp2 = unp->unp_conn;
839         if (unp2 == NULL) {
840                 UNP_PCB_UNLOCK(unp);
841                 return (0);
842         }
843         so2 = unp2->unp_socket;
844         SOCKBUF_LOCK(&so2->so_snd);
845         if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
846                 so2->so_snd.sb_flags &= ~SB_STOP;
847         sowwakeup_locked(so2);
848         UNP_PCB_UNLOCK(unp);
849         return (0);
850 }
851
852 static int
853 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
854     struct mbuf *control, struct thread *td)
855 {
856         struct unpcb *unp, *unp2;
857         struct socket *so2;
858         u_int mbcnt, sbcc;
859         int error = 0;
860
861         unp = sotounpcb(so);
862         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
863         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
864             so->so_type == SOCK_SEQPACKET,
865             ("%s: socktype %d", __func__, so->so_type));
866
867         if (flags & PRUS_OOB) {
868                 error = EOPNOTSUPP;
869                 goto release;
870         }
871         if (control != NULL && (error = unp_internalize(&control, td)))
872                 goto release;
873         if ((nam != NULL) || (flags & PRUS_EOF))
874                 UNP_LINK_WLOCK();
875         else
876                 UNP_LINK_RLOCK();
877         switch (so->so_type) {
878         case SOCK_DGRAM:
879         {
880                 const struct sockaddr *from;
881
882                 unp2 = unp->unp_conn;
883                 if (nam != NULL) {
884                         UNP_LINK_WLOCK_ASSERT();
885                         if (unp2 != NULL) {
886                                 error = EISCONN;
887                                 break;
888                         }
889                         error = unp_connect(so, nam, td);
890                         if (error)
891                                 break;
892                         unp2 = unp->unp_conn;
893                 }
894
895                 /*
896                  * Because connect() and send() are non-atomic in a sendto()
897                  * with a target address, it's possible that the socket will
898                  * have disconnected before the send() can run.  In that case
899                  * return the slightly counter-intuitive but otherwise
900                  * correct error that the socket is not connected.
901                  */
902                 if (unp2 == NULL) {
903                         error = ENOTCONN;
904                         break;
905                 }
906                 /* Lockless read. */
907                 if (unp2->unp_flags & UNP_WANTCRED)
908                         control = unp_addsockcred(td, control);
909                 UNP_PCB_LOCK(unp);
910                 if (unp->unp_addr != NULL)
911                         from = (struct sockaddr *)unp->unp_addr;
912                 else
913                         from = &sun_noname;
914                 so2 = unp2->unp_socket;
915                 SOCKBUF_LOCK(&so2->so_rcv);
916                 if (sbappendaddr_locked(&so2->so_rcv, from, m,
917                     control)) {
918                         sorwakeup_locked(so2);
919                         m = NULL;
920                         control = NULL;
921                 } else {
922                         SOCKBUF_UNLOCK(&so2->so_rcv);
923                         error = ENOBUFS;
924                 }
925                 if (nam != NULL) {
926                         UNP_LINK_WLOCK_ASSERT();
927                         UNP_PCB_LOCK(unp2);
928                         unp_disconnect(unp, unp2);
929                         UNP_PCB_UNLOCK(unp2);
930                 }
931                 UNP_PCB_UNLOCK(unp);
932                 break;
933         }
934
935         case SOCK_SEQPACKET:
936         case SOCK_STREAM:
937                 if ((so->so_state & SS_ISCONNECTED) == 0) {
938                         if (nam != NULL) {
939                                 UNP_LINK_WLOCK_ASSERT();
940                                 error = unp_connect(so, nam, td);
941                                 if (error)
942                                         break;  /* XXX */
943                         } else {
944                                 error = ENOTCONN;
945                                 break;
946                         }
947                 }
948
949                 /* Lockless read. */
950                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
951                         error = EPIPE;
952                         break;
953                 }
954
955                 /*
956                  * Because connect() and send() are non-atomic in a sendto()
957                  * with a target address, it's possible that the socket will
958                  * have disconnected before the send() can run.  In that case
959                  * return the slightly counter-intuitive but otherwise
960                  * correct error that the socket is not connected.
961                  *
962                  * Locking here must be done carefully: the linkage lock
963                  * prevents interconnections between unpcbs from changing, so
964                  * we can traverse from unp to unp2 without acquiring unp's
965                  * lock.  Socket buffer locks follow unpcb locks, so we can
966                  * acquire both remote and lock socket buffer locks.
967                  */
968                 unp2 = unp->unp_conn;
969                 if (unp2 == NULL) {
970                         error = ENOTCONN;
971                         break;
972                 }
973                 so2 = unp2->unp_socket;
974                 UNP_PCB_LOCK(unp2);
975                 SOCKBUF_LOCK(&so2->so_rcv);
976                 if (unp2->unp_flags & UNP_WANTCRED) {
977                         /*
978                          * Credentials are passed only once on SOCK_STREAM
979                          * and SOCK_SEQPACKET.
980                          */
981                         unp2->unp_flags &= ~UNP_WANTCRED;
982                         control = unp_addsockcred(td, control);
983                 }
984                 /*
985                  * Send to paired receive port, and then reduce send buffer
986                  * hiwater marks to maintain backpressure.  Wake up readers.
987                  */
988                 switch (so->so_type) {
989                 case SOCK_STREAM:
990                         if (control != NULL) {
991                                 if (sbappendcontrol_locked(&so2->so_rcv, m,
992                                     control))
993                                         control = NULL;
994                         } else
995                                 sbappend_locked(&so2->so_rcv, m, flags);
996                         break;
997
998                 case SOCK_SEQPACKET: {
999                         const struct sockaddr *from;
1000
1001                         from = &sun_noname;
1002                         /*
1003                          * Don't check for space available in so2->so_rcv.
1004                          * Unix domain sockets only check for space in the
1005                          * sending sockbuf, and that check is performed one
1006                          * level up the stack.
1007                          */
1008                         if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1009                                 from, m, control))
1010                                 control = NULL;
1011                         break;
1012                         }
1013                 }
1014
1015                 mbcnt = so2->so_rcv.sb_mbcnt;
1016                 sbcc = sbavail(&so2->so_rcv);
1017                 if (sbcc)
1018                         sorwakeup_locked(so2);
1019                 else
1020                         SOCKBUF_UNLOCK(&so2->so_rcv);
1021
1022                 /*
1023                  * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1024                  * it would be possible for uipc_rcvd to be called at this
1025                  * point, drain the receiving sockbuf, clear SB_STOP, and then
1026                  * we would set SB_STOP below.  That could lead to an empty
1027                  * sockbuf having SB_STOP set
1028                  */
1029                 SOCKBUF_LOCK(&so->so_snd);
1030                 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1031                         so->so_snd.sb_flags |= SB_STOP;
1032                 SOCKBUF_UNLOCK(&so->so_snd);
1033                 UNP_PCB_UNLOCK(unp2);
1034                 m = NULL;
1035                 break;
1036         }
1037
1038         /*
1039          * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1040          */
1041         if (flags & PRUS_EOF) {
1042                 UNP_PCB_LOCK(unp);
1043                 socantsendmore(so);
1044                 unp_shutdown(unp);
1045                 UNP_PCB_UNLOCK(unp);
1046         }
1047
1048         if ((nam != NULL) || (flags & PRUS_EOF))
1049                 UNP_LINK_WUNLOCK();
1050         else
1051                 UNP_LINK_RUNLOCK();
1052
1053         if (control != NULL && error != 0)
1054                 unp_dispose_mbuf(control);
1055
1056 release:
1057         if (control != NULL)
1058                 m_freem(control);
1059         if (m != NULL)
1060                 m_freem(m);
1061         return (error);
1062 }
1063
1064 static int
1065 uipc_ready(struct socket *so, struct mbuf *m, int count)
1066 {
1067         struct unpcb *unp, *unp2;
1068         struct socket *so2;
1069         int error;
1070
1071         unp = sotounpcb(so);
1072
1073         UNP_LINK_RLOCK();
1074         unp2 = unp->unp_conn;
1075         UNP_PCB_LOCK(unp2);
1076         so2 = unp2->unp_socket;
1077
1078         SOCKBUF_LOCK(&so2->so_rcv);
1079         if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1080                 sorwakeup_locked(so2);
1081         else
1082                 SOCKBUF_UNLOCK(&so2->so_rcv);
1083
1084         UNP_PCB_UNLOCK(unp2);
1085         UNP_LINK_RUNLOCK();
1086
1087         return (error);
1088 }
1089
1090 static int
1091 uipc_sense(struct socket *so, struct stat *sb)
1092 {
1093         struct unpcb *unp;
1094
1095         unp = sotounpcb(so);
1096         KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1097
1098         sb->st_blksize = so->so_snd.sb_hiwat;
1099         UNP_PCB_LOCK(unp);
1100         sb->st_dev = NODEV;
1101         if (unp->unp_ino == 0)
1102                 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1103         sb->st_ino = unp->unp_ino;
1104         UNP_PCB_UNLOCK(unp);
1105         return (0);
1106 }
1107
1108 static int
1109 uipc_shutdown(struct socket *so)
1110 {
1111         struct unpcb *unp;
1112
1113         unp = sotounpcb(so);
1114         KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1115
1116         UNP_LINK_WLOCK();
1117         UNP_PCB_LOCK(unp);
1118         socantsendmore(so);
1119         unp_shutdown(unp);
1120         UNP_PCB_UNLOCK(unp);
1121         UNP_LINK_WUNLOCK();
1122         return (0);
1123 }
1124
1125 static int
1126 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1127 {
1128         struct unpcb *unp;
1129         const struct sockaddr *sa;
1130
1131         unp = sotounpcb(so);
1132         KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1133
1134         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1135         UNP_PCB_LOCK(unp);
1136         if (unp->unp_addr != NULL)
1137                 sa = (struct sockaddr *) unp->unp_addr;
1138         else
1139                 sa = &sun_noname;
1140         bcopy(sa, *nam, sa->sa_len);
1141         UNP_PCB_UNLOCK(unp);
1142         return (0);
1143 }
1144
1145 static struct pr_usrreqs uipc_usrreqs_dgram = {
1146         .pru_abort =            uipc_abort,
1147         .pru_accept =           uipc_accept,
1148         .pru_attach =           uipc_attach,
1149         .pru_bind =             uipc_bind,
1150         .pru_bindat =           uipc_bindat,
1151         .pru_connect =          uipc_connect,
1152         .pru_connectat =        uipc_connectat,
1153         .pru_connect2 =         uipc_connect2,
1154         .pru_detach =           uipc_detach,
1155         .pru_disconnect =       uipc_disconnect,
1156         .pru_listen =           uipc_listen,
1157         .pru_peeraddr =         uipc_peeraddr,
1158         .pru_rcvd =             uipc_rcvd,
1159         .pru_send =             uipc_send,
1160         .pru_sense =            uipc_sense,
1161         .pru_shutdown =         uipc_shutdown,
1162         .pru_sockaddr =         uipc_sockaddr,
1163         .pru_soreceive =        soreceive_dgram,
1164         .pru_close =            uipc_close,
1165 };
1166
1167 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1168         .pru_abort =            uipc_abort,
1169         .pru_accept =           uipc_accept,
1170         .pru_attach =           uipc_attach,
1171         .pru_bind =             uipc_bind,
1172         .pru_bindat =           uipc_bindat,
1173         .pru_connect =          uipc_connect,
1174         .pru_connectat =        uipc_connectat,
1175         .pru_connect2 =         uipc_connect2,
1176         .pru_detach =           uipc_detach,
1177         .pru_disconnect =       uipc_disconnect,
1178         .pru_listen =           uipc_listen,
1179         .pru_peeraddr =         uipc_peeraddr,
1180         .pru_rcvd =             uipc_rcvd,
1181         .pru_send =             uipc_send,
1182         .pru_sense =            uipc_sense,
1183         .pru_shutdown =         uipc_shutdown,
1184         .pru_sockaddr =         uipc_sockaddr,
1185         .pru_soreceive =        soreceive_generic,      /* XXX: or...? */
1186         .pru_close =            uipc_close,
1187 };
1188
1189 static struct pr_usrreqs uipc_usrreqs_stream = {
1190         .pru_abort =            uipc_abort,
1191         .pru_accept =           uipc_accept,
1192         .pru_attach =           uipc_attach,
1193         .pru_bind =             uipc_bind,
1194         .pru_bindat =           uipc_bindat,
1195         .pru_connect =          uipc_connect,
1196         .pru_connectat =        uipc_connectat,
1197         .pru_connect2 =         uipc_connect2,
1198         .pru_detach =           uipc_detach,
1199         .pru_disconnect =       uipc_disconnect,
1200         .pru_listen =           uipc_listen,
1201         .pru_peeraddr =         uipc_peeraddr,
1202         .pru_rcvd =             uipc_rcvd,
1203         .pru_send =             uipc_send,
1204         .pru_ready =            uipc_ready,
1205         .pru_sense =            uipc_sense,
1206         .pru_shutdown =         uipc_shutdown,
1207         .pru_sockaddr =         uipc_sockaddr,
1208         .pru_soreceive =        soreceive_generic,
1209         .pru_close =            uipc_close,
1210 };
1211
1212 static int
1213 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1214 {
1215         struct unpcb *unp;
1216         struct xucred xu;
1217         int error, optval;
1218
1219         if (sopt->sopt_level != 0)
1220                 return (EINVAL);
1221
1222         unp = sotounpcb(so);
1223         KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1224         error = 0;
1225         switch (sopt->sopt_dir) {
1226         case SOPT_GET:
1227                 switch (sopt->sopt_name) {
1228                 case LOCAL_PEERCRED:
1229                         UNP_PCB_LOCK(unp);
1230                         if (unp->unp_flags & UNP_HAVEPC)
1231                                 xu = unp->unp_peercred;
1232                         else {
1233                                 if (so->so_type == SOCK_STREAM)
1234                                         error = ENOTCONN;
1235                                 else
1236                                         error = EINVAL;
1237                         }
1238                         UNP_PCB_UNLOCK(unp);
1239                         if (error == 0)
1240                                 error = sooptcopyout(sopt, &xu, sizeof(xu));
1241                         break;
1242
1243                 case LOCAL_CREDS:
1244                         /* Unlocked read. */
1245                         optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1246                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1247                         break;
1248
1249                 case LOCAL_CONNWAIT:
1250                         /* Unlocked read. */
1251                         optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1252                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1253                         break;
1254
1255                 default:
1256                         error = EOPNOTSUPP;
1257                         break;
1258                 }
1259                 break;
1260
1261         case SOPT_SET:
1262                 switch (sopt->sopt_name) {
1263                 case LOCAL_CREDS:
1264                 case LOCAL_CONNWAIT:
1265                         error = sooptcopyin(sopt, &optval, sizeof(optval),
1266                                             sizeof(optval));
1267                         if (error)
1268                                 break;
1269
1270 #define OPTSET(bit) do {                                                \
1271         UNP_PCB_LOCK(unp);                                              \
1272         if (optval)                                                     \
1273                 unp->unp_flags |= bit;                                  \
1274         else                                                            \
1275                 unp->unp_flags &= ~bit;                                 \
1276         UNP_PCB_UNLOCK(unp);                                            \
1277 } while (0)
1278
1279                         switch (sopt->sopt_name) {
1280                         case LOCAL_CREDS:
1281                                 OPTSET(UNP_WANTCRED);
1282                                 break;
1283
1284                         case LOCAL_CONNWAIT:
1285                                 OPTSET(UNP_CONNWAIT);
1286                                 break;
1287
1288                         default:
1289                                 break;
1290                         }
1291                         break;
1292 #undef  OPTSET
1293                 default:
1294                         error = ENOPROTOOPT;
1295                         break;
1296                 }
1297                 break;
1298
1299         default:
1300                 error = EOPNOTSUPP;
1301                 break;
1302         }
1303         return (error);
1304 }
1305
1306 static int
1307 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1308 {
1309
1310         return (unp_connectat(AT_FDCWD, so, nam, td));
1311 }
1312
1313 static int
1314 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1315     struct thread *td)
1316 {
1317         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1318         struct vnode *vp;
1319         struct socket *so2, *so3;
1320         struct unpcb *unp, *unp2, *unp3;
1321         struct nameidata nd;
1322         char buf[SOCK_MAXADDRLEN];
1323         struct sockaddr *sa;
1324         cap_rights_t rights;
1325         int error, len;
1326
1327         if (nam->sa_family != AF_UNIX)
1328                 return (EAFNOSUPPORT);
1329
1330         UNP_LINK_WLOCK_ASSERT();
1331
1332         unp = sotounpcb(so);
1333         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1334
1335         if (nam->sa_len > sizeof(struct sockaddr_un))
1336                 return (EINVAL);
1337         len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1338         if (len <= 0)
1339                 return (EINVAL);
1340         bcopy(soun->sun_path, buf, len);
1341         buf[len] = 0;
1342
1343         UNP_PCB_LOCK(unp);
1344         if (unp->unp_flags & UNP_CONNECTING) {
1345                 UNP_PCB_UNLOCK(unp);
1346                 return (EALREADY);
1347         }
1348         UNP_LINK_WUNLOCK();
1349         unp->unp_flags |= UNP_CONNECTING;
1350         UNP_PCB_UNLOCK(unp);
1351
1352         sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1353         NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1354             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1355         error = namei(&nd);
1356         if (error)
1357                 vp = NULL;
1358         else
1359                 vp = nd.ni_vp;
1360         ASSERT_VOP_LOCKED(vp, "unp_connect");
1361         NDFREE(&nd, NDF_ONLY_PNBUF);
1362         if (error)
1363                 goto bad;
1364
1365         if (vp->v_type != VSOCK) {
1366                 error = ENOTSOCK;
1367                 goto bad;
1368         }
1369 #ifdef MAC
1370         error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1371         if (error)
1372                 goto bad;
1373 #endif
1374         error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1375         if (error)
1376                 goto bad;
1377
1378         unp = sotounpcb(so);
1379         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1380
1381         /*
1382          * Lock linkage lock for two reasons: make sure v_socket is stable,
1383          * and to protect simultaneous locking of multiple pcbs.
1384          */
1385         UNP_LINK_WLOCK();
1386         VOP_UNP_CONNECT(vp, &unp2);
1387         if (unp2 == NULL) {
1388                 error = ECONNREFUSED;
1389                 goto bad2;
1390         }
1391         so2 = unp2->unp_socket;
1392         if (so->so_type != so2->so_type) {
1393                 error = EPROTOTYPE;
1394                 goto bad2;
1395         }
1396         if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1397                 if (so2->so_options & SO_ACCEPTCONN) {
1398                         CURVNET_SET(so2->so_vnet);
1399                         so3 = sonewconn(so2, 0);
1400                         CURVNET_RESTORE();
1401                 } else
1402                         so3 = NULL;
1403                 if (so3 == NULL) {
1404                         error = ECONNREFUSED;
1405                         goto bad2;
1406                 }
1407                 unp = sotounpcb(so);
1408                 unp2 = sotounpcb(so2);
1409                 unp3 = sotounpcb(so3);
1410                 UNP_PCB_LOCK(unp);
1411                 UNP_PCB_LOCK(unp2);
1412                 UNP_PCB_LOCK(unp3);
1413                 if (unp2->unp_addr != NULL) {
1414                         bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1415                         unp3->unp_addr = (struct sockaddr_un *) sa;
1416                         sa = NULL;
1417                 }
1418
1419                 /*
1420                  * The connector's (client's) credentials are copied from its
1421                  * process structure at the time of connect() (which is now).
1422                  */
1423                 cru2x(td->td_ucred, &unp3->unp_peercred);
1424                 unp3->unp_flags |= UNP_HAVEPC;
1425
1426                 /*
1427                  * The receiver's (server's) credentials are copied from the
1428                  * unp_peercred member of socket on which the former called
1429                  * listen(); uipc_listen() cached that process's credentials
1430                  * at that time so we can use them now.
1431                  */
1432                 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1433                     ("unp_connect: listener without cached peercred"));
1434                 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1435                     sizeof(unp->unp_peercred));
1436                 unp->unp_flags |= UNP_HAVEPC;
1437                 if (unp2->unp_flags & UNP_WANTCRED)
1438                         unp3->unp_flags |= UNP_WANTCRED;
1439                 UNP_PCB_UNLOCK(unp3);
1440                 UNP_PCB_UNLOCK(unp2);
1441                 UNP_PCB_UNLOCK(unp);
1442 #ifdef MAC
1443                 mac_socketpeer_set_from_socket(so, so3);
1444                 mac_socketpeer_set_from_socket(so3, so);
1445 #endif
1446
1447                 so2 = so3;
1448         }
1449         unp = sotounpcb(so);
1450         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1451         unp2 = sotounpcb(so2);
1452         KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1453         UNP_PCB_LOCK(unp);
1454         UNP_PCB_LOCK(unp2);
1455         error = unp_connect2(so, so2, PRU_CONNECT);
1456         UNP_PCB_UNLOCK(unp2);
1457         UNP_PCB_UNLOCK(unp);
1458 bad2:
1459         UNP_LINK_WUNLOCK();
1460 bad:
1461         if (vp != NULL)
1462                 vput(vp);
1463         free(sa, M_SONAME);
1464         UNP_LINK_WLOCK();
1465         UNP_PCB_LOCK(unp);
1466         unp->unp_flags &= ~UNP_CONNECTING;
1467         UNP_PCB_UNLOCK(unp);
1468         return (error);
1469 }
1470
1471 static int
1472 unp_connect2(struct socket *so, struct socket *so2, int req)
1473 {
1474         struct unpcb *unp;
1475         struct unpcb *unp2;
1476
1477         unp = sotounpcb(so);
1478         KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1479         unp2 = sotounpcb(so2);
1480         KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1481
1482         UNP_LINK_WLOCK_ASSERT();
1483         UNP_PCB_LOCK_ASSERT(unp);
1484         UNP_PCB_LOCK_ASSERT(unp2);
1485
1486         if (so2->so_type != so->so_type)
1487                 return (EPROTOTYPE);
1488         unp2->unp_flags &= ~UNP_NASCENT;
1489         unp->unp_conn = unp2;
1490
1491         switch (so->so_type) {
1492         case SOCK_DGRAM:
1493                 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1494                 soisconnected(so);
1495                 break;
1496
1497         case SOCK_STREAM:
1498         case SOCK_SEQPACKET:
1499                 unp2->unp_conn = unp;
1500                 if (req == PRU_CONNECT &&
1501                     ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1502                         soisconnecting(so);
1503                 else
1504                         soisconnected(so);
1505                 soisconnected(so2);
1506                 break;
1507
1508         default:
1509                 panic("unp_connect2");
1510         }
1511         return (0);
1512 }
1513
1514 static void
1515 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1516 {
1517         struct socket *so;
1518
1519         KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1520
1521         UNP_LINK_WLOCK_ASSERT();
1522         UNP_PCB_LOCK_ASSERT(unp);
1523         UNP_PCB_LOCK_ASSERT(unp2);
1524
1525         unp->unp_conn = NULL;
1526         switch (unp->unp_socket->so_type) {
1527         case SOCK_DGRAM:
1528                 LIST_REMOVE(unp, unp_reflink);
1529                 so = unp->unp_socket;
1530                 SOCK_LOCK(so);
1531                 so->so_state &= ~SS_ISCONNECTED;
1532                 SOCK_UNLOCK(so);
1533                 break;
1534
1535         case SOCK_STREAM:
1536         case SOCK_SEQPACKET:
1537                 soisdisconnected(unp->unp_socket);
1538                 unp2->unp_conn = NULL;
1539                 soisdisconnected(unp2->unp_socket);
1540                 break;
1541         }
1542 }
1543
1544 /*
1545  * unp_pcblist() walks the global list of struct unpcb's to generate a
1546  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1547  * sequentially, validating the generation number on each to see if it has
1548  * been detached.  All of this is necessary because copyout() may sleep on
1549  * disk I/O.
1550  */
1551 static int
1552 unp_pcblist(SYSCTL_HANDLER_ARGS)
1553 {
1554         int error, i, n;
1555         int freeunp;
1556         struct unpcb *unp, **unp_list;
1557         unp_gen_t gencnt;
1558         struct xunpgen *xug;
1559         struct unp_head *head;
1560         struct xunpcb *xu;
1561
1562         switch ((intptr_t)arg1) {
1563         case SOCK_STREAM:
1564                 head = &unp_shead;
1565                 break;
1566
1567         case SOCK_DGRAM:
1568                 head = &unp_dhead;
1569                 break;
1570
1571         case SOCK_SEQPACKET:
1572                 head = &unp_sphead;
1573                 break;
1574
1575         default:
1576                 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1577         }
1578
1579         /*
1580          * The process of preparing the PCB list is too time-consuming and
1581          * resource-intensive to repeat twice on every request.
1582          */
1583         if (req->oldptr == NULL) {
1584                 n = unp_count;
1585                 req->oldidx = 2 * (sizeof *xug)
1586                         + (n + n/8) * sizeof(struct xunpcb);
1587                 return (0);
1588         }
1589
1590         if (req->newptr != NULL)
1591                 return (EPERM);
1592
1593         /*
1594          * OK, now we're committed to doing something.
1595          */
1596         xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1597         UNP_LIST_LOCK();
1598         gencnt = unp_gencnt;
1599         n = unp_count;
1600         UNP_LIST_UNLOCK();
1601
1602         xug->xug_len = sizeof *xug;
1603         xug->xug_count = n;
1604         xug->xug_gen = gencnt;
1605         xug->xug_sogen = so_gencnt;
1606         error = SYSCTL_OUT(req, xug, sizeof *xug);
1607         if (error) {
1608                 free(xug, M_TEMP);
1609                 return (error);
1610         }
1611
1612         unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1613
1614         UNP_LIST_LOCK();
1615         for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1616              unp = LIST_NEXT(unp, unp_link)) {
1617                 UNP_PCB_LOCK(unp);
1618                 if (unp->unp_gencnt <= gencnt) {
1619                         if (cr_cansee(req->td->td_ucred,
1620                             unp->unp_socket->so_cred)) {
1621                                 UNP_PCB_UNLOCK(unp);
1622                                 continue;
1623                         }
1624                         unp_list[i++] = unp;
1625                         unp->unp_refcount++;
1626                 }
1627                 UNP_PCB_UNLOCK(unp);
1628         }
1629         UNP_LIST_UNLOCK();
1630         n = i;                  /* In case we lost some during malloc. */
1631
1632         error = 0;
1633         xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1634         for (i = 0; i < n; i++) {
1635                 unp = unp_list[i];
1636                 UNP_PCB_LOCK(unp);
1637                 unp->unp_refcount--;
1638                 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1639                         xu->xu_len = sizeof *xu;
1640                         xu->xu_unpp = unp;
1641                         /*
1642                          * XXX - need more locking here to protect against
1643                          * connect/disconnect races for SMP.
1644                          */
1645                         if (unp->unp_addr != NULL)
1646                                 bcopy(unp->unp_addr, &xu->xu_addr,
1647                                       unp->unp_addr->sun_len);
1648                         if (unp->unp_conn != NULL &&
1649                             unp->unp_conn->unp_addr != NULL)
1650                                 bcopy(unp->unp_conn->unp_addr,
1651                                       &xu->xu_caddr,
1652                                       unp->unp_conn->unp_addr->sun_len);
1653                         bcopy(unp, &xu->xu_unp, sizeof *unp);
1654                         sotoxsocket(unp->unp_socket, &xu->xu_socket);
1655                         UNP_PCB_UNLOCK(unp);
1656                         error = SYSCTL_OUT(req, xu, sizeof *xu);
1657                 } else {
1658                         freeunp = (unp->unp_refcount == 0);
1659                         UNP_PCB_UNLOCK(unp);
1660                         if (freeunp) {
1661                                 UNP_PCB_LOCK_DESTROY(unp);
1662                                 uma_zfree(unp_zone, unp);
1663                         }
1664                 }
1665         }
1666         free(xu, M_TEMP);
1667         if (!error) {
1668                 /*
1669                  * Give the user an updated idea of our state.  If the
1670                  * generation differs from what we told her before, she knows
1671                  * that something happened while we were processing this
1672                  * request, and it might be necessary to retry.
1673                  */
1674                 xug->xug_gen = unp_gencnt;
1675                 xug->xug_sogen = so_gencnt;
1676                 xug->xug_count = unp_count;
1677                 error = SYSCTL_OUT(req, xug, sizeof *xug);
1678         }
1679         free(unp_list, M_TEMP);
1680         free(xug, M_TEMP);
1681         return (error);
1682 }
1683
1684 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1685     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1686     "List of active local datagram sockets");
1687 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1688     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1689     "List of active local stream sockets");
1690 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1691     CTLTYPE_OPAQUE | CTLFLAG_RD,
1692     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1693     "List of active local seqpacket sockets");
1694
1695 static void
1696 unp_shutdown(struct unpcb *unp)
1697 {
1698         struct unpcb *unp2;
1699         struct socket *so;
1700
1701         UNP_LINK_WLOCK_ASSERT();
1702         UNP_PCB_LOCK_ASSERT(unp);
1703
1704         unp2 = unp->unp_conn;
1705         if ((unp->unp_socket->so_type == SOCK_STREAM ||
1706             (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1707                 so = unp2->unp_socket;
1708                 if (so != NULL)
1709                         socantrcvmore(so);
1710         }
1711 }
1712
1713 static void
1714 unp_drop(struct unpcb *unp)
1715 {
1716         struct socket *so = unp->unp_socket;
1717         struct unpcb *unp2;
1718
1719         UNP_LINK_WLOCK_ASSERT();
1720         UNP_PCB_LOCK_ASSERT(unp);
1721
1722         /*
1723          * Regardless of whether the socket's peer dropped the connection
1724          * with this socket by aborting or disconnecting, POSIX requires
1725          * that ECONNRESET is returned.
1726          */
1727         so->so_error = ECONNRESET;
1728         unp2 = unp->unp_conn;
1729         if (unp2 == NULL)
1730                 return;
1731         UNP_PCB_LOCK(unp2);
1732         unp_disconnect(unp, unp2);
1733         UNP_PCB_UNLOCK(unp2);
1734 }
1735
1736 static void
1737 unp_freerights(struct filedescent **fdep, int fdcount)
1738 {
1739         struct file *fp;
1740         int i;
1741
1742         KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1743
1744         for (i = 0; i < fdcount; i++) {
1745                 fp = fdep[i]->fde_file;
1746                 filecaps_free(&fdep[i]->fde_caps);
1747                 unp_discard(fp);
1748         }
1749         free(fdep[0], M_FILECAPS);
1750 }
1751
1752 static int
1753 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1754 {
1755         struct thread *td = curthread;          /* XXX */
1756         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1757         int i;
1758         int *fdp;
1759         struct filedesc *fdesc = td->td_proc->p_fd;
1760         struct filedescent **fdep;
1761         void *data;
1762         socklen_t clen = control->m_len, datalen;
1763         int error, newfds;
1764         u_int newlen;
1765
1766         UNP_LINK_UNLOCK_ASSERT();
1767
1768         error = 0;
1769         if (controlp != NULL) /* controlp == NULL => free control messages */
1770                 *controlp = NULL;
1771         while (cm != NULL) {
1772                 if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1773                         error = EINVAL;
1774                         break;
1775                 }
1776                 data = CMSG_DATA(cm);
1777                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1778                 if (cm->cmsg_level == SOL_SOCKET
1779                     && cm->cmsg_type == SCM_RIGHTS) {
1780                         newfds = datalen / sizeof(*fdep);
1781                         if (newfds == 0)
1782                                 goto next;
1783                         fdep = data;
1784
1785                         /* If we're not outputting the descriptors free them. */
1786                         if (error || controlp == NULL) {
1787                                 unp_freerights(fdep, newfds);
1788                                 goto next;
1789                         }
1790                         FILEDESC_XLOCK(fdesc);
1791
1792                         /*
1793                          * Now change each pointer to an fd in the global
1794                          * table to an integer that is the index to the local
1795                          * fd table entry that we set up to point to the
1796                          * global one we are transferring.
1797                          */
1798                         newlen = newfds * sizeof(int);
1799                         *controlp = sbcreatecontrol(NULL, newlen,
1800                             SCM_RIGHTS, SOL_SOCKET);
1801                         if (*controlp == NULL) {
1802                                 FILEDESC_XUNLOCK(fdesc);
1803                                 error = E2BIG;
1804                                 unp_freerights(fdep, newfds);
1805                                 goto next;
1806                         }
1807
1808                         fdp = (int *)
1809                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1810                         if (fdallocn(td, 0, fdp, newfds) != 0) {
1811                                 FILEDESC_XUNLOCK(fdesc);
1812                                 error = EMSGSIZE;
1813                                 unp_freerights(fdep, newfds);
1814                                 m_freem(*controlp);
1815                                 *controlp = NULL;
1816                                 goto next;
1817                         }
1818                         for (i = 0; i < newfds; i++, fdp++) {
1819                                 _finstall(fdesc, fdep[i]->fde_file, *fdp,
1820                                     (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
1821                                     &fdep[i]->fde_caps);
1822                                 unp_externalize_fp(fdep[i]->fde_file);
1823                         }
1824                         FILEDESC_XUNLOCK(fdesc);
1825                         free(fdep[0], M_FILECAPS);
1826                 } else {
1827                         /* We can just copy anything else across. */
1828                         if (error || controlp == NULL)
1829                                 goto next;
1830                         *controlp = sbcreatecontrol(NULL, datalen,
1831                             cm->cmsg_type, cm->cmsg_level);
1832                         if (*controlp == NULL) {
1833                                 error = ENOBUFS;
1834                                 goto next;
1835                         }
1836                         bcopy(data,
1837                             CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1838                             datalen);
1839                 }
1840                 controlp = &(*controlp)->m_next;
1841
1842 next:
1843                 if (CMSG_SPACE(datalen) < clen) {
1844                         clen -= CMSG_SPACE(datalen);
1845                         cm = (struct cmsghdr *)
1846                             ((caddr_t)cm + CMSG_SPACE(datalen));
1847                 } else {
1848                         clen = 0;
1849                         cm = NULL;
1850                 }
1851         }
1852
1853         m_freem(control);
1854         return (error);
1855 }
1856
1857 static void
1858 unp_zone_change(void *tag)
1859 {
1860
1861         uma_zone_set_max(unp_zone, maxsockets);
1862 }
1863
1864 static void
1865 unp_init(void)
1866 {
1867
1868 #ifdef VIMAGE
1869         if (!IS_DEFAULT_VNET(curvnet))
1870                 return;
1871 #endif
1872         unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1873             NULL, NULL, UMA_ALIGN_PTR, 0);
1874         if (unp_zone == NULL)
1875                 panic("unp_init");
1876         uma_zone_set_max(unp_zone, maxsockets);
1877         uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1878         EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1879             NULL, EVENTHANDLER_PRI_ANY);
1880         LIST_INIT(&unp_dhead);
1881         LIST_INIT(&unp_shead);
1882         LIST_INIT(&unp_sphead);
1883         SLIST_INIT(&unp_defers);
1884         TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1885         TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1886         UNP_LINK_LOCK_INIT();
1887         UNP_LIST_LOCK_INIT();
1888         UNP_DEFERRED_LOCK_INIT();
1889 }
1890
1891 static int
1892 unp_internalize(struct mbuf **controlp, struct thread *td)
1893 {
1894         struct mbuf *control = *controlp;
1895         struct proc *p = td->td_proc;
1896         struct filedesc *fdesc = p->p_fd;
1897         struct bintime *bt;
1898         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1899         struct cmsgcred *cmcred;
1900         struct filedescent *fde, **fdep, *fdev;
1901         struct file *fp;
1902         struct timeval *tv;
1903         struct timespec *ts;
1904         int i, *fdp;
1905         void *data;
1906         socklen_t clen = control->m_len, datalen;
1907         int error, oldfds;
1908         u_int newlen;
1909
1910         UNP_LINK_UNLOCK_ASSERT();
1911
1912         error = 0;
1913         *controlp = NULL;
1914         while (cm != NULL) {
1915                 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1916                     || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
1917                         error = EINVAL;
1918                         goto out;
1919                 }
1920                 data = CMSG_DATA(cm);
1921                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1922
1923                 switch (cm->cmsg_type) {
1924                 /*
1925                  * Fill in credential information.
1926                  */
1927                 case SCM_CREDS:
1928                         *controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1929                             SCM_CREDS, SOL_SOCKET);
1930                         if (*controlp == NULL) {
1931                                 error = ENOBUFS;
1932                                 goto out;
1933                         }
1934                         cmcred = (struct cmsgcred *)
1935                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1936                         cmcred->cmcred_pid = p->p_pid;
1937                         cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1938                         cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1939                         cmcred->cmcred_euid = td->td_ucred->cr_uid;
1940                         cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1941                             CMGROUP_MAX);
1942                         for (i = 0; i < cmcred->cmcred_ngroups; i++)
1943                                 cmcred->cmcred_groups[i] =
1944                                     td->td_ucred->cr_groups[i];
1945                         break;
1946
1947                 case SCM_RIGHTS:
1948                         oldfds = datalen / sizeof (int);
1949                         if (oldfds == 0)
1950                                 break;
1951                         /*
1952                          * Check that all the FDs passed in refer to legal
1953                          * files.  If not, reject the entire operation.
1954                          */
1955                         fdp = data;
1956                         FILEDESC_SLOCK(fdesc);
1957                         for (i = 0; i < oldfds; i++, fdp++) {
1958                                 fp = fget_locked(fdesc, *fdp);
1959                                 if (fp == NULL) {
1960                                         FILEDESC_SUNLOCK(fdesc);
1961                                         error = EBADF;
1962                                         goto out;
1963                                 }
1964                                 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1965                                         FILEDESC_SUNLOCK(fdesc);
1966                                         error = EOPNOTSUPP;
1967                                         goto out;
1968                                 }
1969
1970                         }
1971
1972                         /*
1973                          * Now replace the integer FDs with pointers to the
1974                          * file structure and capability rights.
1975                          */
1976                         newlen = oldfds * sizeof(fdep[0]);
1977                         *controlp = sbcreatecontrol(NULL, newlen,
1978                             SCM_RIGHTS, SOL_SOCKET);
1979                         if (*controlp == NULL) {
1980                                 FILEDESC_SUNLOCK(fdesc);
1981                                 error = E2BIG;
1982                                 goto out;
1983                         }
1984                         fdp = data;
1985                         fdep = (struct filedescent **)
1986                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1987                         fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1988                             M_WAITOK);
1989                         for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1990                                 fde = &fdesc->fd_ofiles[*fdp];
1991                                 fdep[i] = fdev;
1992                                 fdep[i]->fde_file = fde->fde_file;
1993                                 filecaps_copy(&fde->fde_caps,
1994                                     &fdep[i]->fde_caps, true);
1995                                 unp_internalize_fp(fdep[i]->fde_file);
1996                         }
1997                         FILEDESC_SUNLOCK(fdesc);
1998                         break;
1999
2000                 case SCM_TIMESTAMP:
2001                         *controlp = sbcreatecontrol(NULL, sizeof(*tv),
2002                             SCM_TIMESTAMP, SOL_SOCKET);
2003                         if (*controlp == NULL) {
2004                                 error = ENOBUFS;
2005                                 goto out;
2006                         }
2007                         tv = (struct timeval *)
2008                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2009                         microtime(tv);
2010                         break;
2011
2012                 case SCM_BINTIME:
2013                         *controlp = sbcreatecontrol(NULL, sizeof(*bt),
2014                             SCM_BINTIME, SOL_SOCKET);
2015                         if (*controlp == NULL) {
2016                                 error = ENOBUFS;
2017                                 goto out;
2018                         }
2019                         bt = (struct bintime *)
2020                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2021                         bintime(bt);
2022                         break;
2023
2024                 case SCM_REALTIME:
2025                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2026                             SCM_REALTIME, SOL_SOCKET);
2027                         if (*controlp == NULL) {
2028                                 error = ENOBUFS;
2029                                 goto out;
2030                         }
2031                         ts = (struct timespec *)
2032                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2033                         nanotime(ts);
2034                         break;
2035
2036                 case SCM_MONOTONIC:
2037                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2038                             SCM_MONOTONIC, SOL_SOCKET);
2039                         if (*controlp == NULL) {
2040                                 error = ENOBUFS;
2041                                 goto out;
2042                         }
2043                         ts = (struct timespec *)
2044                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2045                         nanouptime(ts);
2046                         break;
2047
2048                 default:
2049                         error = EINVAL;
2050                         goto out;
2051                 }
2052
2053                 controlp = &(*controlp)->m_next;
2054                 if (CMSG_SPACE(datalen) < clen) {
2055                         clen -= CMSG_SPACE(datalen);
2056                         cm = (struct cmsghdr *)
2057                             ((caddr_t)cm + CMSG_SPACE(datalen));
2058                 } else {
2059                         clen = 0;
2060                         cm = NULL;
2061                 }
2062         }
2063
2064 out:
2065         m_freem(control);
2066         return (error);
2067 }
2068
2069 static struct mbuf *
2070 unp_addsockcred(struct thread *td, struct mbuf *control)
2071 {
2072         struct mbuf *m, *n, *n_prev;
2073         struct sockcred *sc;
2074         const struct cmsghdr *cm;
2075         int ngroups;
2076         int i;
2077
2078         ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2079         m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2080         if (m == NULL)
2081                 return (control);
2082
2083         sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2084         sc->sc_uid = td->td_ucred->cr_ruid;
2085         sc->sc_euid = td->td_ucred->cr_uid;
2086         sc->sc_gid = td->td_ucred->cr_rgid;
2087         sc->sc_egid = td->td_ucred->cr_gid;
2088         sc->sc_ngroups = ngroups;
2089         for (i = 0; i < sc->sc_ngroups; i++)
2090                 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2091
2092         /*
2093          * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2094          * created SCM_CREDS control message (struct sockcred) has another
2095          * format.
2096          */
2097         if (control != NULL)
2098                 for (n = control, n_prev = NULL; n != NULL;) {
2099                         cm = mtod(n, struct cmsghdr *);
2100                         if (cm->cmsg_level == SOL_SOCKET &&
2101                             cm->cmsg_type == SCM_CREDS) {
2102                                 if (n_prev == NULL)
2103                                         control = n->m_next;
2104                                 else
2105                                         n_prev->m_next = n->m_next;
2106                                 n = m_free(n);
2107                         } else {
2108                                 n_prev = n;
2109                                 n = n->m_next;
2110                         }
2111                 }
2112
2113         /* Prepend it to the head. */
2114         m->m_next = control;
2115         return (m);
2116 }
2117
2118 static struct unpcb *
2119 fptounp(struct file *fp)
2120 {
2121         struct socket *so;
2122
2123         if (fp->f_type != DTYPE_SOCKET)
2124                 return (NULL);
2125         if ((so = fp->f_data) == NULL)
2126                 return (NULL);
2127         if (so->so_proto->pr_domain != &localdomain)
2128                 return (NULL);
2129         return sotounpcb(so);
2130 }
2131
2132 static void
2133 unp_discard(struct file *fp)
2134 {
2135         struct unp_defer *dr;
2136
2137         if (unp_externalize_fp(fp)) {
2138                 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2139                 dr->ud_fp = fp;
2140                 UNP_DEFERRED_LOCK();
2141                 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2142                 UNP_DEFERRED_UNLOCK();
2143                 atomic_add_int(&unp_defers_count, 1);
2144                 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2145         } else
2146                 (void) closef(fp, (struct thread *)NULL);
2147 }
2148
2149 static void
2150 unp_process_defers(void *arg __unused, int pending)
2151 {
2152         struct unp_defer *dr;
2153         SLIST_HEAD(, unp_defer) drl;
2154         int count;
2155
2156         SLIST_INIT(&drl);
2157         for (;;) {
2158                 UNP_DEFERRED_LOCK();
2159                 if (SLIST_FIRST(&unp_defers) == NULL) {
2160                         UNP_DEFERRED_UNLOCK();
2161                         break;
2162                 }
2163                 SLIST_SWAP(&unp_defers, &drl, unp_defer);
2164                 UNP_DEFERRED_UNLOCK();
2165                 count = 0;
2166                 while ((dr = SLIST_FIRST(&drl)) != NULL) {
2167                         SLIST_REMOVE_HEAD(&drl, ud_link);
2168                         closef(dr->ud_fp, NULL);
2169                         free(dr, M_TEMP);
2170                         count++;
2171                 }
2172                 atomic_add_int(&unp_defers_count, -count);
2173         }
2174 }
2175
2176 static void
2177 unp_internalize_fp(struct file *fp)
2178 {
2179         struct unpcb *unp;
2180
2181         UNP_LINK_WLOCK();
2182         if ((unp = fptounp(fp)) != NULL) {
2183                 unp->unp_file = fp;
2184                 unp->unp_msgcount++;
2185         }
2186         fhold(fp);
2187         unp_rights++;
2188         UNP_LINK_WUNLOCK();
2189 }
2190
2191 static int
2192 unp_externalize_fp(struct file *fp)
2193 {
2194         struct unpcb *unp;
2195         int ret;
2196
2197         UNP_LINK_WLOCK();
2198         if ((unp = fptounp(fp)) != NULL) {
2199                 unp->unp_msgcount--;
2200                 ret = 1;
2201         } else
2202                 ret = 0;
2203         unp_rights--;
2204         UNP_LINK_WUNLOCK();
2205         return (ret);
2206 }
2207
2208 /*
2209  * unp_defer indicates whether additional work has been defered for a future
2210  * pass through unp_gc().  It is thread local and does not require explicit
2211  * synchronization.
2212  */
2213 static int      unp_marked;
2214 static int      unp_unreachable;
2215
2216 static void
2217 unp_accessable(struct filedescent **fdep, int fdcount)
2218 {
2219         struct unpcb *unp;
2220         struct file *fp;
2221         int i;
2222
2223         for (i = 0; i < fdcount; i++) {
2224                 fp = fdep[i]->fde_file;
2225                 if ((unp = fptounp(fp)) == NULL)
2226                         continue;
2227                 if (unp->unp_gcflag & UNPGC_REF)
2228                         continue;
2229                 unp->unp_gcflag &= ~UNPGC_DEAD;
2230                 unp->unp_gcflag |= UNPGC_REF;
2231                 unp_marked++;
2232         }
2233 }
2234
2235 static void
2236 unp_gc_process(struct unpcb *unp)
2237 {
2238         struct socket *soa;
2239         struct socket *so;
2240         struct file *fp;
2241
2242         /* Already processed. */
2243         if (unp->unp_gcflag & UNPGC_SCANNED)
2244                 return;
2245         fp = unp->unp_file;
2246
2247         /*
2248          * Check for a socket potentially in a cycle.  It must be in a
2249          * queue as indicated by msgcount, and this must equal the file
2250          * reference count.  Note that when msgcount is 0 the file is NULL.
2251          */
2252         if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2253             unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2254                 unp->unp_gcflag |= UNPGC_DEAD;
2255                 unp_unreachable++;
2256                 return;
2257         }
2258
2259         /*
2260          * Mark all sockets we reference with RIGHTS.
2261          */
2262         so = unp->unp_socket;
2263         if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2264                 SOCKBUF_LOCK(&so->so_rcv);
2265                 unp_scan(so->so_rcv.sb_mb, unp_accessable);
2266                 SOCKBUF_UNLOCK(&so->so_rcv);
2267         }
2268
2269         /*
2270          * Mark all sockets in our accept queue.
2271          */
2272         ACCEPT_LOCK();
2273         TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2274                 if ((sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) != 0)
2275                         continue;
2276                 SOCKBUF_LOCK(&soa->so_rcv);
2277                 unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2278                 SOCKBUF_UNLOCK(&soa->so_rcv);
2279         }
2280         ACCEPT_UNLOCK();
2281         unp->unp_gcflag |= UNPGC_SCANNED;
2282 }
2283
2284 static int unp_recycled;
2285 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 
2286     "Number of unreachable sockets claimed by the garbage collector.");
2287
2288 static int unp_taskcount;
2289 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 
2290     "Number of times the garbage collector has run.");
2291
2292 static void
2293 unp_gc(__unused void *arg, int pending)
2294 {
2295         struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2296                                     NULL };
2297         struct unp_head **head;
2298         struct file *f, **unref;
2299         struct unpcb *unp;
2300         int i, total;
2301
2302         unp_taskcount++;
2303         UNP_LIST_LOCK();
2304         /*
2305          * First clear all gc flags from previous runs, apart from
2306          * UNPGC_IGNORE_RIGHTS.
2307          */
2308         for (head = heads; *head != NULL; head++)
2309                 LIST_FOREACH(unp, *head, unp_link)
2310                         unp->unp_gcflag =
2311                             (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2312
2313         /*
2314          * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2315          * is reachable all of the sockets it references are reachable.
2316          * Stop the scan once we do a complete loop without discovering
2317          * a new reachable socket.
2318          */
2319         do {
2320                 unp_unreachable = 0;
2321                 unp_marked = 0;
2322                 for (head = heads; *head != NULL; head++)
2323                         LIST_FOREACH(unp, *head, unp_link)
2324                                 unp_gc_process(unp);
2325         } while (unp_marked);
2326         UNP_LIST_UNLOCK();
2327         if (unp_unreachable == 0)
2328                 return;
2329
2330         /*
2331          * Allocate space for a local list of dead unpcbs.
2332          */
2333         unref = malloc(unp_unreachable * sizeof(struct file *),
2334             M_TEMP, M_WAITOK);
2335
2336         /*
2337          * Iterate looking for sockets which have been specifically marked
2338          * as as unreachable and store them locally.
2339          */
2340         UNP_LINK_RLOCK();
2341         UNP_LIST_LOCK();
2342         for (total = 0, head = heads; *head != NULL; head++)
2343                 LIST_FOREACH(unp, *head, unp_link)
2344                         if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2345                                 f = unp->unp_file;
2346                                 if (unp->unp_msgcount == 0 || f == NULL ||
2347                                     f->f_count != unp->unp_msgcount)
2348                                         continue;
2349                                 unref[total++] = f;
2350                                 fhold(f);
2351                                 KASSERT(total <= unp_unreachable,
2352                                     ("unp_gc: incorrect unreachable count."));
2353                         }
2354         UNP_LIST_UNLOCK();
2355         UNP_LINK_RUNLOCK();
2356
2357         /*
2358          * Now flush all sockets, free'ing rights.  This will free the
2359          * struct files associated with these sockets but leave each socket
2360          * with one remaining ref.
2361          */
2362         for (i = 0; i < total; i++) {
2363                 struct socket *so;
2364
2365                 so = unref[i]->f_data;
2366                 CURVNET_SET(so->so_vnet);
2367                 sorflush(so);
2368                 CURVNET_RESTORE();
2369         }
2370
2371         /*
2372          * And finally release the sockets so they can be reclaimed.
2373          */
2374         for (i = 0; i < total; i++)
2375                 fdrop(unref[i], NULL);
2376         unp_recycled += total;
2377         free(unref, M_TEMP);
2378 }
2379
2380 static void
2381 unp_dispose_mbuf(struct mbuf *m)
2382 {
2383
2384         if (m)
2385                 unp_scan(m, unp_freerights);
2386 }
2387
2388 /*
2389  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2390  */
2391 static void
2392 unp_dispose(struct socket *so)
2393 {
2394         struct unpcb *unp;
2395
2396         unp = sotounpcb(so);
2397         UNP_LIST_LOCK();
2398         unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2399         UNP_LIST_UNLOCK();
2400         unp_dispose_mbuf(so->so_rcv.sb_mb);
2401 }
2402
2403 static void
2404 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2405 {
2406         struct mbuf *m;
2407         struct cmsghdr *cm;
2408         void *data;
2409         socklen_t clen, datalen;
2410
2411         while (m0 != NULL) {
2412                 for (m = m0; m; m = m->m_next) {
2413                         if (m->m_type != MT_CONTROL)
2414                                 continue;
2415
2416                         cm = mtod(m, struct cmsghdr *);
2417                         clen = m->m_len;
2418
2419                         while (cm != NULL) {
2420                                 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2421                                         break;
2422
2423                                 data = CMSG_DATA(cm);
2424                                 datalen = (caddr_t)cm + cm->cmsg_len
2425                                     - (caddr_t)data;
2426
2427                                 if (cm->cmsg_level == SOL_SOCKET &&
2428                                     cm->cmsg_type == SCM_RIGHTS) {
2429                                         (*op)(data, datalen /
2430                                             sizeof(struct filedescent *));
2431                                 }
2432
2433                                 if (CMSG_SPACE(datalen) < clen) {
2434                                         clen -= CMSG_SPACE(datalen);
2435                                         cm = (struct cmsghdr *)
2436                                             ((caddr_t)cm + CMSG_SPACE(datalen));
2437                                 } else {
2438                                         clen = 0;
2439                                         cm = NULL;
2440                                 }
2441                         }
2442                 }
2443                 m0 = m0->m_nextpkt;
2444         }
2445 }
2446
2447 /*
2448  * A helper function called by VFS before socket-type vnode reclamation.
2449  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2450  * use count.
2451  */
2452 void
2453 vfs_unp_reclaim(struct vnode *vp)
2454 {
2455         struct unpcb *unp;
2456         int active;
2457
2458         ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2459         KASSERT(vp->v_type == VSOCK,
2460             ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2461
2462         active = 0;
2463         UNP_LINK_WLOCK();
2464         VOP_UNP_CONNECT(vp, &unp);
2465         if (unp == NULL)
2466                 goto done;
2467         UNP_PCB_LOCK(unp);
2468         if (unp->unp_vnode == vp) {
2469                 VOP_UNP_DETACH(vp);
2470                 unp->unp_vnode = NULL;
2471                 active = 1;
2472         }
2473         UNP_PCB_UNLOCK(unp);
2474 done:
2475         UNP_LINK_WUNLOCK();
2476         if (active)
2477                 vunref(vp);
2478 }
2479
2480 #ifdef DDB
2481 static void
2482 db_print_indent(int indent)
2483 {
2484         int i;
2485
2486         for (i = 0; i < indent; i++)
2487                 db_printf(" ");
2488 }
2489
2490 static void
2491 db_print_unpflags(int unp_flags)
2492 {
2493         int comma;
2494
2495         comma = 0;
2496         if (unp_flags & UNP_HAVEPC) {
2497                 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2498                 comma = 1;
2499         }
2500         if (unp_flags & UNP_HAVEPCCACHED) {
2501                 db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2502                 comma = 1;
2503         }
2504         if (unp_flags & UNP_WANTCRED) {
2505                 db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2506                 comma = 1;
2507         }
2508         if (unp_flags & UNP_CONNWAIT) {
2509                 db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2510                 comma = 1;
2511         }
2512         if (unp_flags & UNP_CONNECTING) {
2513                 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2514                 comma = 1;
2515         }
2516         if (unp_flags & UNP_BINDING) {
2517                 db_printf("%sUNP_BINDING", comma ? ", " : "");
2518                 comma = 1;
2519         }
2520 }
2521
2522 static void
2523 db_print_xucred(int indent, struct xucred *xu)
2524 {
2525         int comma, i;
2526
2527         db_print_indent(indent);
2528         db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2529             xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2530         db_print_indent(indent);
2531         db_printf("cr_groups: ");
2532         comma = 0;
2533         for (i = 0; i < xu->cr_ngroups; i++) {
2534                 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2535                 comma = 1;
2536         }
2537         db_printf("\n");
2538 }
2539
2540 static void
2541 db_print_unprefs(int indent, struct unp_head *uh)
2542 {
2543         struct unpcb *unp;
2544         int counter;
2545
2546         counter = 0;
2547         LIST_FOREACH(unp, uh, unp_reflink) {
2548                 if (counter % 4 == 0)
2549                         db_print_indent(indent);
2550                 db_printf("%p  ", unp);
2551                 if (counter % 4 == 3)
2552                         db_printf("\n");
2553                 counter++;
2554         }
2555         if (counter != 0 && counter % 4 != 0)
2556                 db_printf("\n");
2557 }
2558
2559 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2560 {
2561         struct unpcb *unp;
2562
2563         if (!have_addr) {
2564                 db_printf("usage: show unpcb <addr>\n");
2565                 return;
2566         }
2567         unp = (struct unpcb *)addr;
2568
2569         db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2570             unp->unp_vnode);
2571
2572         db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2573             unp->unp_conn);
2574
2575         db_printf("unp_refs:\n");
2576         db_print_unprefs(2, &unp->unp_refs);
2577
2578         /* XXXRW: Would be nice to print the full address, if any. */
2579         db_printf("unp_addr: %p\n", unp->unp_addr);
2580
2581         db_printf("unp_gencnt: %llu\n",
2582             (unsigned long long)unp->unp_gencnt);
2583
2584         db_printf("unp_flags: %x (", unp->unp_flags);
2585         db_print_unpflags(unp->unp_flags);
2586         db_printf(")\n");
2587
2588         db_printf("unp_peercred:\n");
2589         db_print_xucred(2, &unp->unp_peercred);
2590
2591         db_printf("unp_refcount: %u\n", unp->unp_refcount);
2592 }
2593 #endif