]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/uipc_usrreq.c
MFV r336948: 9112 Improve allocation performance on high-end systems
[FreeBSD/FreeBSD.git] / sys / kern / uipc_usrreq.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *      The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
34  */
35
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *      RDM
56  *      rethink name space problems
57  *      need a proper out-of-band
58  */
59
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62
63 #include "opt_ddb.h"
64
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h>         /* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95
96 #include <net/vnet.h>
97
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101
102 #include <security/mac/mac_framework.h>
103
104 #include <vm/uma.h>
105
106 MALLOC_DECLARE(M_FILECAPS);
107
108 /*
109  * Locking key:
110  * (l)  Locked using list lock
111  * (g)  Locked using linkage lock
112  */
113
114 static uma_zone_t       unp_zone;
115 static unp_gen_t        unp_gencnt;     /* (l) */
116 static u_int            unp_count;      /* (l) Count of local sockets. */
117 static ino_t            unp_ino;        /* Prototype for fake inode numbers. */
118 static int              unp_rights;     /* (g) File descriptors in flight. */
119 static struct unp_head  unp_shead;      /* (l) List of stream sockets. */
120 static struct unp_head  unp_dhead;      /* (l) List of datagram sockets. */
121 static struct unp_head  unp_sphead;     /* (l) List of seqpacket sockets. */
122
123 struct unp_defer {
124         SLIST_ENTRY(unp_defer) ud_link;
125         struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129
130 static const struct sockaddr    sun_noname = { sizeof(sun_noname), AF_LOCAL };
131
132 /*
133  * Garbage collection of cyclic file descriptor/socket references occurs
134  * asynchronously in a taskqueue context in order to avoid recursion and
135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
136  * code.  See unp_gc() for a full description.
137  */
138 static struct timeout_task unp_gc_task;
139
140 /*
141  * The close of unix domain sockets attached as SCM_RIGHTS is
142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
143  * The attached sockets might have another sockets attached.
144  */
145 static struct task      unp_defer_task;
146
147 /*
148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149  * stream sockets, although the total for sender and receiver is actually
150  * only PIPSIZ.
151  *
152  * Datagram sockets really use the sendspace as the maximum datagram size,
153  * and don't really want to reserve the sendspace.  Their recvspace should be
154  * large enough for at least one max-size datagram plus address.
155  */
156 #ifndef PIPSIZ
157 #define PIPSIZ  8192
158 #endif
159 static u_long   unpst_sendspace = PIPSIZ;
160 static u_long   unpst_recvspace = PIPSIZ;
161 static u_long   unpdg_sendspace = 2*1024;       /* really max datagram size */
162 static u_long   unpdg_recvspace = 4*1024;
163 static u_long   unpsp_sendspace = PIPSIZ;       /* really max datagram size */
164 static u_long   unpsp_recvspace = PIPSIZ;
165
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
171     "SOCK_SEQPACKET");
172
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
174            &unpst_sendspace, 0, "Default stream send space.");
175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
176            &unpst_recvspace, 0, "Default stream receive space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
178            &unpdg_sendspace, 0, "Default datagram send space.");
179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
180            &unpdg_recvspace, 0, "Default datagram receive space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
182            &unpsp_sendspace, 0, "Default seqpacket send space.");
183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
184            &unpsp_recvspace, 0, "Default seqpacket receive space.");
185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
186     "File descriptors in flight.");
187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
188     &unp_defers_count, 0,
189     "File descriptors deferred to taskqueue for close.");
190
191 /*
192  * Locking and synchronization:
193  *
194  * Three types of locks exist in the local domain socket implementation: a
195  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
196  * The linkage lock protects the socket count, global generation number,
197  * and stream/datagram global lists.
198  *
199  * The mtxpool lock protects the vnode from being modified while referenced.
200  * Lock ordering requires that it be acquired before any unpcb locks.
201  *
202  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
203  * note is that this includes the unp_conn field. So long as the unpcb lock
204  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
205  * require that the unpcb pointed to by unp_conn remain live in cases where
206  * we need to drop the unp_mtx as when we need to acquire the lock for a
207  * second unpcb the caller must first acquire an additional reference on the
208  * second unpcb and then revalidate any state (typically check that unp_conn
209  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
210  * between unpcbs is the conventional ascending address order. Two helper
211  * routines exist for this:
212  *
213  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
214  *     safe ordering.
215  *
216  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
217  *     when called. If unp is unlocked and unp2 is subsequently freed
218  *     freed will be set to 1.
219  *
220  * The helper routines for references are:
221  *
222  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
223  *     reference to unp.
224  *
225  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
226  *      releasing the last reference, detach must have been called thus
227  *      unp->unp_socket be NULL.
228  *
229  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
230  * allocated in pru_attach() and freed in pru_detach().  The validity of that
231  * pointer is an invariant, so no lock is required to dereference the so_pcb
232  * pointer if a valid socket reference is held by the caller.  In practice,
233  * this is always true during operations performed on a socket.  Each unpcb
234  * has a back-pointer to its socket, unp_socket, which will be stable under
235  * the same circumstances.
236  *
237  * This pointer may only be safely dereferenced as long as a valid reference
238  * to the unpcb is held.  Typically, this reference will be from the socket,
239  * or from another unpcb when the referring unpcb's lock is held (in order
240  * that the reference not be invalidated during use).  For example, to follow
241  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
242  * that detach is not run clearing unp_socket.
243  *
244  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
245  * protocols, bind() is a non-atomic operation, and connect() requires
246  * potential sleeping in the protocol, due to potentially waiting on local or
247  * distributed file systems.  We try to separate "lookup" operations, which
248  * may sleep, and the IPC operations themselves, which typically can occur
249  * with relative atomicity as locks can be held over the entire operation.
250  *
251  * Another tricky issue is simultaneous multi-threaded or multi-process
252  * access to a single UNIX domain socket.  These are handled by the flags
253  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
254  * binding, both of which involve dropping UNIX domain socket locks in order
255  * to perform namei() and other file system operations.
256  */
257 static struct rwlock    unp_link_rwlock;
258 static struct mtx       unp_defers_lock;
259
260 #define UNP_LINK_LOCK_INIT()            rw_init(&unp_link_rwlock,       \
261                                             "unp_link_rwlock")
262
263 #define UNP_LINK_LOCK_ASSERT()  rw_assert(&unp_link_rwlock,     \
264                                             RA_LOCKED)
265 #define UNP_LINK_UNLOCK_ASSERT()        rw_assert(&unp_link_rwlock,     \
266                                             RA_UNLOCKED)
267
268 #define UNP_LINK_RLOCK()                rw_rlock(&unp_link_rwlock)
269 #define UNP_LINK_RUNLOCK()              rw_runlock(&unp_link_rwlock)
270 #define UNP_LINK_WLOCK()                rw_wlock(&unp_link_rwlock)
271 #define UNP_LINK_WUNLOCK()              rw_wunlock(&unp_link_rwlock)
272 #define UNP_LINK_WLOCK_ASSERT()         rw_assert(&unp_link_rwlock,     \
273                                             RA_WLOCKED)
274 #define UNP_LINK_WOWNED()               rw_wowned(&unp_link_rwlock)
275
276 #define UNP_DEFERRED_LOCK_INIT()        mtx_init(&unp_defers_lock, \
277                                             "unp_defer", NULL, MTX_DEF)
278 #define UNP_DEFERRED_LOCK()             mtx_lock(&unp_defers_lock)
279 #define UNP_DEFERRED_UNLOCK()           mtx_unlock(&unp_defers_lock)
280
281 #define UNP_REF_LIST_LOCK()             UNP_DEFERRED_LOCK();
282 #define UNP_REF_LIST_UNLOCK()           UNP_DEFERRED_UNLOCK();
283
284 #define UNP_PCB_LOCK_INIT(unp)          mtx_init(&(unp)->unp_mtx,       \
285                                             "unp", "unp",       \
286                                             MTX_DUPOK|MTX_DEF)
287 #define UNP_PCB_LOCK_DESTROY(unp)       mtx_destroy(&(unp)->unp_mtx)
288 #define UNP_PCB_LOCK(unp)               mtx_lock(&(unp)->unp_mtx)
289 #define UNP_PCB_TRYLOCK(unp)            mtx_trylock(&(unp)->unp_mtx)
290 #define UNP_PCB_UNLOCK(unp)             mtx_unlock(&(unp)->unp_mtx)
291 #define UNP_PCB_OWNED(unp)              mtx_owned(&(unp)->unp_mtx)
292 #define UNP_PCB_LOCK_ASSERT(unp)        mtx_assert(&(unp)->unp_mtx, MA_OWNED)
293 #define UNP_PCB_UNLOCK_ASSERT(unp)      mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
294
295 static int      uipc_connect2(struct socket *, struct socket *);
296 static int      uipc_ctloutput(struct socket *, struct sockopt *);
297 static int      unp_connect(struct socket *, struct sockaddr *,
298                     struct thread *);
299 static int      unp_connectat(int, struct socket *, struct sockaddr *,
300                     struct thread *);
301 static int      unp_connect2(struct socket *so, struct socket *so2, int);
302 static void     unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
303 static void     unp_dispose(struct socket *so);
304 static void     unp_dispose_mbuf(struct mbuf *);
305 static void     unp_shutdown(struct unpcb *);
306 static void     unp_drop(struct unpcb *);
307 static void     unp_gc(__unused void *, int);
308 static void     unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
309 static void     unp_discard(struct file *);
310 static void     unp_freerights(struct filedescent **, int);
311 static void     unp_init(void);
312 static int      unp_internalize(struct mbuf **, struct thread *);
313 static void     unp_internalize_fp(struct file *);
314 static int      unp_externalize(struct mbuf *, struct mbuf **, int);
315 static int      unp_externalize_fp(struct file *);
316 static struct mbuf      *unp_addsockcred(struct thread *, struct mbuf *);
317 static void     unp_process_defers(void * __unused, int);
318
319
320 static void
321 unp_pcb_hold(struct unpcb *unp)
322 {
323         MPASS(unp->unp_refcount);
324         refcount_acquire(&unp->unp_refcount);
325 }
326
327 static int
328 unp_pcb_rele(struct unpcb *unp)
329 {
330         int freed;
331
332         UNP_PCB_LOCK_ASSERT(unp);
333         MPASS(unp->unp_refcount);
334         if ((freed = refcount_release(&unp->unp_refcount))) {
335                 /* we got here with having detached? */
336                 MPASS(unp->unp_socket == NULL);
337                 UNP_PCB_UNLOCK(unp);
338                 UNP_PCB_LOCK_DESTROY(unp);
339                 uma_zfree(unp_zone, unp);
340         }
341         return (freed);
342 }
343
344 static void
345 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
346 {
347         MPASS(unp != unp2);
348         UNP_PCB_UNLOCK_ASSERT(unp);
349         UNP_PCB_UNLOCK_ASSERT(unp2);
350         if ((uintptr_t)unp2 > (uintptr_t)unp) {
351                 UNP_PCB_LOCK(unp);
352                 UNP_PCB_LOCK(unp2);
353         } else {
354                 UNP_PCB_LOCK(unp2);
355                 UNP_PCB_LOCK(unp);
356         }
357 }
358
359 static __noinline void
360 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p, int *freed)
361
362 {
363         struct unpcb *unp2;
364
365         unp2 = *unp2p;
366         unp_pcb_hold((unp2));
367         UNP_PCB_UNLOCK((unp));
368         UNP_PCB_LOCK((unp2));
369         UNP_PCB_LOCK((unp));
370         *freed = unp_pcb_rele((unp2));
371         if (*freed)
372                 *unp2p = NULL;
373 }
374
375 #define unp_pcb_owned_lock2(unp, unp2, freed) do {                                      \
376                 freed = 0;                                                                                                      \
377                 UNP_PCB_LOCK_ASSERT((unp));                                                                     \
378                 UNP_PCB_UNLOCK_ASSERT((unp2));                                                          \
379                 MPASS(unp != unp2);                                                                                     \
380                 if (__predict_true(UNP_PCB_TRYLOCK((unp2))))                            \
381                         break;                                                                                                  \
382                 else if ((uintptr_t)(unp2) > (uintptr_t)(unp))                          \
383                         UNP_PCB_LOCK((unp2));                                                                   \
384                 else {                                                                                                          \
385                         unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);   \
386                 }                                                                                                                       \
387 } while (0)
388
389
390 /*
391  * Definitions of protocols supported in the LOCAL domain.
392  */
393 static struct domain localdomain;
394 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
395 static struct pr_usrreqs uipc_usrreqs_seqpacket;
396 static struct protosw localsw[] = {
397 {
398         .pr_type =              SOCK_STREAM,
399         .pr_domain =            &localdomain,
400         .pr_flags =             PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
401         .pr_ctloutput =         &uipc_ctloutput,
402         .pr_usrreqs =           &uipc_usrreqs_stream
403 },
404 {
405         .pr_type =              SOCK_DGRAM,
406         .pr_domain =            &localdomain,
407         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_RIGHTS,
408         .pr_ctloutput =         &uipc_ctloutput,
409         .pr_usrreqs =           &uipc_usrreqs_dgram
410 },
411 {
412         .pr_type =              SOCK_SEQPACKET,
413         .pr_domain =            &localdomain,
414
415         /*
416          * XXXRW: For now, PR_ADDR because soreceive will bump into them
417          * due to our use of sbappendaddr.  A new sbappend variants is needed
418          * that supports both atomic record writes and control data.
419          */
420         .pr_flags =             PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
421                                     PR_RIGHTS,
422         .pr_ctloutput =         &uipc_ctloutput,
423         .pr_usrreqs =           &uipc_usrreqs_seqpacket,
424 },
425 };
426
427 static struct domain localdomain = {
428         .dom_family =           AF_LOCAL,
429         .dom_name =             "local",
430         .dom_init =             unp_init,
431         .dom_externalize =      unp_externalize,
432         .dom_dispose =          unp_dispose,
433         .dom_protosw =          localsw,
434         .dom_protoswNPROTOSW =  &localsw[nitems(localsw)]
435 };
436 DOMAIN_SET(local);
437
438 static void
439 uipc_abort(struct socket *so)
440 {
441         struct unpcb *unp, *unp2;
442
443         unp = sotounpcb(so);
444         KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
445         UNP_PCB_UNLOCK_ASSERT(unp);
446
447         UNP_PCB_LOCK(unp);
448         unp2 = unp->unp_conn;
449         if (unp2 != NULL) {
450                 unp_pcb_hold(unp2);
451                 UNP_PCB_UNLOCK(unp);
452                 unp_drop(unp2);
453         } else
454                 UNP_PCB_UNLOCK(unp);
455 }
456
457 static int
458 uipc_accept(struct socket *so, struct sockaddr **nam)
459 {
460         struct unpcb *unp, *unp2;
461         const struct sockaddr *sa;
462
463         /*
464          * Pass back name of connected socket, if it was bound and we are
465          * still connected (our peer may have closed already!).
466          */
467         unp = sotounpcb(so);
468         KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
469
470         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
471         UNP_LINK_RLOCK();
472         unp2 = unp->unp_conn;
473         if (unp2 != NULL && unp2->unp_addr != NULL) {
474                 UNP_PCB_LOCK(unp2);
475                 sa = (struct sockaddr *) unp2->unp_addr;
476                 bcopy(sa, *nam, sa->sa_len);
477                 UNP_PCB_UNLOCK(unp2);
478         } else {
479                 sa = &sun_noname;
480                 bcopy(sa, *nam, sa->sa_len);
481         }
482         UNP_LINK_RUNLOCK();
483         return (0);
484 }
485
486 static int
487 uipc_attach(struct socket *so, int proto, struct thread *td)
488 {
489         u_long sendspace, recvspace;
490         struct unpcb *unp;
491         int error;
492         bool locked;
493
494         KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
495         if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
496                 switch (so->so_type) {
497                 case SOCK_STREAM:
498                         sendspace = unpst_sendspace;
499                         recvspace = unpst_recvspace;
500                         break;
501
502                 case SOCK_DGRAM:
503                         sendspace = unpdg_sendspace;
504                         recvspace = unpdg_recvspace;
505                         break;
506
507                 case SOCK_SEQPACKET:
508                         sendspace = unpsp_sendspace;
509                         recvspace = unpsp_recvspace;
510                         break;
511
512                 default:
513                         panic("uipc_attach");
514                 }
515                 error = soreserve(so, sendspace, recvspace);
516                 if (error)
517                         return (error);
518         }
519         unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
520         if (unp == NULL)
521                 return (ENOBUFS);
522         LIST_INIT(&unp->unp_refs);
523         UNP_PCB_LOCK_INIT(unp);
524         unp->unp_socket = so;
525         so->so_pcb = unp;
526         unp->unp_refcount = 1;
527         if (so->so_listen != NULL)
528                 unp->unp_flags |= UNP_NASCENT;
529
530         if ((locked = UNP_LINK_WOWNED()) == false)
531                 UNP_LINK_WLOCK();
532
533         unp->unp_gencnt = ++unp_gencnt;
534         unp_count++;
535         switch (so->so_type) {
536         case SOCK_STREAM:
537                 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
538                 break;
539
540         case SOCK_DGRAM:
541                 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
542                 break;
543
544         case SOCK_SEQPACKET:
545                 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
546                 break;
547
548         default:
549                 panic("uipc_attach");
550         }
551
552         if (locked == false)
553                 UNP_LINK_WUNLOCK();
554
555         return (0);
556 }
557
558 static int
559 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
560 {
561         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
562         struct vattr vattr;
563         int error, namelen;
564         struct nameidata nd;
565         struct unpcb *unp;
566         struct vnode *vp;
567         struct mount *mp;
568         cap_rights_t rights;
569         char *buf;
570
571         if (nam->sa_family != AF_UNIX)
572                 return (EAFNOSUPPORT);
573
574         unp = sotounpcb(so);
575         KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
576
577         if (soun->sun_len > sizeof(struct sockaddr_un))
578                 return (EINVAL);
579         namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
580         if (namelen <= 0)
581                 return (EINVAL);
582
583         /*
584          * We don't allow simultaneous bind() calls on a single UNIX domain
585          * socket, so flag in-progress operations, and return an error if an
586          * operation is already in progress.
587          *
588          * Historically, we have not allowed a socket to be rebound, so this
589          * also returns an error.  Not allowing re-binding simplifies the
590          * implementation and avoids a great many possible failure modes.
591          */
592         UNP_PCB_LOCK(unp);
593         if (unp->unp_vnode != NULL) {
594                 UNP_PCB_UNLOCK(unp);
595                 return (EINVAL);
596         }
597         if (unp->unp_flags & UNP_BINDING) {
598                 UNP_PCB_UNLOCK(unp);
599                 return (EALREADY);
600         }
601         unp->unp_flags |= UNP_BINDING;
602         UNP_PCB_UNLOCK(unp);
603
604         buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
605         bcopy(soun->sun_path, buf, namelen);
606         buf[namelen] = 0;
607
608 restart:
609         NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
610             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
611 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
612         error = namei(&nd);
613         if (error)
614                 goto error;
615         vp = nd.ni_vp;
616         if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
617                 NDFREE(&nd, NDF_ONLY_PNBUF);
618                 if (nd.ni_dvp == vp)
619                         vrele(nd.ni_dvp);
620                 else
621                         vput(nd.ni_dvp);
622                 if (vp != NULL) {
623                         vrele(vp);
624                         error = EADDRINUSE;
625                         goto error;
626                 }
627                 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
628                 if (error)
629                         goto error;
630                 goto restart;
631         }
632         VATTR_NULL(&vattr);
633         vattr.va_type = VSOCK;
634         vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
635 #ifdef MAC
636         error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
637             &vattr);
638 #endif
639         if (error == 0)
640                 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
641         NDFREE(&nd, NDF_ONLY_PNBUF);
642         vput(nd.ni_dvp);
643         if (error) {
644                 vn_finished_write(mp);
645                 goto error;
646         }
647         vp = nd.ni_vp;
648         ASSERT_VOP_ELOCKED(vp, "uipc_bind");
649         soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
650
651         UNP_PCB_LOCK(unp);
652         VOP_UNP_BIND(vp, unp);
653         unp->unp_vnode = vp;
654         unp->unp_addr = soun;
655         unp->unp_flags &= ~UNP_BINDING;
656         UNP_PCB_UNLOCK(unp);
657         VOP_UNLOCK(vp, 0);
658         vn_finished_write(mp);
659         free(buf, M_TEMP);
660         return (0);
661
662 error:
663         UNP_PCB_LOCK(unp);
664         unp->unp_flags &= ~UNP_BINDING;
665         UNP_PCB_UNLOCK(unp);
666         free(buf, M_TEMP);
667         return (error);
668 }
669
670 static int
671 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
672 {
673
674         return (uipc_bindat(AT_FDCWD, so, nam, td));
675 }
676
677 static int
678 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
679 {
680         int error;
681
682         KASSERT(td == curthread, ("uipc_connect: td != curthread"));
683         error = unp_connect(so, nam, td);
684         return (error);
685 }
686
687 static int
688 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
689     struct thread *td)
690 {
691         int error;
692
693         KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
694         error = unp_connectat(fd, so, nam, td);
695         return (error);
696 }
697
698 static void
699 uipc_close(struct socket *so)
700 {
701         struct unpcb *unp, *unp2;
702         struct vnode *vp = NULL;
703         struct mtx *vplock;
704         int freed;
705         unp = sotounpcb(so);
706         KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
707
708
709         vplock = NULL;
710         if ((vp = unp->unp_vnode) != NULL) {
711                 vplock = mtx_pool_find(mtxpool_sleep, vp);
712                 mtx_lock(vplock);
713         }
714         UNP_PCB_LOCK(unp);
715         if (vp && unp->unp_vnode == NULL) {
716                 mtx_unlock(vplock);
717                 vp = NULL;
718         }
719         if (vp != NULL) {
720                 VOP_UNP_DETACH(vp);
721                 unp->unp_vnode = NULL;
722         }
723         unp2 = unp->unp_conn;
724         unp_pcb_hold(unp);
725         if (__predict_false(unp == unp2)) {
726                 unp_disconnect(unp, unp2);
727         } else if (unp2 != NULL) {
728                 unp_pcb_hold(unp2);
729                 unp_pcb_owned_lock2(unp, unp2, freed);
730                 unp_disconnect(unp, unp2);
731                 if (unp_pcb_rele(unp2) == 0)
732                         UNP_PCB_UNLOCK(unp2);
733         }
734         if (unp_pcb_rele(unp) == 0)
735                 UNP_PCB_UNLOCK(unp);
736         if (vp) {
737                 mtx_unlock(vplock);
738                 vrele(vp);
739         }
740 }
741
742 static int
743 uipc_connect2(struct socket *so1, struct socket *so2)
744 {
745         struct unpcb *unp, *unp2;
746         int error;
747
748         unp = so1->so_pcb;
749         KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
750         unp2 = so2->so_pcb;
751         KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
752         if (unp != unp2)
753                 unp_pcb_lock2(unp, unp2);
754         else
755                 UNP_PCB_LOCK(unp);
756         error = unp_connect2(so1, so2, PRU_CONNECT2);
757         if (unp != unp2)
758                 UNP_PCB_UNLOCK(unp2);
759         UNP_PCB_UNLOCK(unp);
760         return (error);
761 }
762
763 static void
764 uipc_detach(struct socket *so)
765 {
766         struct unpcb *unp, *unp2;
767         struct mtx *vplock;
768         struct sockaddr_un *saved_unp_addr;
769         struct vnode *vp;
770         int freeunp, local_unp_rights;
771
772         unp = sotounpcb(so);
773         KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
774
775         vp = NULL;
776         vplock = NULL;
777         local_unp_rights = 0;
778
779         UNP_LINK_WLOCK();
780         LIST_REMOVE(unp, unp_link);
781         unp->unp_gencnt = ++unp_gencnt;
782         --unp_count;
783         UNP_LINK_WUNLOCK();
784
785         UNP_PCB_UNLOCK_ASSERT(unp);
786  restart:
787         if ((vp = unp->unp_vnode) != NULL) {
788                 vplock = mtx_pool_find(mtxpool_sleep, vp);
789                 mtx_lock(vplock);
790         }
791         UNP_PCB_LOCK(unp);
792         if (unp->unp_vnode != vp &&
793                 unp->unp_vnode != NULL) {
794                 if (vplock)
795                         mtx_unlock(vplock);
796                 UNP_PCB_UNLOCK(unp);
797                 goto restart;
798         }
799         if ((unp->unp_flags & UNP_NASCENT) != 0) {
800                 goto teardown;
801         }
802         if ((vp = unp->unp_vnode) != NULL) {
803                 VOP_UNP_DETACH(vp);
804                 unp->unp_vnode = NULL;
805         }
806         if (__predict_false(unp == unp->unp_conn)) {
807                 unp_disconnect(unp, unp);
808                 unp2 = NULL;
809                 goto connect_self;
810         }
811         if ((unp2 = unp->unp_conn) != NULL) {
812                 unp_pcb_owned_lock2(unp, unp2, freeunp);
813                 if (freeunp)
814                         unp2 = NULL;
815         }
816         unp_pcb_hold(unp);
817         if (unp2 != NULL) {
818                 unp_pcb_hold(unp2);
819                 unp_disconnect(unp, unp2);
820                 if (unp_pcb_rele(unp2) == 0)
821                         UNP_PCB_UNLOCK(unp2);
822         }
823  connect_self:
824         UNP_PCB_UNLOCK(unp);
825         UNP_REF_LIST_LOCK();
826         while (!LIST_EMPTY(&unp->unp_refs)) {
827                 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
828
829                 unp_pcb_hold(ref);
830                 UNP_REF_LIST_UNLOCK();
831
832                 MPASS(ref != unp);
833                 UNP_PCB_UNLOCK_ASSERT(ref);
834                 unp_drop(ref);
835                 UNP_REF_LIST_LOCK();
836         }
837
838         UNP_REF_LIST_UNLOCK();
839         UNP_PCB_LOCK(unp);
840         freeunp = unp_pcb_rele(unp);
841         MPASS(freeunp == 0);
842         local_unp_rights = unp_rights;
843 teardown:
844         unp->unp_socket->so_pcb = NULL;
845         saved_unp_addr = unp->unp_addr;
846         unp->unp_addr = NULL;
847         unp->unp_socket = NULL;
848         freeunp = unp_pcb_rele(unp);
849         if (saved_unp_addr != NULL)
850                 free(saved_unp_addr, M_SONAME);
851         if (!freeunp)
852                 UNP_PCB_UNLOCK(unp);
853         if (vp) {
854                 mtx_unlock(vplock);
855                 vrele(vp);
856         }
857         if (local_unp_rights)
858                 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
859 }
860
861 static int
862 uipc_disconnect(struct socket *so)
863 {
864         struct unpcb *unp, *unp2;
865         int freed;
866
867         unp = sotounpcb(so);
868         KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
869
870         UNP_PCB_LOCK(unp);
871         if ((unp2 = unp->unp_conn) == NULL) {
872                 UNP_PCB_UNLOCK(unp);
873                 return (0);
874         }
875         if (__predict_true(unp != unp2)) {
876                 unp_pcb_owned_lock2(unp, unp2, freed);
877                 if (__predict_false(freed)) {
878                         UNP_PCB_UNLOCK(unp);
879                         return (0);
880                 }
881                 unp_pcb_hold(unp2);
882         }
883         unp_pcb_hold(unp);
884         unp_disconnect(unp, unp2);
885         if (unp_pcb_rele(unp) == 0)
886                 UNP_PCB_UNLOCK(unp);
887         if ((unp != unp2) && unp_pcb_rele(unp2) == 0)
888                 UNP_PCB_UNLOCK(unp2);
889         return (0);
890 }
891
892 static int
893 uipc_listen(struct socket *so, int backlog, struct thread *td)
894 {
895         struct unpcb *unp;
896         int error;
897
898         if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
899                 return (EOPNOTSUPP);
900
901         unp = sotounpcb(so);
902         KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
903
904         UNP_PCB_LOCK(unp);
905         if (unp->unp_vnode == NULL) {
906                 /* Already connected or not bound to an address. */
907                 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
908                 UNP_PCB_UNLOCK(unp);
909                 return (error);
910         }
911
912         SOCK_LOCK(so);
913         error = solisten_proto_check(so);
914         if (error == 0) {
915                 cru2x(td->td_ucred, &unp->unp_peercred);
916                 solisten_proto(so, backlog);
917         }
918         SOCK_UNLOCK(so);
919         UNP_PCB_UNLOCK(unp);
920         return (error);
921 }
922
923 static int
924 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
925 {
926         struct unpcb *unp, *unp2;
927         const struct sockaddr *sa;
928
929         unp = sotounpcb(so);
930         KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
931
932         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
933         UNP_LINK_RLOCK();
934         /*
935          * XXX: It seems that this test always fails even when connection is
936          * established.  So, this else clause is added as workaround to
937          * return PF_LOCAL sockaddr.
938          */
939         unp2 = unp->unp_conn;
940         if (unp2 != NULL) {
941                 UNP_PCB_LOCK(unp2);
942                 if (unp2->unp_addr != NULL)
943                         sa = (struct sockaddr *) unp2->unp_addr;
944                 else
945                         sa = &sun_noname;
946                 bcopy(sa, *nam, sa->sa_len);
947                 UNP_PCB_UNLOCK(unp2);
948         } else {
949                 sa = &sun_noname;
950                 bcopy(sa, *nam, sa->sa_len);
951         }
952         UNP_LINK_RUNLOCK();
953         return (0);
954 }
955
956 static int
957 uipc_rcvd(struct socket *so, int flags)
958 {
959         struct unpcb *unp, *unp2;
960         struct socket *so2;
961         u_int mbcnt, sbcc;
962
963         unp = sotounpcb(so);
964         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
965         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
966             ("%s: socktype %d", __func__, so->so_type));
967
968         /*
969          * Adjust backpressure on sender and wakeup any waiting to write.
970          *
971          * The unp lock is acquired to maintain the validity of the unp_conn
972          * pointer; no lock on unp2 is required as unp2->unp_socket will be
973          * static as long as we don't permit unp2 to disconnect from unp,
974          * which is prevented by the lock on unp.  We cache values from
975          * so_rcv to avoid holding the so_rcv lock over the entire
976          * transaction on the remote so_snd.
977          */
978         SOCKBUF_LOCK(&so->so_rcv);
979         mbcnt = so->so_rcv.sb_mbcnt;
980         sbcc = sbavail(&so->so_rcv);
981         SOCKBUF_UNLOCK(&so->so_rcv);
982         /*
983          * There is a benign race condition at this point.  If we're planning to
984          * clear SB_STOP, but uipc_send is called on the connected socket at
985          * this instant, it might add data to the sockbuf and set SB_STOP.  Then
986          * we would erroneously clear SB_STOP below, even though the sockbuf is
987          * full.  The race is benign because the only ill effect is to allow the
988          * sockbuf to exceed its size limit, and the size limits are not
989          * strictly guaranteed anyway.
990          */
991         UNP_PCB_LOCK(unp);
992         unp2 = unp->unp_conn;
993         if (unp2 == NULL) {
994                 UNP_PCB_UNLOCK(unp);
995                 return (0);
996         }
997         so2 = unp2->unp_socket;
998         SOCKBUF_LOCK(&so2->so_snd);
999         if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
1000                 so2->so_snd.sb_flags &= ~SB_STOP;
1001         sowwakeup_locked(so2);
1002         UNP_PCB_UNLOCK(unp);
1003         return (0);
1004 }
1005
1006 static int
1007 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
1008 {
1009         int error;
1010         struct unpcb *unp;
1011
1012         unp = so->so_pcb;
1013         if (unp->unp_conn != NULL)
1014                 return (EISCONN);
1015         error = unp_connect(so, nam, td);
1016         if (error)
1017                 return (error);
1018         UNP_PCB_LOCK(unp);
1019         if (unp->unp_conn == NULL) {
1020                 UNP_PCB_UNLOCK(unp);
1021                 if (error == 0)
1022                         error = ENOTCONN;
1023         }
1024         return (error);
1025 }
1026
1027
1028 static int
1029 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1030     struct mbuf *control, struct thread *td)
1031 {
1032         struct unpcb *unp, *unp2;
1033         struct socket *so2;
1034         u_int mbcnt, sbcc;
1035         int freed, error;
1036
1037         unp = sotounpcb(so);
1038         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1039         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1040             so->so_type == SOCK_SEQPACKET,
1041             ("%s: socktype %d", __func__, so->so_type));
1042
1043         freed = error = 0;
1044         if (flags & PRUS_OOB) {
1045                 error = EOPNOTSUPP;
1046                 goto release;
1047         }
1048         if (control != NULL && (error = unp_internalize(&control, td)))
1049                 goto release;
1050
1051         unp2 = NULL;
1052         switch (so->so_type) {
1053         case SOCK_DGRAM:
1054         {
1055                 const struct sockaddr *from;
1056
1057                 if (nam != NULL) {
1058                         /*
1059                          * We return with UNP_PCB_LOCK_HELD so we know that
1060                          * the reference is live if the pointer is valid.
1061                          */
1062                         if ((error = connect_internal(so, nam, td)))
1063                                 break;
1064                         MPASS(unp->unp_conn != NULL);
1065                         unp2 = unp->unp_conn;
1066                 } else  {
1067                         UNP_PCB_LOCK(unp);
1068
1069                         /*
1070                          * Because connect() and send() are non-atomic in a sendto()
1071                          * with a target address, it's possible that the socket will
1072                          * have disconnected before the send() can run.  In that case
1073                          * return the slightly counter-intuitive but otherwise
1074                          * correct error that the socket is not connected.
1075                          */
1076                         if ((unp2 = unp->unp_conn)  == NULL) {
1077                                 UNP_PCB_UNLOCK(unp);
1078                                 error = ENOTCONN;
1079                                 break;
1080                         }
1081                 }
1082                 if (__predict_false(unp == unp2)) {
1083                         if (unp->unp_socket == NULL) {
1084                                 error = ENOTCONN;
1085                                 break;
1086                         }
1087                         goto connect_self;
1088                 }
1089                 unp_pcb_owned_lock2(unp, unp2, freed);
1090                 if (__predict_false(freed)) {
1091                         UNP_PCB_UNLOCK(unp);
1092                         error = ENOTCONN;
1093                         break;
1094                 }
1095                 /*
1096                  * The socket referencing unp2 may have been closed
1097                  * or unp may have been disconnected if the unp lock
1098                  * was dropped to acquire unp2.
1099                  */
1100                 if (__predict_false(unp->unp_conn == NULL) ||
1101                         unp2->unp_socket == NULL) {
1102                         UNP_PCB_UNLOCK(unp);
1103                         if (unp_pcb_rele(unp2) == 0)
1104                                 UNP_PCB_UNLOCK(unp2);
1105                         error = ENOTCONN;
1106                         break;
1107                 }
1108         connect_self:
1109                 if (unp2->unp_flags & UNP_WANTCRED)
1110                         control = unp_addsockcred(td, control);
1111                 if (unp->unp_addr != NULL)
1112                         from = (struct sockaddr *)unp->unp_addr;
1113                 else
1114                         from = &sun_noname;
1115                 so2 = unp2->unp_socket;
1116                 SOCKBUF_LOCK(&so2->so_rcv);
1117                 if (sbappendaddr_locked(&so2->so_rcv, from, m,
1118                     control)) {
1119                         sorwakeup_locked(so2);
1120                         m = NULL;
1121                         control = NULL;
1122                 } else {
1123                         SOCKBUF_UNLOCK(&so2->so_rcv);
1124                         error = ENOBUFS;
1125                 }
1126                 if (nam != NULL)
1127                         unp_disconnect(unp, unp2);
1128                 if (__predict_true(unp != unp2))
1129                         UNP_PCB_UNLOCK(unp2);
1130                 UNP_PCB_UNLOCK(unp);
1131                 break;
1132         }
1133
1134         case SOCK_SEQPACKET:
1135         case SOCK_STREAM:
1136                 if ((so->so_state & SS_ISCONNECTED) == 0) {
1137                         if (nam != NULL) {
1138                                 if ((error = connect_internal(so, nam, td)))
1139                                         break;
1140                         } else  {
1141                                 error = ENOTCONN;
1142                                 break;
1143                         }
1144                 } else if ((unp2 = unp->unp_conn) == NULL) {
1145                         error = ENOTCONN;
1146                         break;
1147                 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1148                         error = EPIPE;
1149                         break;
1150                 } else {
1151                         UNP_PCB_LOCK(unp);
1152                         if ((unp2 = unp->unp_conn) == NULL) {
1153                                 UNP_PCB_UNLOCK(unp);
1154                                 error = ENOTCONN;
1155                                 break;
1156                         }
1157                 }
1158                 unp_pcb_owned_lock2(unp, unp2, freed);
1159                 UNP_PCB_UNLOCK(unp);
1160                 if (__predict_false(freed)) {
1161                         error = ENOTCONN;
1162                         break;
1163                 }
1164                 if ((so2 = unp2->unp_socket) == NULL) {
1165                         UNP_PCB_UNLOCK(unp2);
1166                         error = ENOTCONN;
1167                         break;
1168                 }
1169                 SOCKBUF_LOCK(&so2->so_rcv);
1170                 if (unp2->unp_flags & UNP_WANTCRED) {
1171                         /*
1172                          * Credentials are passed only once on SOCK_STREAM
1173                          * and SOCK_SEQPACKET.
1174                          */
1175                         unp2->unp_flags &= ~UNP_WANTCRED;
1176                         control = unp_addsockcred(td, control);
1177                 }
1178                 /*
1179                  * Send to paired receive port, and then reduce send buffer
1180                  * hiwater marks to maintain backpressure.  Wake up readers.
1181                  */
1182                 switch (so->so_type) {
1183                 case SOCK_STREAM:
1184                         if (control != NULL) {
1185                                 if (sbappendcontrol_locked(&so2->so_rcv, m,
1186                                     control))
1187                                         control = NULL;
1188                         } else
1189                                 sbappend_locked(&so2->so_rcv, m, flags);
1190                         break;
1191
1192                 case SOCK_SEQPACKET: {
1193                         const struct sockaddr *from;
1194
1195                         from = &sun_noname;
1196                         /*
1197                          * Don't check for space available in so2->so_rcv.
1198                          * Unix domain sockets only check for space in the
1199                          * sending sockbuf, and that check is performed one
1200                          * level up the stack.
1201                          */
1202                         if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1203                                 from, m, control))
1204                                 control = NULL;
1205                         break;
1206                         }
1207                 }
1208
1209                 mbcnt = so2->so_rcv.sb_mbcnt;
1210                 sbcc = sbavail(&so2->so_rcv);
1211                 if (sbcc)
1212                         sorwakeup_locked(so2);
1213                 else
1214                         SOCKBUF_UNLOCK(&so2->so_rcv);
1215
1216                 /*
1217                  * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1218                  * it would be possible for uipc_rcvd to be called at this
1219                  * point, drain the receiving sockbuf, clear SB_STOP, and then
1220                  * we would set SB_STOP below.  That could lead to an empty
1221                  * sockbuf having SB_STOP set
1222                  */
1223                 SOCKBUF_LOCK(&so->so_snd);
1224                 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1225                         so->so_snd.sb_flags |= SB_STOP;
1226                 SOCKBUF_UNLOCK(&so->so_snd);
1227                 UNP_PCB_UNLOCK(unp2);
1228                 m = NULL;
1229                 break;
1230         }
1231
1232         /*
1233          * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1234          */
1235         if (flags & PRUS_EOF) {
1236                 UNP_PCB_LOCK(unp);
1237                 socantsendmore(so);
1238                 unp_shutdown(unp);
1239                 UNP_PCB_UNLOCK(unp);
1240         }
1241         if (control != NULL && error != 0)
1242                 unp_dispose_mbuf(control);
1243
1244 release:
1245         if (control != NULL)
1246                 m_freem(control);
1247         /*
1248          * In case of PRUS_NOTREADY, uipc_ready() is responsible
1249          * for freeing memory.
1250          */   
1251         if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1252                 m_freem(m);
1253         return (error);
1254 }
1255
1256 static int
1257 uipc_ready(struct socket *so, struct mbuf *m, int count)
1258 {
1259         struct unpcb *unp, *unp2;
1260         struct socket *so2;
1261         int error;
1262
1263         unp = sotounpcb(so);
1264
1265         UNP_PCB_LOCK(unp);
1266         if ((unp2 = unp->unp_conn) == NULL) {
1267                 UNP_PCB_UNLOCK(unp);
1268                 goto error;
1269         }
1270         if (unp != unp2) {
1271                 if (UNP_PCB_TRYLOCK(unp2) == 0) {
1272                         unp_pcb_hold(unp2);
1273                         UNP_PCB_UNLOCK(unp);
1274                         UNP_PCB_LOCK(unp2);
1275                         if (unp_pcb_rele(unp2))
1276                                 goto error;
1277                 } else
1278                         UNP_PCB_UNLOCK(unp);
1279         }
1280         so2 = unp2->unp_socket;
1281
1282         SOCKBUF_LOCK(&so2->so_rcv);
1283         if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1284                 sorwakeup_locked(so2);
1285         else
1286                 SOCKBUF_UNLOCK(&so2->so_rcv);
1287
1288         UNP_PCB_UNLOCK(unp2);
1289
1290         return (error);
1291  error:
1292         for (int i = 0; i < count; i++)
1293                 m = m_free(m);
1294         return (ECONNRESET);
1295 }
1296
1297 static int
1298 uipc_sense(struct socket *so, struct stat *sb)
1299 {
1300         struct unpcb *unp;
1301
1302         unp = sotounpcb(so);
1303         KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1304
1305         sb->st_blksize = so->so_snd.sb_hiwat;
1306         UNP_PCB_LOCK(unp);
1307         sb->st_dev = NODEV;
1308         if (unp->unp_ino == 0)
1309                 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1310         sb->st_ino = unp->unp_ino;
1311         UNP_PCB_UNLOCK(unp);
1312         return (0);
1313 }
1314
1315 static int
1316 uipc_shutdown(struct socket *so)
1317 {
1318         struct unpcb *unp;
1319
1320         unp = sotounpcb(so);
1321         KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1322
1323         UNP_PCB_LOCK(unp);
1324         socantsendmore(so);
1325         unp_shutdown(unp);
1326         UNP_PCB_UNLOCK(unp);
1327         return (0);
1328 }
1329
1330 static int
1331 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1332 {
1333         struct unpcb *unp;
1334         const struct sockaddr *sa;
1335
1336         unp = sotounpcb(so);
1337         KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1338
1339         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1340         UNP_PCB_LOCK(unp);
1341         if (unp->unp_addr != NULL)
1342                 sa = (struct sockaddr *) unp->unp_addr;
1343         else
1344                 sa = &sun_noname;
1345         bcopy(sa, *nam, sa->sa_len);
1346         UNP_PCB_UNLOCK(unp);
1347         return (0);
1348 }
1349
1350 static struct pr_usrreqs uipc_usrreqs_dgram = {
1351         .pru_abort =            uipc_abort,
1352         .pru_accept =           uipc_accept,
1353         .pru_attach =           uipc_attach,
1354         .pru_bind =             uipc_bind,
1355         .pru_bindat =           uipc_bindat,
1356         .pru_connect =          uipc_connect,
1357         .pru_connectat =        uipc_connectat,
1358         .pru_connect2 =         uipc_connect2,
1359         .pru_detach =           uipc_detach,
1360         .pru_disconnect =       uipc_disconnect,
1361         .pru_listen =           uipc_listen,
1362         .pru_peeraddr =         uipc_peeraddr,
1363         .pru_rcvd =             uipc_rcvd,
1364         .pru_send =             uipc_send,
1365         .pru_sense =            uipc_sense,
1366         .pru_shutdown =         uipc_shutdown,
1367         .pru_sockaddr =         uipc_sockaddr,
1368         .pru_soreceive =        soreceive_dgram,
1369         .pru_close =            uipc_close,
1370 };
1371
1372 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1373         .pru_abort =            uipc_abort,
1374         .pru_accept =           uipc_accept,
1375         .pru_attach =           uipc_attach,
1376         .pru_bind =             uipc_bind,
1377         .pru_bindat =           uipc_bindat,
1378         .pru_connect =          uipc_connect,
1379         .pru_connectat =        uipc_connectat,
1380         .pru_connect2 =         uipc_connect2,
1381         .pru_detach =           uipc_detach,
1382         .pru_disconnect =       uipc_disconnect,
1383         .pru_listen =           uipc_listen,
1384         .pru_peeraddr =         uipc_peeraddr,
1385         .pru_rcvd =             uipc_rcvd,
1386         .pru_send =             uipc_send,
1387         .pru_sense =            uipc_sense,
1388         .pru_shutdown =         uipc_shutdown,
1389         .pru_sockaddr =         uipc_sockaddr,
1390         .pru_soreceive =        soreceive_generic,      /* XXX: or...? */
1391         .pru_close =            uipc_close,
1392 };
1393
1394 static struct pr_usrreqs uipc_usrreqs_stream = {
1395         .pru_abort =            uipc_abort,
1396         .pru_accept =           uipc_accept,
1397         .pru_attach =           uipc_attach,
1398         .pru_bind =             uipc_bind,
1399         .pru_bindat =           uipc_bindat,
1400         .pru_connect =          uipc_connect,
1401         .pru_connectat =        uipc_connectat,
1402         .pru_connect2 =         uipc_connect2,
1403         .pru_detach =           uipc_detach,
1404         .pru_disconnect =       uipc_disconnect,
1405         .pru_listen =           uipc_listen,
1406         .pru_peeraddr =         uipc_peeraddr,
1407         .pru_rcvd =             uipc_rcvd,
1408         .pru_send =             uipc_send,
1409         .pru_ready =            uipc_ready,
1410         .pru_sense =            uipc_sense,
1411         .pru_shutdown =         uipc_shutdown,
1412         .pru_sockaddr =         uipc_sockaddr,
1413         .pru_soreceive =        soreceive_generic,
1414         .pru_close =            uipc_close,
1415 };
1416
1417 static int
1418 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1419 {
1420         struct unpcb *unp;
1421         struct xucred xu;
1422         int error, optval;
1423
1424         if (sopt->sopt_level != 0)
1425                 return (EINVAL);
1426
1427         unp = sotounpcb(so);
1428         KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1429         error = 0;
1430         switch (sopt->sopt_dir) {
1431         case SOPT_GET:
1432                 switch (sopt->sopt_name) {
1433                 case LOCAL_PEERCRED:
1434                         UNP_PCB_LOCK(unp);
1435                         if (unp->unp_flags & UNP_HAVEPC)
1436                                 xu = unp->unp_peercred;
1437                         else {
1438                                 if (so->so_type == SOCK_STREAM)
1439                                         error = ENOTCONN;
1440                                 else
1441                                         error = EINVAL;
1442                         }
1443                         UNP_PCB_UNLOCK(unp);
1444                         if (error == 0)
1445                                 error = sooptcopyout(sopt, &xu, sizeof(xu));
1446                         break;
1447
1448                 case LOCAL_CREDS:
1449                         /* Unlocked read. */
1450                         optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1451                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1452                         break;
1453
1454                 case LOCAL_CONNWAIT:
1455                         /* Unlocked read. */
1456                         optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1457                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1458                         break;
1459
1460                 default:
1461                         error = EOPNOTSUPP;
1462                         break;
1463                 }
1464                 break;
1465
1466         case SOPT_SET:
1467                 switch (sopt->sopt_name) {
1468                 case LOCAL_CREDS:
1469                 case LOCAL_CONNWAIT:
1470                         error = sooptcopyin(sopt, &optval, sizeof(optval),
1471                                             sizeof(optval));
1472                         if (error)
1473                                 break;
1474
1475 #define OPTSET(bit) do {                                                \
1476         UNP_PCB_LOCK(unp);                                              \
1477         if (optval)                                                     \
1478                 unp->unp_flags |= bit;                                  \
1479         else                                                            \
1480                 unp->unp_flags &= ~bit;                                 \
1481         UNP_PCB_UNLOCK(unp);                                            \
1482 } while (0)
1483
1484                         switch (sopt->sopt_name) {
1485                         case LOCAL_CREDS:
1486                                 OPTSET(UNP_WANTCRED);
1487                                 break;
1488
1489                         case LOCAL_CONNWAIT:
1490                                 OPTSET(UNP_CONNWAIT);
1491                                 break;
1492
1493                         default:
1494                                 break;
1495                         }
1496                         break;
1497 #undef  OPTSET
1498                 default:
1499                         error = ENOPROTOOPT;
1500                         break;
1501                 }
1502                 break;
1503
1504         default:
1505                 error = EOPNOTSUPP;
1506                 break;
1507         }
1508         return (error);
1509 }
1510
1511 static int
1512 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1513 {
1514
1515         return (unp_connectat(AT_FDCWD, so, nam, td));
1516 }
1517
1518 static int
1519 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1520     struct thread *td)
1521 {
1522         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1523         struct vnode *vp;
1524         struct socket *so2;
1525         struct unpcb *unp, *unp2, *unp3;
1526         struct nameidata nd;
1527         char buf[SOCK_MAXADDRLEN];
1528         struct sockaddr *sa;
1529         cap_rights_t rights;
1530         int error, len, freed;
1531         struct mtx *vplock;
1532
1533         if (nam->sa_family != AF_UNIX)
1534                 return (EAFNOSUPPORT);
1535         if (nam->sa_len > sizeof(struct sockaddr_un))
1536                 return (EINVAL);
1537         len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1538         if (len <= 0)
1539                 return (EINVAL);
1540         bcopy(soun->sun_path, buf, len);
1541         buf[len] = 0;
1542
1543         unp = sotounpcb(so);
1544         UNP_PCB_LOCK(unp);
1545         if (unp->unp_flags & UNP_CONNECTING) {
1546                 UNP_PCB_UNLOCK(unp);
1547                 return (EALREADY);
1548         }
1549         unp->unp_flags |= UNP_CONNECTING;
1550         UNP_PCB_UNLOCK(unp);
1551
1552         sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1553         NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1554             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1555         error = namei(&nd);
1556         if (error)
1557                 vp = NULL;
1558         else
1559                 vp = nd.ni_vp;
1560         ASSERT_VOP_LOCKED(vp, "unp_connect");
1561         NDFREE(&nd, NDF_ONLY_PNBUF);
1562         if (error)
1563                 goto bad;
1564
1565         if (vp->v_type != VSOCK) {
1566                 error = ENOTSOCK;
1567                 goto bad;
1568         }
1569 #ifdef MAC
1570         error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1571         if (error)
1572                 goto bad;
1573 #endif
1574         error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1575         if (error)
1576                 goto bad;
1577
1578         unp = sotounpcb(so);
1579         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1580
1581         vplock = mtx_pool_find(mtxpool_sleep, vp);
1582         mtx_lock(vplock);
1583         VOP_UNP_CONNECT(vp, &unp2);
1584         if (unp2 == NULL) {
1585                 error = ECONNREFUSED;
1586                 goto bad2;
1587         }
1588         so2 = unp2->unp_socket;
1589         if (so->so_type != so2->so_type) {
1590                 error = EPROTOTYPE;
1591                 goto bad2;
1592         }
1593         if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1594                 if (so2->so_options & SO_ACCEPTCONN) {
1595                         CURVNET_SET(so2->so_vnet);
1596                         so2 = sonewconn(so2, 0);
1597                         CURVNET_RESTORE();
1598                 } else
1599                         so2 = NULL;
1600                 if (so2 == NULL) {
1601                         error = ECONNREFUSED;
1602                         goto bad2;
1603                 }
1604                 unp3 = sotounpcb(so2);
1605                 unp_pcb_lock2(unp2, unp3);
1606                 if (unp2->unp_addr != NULL) {
1607                         bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1608                         unp3->unp_addr = (struct sockaddr_un *) sa;
1609                         sa = NULL;
1610                 }
1611
1612                 /*
1613                  * The connector's (client's) credentials are copied from its
1614                  * process structure at the time of connect() (which is now).
1615                  */
1616                 cru2x(td->td_ucred, &unp3->unp_peercred);
1617                 unp3->unp_flags |= UNP_HAVEPC;
1618
1619                 /*
1620                  * The receiver's (server's) credentials are copied from the
1621                  * unp_peercred member of socket on which the former called
1622                  * listen(); uipc_listen() cached that process's credentials
1623                  * at that time so we can use them now.
1624                  */
1625                 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1626                     sizeof(unp->unp_peercred));
1627                 unp->unp_flags |= UNP_HAVEPC;
1628                 if (unp2->unp_flags & UNP_WANTCRED)
1629                         unp3->unp_flags |= UNP_WANTCRED;
1630                 UNP_PCB_UNLOCK(unp2);
1631                 unp2 = unp3;
1632                 unp_pcb_owned_lock2(unp2, unp, freed);
1633                 if (__predict_false(freed)) {
1634                         UNP_PCB_UNLOCK(unp2);
1635                         error = ECONNREFUSED;
1636                         goto bad2;
1637                 }
1638 #ifdef MAC
1639                 mac_socketpeer_set_from_socket(so, so2);
1640                 mac_socketpeer_set_from_socket(so2, so);
1641 #endif
1642         } else {
1643                 if (unp == unp2)
1644                         UNP_PCB_LOCK(unp);
1645                 else
1646                         unp_pcb_lock2(unp, unp2);
1647         }
1648         KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1649             sotounpcb(so2) == unp2,
1650             ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1651         error = unp_connect2(so, so2, PRU_CONNECT);
1652         if (unp != unp2)
1653                 UNP_PCB_UNLOCK(unp2);
1654         UNP_PCB_UNLOCK(unp);
1655 bad2:
1656         mtx_unlock(vplock);
1657 bad:
1658         if (vp != NULL) {
1659                 vput(vp);
1660         }
1661         free(sa, M_SONAME);
1662         UNP_PCB_LOCK(unp);
1663         unp->unp_flags &= ~UNP_CONNECTING;
1664         UNP_PCB_UNLOCK(unp);
1665         return (error);
1666 }
1667
1668 static int
1669 unp_connect2(struct socket *so, struct socket *so2, int req)
1670 {
1671         struct unpcb *unp;
1672         struct unpcb *unp2;
1673
1674         unp = sotounpcb(so);
1675         KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1676         unp2 = sotounpcb(so2);
1677         KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1678
1679         UNP_PCB_LOCK_ASSERT(unp);
1680         UNP_PCB_LOCK_ASSERT(unp2);
1681
1682         if (so2->so_type != so->so_type)
1683                 return (EPROTOTYPE);
1684         unp2->unp_flags &= ~UNP_NASCENT;
1685         unp->unp_conn = unp2;
1686         unp_pcb_hold(unp2);
1687         unp_pcb_hold(unp);
1688         switch (so->so_type) {
1689         case SOCK_DGRAM:
1690                 UNP_REF_LIST_LOCK();
1691                 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1692                 UNP_REF_LIST_UNLOCK();
1693                 soisconnected(so);
1694                 break;
1695
1696         case SOCK_STREAM:
1697         case SOCK_SEQPACKET:
1698                 unp2->unp_conn = unp;
1699                 if (req == PRU_CONNECT &&
1700                     ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1701                         soisconnecting(so);
1702                 else
1703                         soisconnected(so);
1704                 soisconnected(so2);
1705                 break;
1706
1707         default:
1708                 panic("unp_connect2");
1709         }
1710         return (0);
1711 }
1712
1713 static void
1714 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1715 {
1716         struct socket *so, *so2;
1717         int freed __unused;
1718
1719         KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1720
1721         UNP_PCB_LOCK_ASSERT(unp);
1722         UNP_PCB_LOCK_ASSERT(unp2);
1723
1724         if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1725                 return;
1726
1727         MPASS(unp->unp_conn == unp2);
1728         unp->unp_conn = NULL;
1729         so = unp->unp_socket;
1730         so2 = unp2->unp_socket;
1731         switch (unp->unp_socket->so_type) {
1732         case SOCK_DGRAM:
1733                 UNP_REF_LIST_LOCK();
1734                 LIST_REMOVE(unp, unp_reflink);
1735                 UNP_REF_LIST_UNLOCK();
1736                 if (so) {
1737                         SOCK_LOCK(so);
1738                         so->so_state &= ~SS_ISCONNECTED;
1739                         SOCK_UNLOCK(so);
1740                 }
1741                 break;
1742
1743         case SOCK_STREAM:
1744         case SOCK_SEQPACKET:
1745                 if (so)
1746                         soisdisconnected(so);
1747                 MPASS(unp2->unp_conn == unp);
1748                 unp2->unp_conn = NULL;
1749                 if (so2)
1750                         soisdisconnected(so2);
1751                 break;
1752         }
1753         freed = unp_pcb_rele(unp);
1754         MPASS(freed == 0);
1755         freed = unp_pcb_rele(unp2);
1756         MPASS(freed == 0);
1757 }
1758
1759 /*
1760  * unp_pcblist() walks the global list of struct unpcb's to generate a
1761  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1762  * sequentially, validating the generation number on each to see if it has
1763  * been detached.  All of this is necessary because copyout() may sleep on
1764  * disk I/O.
1765  */
1766 static int
1767 unp_pcblist(SYSCTL_HANDLER_ARGS)
1768 {
1769         struct unpcb *unp, **unp_list;
1770         unp_gen_t gencnt;
1771         struct xunpgen *xug;
1772         struct unp_head *head;
1773         struct xunpcb *xu;
1774         u_int i;
1775         int error, freeunp, n;
1776
1777         switch ((intptr_t)arg1) {
1778         case SOCK_STREAM:
1779                 head = &unp_shead;
1780                 break;
1781
1782         case SOCK_DGRAM:
1783                 head = &unp_dhead;
1784                 break;
1785
1786         case SOCK_SEQPACKET:
1787                 head = &unp_sphead;
1788                 break;
1789
1790         default:
1791                 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1792         }
1793
1794         /*
1795          * The process of preparing the PCB list is too time-consuming and
1796          * resource-intensive to repeat twice on every request.
1797          */
1798         if (req->oldptr == NULL) {
1799                 n = unp_count;
1800                 req->oldidx = 2 * (sizeof *xug)
1801                         + (n + n/8) * sizeof(struct xunpcb);
1802                 return (0);
1803         }
1804
1805         if (req->newptr != NULL)
1806                 return (EPERM);
1807
1808         /*
1809          * OK, now we're committed to doing something.
1810          */
1811         xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1812         UNP_LINK_RLOCK();
1813         gencnt = unp_gencnt;
1814         n = unp_count;
1815         UNP_LINK_RUNLOCK();
1816
1817         xug->xug_len = sizeof *xug;
1818         xug->xug_count = n;
1819         xug->xug_gen = gencnt;
1820         xug->xug_sogen = so_gencnt;
1821         error = SYSCTL_OUT(req, xug, sizeof *xug);
1822         if (error) {
1823                 free(xug, M_TEMP);
1824                 return (error);
1825         }
1826
1827         unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1828
1829         UNP_LINK_RLOCK();
1830         for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1831              unp = LIST_NEXT(unp, unp_link)) {
1832                 UNP_PCB_LOCK(unp);
1833                 if (unp->unp_gencnt <= gencnt) {
1834                         if (cr_cansee(req->td->td_ucred,
1835                             unp->unp_socket->so_cred)) {
1836                                 UNP_PCB_UNLOCK(unp);
1837                                 continue;
1838                         }
1839                         unp_list[i++] = unp;
1840                         unp_pcb_hold(unp);
1841                 }
1842                 UNP_PCB_UNLOCK(unp);
1843         }
1844         UNP_LINK_RUNLOCK();
1845         n = i;                  /* In case we lost some during malloc. */
1846
1847         error = 0;
1848         xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1849         for (i = 0; i < n; i++) {
1850                 unp = unp_list[i];
1851                 UNP_PCB_LOCK(unp);
1852                 freeunp = unp_pcb_rele(unp);
1853
1854                 if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1855                         xu->xu_len = sizeof *xu;
1856                         xu->xu_unpp = (uintptr_t)unp;
1857                         /*
1858                          * XXX - need more locking here to protect against
1859                          * connect/disconnect races for SMP.
1860                          */
1861                         if (unp->unp_addr != NULL)
1862                                 bcopy(unp->unp_addr, &xu->xu_addr,
1863                                       unp->unp_addr->sun_len);
1864                         else
1865                                 bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1866                         if (unp->unp_conn != NULL &&
1867                             unp->unp_conn->unp_addr != NULL)
1868                                 bcopy(unp->unp_conn->unp_addr,
1869                                       &xu->xu_caddr,
1870                                       unp->unp_conn->unp_addr->sun_len);
1871                         else
1872                                 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1873                         xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1874                         xu->unp_conn = (uintptr_t)unp->unp_conn;
1875                         xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1876                         xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1877                         xu->unp_gencnt = unp->unp_gencnt;
1878                         sotoxsocket(unp->unp_socket, &xu->xu_socket);
1879                         UNP_PCB_UNLOCK(unp);
1880                         error = SYSCTL_OUT(req, xu, sizeof *xu);
1881                 } else  if (freeunp == 0)
1882                         UNP_PCB_UNLOCK(unp);
1883         }
1884         free(xu, M_TEMP);
1885         if (!error) {
1886                 /*
1887                  * Give the user an updated idea of our state.  If the
1888                  * generation differs from what we told her before, she knows
1889                  * that something happened while we were processing this
1890                  * request, and it might be necessary to retry.
1891                  */
1892                 xug->xug_gen = unp_gencnt;
1893                 xug->xug_sogen = so_gencnt;
1894                 xug->xug_count = unp_count;
1895                 error = SYSCTL_OUT(req, xug, sizeof *xug);
1896         }
1897         free(unp_list, M_TEMP);
1898         free(xug, M_TEMP);
1899         return (error);
1900 }
1901
1902 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1903     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1904     "List of active local datagram sockets");
1905 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1906     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1907     "List of active local stream sockets");
1908 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1909     CTLTYPE_OPAQUE | CTLFLAG_RD,
1910     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1911     "List of active local seqpacket sockets");
1912
1913 static void
1914 unp_shutdown(struct unpcb *unp)
1915 {
1916         struct unpcb *unp2;
1917         struct socket *so;
1918
1919         UNP_PCB_LOCK_ASSERT(unp);
1920
1921         unp2 = unp->unp_conn;
1922         if ((unp->unp_socket->so_type == SOCK_STREAM ||
1923             (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1924                 so = unp2->unp_socket;
1925                 if (so != NULL)
1926                         socantrcvmore(so);
1927         }
1928 }
1929
1930 static void
1931 unp_drop(struct unpcb *unp)
1932 {
1933         struct socket *so = unp->unp_socket;
1934         struct unpcb *unp2;
1935         int freed;
1936
1937         /*
1938          * Regardless of whether the socket's peer dropped the connection
1939          * with this socket by aborting or disconnecting, POSIX requires
1940          * that ECONNRESET is returned.
1941          */
1942         /* acquire a reference so that unp isn't freed from underneath us */
1943
1944         UNP_PCB_LOCK(unp);
1945         if (so)
1946                 so->so_error = ECONNRESET;
1947         unp2 = unp->unp_conn;
1948         if (unp2 == unp) {
1949                 unp_disconnect(unp, unp2);
1950         } else if (unp2 != NULL) {
1951                 unp_pcb_hold(unp2);
1952                 unp_pcb_owned_lock2(unp, unp2, freed);
1953                 unp_disconnect(unp, unp2);
1954                 if (unp_pcb_rele(unp2) == 0)
1955                         UNP_PCB_UNLOCK(unp2);
1956         }
1957         if (unp_pcb_rele(unp) == 0)
1958                 UNP_PCB_UNLOCK(unp);
1959 }
1960
1961 static void
1962 unp_freerights(struct filedescent **fdep, int fdcount)
1963 {
1964         struct file *fp;
1965         int i;
1966
1967         KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1968
1969         for (i = 0; i < fdcount; i++) {
1970                 fp = fdep[i]->fde_file;
1971                 filecaps_free(&fdep[i]->fde_caps);
1972                 unp_discard(fp);
1973         }
1974         free(fdep[0], M_FILECAPS);
1975 }
1976
1977 static int
1978 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1979 {
1980         struct thread *td = curthread;          /* XXX */
1981         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1982         int i;
1983         int *fdp;
1984         struct filedesc *fdesc = td->td_proc->p_fd;
1985         struct filedescent **fdep;
1986         void *data;
1987         socklen_t clen = control->m_len, datalen;
1988         int error, newfds;
1989         u_int newlen;
1990
1991         UNP_LINK_UNLOCK_ASSERT();
1992
1993         error = 0;
1994         if (controlp != NULL) /* controlp == NULL => free control messages */
1995                 *controlp = NULL;
1996         while (cm != NULL) {
1997                 if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1998                         error = EINVAL;
1999                         break;
2000                 }
2001                 data = CMSG_DATA(cm);
2002                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2003                 if (cm->cmsg_level == SOL_SOCKET
2004                     && cm->cmsg_type == SCM_RIGHTS) {
2005                         newfds = datalen / sizeof(*fdep);
2006                         if (newfds == 0)
2007                                 goto next;
2008                         fdep = data;
2009
2010                         /* If we're not outputting the descriptors free them. */
2011                         if (error || controlp == NULL) {
2012                                 unp_freerights(fdep, newfds);
2013                                 goto next;
2014                         }
2015                         FILEDESC_XLOCK(fdesc);
2016
2017                         /*
2018                          * Now change each pointer to an fd in the global
2019                          * table to an integer that is the index to the local
2020                          * fd table entry that we set up to point to the
2021                          * global one we are transferring.
2022                          */
2023                         newlen = newfds * sizeof(int);
2024                         *controlp = sbcreatecontrol(NULL, newlen,
2025                             SCM_RIGHTS, SOL_SOCKET);
2026                         if (*controlp == NULL) {
2027                                 FILEDESC_XUNLOCK(fdesc);
2028                                 error = E2BIG;
2029                                 unp_freerights(fdep, newfds);
2030                                 goto next;
2031                         }
2032
2033                         fdp = (int *)
2034                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2035                         if (fdallocn(td, 0, fdp, newfds) != 0) {
2036                                 FILEDESC_XUNLOCK(fdesc);
2037                                 error = EMSGSIZE;
2038                                 unp_freerights(fdep, newfds);
2039                                 m_freem(*controlp);
2040                                 *controlp = NULL;
2041                                 goto next;
2042                         }
2043                         for (i = 0; i < newfds; i++, fdp++) {
2044                                 _finstall(fdesc, fdep[i]->fde_file, *fdp,
2045                                     (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2046                                     &fdep[i]->fde_caps);
2047                                 unp_externalize_fp(fdep[i]->fde_file);
2048                         }
2049                         FILEDESC_XUNLOCK(fdesc);
2050                         free(fdep[0], M_FILECAPS);
2051                 } else {
2052                         /* We can just copy anything else across. */
2053                         if (error || controlp == NULL)
2054                                 goto next;
2055                         *controlp = sbcreatecontrol(NULL, datalen,
2056                             cm->cmsg_type, cm->cmsg_level);
2057                         if (*controlp == NULL) {
2058                                 error = ENOBUFS;
2059                                 goto next;
2060                         }
2061                         bcopy(data,
2062                             CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2063                             datalen);
2064                 }
2065                 controlp = &(*controlp)->m_next;
2066
2067 next:
2068                 if (CMSG_SPACE(datalen) < clen) {
2069                         clen -= CMSG_SPACE(datalen);
2070                         cm = (struct cmsghdr *)
2071                             ((caddr_t)cm + CMSG_SPACE(datalen));
2072                 } else {
2073                         clen = 0;
2074                         cm = NULL;
2075                 }
2076         }
2077
2078         m_freem(control);
2079         return (error);
2080 }
2081
2082 static void
2083 unp_zone_change(void *tag)
2084 {
2085
2086         uma_zone_set_max(unp_zone, maxsockets);
2087 }
2088
2089 static void
2090 unp_init(void)
2091 {
2092
2093 #ifdef VIMAGE
2094         if (!IS_DEFAULT_VNET(curvnet))
2095                 return;
2096 #endif
2097         unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2098             NULL, NULL, UMA_ALIGN_CACHE, 0);
2099         if (unp_zone == NULL)
2100                 panic("unp_init");
2101         uma_zone_set_max(unp_zone, maxsockets);
2102         uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2103         EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2104             NULL, EVENTHANDLER_PRI_ANY);
2105         LIST_INIT(&unp_dhead);
2106         LIST_INIT(&unp_shead);
2107         LIST_INIT(&unp_sphead);
2108         SLIST_INIT(&unp_defers);
2109         TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2110         TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2111         UNP_LINK_LOCK_INIT();
2112         UNP_DEFERRED_LOCK_INIT();
2113 }
2114
2115 static int
2116 unp_internalize(struct mbuf **controlp, struct thread *td)
2117 {
2118         struct mbuf *control = *controlp;
2119         struct proc *p = td->td_proc;
2120         struct filedesc *fdesc = p->p_fd;
2121         struct bintime *bt;
2122         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2123         struct cmsgcred *cmcred;
2124         struct filedescent *fde, **fdep, *fdev;
2125         struct file *fp;
2126         struct timeval *tv;
2127         struct timespec *ts;
2128         int i, *fdp;
2129         void *data;
2130         socklen_t clen = control->m_len, datalen;
2131         int error, oldfds;
2132         u_int newlen;
2133
2134         UNP_LINK_UNLOCK_ASSERT();
2135
2136         error = 0;
2137         *controlp = NULL;
2138         while (cm != NULL) {
2139                 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2140                     || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2141                         error = EINVAL;
2142                         goto out;
2143                 }
2144                 data = CMSG_DATA(cm);
2145                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2146
2147                 switch (cm->cmsg_type) {
2148                 /*
2149                  * Fill in credential information.
2150                  */
2151                 case SCM_CREDS:
2152                         *controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2153                             SCM_CREDS, SOL_SOCKET);
2154                         if (*controlp == NULL) {
2155                                 error = ENOBUFS;
2156                                 goto out;
2157                         }
2158                         cmcred = (struct cmsgcred *)
2159                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2160                         cmcred->cmcred_pid = p->p_pid;
2161                         cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2162                         cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2163                         cmcred->cmcred_euid = td->td_ucred->cr_uid;
2164                         cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2165                             CMGROUP_MAX);
2166                         for (i = 0; i < cmcred->cmcred_ngroups; i++)
2167                                 cmcred->cmcred_groups[i] =
2168                                     td->td_ucred->cr_groups[i];
2169                         break;
2170
2171                 case SCM_RIGHTS:
2172                         oldfds = datalen / sizeof (int);
2173                         if (oldfds == 0)
2174                                 break;
2175                         /*
2176                          * Check that all the FDs passed in refer to legal
2177                          * files.  If not, reject the entire operation.
2178                          */
2179                         fdp = data;
2180                         FILEDESC_SLOCK(fdesc);
2181                         for (i = 0; i < oldfds; i++, fdp++) {
2182                                 fp = fget_locked(fdesc, *fdp);
2183                                 if (fp == NULL) {
2184                                         FILEDESC_SUNLOCK(fdesc);
2185                                         error = EBADF;
2186                                         goto out;
2187                                 }
2188                                 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2189                                         FILEDESC_SUNLOCK(fdesc);
2190                                         error = EOPNOTSUPP;
2191                                         goto out;
2192                                 }
2193
2194                         }
2195
2196                         /*
2197                          * Now replace the integer FDs with pointers to the
2198                          * file structure and capability rights.
2199                          */
2200                         newlen = oldfds * sizeof(fdep[0]);
2201                         *controlp = sbcreatecontrol(NULL, newlen,
2202                             SCM_RIGHTS, SOL_SOCKET);
2203                         if (*controlp == NULL) {
2204                                 FILEDESC_SUNLOCK(fdesc);
2205                                 error = E2BIG;
2206                                 goto out;
2207                         }
2208                         fdp = data;
2209                         fdep = (struct filedescent **)
2210                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2211                         fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2212                             M_WAITOK);
2213                         for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2214                                 fde = &fdesc->fd_ofiles[*fdp];
2215                                 fdep[i] = fdev;
2216                                 fdep[i]->fde_file = fde->fde_file;
2217                                 filecaps_copy(&fde->fde_caps,
2218                                     &fdep[i]->fde_caps, true);
2219                                 unp_internalize_fp(fdep[i]->fde_file);
2220                         }
2221                         FILEDESC_SUNLOCK(fdesc);
2222                         break;
2223
2224                 case SCM_TIMESTAMP:
2225                         *controlp = sbcreatecontrol(NULL, sizeof(*tv),
2226                             SCM_TIMESTAMP, SOL_SOCKET);
2227                         if (*controlp == NULL) {
2228                                 error = ENOBUFS;
2229                                 goto out;
2230                         }
2231                         tv = (struct timeval *)
2232                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2233                         microtime(tv);
2234                         break;
2235
2236                 case SCM_BINTIME:
2237                         *controlp = sbcreatecontrol(NULL, sizeof(*bt),
2238                             SCM_BINTIME, SOL_SOCKET);
2239                         if (*controlp == NULL) {
2240                                 error = ENOBUFS;
2241                                 goto out;
2242                         }
2243                         bt = (struct bintime *)
2244                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2245                         bintime(bt);
2246                         break;
2247
2248                 case SCM_REALTIME:
2249                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2250                             SCM_REALTIME, SOL_SOCKET);
2251                         if (*controlp == NULL) {
2252                                 error = ENOBUFS;
2253                                 goto out;
2254                         }
2255                         ts = (struct timespec *)
2256                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2257                         nanotime(ts);
2258                         break;
2259
2260                 case SCM_MONOTONIC:
2261                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2262                             SCM_MONOTONIC, SOL_SOCKET);
2263                         if (*controlp == NULL) {
2264                                 error = ENOBUFS;
2265                                 goto out;
2266                         }
2267                         ts = (struct timespec *)
2268                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2269                         nanouptime(ts);
2270                         break;
2271
2272                 default:
2273                         error = EINVAL;
2274                         goto out;
2275                 }
2276
2277                 controlp = &(*controlp)->m_next;
2278                 if (CMSG_SPACE(datalen) < clen) {
2279                         clen -= CMSG_SPACE(datalen);
2280                         cm = (struct cmsghdr *)
2281                             ((caddr_t)cm + CMSG_SPACE(datalen));
2282                 } else {
2283                         clen = 0;
2284                         cm = NULL;
2285                 }
2286         }
2287
2288 out:
2289         m_freem(control);
2290         return (error);
2291 }
2292
2293 static struct mbuf *
2294 unp_addsockcred(struct thread *td, struct mbuf *control)
2295 {
2296         struct mbuf *m, *n, *n_prev;
2297         struct sockcred *sc;
2298         const struct cmsghdr *cm;
2299         int ngroups;
2300         int i;
2301
2302         ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2303         m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2304         if (m == NULL)
2305                 return (control);
2306
2307         sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2308         sc->sc_uid = td->td_ucred->cr_ruid;
2309         sc->sc_euid = td->td_ucred->cr_uid;
2310         sc->sc_gid = td->td_ucred->cr_rgid;
2311         sc->sc_egid = td->td_ucred->cr_gid;
2312         sc->sc_ngroups = ngroups;
2313         for (i = 0; i < sc->sc_ngroups; i++)
2314                 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2315
2316         /*
2317          * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2318          * created SCM_CREDS control message (struct sockcred) has another
2319          * format.
2320          */
2321         if (control != NULL)
2322                 for (n = control, n_prev = NULL; n != NULL;) {
2323                         cm = mtod(n, struct cmsghdr *);
2324                         if (cm->cmsg_level == SOL_SOCKET &&
2325                             cm->cmsg_type == SCM_CREDS) {
2326                                 if (n_prev == NULL)
2327                                         control = n->m_next;
2328                                 else
2329                                         n_prev->m_next = n->m_next;
2330                                 n = m_free(n);
2331                         } else {
2332                                 n_prev = n;
2333                                 n = n->m_next;
2334                         }
2335                 }
2336
2337         /* Prepend it to the head. */
2338         m->m_next = control;
2339         return (m);
2340 }
2341
2342 static struct unpcb *
2343 fptounp(struct file *fp)
2344 {
2345         struct socket *so;
2346
2347         if (fp->f_type != DTYPE_SOCKET)
2348                 return (NULL);
2349         if ((so = fp->f_data) == NULL)
2350                 return (NULL);
2351         if (so->so_proto->pr_domain != &localdomain)
2352                 return (NULL);
2353         return sotounpcb(so);
2354 }
2355
2356 static void
2357 unp_discard(struct file *fp)
2358 {
2359         struct unp_defer *dr;
2360
2361         if (unp_externalize_fp(fp)) {
2362                 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2363                 dr->ud_fp = fp;
2364                 UNP_DEFERRED_LOCK();
2365                 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2366                 UNP_DEFERRED_UNLOCK();
2367                 atomic_add_int(&unp_defers_count, 1);
2368                 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2369         } else
2370                 (void) closef(fp, (struct thread *)NULL);
2371 }
2372
2373 static void
2374 unp_process_defers(void *arg __unused, int pending)
2375 {
2376         struct unp_defer *dr;
2377         SLIST_HEAD(, unp_defer) drl;
2378         int count;
2379
2380         SLIST_INIT(&drl);
2381         for (;;) {
2382                 UNP_DEFERRED_LOCK();
2383                 if (SLIST_FIRST(&unp_defers) == NULL) {
2384                         UNP_DEFERRED_UNLOCK();
2385                         break;
2386                 }
2387                 SLIST_SWAP(&unp_defers, &drl, unp_defer);
2388                 UNP_DEFERRED_UNLOCK();
2389                 count = 0;
2390                 while ((dr = SLIST_FIRST(&drl)) != NULL) {
2391                         SLIST_REMOVE_HEAD(&drl, ud_link);
2392                         closef(dr->ud_fp, NULL);
2393                         free(dr, M_TEMP);
2394                         count++;
2395                 }
2396                 atomic_add_int(&unp_defers_count, -count);
2397         }
2398 }
2399
2400 static void
2401 unp_internalize_fp(struct file *fp)
2402 {
2403         struct unpcb *unp;
2404
2405         UNP_LINK_WLOCK();
2406         if ((unp = fptounp(fp)) != NULL) {
2407                 unp->unp_file = fp;
2408                 unp->unp_msgcount++;
2409         }
2410         fhold(fp);
2411         unp_rights++;
2412         UNP_LINK_WUNLOCK();
2413 }
2414
2415 static int
2416 unp_externalize_fp(struct file *fp)
2417 {
2418         struct unpcb *unp;
2419         int ret;
2420
2421         UNP_LINK_WLOCK();
2422         if ((unp = fptounp(fp)) != NULL) {
2423                 unp->unp_msgcount--;
2424                 ret = 1;
2425         } else
2426                 ret = 0;
2427         unp_rights--;
2428         UNP_LINK_WUNLOCK();
2429         return (ret);
2430 }
2431
2432 /*
2433  * unp_defer indicates whether additional work has been defered for a future
2434  * pass through unp_gc().  It is thread local and does not require explicit
2435  * synchronization.
2436  */
2437 static int      unp_marked;
2438 static int      unp_unreachable;
2439
2440 static void
2441 unp_accessable(struct filedescent **fdep, int fdcount)
2442 {
2443         struct unpcb *unp;
2444         struct file *fp;
2445         int i;
2446
2447         for (i = 0; i < fdcount; i++) {
2448                 fp = fdep[i]->fde_file;
2449                 if ((unp = fptounp(fp)) == NULL)
2450                         continue;
2451                 if (unp->unp_gcflag & UNPGC_REF)
2452                         continue;
2453                 unp->unp_gcflag &= ~UNPGC_DEAD;
2454                 unp->unp_gcflag |= UNPGC_REF;
2455                 unp_marked++;
2456         }
2457 }
2458
2459 static void
2460 unp_gc_process(struct unpcb *unp)
2461 {
2462         struct socket *so, *soa;
2463         struct file *fp;
2464
2465         /* Already processed. */
2466         if (unp->unp_gcflag & UNPGC_SCANNED)
2467                 return;
2468         fp = unp->unp_file;
2469
2470         /*
2471          * Check for a socket potentially in a cycle.  It must be in a
2472          * queue as indicated by msgcount, and this must equal the file
2473          * reference count.  Note that when msgcount is 0 the file is NULL.
2474          */
2475         if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2476             unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2477                 unp->unp_gcflag |= UNPGC_DEAD;
2478                 unp_unreachable++;
2479                 return;
2480         }
2481
2482         so = unp->unp_socket;
2483         SOCK_LOCK(so);
2484         if (SOLISTENING(so)) {
2485                 /*
2486                  * Mark all sockets in our accept queue.
2487                  */
2488                 TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2489                         if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2490                                 continue;
2491                         SOCKBUF_LOCK(&soa->so_rcv);
2492                         unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2493                         SOCKBUF_UNLOCK(&soa->so_rcv);
2494                 }
2495         } else {
2496                 /*
2497                  * Mark all sockets we reference with RIGHTS.
2498                  */
2499                 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2500                         SOCKBUF_LOCK(&so->so_rcv);
2501                         unp_scan(so->so_rcv.sb_mb, unp_accessable);
2502                         SOCKBUF_UNLOCK(&so->so_rcv);
2503                 }
2504         }
2505         SOCK_UNLOCK(so);
2506         unp->unp_gcflag |= UNPGC_SCANNED;
2507 }
2508
2509 static int unp_recycled;
2510 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 
2511     "Number of unreachable sockets claimed by the garbage collector.");
2512
2513 static int unp_taskcount;
2514 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 
2515     "Number of times the garbage collector has run.");
2516
2517 static void
2518 unp_gc(__unused void *arg, int pending)
2519 {
2520         struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2521                                     NULL };
2522         struct unp_head **head;
2523         struct file *f, **unref;
2524         struct unpcb *unp;
2525         int i, total;
2526
2527         unp_taskcount++;
2528         UNP_LINK_RLOCK();
2529         /*
2530          * First clear all gc flags from previous runs, apart from
2531          * UNPGC_IGNORE_RIGHTS.
2532          */
2533         for (head = heads; *head != NULL; head++)
2534                 LIST_FOREACH(unp, *head, unp_link)
2535                         unp->unp_gcflag =
2536                             (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2537
2538         /*
2539          * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2540          * is reachable all of the sockets it references are reachable.
2541          * Stop the scan once we do a complete loop without discovering
2542          * a new reachable socket.
2543          */
2544         do {
2545                 unp_unreachable = 0;
2546                 unp_marked = 0;
2547                 for (head = heads; *head != NULL; head++)
2548                         LIST_FOREACH(unp, *head, unp_link)
2549                                 unp_gc_process(unp);
2550         } while (unp_marked);
2551         UNP_LINK_RUNLOCK();
2552         if (unp_unreachable == 0)
2553                 return;
2554
2555         /*
2556          * Allocate space for a local list of dead unpcbs.
2557          */
2558         unref = malloc(unp_unreachable * sizeof(struct file *),
2559             M_TEMP, M_WAITOK);
2560
2561         /*
2562          * Iterate looking for sockets which have been specifically marked
2563          * as as unreachable and store them locally.
2564          */
2565         UNP_LINK_RLOCK();
2566         for (total = 0, head = heads; *head != NULL; head++)
2567                 LIST_FOREACH(unp, *head, unp_link)
2568                         if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2569                                 f = unp->unp_file;
2570                                 if (unp->unp_msgcount == 0 || f == NULL ||
2571                                     f->f_count != unp->unp_msgcount)
2572                                         continue;
2573                                 unref[total++] = f;
2574                                 fhold(f);
2575                                 KASSERT(total <= unp_unreachable,
2576                                     ("unp_gc: incorrect unreachable count."));
2577                         }
2578         UNP_LINK_RUNLOCK();
2579
2580         /*
2581          * Now flush all sockets, free'ing rights.  This will free the
2582          * struct files associated with these sockets but leave each socket
2583          * with one remaining ref.
2584          */
2585         for (i = 0; i < total; i++) {
2586                 struct socket *so;
2587
2588                 so = unref[i]->f_data;
2589                 CURVNET_SET(so->so_vnet);
2590                 sorflush(so);
2591                 CURVNET_RESTORE();
2592         }
2593
2594         /*
2595          * And finally release the sockets so they can be reclaimed.
2596          */
2597         for (i = 0; i < total; i++)
2598                 fdrop(unref[i], NULL);
2599         unp_recycled += total;
2600         free(unref, M_TEMP);
2601 }
2602
2603 static void
2604 unp_dispose_mbuf(struct mbuf *m)
2605 {
2606
2607         if (m)
2608                 unp_scan(m, unp_freerights);
2609 }
2610
2611 /*
2612  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2613  */
2614 static void
2615 unp_dispose(struct socket *so)
2616 {
2617         struct unpcb *unp;
2618
2619         unp = sotounpcb(so);
2620         UNP_LINK_WLOCK();
2621         unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2622         UNP_LINK_WUNLOCK();
2623         if (!SOLISTENING(so))
2624                 unp_dispose_mbuf(so->so_rcv.sb_mb);
2625 }
2626
2627 static void
2628 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2629 {
2630         struct mbuf *m;
2631         struct cmsghdr *cm;
2632         void *data;
2633         socklen_t clen, datalen;
2634
2635         while (m0 != NULL) {
2636                 for (m = m0; m; m = m->m_next) {
2637                         if (m->m_type != MT_CONTROL)
2638                                 continue;
2639
2640                         cm = mtod(m, struct cmsghdr *);
2641                         clen = m->m_len;
2642
2643                         while (cm != NULL) {
2644                                 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2645                                         break;
2646
2647                                 data = CMSG_DATA(cm);
2648                                 datalen = (caddr_t)cm + cm->cmsg_len
2649                                     - (caddr_t)data;
2650
2651                                 if (cm->cmsg_level == SOL_SOCKET &&
2652                                     cm->cmsg_type == SCM_RIGHTS) {
2653                                         (*op)(data, datalen /
2654                                             sizeof(struct filedescent *));
2655                                 }
2656
2657                                 if (CMSG_SPACE(datalen) < clen) {
2658                                         clen -= CMSG_SPACE(datalen);
2659                                         cm = (struct cmsghdr *)
2660                                             ((caddr_t)cm + CMSG_SPACE(datalen));
2661                                 } else {
2662                                         clen = 0;
2663                                         cm = NULL;
2664                                 }
2665                         }
2666                 }
2667                 m0 = m0->m_nextpkt;
2668         }
2669 }
2670
2671 /*
2672  * A helper function called by VFS before socket-type vnode reclamation.
2673  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2674  * use count.
2675  */
2676 void
2677 vfs_unp_reclaim(struct vnode *vp)
2678 {
2679         struct unpcb *unp;
2680         int active;
2681         struct mtx *vplock;
2682
2683         ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2684         KASSERT(vp->v_type == VSOCK,
2685             ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2686
2687         active = 0;
2688         vplock = mtx_pool_find(mtxpool_sleep, vp);
2689         mtx_lock(vplock);
2690         VOP_UNP_CONNECT(vp, &unp);
2691         if (unp == NULL)
2692                 goto done;
2693         UNP_PCB_LOCK(unp);
2694         if (unp->unp_vnode == vp) {
2695                 VOP_UNP_DETACH(vp);
2696                 unp->unp_vnode = NULL;
2697                 active = 1;
2698         }
2699         UNP_PCB_UNLOCK(unp);
2700  done:
2701         mtx_unlock(vplock);
2702         if (active)
2703                 vunref(vp);
2704 }
2705
2706 #ifdef DDB
2707 static void
2708 db_print_indent(int indent)
2709 {
2710         int i;
2711
2712         for (i = 0; i < indent; i++)
2713                 db_printf(" ");
2714 }
2715
2716 static void
2717 db_print_unpflags(int unp_flags)
2718 {
2719         int comma;
2720
2721         comma = 0;
2722         if (unp_flags & UNP_HAVEPC) {
2723                 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2724                 comma = 1;
2725         }
2726         if (unp_flags & UNP_WANTCRED) {
2727                 db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2728                 comma = 1;
2729         }
2730         if (unp_flags & UNP_CONNWAIT) {
2731                 db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2732                 comma = 1;
2733         }
2734         if (unp_flags & UNP_CONNECTING) {
2735                 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2736                 comma = 1;
2737         }
2738         if (unp_flags & UNP_BINDING) {
2739                 db_printf("%sUNP_BINDING", comma ? ", " : "");
2740                 comma = 1;
2741         }
2742 }
2743
2744 static void
2745 db_print_xucred(int indent, struct xucred *xu)
2746 {
2747         int comma, i;
2748
2749         db_print_indent(indent);
2750         db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2751             xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2752         db_print_indent(indent);
2753         db_printf("cr_groups: ");
2754         comma = 0;
2755         for (i = 0; i < xu->cr_ngroups; i++) {
2756                 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2757                 comma = 1;
2758         }
2759         db_printf("\n");
2760 }
2761
2762 static void
2763 db_print_unprefs(int indent, struct unp_head *uh)
2764 {
2765         struct unpcb *unp;
2766         int counter;
2767
2768         counter = 0;
2769         LIST_FOREACH(unp, uh, unp_reflink) {
2770                 if (counter % 4 == 0)
2771                         db_print_indent(indent);
2772                 db_printf("%p  ", unp);
2773                 if (counter % 4 == 3)
2774                         db_printf("\n");
2775                 counter++;
2776         }
2777         if (counter != 0 && counter % 4 != 0)
2778                 db_printf("\n");
2779 }
2780
2781 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2782 {
2783         struct unpcb *unp;
2784
2785         if (!have_addr) {
2786                 db_printf("usage: show unpcb <addr>\n");
2787                 return;
2788         }
2789         unp = (struct unpcb *)addr;
2790
2791         db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2792             unp->unp_vnode);
2793
2794         db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2795             unp->unp_conn);
2796
2797         db_printf("unp_refs:\n");
2798         db_print_unprefs(2, &unp->unp_refs);
2799
2800         /* XXXRW: Would be nice to print the full address, if any. */
2801         db_printf("unp_addr: %p\n", unp->unp_addr);
2802
2803         db_printf("unp_gencnt: %llu\n",
2804             (unsigned long long)unp->unp_gencnt);
2805
2806         db_printf("unp_flags: %x (", unp->unp_flags);
2807         db_print_unpflags(unp->unp_flags);
2808         db_printf(")\n");
2809
2810         db_printf("unp_peercred:\n");
2811         db_print_xucred(2, &unp->unp_peercred);
2812
2813         db_printf("unp_refcount: %u\n", unp->unp_refcount);
2814 }
2815 #endif