]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/uipc_usrreq.c
Update our copy of DTS from the ones from Linux 4.14
[FreeBSD/FreeBSD.git] / sys / kern / uipc_usrreq.c
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *      The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
32  */
33
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *      RDM
54  *      rethink name space problems
55  *      need a proper out-of-band
56  */
57
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60
61 #include "opt_ddb.h"
62
63 #include <sys/param.h>
64 #include <sys/capsicum.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>         /* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93
94 #include <net/vnet.h>
95
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99
100 #include <security/mac/mac_framework.h>
101
102 #include <vm/uma.h>
103
104 MALLOC_DECLARE(M_FILECAPS);
105
106 /*
107  * Locking key:
108  * (l)  Locked using list lock
109  * (g)  Locked using linkage lock
110  */
111
112 static uma_zone_t       unp_zone;
113 static unp_gen_t        unp_gencnt;     /* (l) */
114 static u_int            unp_count;      /* (l) Count of local sockets. */
115 static ino_t            unp_ino;        /* Prototype for fake inode numbers. */
116 static int              unp_rights;     /* (g) File descriptors in flight. */
117 static struct unp_head  unp_shead;      /* (l) List of stream sockets. */
118 static struct unp_head  unp_dhead;      /* (l) List of datagram sockets. */
119 static struct unp_head  unp_sphead;     /* (l) List of seqpacket sockets. */
120
121 struct unp_defer {
122         SLIST_ENTRY(unp_defer) ud_link;
123         struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127
128 static const struct sockaddr    sun_noname = { sizeof(sun_noname), AF_LOCAL };
129
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task      unp_defer_task;
144
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define PIPSIZ  8192
156 #endif
157 static u_long   unpst_sendspace = PIPSIZ;
158 static u_long   unpst_recvspace = PIPSIZ;
159 static u_long   unpdg_sendspace = 2*1024;       /* really max datagram size */
160 static u_long   unpdg_recvspace = 4*1024;
161 static u_long   unpsp_sendspace = PIPSIZ;       /* really max datagram size */
162 static u_long   unpsp_recvspace = PIPSIZ;
163
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
169     "SOCK_SEQPACKET");
170
171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
172            &unpst_sendspace, 0, "Default stream send space.");
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
174            &unpst_recvspace, 0, "Default stream receive space.");
175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
176            &unpdg_sendspace, 0, "Default datagram send space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
178            &unpdg_recvspace, 0, "Default datagram receive space.");
179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
180            &unpsp_sendspace, 0, "Default seqpacket send space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
182            &unpsp_recvspace, 0, "Default seqpacket receive space.");
183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184     "File descriptors in flight.");
185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
186     &unp_defers_count, 0,
187     "File descriptors deferred to taskqueue for close.");
188
189 /*
190  * Locking and synchronization:
191  *
192  * Two types of locks exist in the local domain socket implementation: a
193  * a global linkage rwlock and per-unpcb mutexes.  The linkage lock protects
194  * the socket count, global generation number, stream/datagram global lists and
195  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
196  * held exclusively over the acquisition of multiple unpcb locks to prevent
197  * deadlock.
198  *
199  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
200  * allocated in pru_attach() and freed in pru_detach().  The validity of that
201  * pointer is an invariant, so no lock is required to dereference the so_pcb
202  * pointer if a valid socket reference is held by the caller.  In practice,
203  * this is always true during operations performed on a socket.  Each unpcb
204  * has a back-pointer to its socket, unp_socket, which will be stable under
205  * the same circumstances.
206  *
207  * This pointer may only be safely dereferenced as long as a valid reference
208  * to the unpcb is held.  Typically, this reference will be from the socket,
209  * or from another unpcb when the referring unpcb's lock is held (in order
210  * that the reference not be invalidated during use).  For example, to follow
211  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
212  * as unp_socket remains valid as long as the reference to unp_conn is valid.
213  *
214  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
215  * atomic reads without the lock may be performed "lockless", but more
216  * complex reads and read-modify-writes require the mutex to be held.  No
217  * lock order is defined between unpcb locks -- multiple unpcb locks may be
218  * acquired at the same time only when holding the linkage rwlock
219  * exclusively, which prevents deadlocks.
220  *
221  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
222  * protocols, bind() is a non-atomic operation, and connect() requires
223  * potential sleeping in the protocol, due to potentially waiting on local or
224  * distributed file systems.  We try to separate "lookup" operations, which
225  * may sleep, and the IPC operations themselves, which typically can occur
226  * with relative atomicity as locks can be held over the entire operation.
227  *
228  * Another tricky issue is simultaneous multi-threaded or multi-process
229  * access to a single UNIX domain socket.  These are handled by the flags
230  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
231  * binding, both of which involve dropping UNIX domain socket locks in order
232  * to perform namei() and other file system operations.
233  */
234 static struct rwlock    unp_link_rwlock;
235 static struct mtx       unp_defers_lock;
236
237 #define UNP_LINK_LOCK_INIT()            rw_init(&unp_link_rwlock,       \
238                                             "unp_link_rwlock")
239
240 #define UNP_LINK_LOCK_ASSERT()  rw_assert(&unp_link_rwlock,     \
241                                             RA_LOCKED)
242 #define UNP_LINK_UNLOCK_ASSERT()        rw_assert(&unp_link_rwlock,     \
243                                             RA_UNLOCKED)
244
245 #define UNP_LINK_RLOCK()                rw_rlock(&unp_link_rwlock)
246 #define UNP_LINK_RUNLOCK()              rw_runlock(&unp_link_rwlock)
247 #define UNP_LINK_WLOCK()                rw_wlock(&unp_link_rwlock)
248 #define UNP_LINK_WUNLOCK()              rw_wunlock(&unp_link_rwlock)
249 #define UNP_LINK_WLOCK_ASSERT()         rw_assert(&unp_link_rwlock,     \
250                                             RA_WLOCKED)
251 #define UNP_LINK_WOWNED()               rw_wowned(&unp_link_rwlock)
252
253 #define UNP_DEFERRED_LOCK_INIT()        mtx_init(&unp_defers_lock, \
254                                             "unp_defer", NULL, MTX_DEF)
255 #define UNP_DEFERRED_LOCK()             mtx_lock(&unp_defers_lock)
256 #define UNP_DEFERRED_UNLOCK()           mtx_unlock(&unp_defers_lock)
257
258 #define UNP_PCB_LOCK_INIT(unp)          mtx_init(&(unp)->unp_mtx,       \
259                                             "unp_mtx", "unp_mtx",       \
260                                             MTX_DUPOK|MTX_DEF|MTX_RECURSE)
261 #define UNP_PCB_LOCK_DESTROY(unp)       mtx_destroy(&(unp)->unp_mtx)
262 #define UNP_PCB_LOCK(unp)               mtx_lock(&(unp)->unp_mtx)
263 #define UNP_PCB_UNLOCK(unp)             mtx_unlock(&(unp)->unp_mtx)
264 #define UNP_PCB_LOCK_ASSERT(unp)        mtx_assert(&(unp)->unp_mtx, MA_OWNED)
265
266 static int      uipc_connect2(struct socket *, struct socket *);
267 static int      uipc_ctloutput(struct socket *, struct sockopt *);
268 static int      unp_connect(struct socket *, struct sockaddr *,
269                     struct thread *);
270 static int      unp_connectat(int, struct socket *, struct sockaddr *,
271                     struct thread *);
272 static int      unp_connect2(struct socket *so, struct socket *so2, int);
273 static void     unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
274 static void     unp_dispose(struct socket *so);
275 static void     unp_dispose_mbuf(struct mbuf *);
276 static void     unp_shutdown(struct unpcb *);
277 static void     unp_drop(struct unpcb *);
278 static void     unp_gc(__unused void *, int);
279 static void     unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
280 static void     unp_discard(struct file *);
281 static void     unp_freerights(struct filedescent **, int);
282 static void     unp_init(void);
283 static int      unp_internalize(struct mbuf **, struct thread *);
284 static void     unp_internalize_fp(struct file *);
285 static int      unp_externalize(struct mbuf *, struct mbuf **, int);
286 static int      unp_externalize_fp(struct file *);
287 static struct mbuf      *unp_addsockcred(struct thread *, struct mbuf *);
288 static void     unp_process_defers(void * __unused, int);
289
290 /*
291  * Definitions of protocols supported in the LOCAL domain.
292  */
293 static struct domain localdomain;
294 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
295 static struct pr_usrreqs uipc_usrreqs_seqpacket;
296 static struct protosw localsw[] = {
297 {
298         .pr_type =              SOCK_STREAM,
299         .pr_domain =            &localdomain,
300         .pr_flags =             PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
301         .pr_ctloutput =         &uipc_ctloutput,
302         .pr_usrreqs =           &uipc_usrreqs_stream
303 },
304 {
305         .pr_type =              SOCK_DGRAM,
306         .pr_domain =            &localdomain,
307         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_RIGHTS,
308         .pr_ctloutput =         &uipc_ctloutput,
309         .pr_usrreqs =           &uipc_usrreqs_dgram
310 },
311 {
312         .pr_type =              SOCK_SEQPACKET,
313         .pr_domain =            &localdomain,
314
315         /*
316          * XXXRW: For now, PR_ADDR because soreceive will bump into them
317          * due to our use of sbappendaddr.  A new sbappend variants is needed
318          * that supports both atomic record writes and control data.
319          */
320         .pr_flags =             PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
321                                     PR_RIGHTS,
322         .pr_ctloutput =         &uipc_ctloutput,
323         .pr_usrreqs =           &uipc_usrreqs_seqpacket,
324 },
325 };
326
327 static struct domain localdomain = {
328         .dom_family =           AF_LOCAL,
329         .dom_name =             "local",
330         .dom_init =             unp_init,
331         .dom_externalize =      unp_externalize,
332         .dom_dispose =          unp_dispose,
333         .dom_protosw =          localsw,
334         .dom_protoswNPROTOSW =  &localsw[nitems(localsw)]
335 };
336 DOMAIN_SET(local);
337
338 static void
339 uipc_abort(struct socket *so)
340 {
341         struct unpcb *unp, *unp2;
342
343         unp = sotounpcb(so);
344         KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
345
346         UNP_LINK_WLOCK();
347         UNP_PCB_LOCK(unp);
348         unp2 = unp->unp_conn;
349         if (unp2 != NULL) {
350                 UNP_PCB_LOCK(unp2);
351                 unp_drop(unp2);
352                 UNP_PCB_UNLOCK(unp2);
353         }
354         UNP_PCB_UNLOCK(unp);
355         UNP_LINK_WUNLOCK();
356 }
357
358 static int
359 uipc_accept(struct socket *so, struct sockaddr **nam)
360 {
361         struct unpcb *unp, *unp2;
362         const struct sockaddr *sa;
363
364         /*
365          * Pass back name of connected socket, if it was bound and we are
366          * still connected (our peer may have closed already!).
367          */
368         unp = sotounpcb(so);
369         KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
370
371         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
372         UNP_LINK_RLOCK();
373         unp2 = unp->unp_conn;
374         if (unp2 != NULL && unp2->unp_addr != NULL) {
375                 UNP_PCB_LOCK(unp2);
376                 sa = (struct sockaddr *) unp2->unp_addr;
377                 bcopy(sa, *nam, sa->sa_len);
378                 UNP_PCB_UNLOCK(unp2);
379         } else {
380                 sa = &sun_noname;
381                 bcopy(sa, *nam, sa->sa_len);
382         }
383         UNP_LINK_RUNLOCK();
384         return (0);
385 }
386
387 static int
388 uipc_attach(struct socket *so, int proto, struct thread *td)
389 {
390         u_long sendspace, recvspace;
391         struct unpcb *unp;
392         int error;
393         bool locked;
394
395         KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
396         if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
397                 switch (so->so_type) {
398                 case SOCK_STREAM:
399                         sendspace = unpst_sendspace;
400                         recvspace = unpst_recvspace;
401                         break;
402
403                 case SOCK_DGRAM:
404                         sendspace = unpdg_sendspace;
405                         recvspace = unpdg_recvspace;
406                         break;
407
408                 case SOCK_SEQPACKET:
409                         sendspace = unpsp_sendspace;
410                         recvspace = unpsp_recvspace;
411                         break;
412
413                 default:
414                         panic("uipc_attach");
415                 }
416                 error = soreserve(so, sendspace, recvspace);
417                 if (error)
418                         return (error);
419         }
420         unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
421         if (unp == NULL)
422                 return (ENOBUFS);
423         LIST_INIT(&unp->unp_refs);
424         UNP_PCB_LOCK_INIT(unp);
425         unp->unp_socket = so;
426         so->so_pcb = unp;
427         unp->unp_refcount = 1;
428         if (so->so_listen != NULL)
429                 unp->unp_flags |= UNP_NASCENT;
430
431         if ((locked = UNP_LINK_WOWNED()) == false)
432                 UNP_LINK_WLOCK();
433
434         unp->unp_gencnt = ++unp_gencnt;
435         unp_count++;
436         switch (so->so_type) {
437         case SOCK_STREAM:
438                 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
439                 break;
440
441         case SOCK_DGRAM:
442                 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
443                 break;
444
445         case SOCK_SEQPACKET:
446                 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
447                 break;
448
449         default:
450                 panic("uipc_attach");
451         }
452
453         if (locked == false)
454                 UNP_LINK_WUNLOCK();
455
456         return (0);
457 }
458
459 static int
460 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
461 {
462         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
463         struct vattr vattr;
464         int error, namelen;
465         struct nameidata nd;
466         struct unpcb *unp;
467         struct vnode *vp;
468         struct mount *mp;
469         cap_rights_t rights;
470         char *buf;
471
472         if (nam->sa_family != AF_UNIX)
473                 return (EAFNOSUPPORT);
474
475         unp = sotounpcb(so);
476         KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
477
478         if (soun->sun_len > sizeof(struct sockaddr_un))
479                 return (EINVAL);
480         namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
481         if (namelen <= 0)
482                 return (EINVAL);
483
484         /*
485          * We don't allow simultaneous bind() calls on a single UNIX domain
486          * socket, so flag in-progress operations, and return an error if an
487          * operation is already in progress.
488          *
489          * Historically, we have not allowed a socket to be rebound, so this
490          * also returns an error.  Not allowing re-binding simplifies the
491          * implementation and avoids a great many possible failure modes.
492          */
493         UNP_PCB_LOCK(unp);
494         if (unp->unp_vnode != NULL) {
495                 UNP_PCB_UNLOCK(unp);
496                 return (EINVAL);
497         }
498         if (unp->unp_flags & UNP_BINDING) {
499                 UNP_PCB_UNLOCK(unp);
500                 return (EALREADY);
501         }
502         unp->unp_flags |= UNP_BINDING;
503         UNP_PCB_UNLOCK(unp);
504
505         buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
506         bcopy(soun->sun_path, buf, namelen);
507         buf[namelen] = 0;
508
509 restart:
510         NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
511             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
512 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
513         error = namei(&nd);
514         if (error)
515                 goto error;
516         vp = nd.ni_vp;
517         if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
518                 NDFREE(&nd, NDF_ONLY_PNBUF);
519                 if (nd.ni_dvp == vp)
520                         vrele(nd.ni_dvp);
521                 else
522                         vput(nd.ni_dvp);
523                 if (vp != NULL) {
524                         vrele(vp);
525                         error = EADDRINUSE;
526                         goto error;
527                 }
528                 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
529                 if (error)
530                         goto error;
531                 goto restart;
532         }
533         VATTR_NULL(&vattr);
534         vattr.va_type = VSOCK;
535         vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
536 #ifdef MAC
537         error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
538             &vattr);
539 #endif
540         if (error == 0)
541                 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
542         NDFREE(&nd, NDF_ONLY_PNBUF);
543         vput(nd.ni_dvp);
544         if (error) {
545                 vn_finished_write(mp);
546                 goto error;
547         }
548         vp = nd.ni_vp;
549         ASSERT_VOP_ELOCKED(vp, "uipc_bind");
550         soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
551
552         UNP_LINK_WLOCK();
553         UNP_PCB_LOCK(unp);
554         VOP_UNP_BIND(vp, unp);
555         unp->unp_vnode = vp;
556         unp->unp_addr = soun;
557         unp->unp_flags &= ~UNP_BINDING;
558         UNP_PCB_UNLOCK(unp);
559         UNP_LINK_WUNLOCK();
560         VOP_UNLOCK(vp, 0);
561         vn_finished_write(mp);
562         free(buf, M_TEMP);
563         return (0);
564
565 error:
566         UNP_PCB_LOCK(unp);
567         unp->unp_flags &= ~UNP_BINDING;
568         UNP_PCB_UNLOCK(unp);
569         free(buf, M_TEMP);
570         return (error);
571 }
572
573 static int
574 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
575 {
576
577         return (uipc_bindat(AT_FDCWD, so, nam, td));
578 }
579
580 static int
581 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
582 {
583         int error;
584
585         KASSERT(td == curthread, ("uipc_connect: td != curthread"));
586         UNP_LINK_WLOCK();
587         error = unp_connect(so, nam, td);
588         UNP_LINK_WUNLOCK();
589         return (error);
590 }
591
592 static int
593 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
594     struct thread *td)
595 {
596         int error;
597
598         KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
599         UNP_LINK_WLOCK();
600         error = unp_connectat(fd, so, nam, td);
601         UNP_LINK_WUNLOCK();
602         return (error);
603 }
604
605 static void
606 uipc_close(struct socket *so)
607 {
608         struct unpcb *unp, *unp2;
609         struct vnode *vp = NULL;
610
611         unp = sotounpcb(so);
612         KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
613
614         UNP_LINK_WLOCK();
615         UNP_PCB_LOCK(unp);
616         unp2 = unp->unp_conn;
617         if (unp2 != NULL) {
618                 UNP_PCB_LOCK(unp2);
619                 unp_disconnect(unp, unp2);
620                 UNP_PCB_UNLOCK(unp2);
621         }
622         if (SOLISTENING(so) && ((vp = unp->unp_vnode) != NULL)) {
623                 VOP_UNP_DETACH(vp);
624                 unp->unp_vnode = NULL;
625         }
626         UNP_PCB_UNLOCK(unp);
627         UNP_LINK_WUNLOCK();
628         if (vp)
629                 vrele(vp);
630 }
631
632 static int
633 uipc_connect2(struct socket *so1, struct socket *so2)
634 {
635         struct unpcb *unp, *unp2;
636         int error;
637
638         UNP_LINK_WLOCK();
639         unp = so1->so_pcb;
640         KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
641         UNP_PCB_LOCK(unp);
642         unp2 = so2->so_pcb;
643         KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
644         UNP_PCB_LOCK(unp2);
645         error = unp_connect2(so1, so2, PRU_CONNECT2);
646         UNP_PCB_UNLOCK(unp2);
647         UNP_PCB_UNLOCK(unp);
648         UNP_LINK_WUNLOCK();
649         return (error);
650 }
651
652 static void
653 uipc_detach(struct socket *so)
654 {
655         struct unpcb *unp, *unp2;
656         struct sockaddr_un *saved_unp_addr;
657         struct vnode *vp;
658         int freeunp, local_unp_rights;
659
660         unp = sotounpcb(so);
661         KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
662
663         vp = NULL;
664         local_unp_rights = 0;
665
666         UNP_LINK_WLOCK();
667         LIST_REMOVE(unp, unp_link);
668         unp->unp_gencnt = ++unp_gencnt;
669         --unp_count;
670         UNP_PCB_LOCK(unp);
671         if ((unp->unp_flags & UNP_NASCENT) != 0)
672                 goto teardown;
673
674         if ((vp = unp->unp_vnode) != NULL) {
675                 VOP_UNP_DETACH(vp);
676                 unp->unp_vnode = NULL;
677         }
678         unp2 = unp->unp_conn;
679         if (unp2 != NULL) {
680                 UNP_PCB_LOCK(unp2);
681                 unp_disconnect(unp, unp2);
682                 UNP_PCB_UNLOCK(unp2);
683         }
684
685         /*
686          * We hold the linkage lock exclusively, so it's OK to acquire
687          * multiple pcb locks at a time.
688          */
689         while (!LIST_EMPTY(&unp->unp_refs)) {
690                 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
691
692                 UNP_PCB_LOCK(ref);
693                 unp_drop(ref);
694                 UNP_PCB_UNLOCK(ref);
695         }
696         local_unp_rights = unp_rights;
697 teardown:
698         UNP_LINK_WUNLOCK();
699         unp->unp_socket->so_pcb = NULL;
700         saved_unp_addr = unp->unp_addr;
701         unp->unp_addr = NULL;
702         unp->unp_refcount--;
703         freeunp = (unp->unp_refcount == 0);
704         if (saved_unp_addr != NULL)
705                 free(saved_unp_addr, M_SONAME);
706         if (freeunp) {
707                 UNP_PCB_LOCK_DESTROY(unp);
708                 uma_zfree(unp_zone, unp);
709         } else
710                 UNP_PCB_UNLOCK(unp);
711         if (vp)
712                 vrele(vp);
713         if (local_unp_rights)
714                 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
715 }
716
717 static int
718 uipc_disconnect(struct socket *so)
719 {
720         struct unpcb *unp, *unp2;
721
722         unp = sotounpcb(so);
723         KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
724
725         UNP_LINK_WLOCK();
726         UNP_PCB_LOCK(unp);
727         unp2 = unp->unp_conn;
728         if (unp2 != NULL) {
729                 UNP_PCB_LOCK(unp2);
730                 unp_disconnect(unp, unp2);
731                 UNP_PCB_UNLOCK(unp2);
732         }
733         UNP_PCB_UNLOCK(unp);
734         UNP_LINK_WUNLOCK();
735         return (0);
736 }
737
738 static int
739 uipc_listen(struct socket *so, int backlog, struct thread *td)
740 {
741         struct unpcb *unp;
742         int error;
743
744         if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
745                 return (EOPNOTSUPP);
746
747         unp = sotounpcb(so);
748         KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
749
750         UNP_PCB_LOCK(unp);
751         if (unp->unp_vnode == NULL) {
752                 /* Already connected or not bound to an address. */
753                 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
754                 UNP_PCB_UNLOCK(unp);
755                 return (error);
756         }
757
758         SOCK_LOCK(so);
759         error = solisten_proto_check(so);
760         if (error == 0) {
761                 cru2x(td->td_ucred, &unp->unp_peercred);
762                 solisten_proto(so, backlog);
763         }
764         SOCK_UNLOCK(so);
765         UNP_PCB_UNLOCK(unp);
766         return (error);
767 }
768
769 static int
770 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
771 {
772         struct unpcb *unp, *unp2;
773         const struct sockaddr *sa;
774
775         unp = sotounpcb(so);
776         KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
777
778         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
779         UNP_LINK_RLOCK();
780         /*
781          * XXX: It seems that this test always fails even when connection is
782          * established.  So, this else clause is added as workaround to
783          * return PF_LOCAL sockaddr.
784          */
785         unp2 = unp->unp_conn;
786         if (unp2 != NULL) {
787                 UNP_PCB_LOCK(unp2);
788                 if (unp2->unp_addr != NULL)
789                         sa = (struct sockaddr *) unp2->unp_addr;
790                 else
791                         sa = &sun_noname;
792                 bcopy(sa, *nam, sa->sa_len);
793                 UNP_PCB_UNLOCK(unp2);
794         } else {
795                 sa = &sun_noname;
796                 bcopy(sa, *nam, sa->sa_len);
797         }
798         UNP_LINK_RUNLOCK();
799         return (0);
800 }
801
802 static int
803 uipc_rcvd(struct socket *so, int flags)
804 {
805         struct unpcb *unp, *unp2;
806         struct socket *so2;
807         u_int mbcnt, sbcc;
808
809         unp = sotounpcb(so);
810         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
811         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
812             ("%s: socktype %d", __func__, so->so_type));
813
814         /*
815          * Adjust backpressure on sender and wakeup any waiting to write.
816          *
817          * The unp lock is acquired to maintain the validity of the unp_conn
818          * pointer; no lock on unp2 is required as unp2->unp_socket will be
819          * static as long as we don't permit unp2 to disconnect from unp,
820          * which is prevented by the lock on unp.  We cache values from
821          * so_rcv to avoid holding the so_rcv lock over the entire
822          * transaction on the remote so_snd.
823          */
824         SOCKBUF_LOCK(&so->so_rcv);
825         mbcnt = so->so_rcv.sb_mbcnt;
826         sbcc = sbavail(&so->so_rcv);
827         SOCKBUF_UNLOCK(&so->so_rcv);
828         /*
829          * There is a benign race condition at this point.  If we're planning to
830          * clear SB_STOP, but uipc_send is called on the connected socket at
831          * this instant, it might add data to the sockbuf and set SB_STOP.  Then
832          * we would erroneously clear SB_STOP below, even though the sockbuf is
833          * full.  The race is benign because the only ill effect is to allow the
834          * sockbuf to exceed its size limit, and the size limits are not
835          * strictly guaranteed anyway.
836          */
837         UNP_PCB_LOCK(unp);
838         unp2 = unp->unp_conn;
839         if (unp2 == NULL) {
840                 UNP_PCB_UNLOCK(unp);
841                 return (0);
842         }
843         so2 = unp2->unp_socket;
844         SOCKBUF_LOCK(&so2->so_snd);
845         if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
846                 so2->so_snd.sb_flags &= ~SB_STOP;
847         sowwakeup_locked(so2);
848         UNP_PCB_UNLOCK(unp);
849         return (0);
850 }
851
852 static int
853 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
854     struct mbuf *control, struct thread *td)
855 {
856         struct unpcb *unp, *unp2;
857         struct socket *so2;
858         u_int mbcnt, sbcc;
859         int error = 0;
860
861         unp = sotounpcb(so);
862         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
863         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
864             so->so_type == SOCK_SEQPACKET,
865             ("%s: socktype %d", __func__, so->so_type));
866
867         if (flags & PRUS_OOB) {
868                 error = EOPNOTSUPP;
869                 goto release;
870         }
871         if (control != NULL && (error = unp_internalize(&control, td)))
872                 goto release;
873         if ((nam != NULL) || (flags & PRUS_EOF))
874                 UNP_LINK_WLOCK();
875         else
876                 UNP_LINK_RLOCK();
877         switch (so->so_type) {
878         case SOCK_DGRAM:
879         {
880                 const struct sockaddr *from;
881
882                 unp2 = unp->unp_conn;
883                 if (nam != NULL) {
884                         UNP_LINK_WLOCK_ASSERT();
885                         if (unp2 != NULL) {
886                                 error = EISCONN;
887                                 break;
888                         }
889                         error = unp_connect(so, nam, td);
890                         if (error)
891                                 break;
892                         unp2 = unp->unp_conn;
893                 }
894
895                 /*
896                  * Because connect() and send() are non-atomic in a sendto()
897                  * with a target address, it's possible that the socket will
898                  * have disconnected before the send() can run.  In that case
899                  * return the slightly counter-intuitive but otherwise
900                  * correct error that the socket is not connected.
901                  */
902                 if (unp2 == NULL) {
903                         error = ENOTCONN;
904                         break;
905                 }
906                 /* Lockless read. */
907                 if (unp2->unp_flags & UNP_WANTCRED)
908                         control = unp_addsockcred(td, control);
909                 UNP_PCB_LOCK(unp);
910                 if (unp->unp_addr != NULL)
911                         from = (struct sockaddr *)unp->unp_addr;
912                 else
913                         from = &sun_noname;
914                 so2 = unp2->unp_socket;
915                 SOCKBUF_LOCK(&so2->so_rcv);
916                 if (sbappendaddr_locked(&so2->so_rcv, from, m,
917                     control)) {
918                         sorwakeup_locked(so2);
919                         m = NULL;
920                         control = NULL;
921                 } else {
922                         SOCKBUF_UNLOCK(&so2->so_rcv);
923                         error = ENOBUFS;
924                 }
925                 if (nam != NULL) {
926                         UNP_LINK_WLOCK_ASSERT();
927                         UNP_PCB_LOCK(unp2);
928                         unp_disconnect(unp, unp2);
929                         UNP_PCB_UNLOCK(unp2);
930                 }
931                 UNP_PCB_UNLOCK(unp);
932                 break;
933         }
934
935         case SOCK_SEQPACKET:
936         case SOCK_STREAM:
937                 if ((so->so_state & SS_ISCONNECTED) == 0) {
938                         if (nam != NULL) {
939                                 UNP_LINK_WLOCK_ASSERT();
940                                 error = unp_connect(so, nam, td);
941                                 if (error)
942                                         break;  /* XXX */
943                         } else {
944                                 error = ENOTCONN;
945                                 break;
946                         }
947                 }
948
949                 /* Lockless read. */
950                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
951                         error = EPIPE;
952                         break;
953                 }
954
955                 /*
956                  * Because connect() and send() are non-atomic in a sendto()
957                  * with a target address, it's possible that the socket will
958                  * have disconnected before the send() can run.  In that case
959                  * return the slightly counter-intuitive but otherwise
960                  * correct error that the socket is not connected.
961                  *
962                  * Locking here must be done carefully: the linkage lock
963                  * prevents interconnections between unpcbs from changing, so
964                  * we can traverse from unp to unp2 without acquiring unp's
965                  * lock.  Socket buffer locks follow unpcb locks, so we can
966                  * acquire both remote and lock socket buffer locks.
967                  */
968                 unp2 = unp->unp_conn;
969                 if (unp2 == NULL) {
970                         error = ENOTCONN;
971                         break;
972                 }
973                 so2 = unp2->unp_socket;
974                 UNP_PCB_LOCK(unp2);
975                 SOCKBUF_LOCK(&so2->so_rcv);
976                 if (unp2->unp_flags & UNP_WANTCRED) {
977                         /*
978                          * Credentials are passed only once on SOCK_STREAM
979                          * and SOCK_SEQPACKET.
980                          */
981                         unp2->unp_flags &= ~UNP_WANTCRED;
982                         control = unp_addsockcred(td, control);
983                 }
984                 /*
985                  * Send to paired receive port, and then reduce send buffer
986                  * hiwater marks to maintain backpressure.  Wake up readers.
987                  */
988                 switch (so->so_type) {
989                 case SOCK_STREAM:
990                         if (control != NULL) {
991                                 if (sbappendcontrol_locked(&so2->so_rcv, m,
992                                     control))
993                                         control = NULL;
994                         } else
995                                 sbappend_locked(&so2->so_rcv, m, flags);
996                         break;
997
998                 case SOCK_SEQPACKET: {
999                         const struct sockaddr *from;
1000
1001                         from = &sun_noname;
1002                         /*
1003                          * Don't check for space available in so2->so_rcv.
1004                          * Unix domain sockets only check for space in the
1005                          * sending sockbuf, and that check is performed one
1006                          * level up the stack.
1007                          */
1008                         if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1009                                 from, m, control))
1010                                 control = NULL;
1011                         break;
1012                         }
1013                 }
1014
1015                 mbcnt = so2->so_rcv.sb_mbcnt;
1016                 sbcc = sbavail(&so2->so_rcv);
1017                 if (sbcc)
1018                         sorwakeup_locked(so2);
1019                 else
1020                         SOCKBUF_UNLOCK(&so2->so_rcv);
1021
1022                 /*
1023                  * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1024                  * it would be possible for uipc_rcvd to be called at this
1025                  * point, drain the receiving sockbuf, clear SB_STOP, and then
1026                  * we would set SB_STOP below.  That could lead to an empty
1027                  * sockbuf having SB_STOP set
1028                  */
1029                 SOCKBUF_LOCK(&so->so_snd);
1030                 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1031                         so->so_snd.sb_flags |= SB_STOP;
1032                 SOCKBUF_UNLOCK(&so->so_snd);
1033                 UNP_PCB_UNLOCK(unp2);
1034                 m = NULL;
1035                 break;
1036         }
1037
1038         /*
1039          * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1040          */
1041         if (flags & PRUS_EOF) {
1042                 UNP_PCB_LOCK(unp);
1043                 socantsendmore(so);
1044                 unp_shutdown(unp);
1045                 UNP_PCB_UNLOCK(unp);
1046         }
1047
1048         if ((nam != NULL) || (flags & PRUS_EOF))
1049                 UNP_LINK_WUNLOCK();
1050         else
1051                 UNP_LINK_RUNLOCK();
1052
1053         if (control != NULL && error != 0)
1054                 unp_dispose_mbuf(control);
1055
1056 release:
1057         if (control != NULL)
1058                 m_freem(control);
1059         /*
1060          * In case of PRUS_NOTREADY, uipc_ready() is responsible
1061          * for freeing memory.
1062          */   
1063         if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1064                 m_freem(m);
1065         return (error);
1066 }
1067
1068 static int
1069 uipc_ready(struct socket *so, struct mbuf *m, int count)
1070 {
1071         struct unpcb *unp, *unp2;
1072         struct socket *so2;
1073         int error;
1074
1075         unp = sotounpcb(so);
1076
1077         UNP_LINK_RLOCK();
1078         if ((unp2 = unp->unp_conn) == NULL) {
1079                 UNP_LINK_RUNLOCK();
1080                 for (int i = 0; i < count; i++)
1081                         m = m_free(m);
1082                 return (ECONNRESET);
1083         }
1084         UNP_PCB_LOCK(unp2);
1085         so2 = unp2->unp_socket;
1086
1087         SOCKBUF_LOCK(&so2->so_rcv);
1088         if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1089                 sorwakeup_locked(so2);
1090         else
1091                 SOCKBUF_UNLOCK(&so2->so_rcv);
1092
1093         UNP_PCB_UNLOCK(unp2);
1094         UNP_LINK_RUNLOCK();
1095
1096         return (error);
1097 }
1098
1099 static int
1100 uipc_sense(struct socket *so, struct stat *sb)
1101 {
1102         struct unpcb *unp;
1103
1104         unp = sotounpcb(so);
1105         KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1106
1107         sb->st_blksize = so->so_snd.sb_hiwat;
1108         UNP_PCB_LOCK(unp);
1109         sb->st_dev = NODEV;
1110         if (unp->unp_ino == 0)
1111                 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1112         sb->st_ino = unp->unp_ino;
1113         UNP_PCB_UNLOCK(unp);
1114         return (0);
1115 }
1116
1117 static int
1118 uipc_shutdown(struct socket *so)
1119 {
1120         struct unpcb *unp;
1121
1122         unp = sotounpcb(so);
1123         KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1124
1125         UNP_LINK_WLOCK();
1126         UNP_PCB_LOCK(unp);
1127         socantsendmore(so);
1128         unp_shutdown(unp);
1129         UNP_PCB_UNLOCK(unp);
1130         UNP_LINK_WUNLOCK();
1131         return (0);
1132 }
1133
1134 static int
1135 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1136 {
1137         struct unpcb *unp;
1138         const struct sockaddr *sa;
1139
1140         unp = sotounpcb(so);
1141         KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1142
1143         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1144         UNP_PCB_LOCK(unp);
1145         if (unp->unp_addr != NULL)
1146                 sa = (struct sockaddr *) unp->unp_addr;
1147         else
1148                 sa = &sun_noname;
1149         bcopy(sa, *nam, sa->sa_len);
1150         UNP_PCB_UNLOCK(unp);
1151         return (0);
1152 }
1153
1154 static struct pr_usrreqs uipc_usrreqs_dgram = {
1155         .pru_abort =            uipc_abort,
1156         .pru_accept =           uipc_accept,
1157         .pru_attach =           uipc_attach,
1158         .pru_bind =             uipc_bind,
1159         .pru_bindat =           uipc_bindat,
1160         .pru_connect =          uipc_connect,
1161         .pru_connectat =        uipc_connectat,
1162         .pru_connect2 =         uipc_connect2,
1163         .pru_detach =           uipc_detach,
1164         .pru_disconnect =       uipc_disconnect,
1165         .pru_listen =           uipc_listen,
1166         .pru_peeraddr =         uipc_peeraddr,
1167         .pru_rcvd =             uipc_rcvd,
1168         .pru_send =             uipc_send,
1169         .pru_sense =            uipc_sense,
1170         .pru_shutdown =         uipc_shutdown,
1171         .pru_sockaddr =         uipc_sockaddr,
1172         .pru_soreceive =        soreceive_dgram,
1173         .pru_close =            uipc_close,
1174 };
1175
1176 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1177         .pru_abort =            uipc_abort,
1178         .pru_accept =           uipc_accept,
1179         .pru_attach =           uipc_attach,
1180         .pru_bind =             uipc_bind,
1181         .pru_bindat =           uipc_bindat,
1182         .pru_connect =          uipc_connect,
1183         .pru_connectat =        uipc_connectat,
1184         .pru_connect2 =         uipc_connect2,
1185         .pru_detach =           uipc_detach,
1186         .pru_disconnect =       uipc_disconnect,
1187         .pru_listen =           uipc_listen,
1188         .pru_peeraddr =         uipc_peeraddr,
1189         .pru_rcvd =             uipc_rcvd,
1190         .pru_send =             uipc_send,
1191         .pru_sense =            uipc_sense,
1192         .pru_shutdown =         uipc_shutdown,
1193         .pru_sockaddr =         uipc_sockaddr,
1194         .pru_soreceive =        soreceive_generic,      /* XXX: or...? */
1195         .pru_close =            uipc_close,
1196 };
1197
1198 static struct pr_usrreqs uipc_usrreqs_stream = {
1199         .pru_abort =            uipc_abort,
1200         .pru_accept =           uipc_accept,
1201         .pru_attach =           uipc_attach,
1202         .pru_bind =             uipc_bind,
1203         .pru_bindat =           uipc_bindat,
1204         .pru_connect =          uipc_connect,
1205         .pru_connectat =        uipc_connectat,
1206         .pru_connect2 =         uipc_connect2,
1207         .pru_detach =           uipc_detach,
1208         .pru_disconnect =       uipc_disconnect,
1209         .pru_listen =           uipc_listen,
1210         .pru_peeraddr =         uipc_peeraddr,
1211         .pru_rcvd =             uipc_rcvd,
1212         .pru_send =             uipc_send,
1213         .pru_ready =            uipc_ready,
1214         .pru_sense =            uipc_sense,
1215         .pru_shutdown =         uipc_shutdown,
1216         .pru_sockaddr =         uipc_sockaddr,
1217         .pru_soreceive =        soreceive_generic,
1218         .pru_close =            uipc_close,
1219 };
1220
1221 static int
1222 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1223 {
1224         struct unpcb *unp;
1225         struct xucred xu;
1226         int error, optval;
1227
1228         if (sopt->sopt_level != 0)
1229                 return (EINVAL);
1230
1231         unp = sotounpcb(so);
1232         KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1233         error = 0;
1234         switch (sopt->sopt_dir) {
1235         case SOPT_GET:
1236                 switch (sopt->sopt_name) {
1237                 case LOCAL_PEERCRED:
1238                         UNP_PCB_LOCK(unp);
1239                         if (unp->unp_flags & UNP_HAVEPC)
1240                                 xu = unp->unp_peercred;
1241                         else {
1242                                 if (so->so_type == SOCK_STREAM)
1243                                         error = ENOTCONN;
1244                                 else
1245                                         error = EINVAL;
1246                         }
1247                         UNP_PCB_UNLOCK(unp);
1248                         if (error == 0)
1249                                 error = sooptcopyout(sopt, &xu, sizeof(xu));
1250                         break;
1251
1252                 case LOCAL_CREDS:
1253                         /* Unlocked read. */
1254                         optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1255                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1256                         break;
1257
1258                 case LOCAL_CONNWAIT:
1259                         /* Unlocked read. */
1260                         optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1261                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1262                         break;
1263
1264                 default:
1265                         error = EOPNOTSUPP;
1266                         break;
1267                 }
1268                 break;
1269
1270         case SOPT_SET:
1271                 switch (sopt->sopt_name) {
1272                 case LOCAL_CREDS:
1273                 case LOCAL_CONNWAIT:
1274                         error = sooptcopyin(sopt, &optval, sizeof(optval),
1275                                             sizeof(optval));
1276                         if (error)
1277                                 break;
1278
1279 #define OPTSET(bit) do {                                                \
1280         UNP_PCB_LOCK(unp);                                              \
1281         if (optval)                                                     \
1282                 unp->unp_flags |= bit;                                  \
1283         else                                                            \
1284                 unp->unp_flags &= ~bit;                                 \
1285         UNP_PCB_UNLOCK(unp);                                            \
1286 } while (0)
1287
1288                         switch (sopt->sopt_name) {
1289                         case LOCAL_CREDS:
1290                                 OPTSET(UNP_WANTCRED);
1291                                 break;
1292
1293                         case LOCAL_CONNWAIT:
1294                                 OPTSET(UNP_CONNWAIT);
1295                                 break;
1296
1297                         default:
1298                                 break;
1299                         }
1300                         break;
1301 #undef  OPTSET
1302                 default:
1303                         error = ENOPROTOOPT;
1304                         break;
1305                 }
1306                 break;
1307
1308         default:
1309                 error = EOPNOTSUPP;
1310                 break;
1311         }
1312         return (error);
1313 }
1314
1315 static int
1316 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1317 {
1318
1319         return (unp_connectat(AT_FDCWD, so, nam, td));
1320 }
1321
1322 static int
1323 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1324     struct thread *td)
1325 {
1326         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1327         struct vnode *vp;
1328         struct socket *so2;
1329         struct unpcb *unp, *unp2, *unp3;
1330         struct nameidata nd;
1331         char buf[SOCK_MAXADDRLEN];
1332         struct sockaddr *sa;
1333         cap_rights_t rights;
1334         int error, len;
1335
1336         if (nam->sa_family != AF_UNIX)
1337                 return (EAFNOSUPPORT);
1338
1339         UNP_LINK_WLOCK_ASSERT();
1340
1341         unp = sotounpcb(so);
1342         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1343
1344         if (nam->sa_len > sizeof(struct sockaddr_un))
1345                 return (EINVAL);
1346         len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1347         if (len <= 0)
1348                 return (EINVAL);
1349         bcopy(soun->sun_path, buf, len);
1350         buf[len] = 0;
1351
1352         UNP_PCB_LOCK(unp);
1353         if (unp->unp_flags & UNP_CONNECTING) {
1354                 UNP_PCB_UNLOCK(unp);
1355                 return (EALREADY);
1356         }
1357         UNP_LINK_WUNLOCK();
1358         unp->unp_flags |= UNP_CONNECTING;
1359         UNP_PCB_UNLOCK(unp);
1360
1361         sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1362         NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1363             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1364         error = namei(&nd);
1365         if (error)
1366                 vp = NULL;
1367         else
1368                 vp = nd.ni_vp;
1369         ASSERT_VOP_LOCKED(vp, "unp_connect");
1370         NDFREE(&nd, NDF_ONLY_PNBUF);
1371         if (error)
1372                 goto bad;
1373
1374         if (vp->v_type != VSOCK) {
1375                 error = ENOTSOCK;
1376                 goto bad;
1377         }
1378 #ifdef MAC
1379         error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1380         if (error)
1381                 goto bad;
1382 #endif
1383         error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1384         if (error)
1385                 goto bad;
1386
1387         unp = sotounpcb(so);
1388         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1389
1390         /*
1391          * Lock linkage lock for two reasons: make sure v_socket is stable,
1392          * and to protect simultaneous locking of multiple pcbs.
1393          */
1394         UNP_LINK_WLOCK();
1395         VOP_UNP_CONNECT(vp, &unp2);
1396         if (unp2 == NULL) {
1397                 error = ECONNREFUSED;
1398                 goto bad2;
1399         }
1400         so2 = unp2->unp_socket;
1401         if (so->so_type != so2->so_type) {
1402                 error = EPROTOTYPE;
1403                 goto bad2;
1404         }
1405         UNP_PCB_LOCK(unp);
1406         UNP_PCB_LOCK(unp2);
1407         if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1408                 if (so2->so_options & SO_ACCEPTCONN) {
1409                         CURVNET_SET(so2->so_vnet);
1410                         so2 = sonewconn(so2, 0);
1411                         CURVNET_RESTORE();
1412                 } else
1413                         so2 = NULL;
1414                 if (so2 == NULL) {
1415                         error = ECONNREFUSED;
1416                         goto bad3;
1417                 }
1418                 unp3 = sotounpcb(so2);
1419                 UNP_PCB_LOCK(unp3);
1420                 if (unp2->unp_addr != NULL) {
1421                         bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1422                         unp3->unp_addr = (struct sockaddr_un *) sa;
1423                         sa = NULL;
1424                 }
1425
1426                 /*
1427                  * The connector's (client's) credentials are copied from its
1428                  * process structure at the time of connect() (which is now).
1429                  */
1430                 cru2x(td->td_ucred, &unp3->unp_peercred);
1431                 unp3->unp_flags |= UNP_HAVEPC;
1432
1433                 /*
1434                  * The receiver's (server's) credentials are copied from the
1435                  * unp_peercred member of socket on which the former called
1436                  * listen(); uipc_listen() cached that process's credentials
1437                  * at that time so we can use them now.
1438                  */
1439                 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1440                     sizeof(unp->unp_peercred));
1441                 unp->unp_flags |= UNP_HAVEPC;
1442                 if (unp2->unp_flags & UNP_WANTCRED)
1443                         unp3->unp_flags |= UNP_WANTCRED;
1444                 UNP_PCB_UNLOCK(unp2);
1445                 unp2 = unp3;
1446 #ifdef MAC
1447                 mac_socketpeer_set_from_socket(so, so2);
1448                 mac_socketpeer_set_from_socket(so2, so);
1449 #endif
1450         }
1451
1452         KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1453             sotounpcb(so2) == unp2,
1454             ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1455         error = unp_connect2(so, so2, PRU_CONNECT);
1456 bad3:
1457         UNP_PCB_UNLOCK(unp2);
1458         UNP_PCB_UNLOCK(unp);
1459 bad2:
1460         UNP_LINK_WUNLOCK();
1461 bad:
1462         if (vp != NULL)
1463                 vput(vp);
1464         free(sa, M_SONAME);
1465         UNP_LINK_WLOCK();
1466         UNP_PCB_LOCK(unp);
1467         unp->unp_flags &= ~UNP_CONNECTING;
1468         UNP_PCB_UNLOCK(unp);
1469         return (error);
1470 }
1471
1472 static int
1473 unp_connect2(struct socket *so, struct socket *so2, int req)
1474 {
1475         struct unpcb *unp;
1476         struct unpcb *unp2;
1477
1478         unp = sotounpcb(so);
1479         KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1480         unp2 = sotounpcb(so2);
1481         KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1482
1483         UNP_LINK_WLOCK_ASSERT();
1484         UNP_PCB_LOCK_ASSERT(unp);
1485         UNP_PCB_LOCK_ASSERT(unp2);
1486
1487         if (so2->so_type != so->so_type)
1488                 return (EPROTOTYPE);
1489         unp2->unp_flags &= ~UNP_NASCENT;
1490         unp->unp_conn = unp2;
1491
1492         switch (so->so_type) {
1493         case SOCK_DGRAM:
1494                 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1495                 soisconnected(so);
1496                 break;
1497
1498         case SOCK_STREAM:
1499         case SOCK_SEQPACKET:
1500                 unp2->unp_conn = unp;
1501                 if (req == PRU_CONNECT &&
1502                     ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1503                         soisconnecting(so);
1504                 else
1505                         soisconnected(so);
1506                 soisconnected(so2);
1507                 break;
1508
1509         default:
1510                 panic("unp_connect2");
1511         }
1512         return (0);
1513 }
1514
1515 static void
1516 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1517 {
1518         struct socket *so;
1519
1520         KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1521
1522         UNP_LINK_WLOCK_ASSERT();
1523         UNP_PCB_LOCK_ASSERT(unp);
1524         UNP_PCB_LOCK_ASSERT(unp2);
1525
1526         unp->unp_conn = NULL;
1527         switch (unp->unp_socket->so_type) {
1528         case SOCK_DGRAM:
1529                 LIST_REMOVE(unp, unp_reflink);
1530                 so = unp->unp_socket;
1531                 SOCK_LOCK(so);
1532                 so->so_state &= ~SS_ISCONNECTED;
1533                 SOCK_UNLOCK(so);
1534                 break;
1535
1536         case SOCK_STREAM:
1537         case SOCK_SEQPACKET:
1538                 soisdisconnected(unp->unp_socket);
1539                 unp2->unp_conn = NULL;
1540                 soisdisconnected(unp2->unp_socket);
1541                 break;
1542         }
1543 }
1544
1545 /*
1546  * unp_pcblist() walks the global list of struct unpcb's to generate a
1547  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1548  * sequentially, validating the generation number on each to see if it has
1549  * been detached.  All of this is necessary because copyout() may sleep on
1550  * disk I/O.
1551  */
1552 static int
1553 unp_pcblist(SYSCTL_HANDLER_ARGS)
1554 {
1555         int error, i, n;
1556         int freeunp;
1557         struct unpcb *unp, **unp_list;
1558         unp_gen_t gencnt;
1559         struct xunpgen *xug;
1560         struct unp_head *head;
1561         struct xunpcb *xu;
1562
1563         switch ((intptr_t)arg1) {
1564         case SOCK_STREAM:
1565                 head = &unp_shead;
1566                 break;
1567
1568         case SOCK_DGRAM:
1569                 head = &unp_dhead;
1570                 break;
1571
1572         case SOCK_SEQPACKET:
1573                 head = &unp_sphead;
1574                 break;
1575
1576         default:
1577                 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1578         }
1579
1580         /*
1581          * The process of preparing the PCB list is too time-consuming and
1582          * resource-intensive to repeat twice on every request.
1583          */
1584         if (req->oldptr == NULL) {
1585                 n = unp_count;
1586                 req->oldidx = 2 * (sizeof *xug)
1587                         + (n + n/8) * sizeof(struct xunpcb);
1588                 return (0);
1589         }
1590
1591         if (req->newptr != NULL)
1592                 return (EPERM);
1593
1594         /*
1595          * OK, now we're committed to doing something.
1596          */
1597         xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1598         UNP_LINK_RLOCK();
1599         gencnt = unp_gencnt;
1600         n = unp_count;
1601         UNP_LINK_RUNLOCK();
1602
1603         xug->xug_len = sizeof *xug;
1604         xug->xug_count = n;
1605         xug->xug_gen = gencnt;
1606         xug->xug_sogen = so_gencnt;
1607         error = SYSCTL_OUT(req, xug, sizeof *xug);
1608         if (error) {
1609                 free(xug, M_TEMP);
1610                 return (error);
1611         }
1612
1613         unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1614
1615         UNP_LINK_RLOCK();
1616         for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1617              unp = LIST_NEXT(unp, unp_link)) {
1618                 UNP_PCB_LOCK(unp);
1619                 if (unp->unp_gencnt <= gencnt) {
1620                         if (cr_cansee(req->td->td_ucred,
1621                             unp->unp_socket->so_cred)) {
1622                                 UNP_PCB_UNLOCK(unp);
1623                                 continue;
1624                         }
1625                         unp_list[i++] = unp;
1626                         unp->unp_refcount++;
1627                 }
1628                 UNP_PCB_UNLOCK(unp);
1629         }
1630         UNP_LINK_RUNLOCK();
1631         n = i;                  /* In case we lost some during malloc. */
1632
1633         error = 0;
1634         xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1635         for (i = 0; i < n; i++) {
1636                 unp = unp_list[i];
1637                 UNP_PCB_LOCK(unp);
1638                 unp->unp_refcount--;
1639                 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1640                         xu->xu_len = sizeof *xu;
1641                         xu->xu_unpp = unp;
1642                         /*
1643                          * XXX - need more locking here to protect against
1644                          * connect/disconnect races for SMP.
1645                          */
1646                         if (unp->unp_addr != NULL)
1647                                 bcopy(unp->unp_addr, &xu->xu_addr,
1648                                       unp->unp_addr->sun_len);
1649                         else
1650                                 bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1651                         if (unp->unp_conn != NULL &&
1652                             unp->unp_conn->unp_addr != NULL)
1653                                 bcopy(unp->unp_conn->unp_addr,
1654                                       &xu->xu_caddr,
1655                                       unp->unp_conn->unp_addr->sun_len);
1656                         else
1657                                 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1658                         xu->unp_vnode = unp->unp_vnode;
1659                         xu->unp_conn = unp->unp_conn;
1660                         xu->xu_firstref = LIST_FIRST(&unp->unp_refs);
1661                         xu->xu_nextref = LIST_NEXT(unp, unp_reflink);
1662                         xu->unp_gencnt = unp->unp_gencnt;
1663                         sotoxsocket(unp->unp_socket, &xu->xu_socket);
1664                         UNP_PCB_UNLOCK(unp);
1665                         error = SYSCTL_OUT(req, xu, sizeof *xu);
1666                 } else {
1667                         freeunp = (unp->unp_refcount == 0);
1668                         UNP_PCB_UNLOCK(unp);
1669                         if (freeunp) {
1670                                 UNP_PCB_LOCK_DESTROY(unp);
1671                                 uma_zfree(unp_zone, unp);
1672                         }
1673                 }
1674         }
1675         free(xu, M_TEMP);
1676         if (!error) {
1677                 /*
1678                  * Give the user an updated idea of our state.  If the
1679                  * generation differs from what we told her before, she knows
1680                  * that something happened while we were processing this
1681                  * request, and it might be necessary to retry.
1682                  */
1683                 xug->xug_gen = unp_gencnt;
1684                 xug->xug_sogen = so_gencnt;
1685                 xug->xug_count = unp_count;
1686                 error = SYSCTL_OUT(req, xug, sizeof *xug);
1687         }
1688         free(unp_list, M_TEMP);
1689         free(xug, M_TEMP);
1690         return (error);
1691 }
1692
1693 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1694     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1695     "List of active local datagram sockets");
1696 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1697     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1698     "List of active local stream sockets");
1699 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1700     CTLTYPE_OPAQUE | CTLFLAG_RD,
1701     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1702     "List of active local seqpacket sockets");
1703
1704 static void
1705 unp_shutdown(struct unpcb *unp)
1706 {
1707         struct unpcb *unp2;
1708         struct socket *so;
1709
1710         UNP_LINK_WLOCK_ASSERT();
1711         UNP_PCB_LOCK_ASSERT(unp);
1712
1713         unp2 = unp->unp_conn;
1714         if ((unp->unp_socket->so_type == SOCK_STREAM ||
1715             (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1716                 so = unp2->unp_socket;
1717                 if (so != NULL)
1718                         socantrcvmore(so);
1719         }
1720 }
1721
1722 static void
1723 unp_drop(struct unpcb *unp)
1724 {
1725         struct socket *so = unp->unp_socket;
1726         struct unpcb *unp2;
1727
1728         UNP_LINK_WLOCK_ASSERT();
1729         UNP_PCB_LOCK_ASSERT(unp);
1730
1731         /*
1732          * Regardless of whether the socket's peer dropped the connection
1733          * with this socket by aborting or disconnecting, POSIX requires
1734          * that ECONNRESET is returned.
1735          */
1736         so->so_error = ECONNRESET;
1737         unp2 = unp->unp_conn;
1738         if (unp2 == NULL)
1739                 return;
1740         UNP_PCB_LOCK(unp2);
1741         unp_disconnect(unp, unp2);
1742         UNP_PCB_UNLOCK(unp2);
1743 }
1744
1745 static void
1746 unp_freerights(struct filedescent **fdep, int fdcount)
1747 {
1748         struct file *fp;
1749         int i;
1750
1751         KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1752
1753         for (i = 0; i < fdcount; i++) {
1754                 fp = fdep[i]->fde_file;
1755                 filecaps_free(&fdep[i]->fde_caps);
1756                 unp_discard(fp);
1757         }
1758         free(fdep[0], M_FILECAPS);
1759 }
1760
1761 static int
1762 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1763 {
1764         struct thread *td = curthread;          /* XXX */
1765         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1766         int i;
1767         int *fdp;
1768         struct filedesc *fdesc = td->td_proc->p_fd;
1769         struct filedescent **fdep;
1770         void *data;
1771         socklen_t clen = control->m_len, datalen;
1772         int error, newfds;
1773         u_int newlen;
1774
1775         UNP_LINK_UNLOCK_ASSERT();
1776
1777         error = 0;
1778         if (controlp != NULL) /* controlp == NULL => free control messages */
1779                 *controlp = NULL;
1780         while (cm != NULL) {
1781                 if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1782                         error = EINVAL;
1783                         break;
1784                 }
1785                 data = CMSG_DATA(cm);
1786                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1787                 if (cm->cmsg_level == SOL_SOCKET
1788                     && cm->cmsg_type == SCM_RIGHTS) {
1789                         newfds = datalen / sizeof(*fdep);
1790                         if (newfds == 0)
1791                                 goto next;
1792                         fdep = data;
1793
1794                         /* If we're not outputting the descriptors free them. */
1795                         if (error || controlp == NULL) {
1796                                 unp_freerights(fdep, newfds);
1797                                 goto next;
1798                         }
1799                         FILEDESC_XLOCK(fdesc);
1800
1801                         /*
1802                          * Now change each pointer to an fd in the global
1803                          * table to an integer that is the index to the local
1804                          * fd table entry that we set up to point to the
1805                          * global one we are transferring.
1806                          */
1807                         newlen = newfds * sizeof(int);
1808                         *controlp = sbcreatecontrol(NULL, newlen,
1809                             SCM_RIGHTS, SOL_SOCKET);
1810                         if (*controlp == NULL) {
1811                                 FILEDESC_XUNLOCK(fdesc);
1812                                 error = E2BIG;
1813                                 unp_freerights(fdep, newfds);
1814                                 goto next;
1815                         }
1816
1817                         fdp = (int *)
1818                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1819                         if (fdallocn(td, 0, fdp, newfds) != 0) {
1820                                 FILEDESC_XUNLOCK(fdesc);
1821                                 error = EMSGSIZE;
1822                                 unp_freerights(fdep, newfds);
1823                                 m_freem(*controlp);
1824                                 *controlp = NULL;
1825                                 goto next;
1826                         }
1827                         for (i = 0; i < newfds; i++, fdp++) {
1828                                 _finstall(fdesc, fdep[i]->fde_file, *fdp,
1829                                     (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
1830                                     &fdep[i]->fde_caps);
1831                                 unp_externalize_fp(fdep[i]->fde_file);
1832                         }
1833                         FILEDESC_XUNLOCK(fdesc);
1834                         free(fdep[0], M_FILECAPS);
1835                 } else {
1836                         /* We can just copy anything else across. */
1837                         if (error || controlp == NULL)
1838                                 goto next;
1839                         *controlp = sbcreatecontrol(NULL, datalen,
1840                             cm->cmsg_type, cm->cmsg_level);
1841                         if (*controlp == NULL) {
1842                                 error = ENOBUFS;
1843                                 goto next;
1844                         }
1845                         bcopy(data,
1846                             CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1847                             datalen);
1848                 }
1849                 controlp = &(*controlp)->m_next;
1850
1851 next:
1852                 if (CMSG_SPACE(datalen) < clen) {
1853                         clen -= CMSG_SPACE(datalen);
1854                         cm = (struct cmsghdr *)
1855                             ((caddr_t)cm + CMSG_SPACE(datalen));
1856                 } else {
1857                         clen = 0;
1858                         cm = NULL;
1859                 }
1860         }
1861
1862         m_freem(control);
1863         return (error);
1864 }
1865
1866 static void
1867 unp_zone_change(void *tag)
1868 {
1869
1870         uma_zone_set_max(unp_zone, maxsockets);
1871 }
1872
1873 static void
1874 unp_init(void)
1875 {
1876
1877 #ifdef VIMAGE
1878         if (!IS_DEFAULT_VNET(curvnet))
1879                 return;
1880 #endif
1881         unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1882             NULL, NULL, UMA_ALIGN_PTR, 0);
1883         if (unp_zone == NULL)
1884                 panic("unp_init");
1885         uma_zone_set_max(unp_zone, maxsockets);
1886         uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1887         EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1888             NULL, EVENTHANDLER_PRI_ANY);
1889         LIST_INIT(&unp_dhead);
1890         LIST_INIT(&unp_shead);
1891         LIST_INIT(&unp_sphead);
1892         SLIST_INIT(&unp_defers);
1893         TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1894         TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1895         UNP_LINK_LOCK_INIT();
1896         UNP_DEFERRED_LOCK_INIT();
1897 }
1898
1899 static int
1900 unp_internalize(struct mbuf **controlp, struct thread *td)
1901 {
1902         struct mbuf *control = *controlp;
1903         struct proc *p = td->td_proc;
1904         struct filedesc *fdesc = p->p_fd;
1905         struct bintime *bt;
1906         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1907         struct cmsgcred *cmcred;
1908         struct filedescent *fde, **fdep, *fdev;
1909         struct file *fp;
1910         struct timeval *tv;
1911         struct timespec *ts;
1912         int i, *fdp;
1913         void *data;
1914         socklen_t clen = control->m_len, datalen;
1915         int error, oldfds;
1916         u_int newlen;
1917
1918         UNP_LINK_UNLOCK_ASSERT();
1919
1920         error = 0;
1921         *controlp = NULL;
1922         while (cm != NULL) {
1923                 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1924                     || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
1925                         error = EINVAL;
1926                         goto out;
1927                 }
1928                 data = CMSG_DATA(cm);
1929                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1930
1931                 switch (cm->cmsg_type) {
1932                 /*
1933                  * Fill in credential information.
1934                  */
1935                 case SCM_CREDS:
1936                         *controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1937                             SCM_CREDS, SOL_SOCKET);
1938                         if (*controlp == NULL) {
1939                                 error = ENOBUFS;
1940                                 goto out;
1941                         }
1942                         cmcred = (struct cmsgcred *)
1943                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1944                         cmcred->cmcred_pid = p->p_pid;
1945                         cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1946                         cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1947                         cmcred->cmcred_euid = td->td_ucred->cr_uid;
1948                         cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1949                             CMGROUP_MAX);
1950                         for (i = 0; i < cmcred->cmcred_ngroups; i++)
1951                                 cmcred->cmcred_groups[i] =
1952                                     td->td_ucred->cr_groups[i];
1953                         break;
1954
1955                 case SCM_RIGHTS:
1956                         oldfds = datalen / sizeof (int);
1957                         if (oldfds == 0)
1958                                 break;
1959                         /*
1960                          * Check that all the FDs passed in refer to legal
1961                          * files.  If not, reject the entire operation.
1962                          */
1963                         fdp = data;
1964                         FILEDESC_SLOCK(fdesc);
1965                         for (i = 0; i < oldfds; i++, fdp++) {
1966                                 fp = fget_locked(fdesc, *fdp);
1967                                 if (fp == NULL) {
1968                                         FILEDESC_SUNLOCK(fdesc);
1969                                         error = EBADF;
1970                                         goto out;
1971                                 }
1972                                 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1973                                         FILEDESC_SUNLOCK(fdesc);
1974                                         error = EOPNOTSUPP;
1975                                         goto out;
1976                                 }
1977
1978                         }
1979
1980                         /*
1981                          * Now replace the integer FDs with pointers to the
1982                          * file structure and capability rights.
1983                          */
1984                         newlen = oldfds * sizeof(fdep[0]);
1985                         *controlp = sbcreatecontrol(NULL, newlen,
1986                             SCM_RIGHTS, SOL_SOCKET);
1987                         if (*controlp == NULL) {
1988                                 FILEDESC_SUNLOCK(fdesc);
1989                                 error = E2BIG;
1990                                 goto out;
1991                         }
1992                         fdp = data;
1993                         fdep = (struct filedescent **)
1994                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1995                         fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1996                             M_WAITOK);
1997                         for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1998                                 fde = &fdesc->fd_ofiles[*fdp];
1999                                 fdep[i] = fdev;
2000                                 fdep[i]->fde_file = fde->fde_file;
2001                                 filecaps_copy(&fde->fde_caps,
2002                                     &fdep[i]->fde_caps, true);
2003                                 unp_internalize_fp(fdep[i]->fde_file);
2004                         }
2005                         FILEDESC_SUNLOCK(fdesc);
2006                         break;
2007
2008                 case SCM_TIMESTAMP:
2009                         *controlp = sbcreatecontrol(NULL, sizeof(*tv),
2010                             SCM_TIMESTAMP, SOL_SOCKET);
2011                         if (*controlp == NULL) {
2012                                 error = ENOBUFS;
2013                                 goto out;
2014                         }
2015                         tv = (struct timeval *)
2016                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2017                         microtime(tv);
2018                         break;
2019
2020                 case SCM_BINTIME:
2021                         *controlp = sbcreatecontrol(NULL, sizeof(*bt),
2022                             SCM_BINTIME, SOL_SOCKET);
2023                         if (*controlp == NULL) {
2024                                 error = ENOBUFS;
2025                                 goto out;
2026                         }
2027                         bt = (struct bintime *)
2028                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2029                         bintime(bt);
2030                         break;
2031
2032                 case SCM_REALTIME:
2033                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2034                             SCM_REALTIME, SOL_SOCKET);
2035                         if (*controlp == NULL) {
2036                                 error = ENOBUFS;
2037                                 goto out;
2038                         }
2039                         ts = (struct timespec *)
2040                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2041                         nanotime(ts);
2042                         break;
2043
2044                 case SCM_MONOTONIC:
2045                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2046                             SCM_MONOTONIC, SOL_SOCKET);
2047                         if (*controlp == NULL) {
2048                                 error = ENOBUFS;
2049                                 goto out;
2050                         }
2051                         ts = (struct timespec *)
2052                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2053                         nanouptime(ts);
2054                         break;
2055
2056                 default:
2057                         error = EINVAL;
2058                         goto out;
2059                 }
2060
2061                 controlp = &(*controlp)->m_next;
2062                 if (CMSG_SPACE(datalen) < clen) {
2063                         clen -= CMSG_SPACE(datalen);
2064                         cm = (struct cmsghdr *)
2065                             ((caddr_t)cm + CMSG_SPACE(datalen));
2066                 } else {
2067                         clen = 0;
2068                         cm = NULL;
2069                 }
2070         }
2071
2072 out:
2073         m_freem(control);
2074         return (error);
2075 }
2076
2077 static struct mbuf *
2078 unp_addsockcred(struct thread *td, struct mbuf *control)
2079 {
2080         struct mbuf *m, *n, *n_prev;
2081         struct sockcred *sc;
2082         const struct cmsghdr *cm;
2083         int ngroups;
2084         int i;
2085
2086         ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2087         m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2088         if (m == NULL)
2089                 return (control);
2090
2091         sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2092         sc->sc_uid = td->td_ucred->cr_ruid;
2093         sc->sc_euid = td->td_ucred->cr_uid;
2094         sc->sc_gid = td->td_ucred->cr_rgid;
2095         sc->sc_egid = td->td_ucred->cr_gid;
2096         sc->sc_ngroups = ngroups;
2097         for (i = 0; i < sc->sc_ngroups; i++)
2098                 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2099
2100         /*
2101          * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2102          * created SCM_CREDS control message (struct sockcred) has another
2103          * format.
2104          */
2105         if (control != NULL)
2106                 for (n = control, n_prev = NULL; n != NULL;) {
2107                         cm = mtod(n, struct cmsghdr *);
2108                         if (cm->cmsg_level == SOL_SOCKET &&
2109                             cm->cmsg_type == SCM_CREDS) {
2110                                 if (n_prev == NULL)
2111                                         control = n->m_next;
2112                                 else
2113                                         n_prev->m_next = n->m_next;
2114                                 n = m_free(n);
2115                         } else {
2116                                 n_prev = n;
2117                                 n = n->m_next;
2118                         }
2119                 }
2120
2121         /* Prepend it to the head. */
2122         m->m_next = control;
2123         return (m);
2124 }
2125
2126 static struct unpcb *
2127 fptounp(struct file *fp)
2128 {
2129         struct socket *so;
2130
2131         if (fp->f_type != DTYPE_SOCKET)
2132                 return (NULL);
2133         if ((so = fp->f_data) == NULL)
2134                 return (NULL);
2135         if (so->so_proto->pr_domain != &localdomain)
2136                 return (NULL);
2137         return sotounpcb(so);
2138 }
2139
2140 static void
2141 unp_discard(struct file *fp)
2142 {
2143         struct unp_defer *dr;
2144
2145         if (unp_externalize_fp(fp)) {
2146                 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2147                 dr->ud_fp = fp;
2148                 UNP_DEFERRED_LOCK();
2149                 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2150                 UNP_DEFERRED_UNLOCK();
2151                 atomic_add_int(&unp_defers_count, 1);
2152                 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2153         } else
2154                 (void) closef(fp, (struct thread *)NULL);
2155 }
2156
2157 static void
2158 unp_process_defers(void *arg __unused, int pending)
2159 {
2160         struct unp_defer *dr;
2161         SLIST_HEAD(, unp_defer) drl;
2162         int count;
2163
2164         SLIST_INIT(&drl);
2165         for (;;) {
2166                 UNP_DEFERRED_LOCK();
2167                 if (SLIST_FIRST(&unp_defers) == NULL) {
2168                         UNP_DEFERRED_UNLOCK();
2169                         break;
2170                 }
2171                 SLIST_SWAP(&unp_defers, &drl, unp_defer);
2172                 UNP_DEFERRED_UNLOCK();
2173                 count = 0;
2174                 while ((dr = SLIST_FIRST(&drl)) != NULL) {
2175                         SLIST_REMOVE_HEAD(&drl, ud_link);
2176                         closef(dr->ud_fp, NULL);
2177                         free(dr, M_TEMP);
2178                         count++;
2179                 }
2180                 atomic_add_int(&unp_defers_count, -count);
2181         }
2182 }
2183
2184 static void
2185 unp_internalize_fp(struct file *fp)
2186 {
2187         struct unpcb *unp;
2188
2189         UNP_LINK_WLOCK();
2190         if ((unp = fptounp(fp)) != NULL) {
2191                 unp->unp_file = fp;
2192                 unp->unp_msgcount++;
2193         }
2194         fhold(fp);
2195         unp_rights++;
2196         UNP_LINK_WUNLOCK();
2197 }
2198
2199 static int
2200 unp_externalize_fp(struct file *fp)
2201 {
2202         struct unpcb *unp;
2203         int ret;
2204
2205         UNP_LINK_WLOCK();
2206         if ((unp = fptounp(fp)) != NULL) {
2207                 unp->unp_msgcount--;
2208                 ret = 1;
2209         } else
2210                 ret = 0;
2211         unp_rights--;
2212         UNP_LINK_WUNLOCK();
2213         return (ret);
2214 }
2215
2216 /*
2217  * unp_defer indicates whether additional work has been defered for a future
2218  * pass through unp_gc().  It is thread local and does not require explicit
2219  * synchronization.
2220  */
2221 static int      unp_marked;
2222 static int      unp_unreachable;
2223
2224 static void
2225 unp_accessable(struct filedescent **fdep, int fdcount)
2226 {
2227         struct unpcb *unp;
2228         struct file *fp;
2229         int i;
2230
2231         for (i = 0; i < fdcount; i++) {
2232                 fp = fdep[i]->fde_file;
2233                 if ((unp = fptounp(fp)) == NULL)
2234                         continue;
2235                 if (unp->unp_gcflag & UNPGC_REF)
2236                         continue;
2237                 unp->unp_gcflag &= ~UNPGC_DEAD;
2238                 unp->unp_gcflag |= UNPGC_REF;
2239                 unp_marked++;
2240         }
2241 }
2242
2243 static void
2244 unp_gc_process(struct unpcb *unp)
2245 {
2246         struct socket *so, *soa;
2247         struct file *fp;
2248
2249         /* Already processed. */
2250         if (unp->unp_gcflag & UNPGC_SCANNED)
2251                 return;
2252         fp = unp->unp_file;
2253
2254         /*
2255          * Check for a socket potentially in a cycle.  It must be in a
2256          * queue as indicated by msgcount, and this must equal the file
2257          * reference count.  Note that when msgcount is 0 the file is NULL.
2258          */
2259         if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2260             unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2261                 unp->unp_gcflag |= UNPGC_DEAD;
2262                 unp_unreachable++;
2263                 return;
2264         }
2265
2266         so = unp->unp_socket;
2267         SOCK_LOCK(so);
2268         if (SOLISTENING(so)) {
2269                 /*
2270                  * Mark all sockets in our accept queue.
2271                  */
2272                 TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2273                         if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2274                                 continue;
2275                         SOCKBUF_LOCK(&soa->so_rcv);
2276                         unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2277                         SOCKBUF_UNLOCK(&soa->so_rcv);
2278                 }
2279         } else {
2280                 /*
2281                  * Mark all sockets we reference with RIGHTS.
2282                  */
2283                 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2284                         SOCKBUF_LOCK(&so->so_rcv);
2285                         unp_scan(so->so_rcv.sb_mb, unp_accessable);
2286                         SOCKBUF_UNLOCK(&so->so_rcv);
2287                 }
2288         }
2289         SOCK_UNLOCK(so);
2290         unp->unp_gcflag |= UNPGC_SCANNED;
2291 }
2292
2293 static int unp_recycled;
2294 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 
2295     "Number of unreachable sockets claimed by the garbage collector.");
2296
2297 static int unp_taskcount;
2298 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 
2299     "Number of times the garbage collector has run.");
2300
2301 static void
2302 unp_gc(__unused void *arg, int pending)
2303 {
2304         struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2305                                     NULL };
2306         struct unp_head **head;
2307         struct file *f, **unref;
2308         struct unpcb *unp;
2309         int i, total;
2310
2311         unp_taskcount++;
2312         UNP_LINK_RLOCK();
2313         /*
2314          * First clear all gc flags from previous runs, apart from
2315          * UNPGC_IGNORE_RIGHTS.
2316          */
2317         for (head = heads; *head != NULL; head++)
2318                 LIST_FOREACH(unp, *head, unp_link)
2319                         unp->unp_gcflag =
2320                             (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2321
2322         /*
2323          * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2324          * is reachable all of the sockets it references are reachable.
2325          * Stop the scan once we do a complete loop without discovering
2326          * a new reachable socket.
2327          */
2328         do {
2329                 unp_unreachable = 0;
2330                 unp_marked = 0;
2331                 for (head = heads; *head != NULL; head++)
2332                         LIST_FOREACH(unp, *head, unp_link)
2333                                 unp_gc_process(unp);
2334         } while (unp_marked);
2335         UNP_LINK_RUNLOCK();
2336         if (unp_unreachable == 0)
2337                 return;
2338
2339         /*
2340          * Allocate space for a local list of dead unpcbs.
2341          */
2342         unref = malloc(unp_unreachable * sizeof(struct file *),
2343             M_TEMP, M_WAITOK);
2344
2345         /*
2346          * Iterate looking for sockets which have been specifically marked
2347          * as as unreachable and store them locally.
2348          */
2349         UNP_LINK_RLOCK();
2350         for (total = 0, head = heads; *head != NULL; head++)
2351                 LIST_FOREACH(unp, *head, unp_link)
2352                         if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2353                                 f = unp->unp_file;
2354                                 if (unp->unp_msgcount == 0 || f == NULL ||
2355                                     f->f_count != unp->unp_msgcount)
2356                                         continue;
2357                                 unref[total++] = f;
2358                                 fhold(f);
2359                                 KASSERT(total <= unp_unreachable,
2360                                     ("unp_gc: incorrect unreachable count."));
2361                         }
2362         UNP_LINK_RUNLOCK();
2363
2364         /*
2365          * Now flush all sockets, free'ing rights.  This will free the
2366          * struct files associated with these sockets but leave each socket
2367          * with one remaining ref.
2368          */
2369         for (i = 0; i < total; i++) {
2370                 struct socket *so;
2371
2372                 so = unref[i]->f_data;
2373                 CURVNET_SET(so->so_vnet);
2374                 sorflush(so);
2375                 CURVNET_RESTORE();
2376         }
2377
2378         /*
2379          * And finally release the sockets so they can be reclaimed.
2380          */
2381         for (i = 0; i < total; i++)
2382                 fdrop(unref[i], NULL);
2383         unp_recycled += total;
2384         free(unref, M_TEMP);
2385 }
2386
2387 static void
2388 unp_dispose_mbuf(struct mbuf *m)
2389 {
2390
2391         if (m)
2392                 unp_scan(m, unp_freerights);
2393 }
2394
2395 /*
2396  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2397  */
2398 static void
2399 unp_dispose(struct socket *so)
2400 {
2401         struct unpcb *unp;
2402
2403         unp = sotounpcb(so);
2404         UNP_LINK_WLOCK();
2405         unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2406         UNP_LINK_WUNLOCK();
2407         if (!SOLISTENING(so))
2408                 unp_dispose_mbuf(so->so_rcv.sb_mb);
2409 }
2410
2411 static void
2412 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2413 {
2414         struct mbuf *m;
2415         struct cmsghdr *cm;
2416         void *data;
2417         socklen_t clen, datalen;
2418
2419         while (m0 != NULL) {
2420                 for (m = m0; m; m = m->m_next) {
2421                         if (m->m_type != MT_CONTROL)
2422                                 continue;
2423
2424                         cm = mtod(m, struct cmsghdr *);
2425                         clen = m->m_len;
2426
2427                         while (cm != NULL) {
2428                                 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2429                                         break;
2430
2431                                 data = CMSG_DATA(cm);
2432                                 datalen = (caddr_t)cm + cm->cmsg_len
2433                                     - (caddr_t)data;
2434
2435                                 if (cm->cmsg_level == SOL_SOCKET &&
2436                                     cm->cmsg_type == SCM_RIGHTS) {
2437                                         (*op)(data, datalen /
2438                                             sizeof(struct filedescent *));
2439                                 }
2440
2441                                 if (CMSG_SPACE(datalen) < clen) {
2442                                         clen -= CMSG_SPACE(datalen);
2443                                         cm = (struct cmsghdr *)
2444                                             ((caddr_t)cm + CMSG_SPACE(datalen));
2445                                 } else {
2446                                         clen = 0;
2447                                         cm = NULL;
2448                                 }
2449                         }
2450                 }
2451                 m0 = m0->m_nextpkt;
2452         }
2453 }
2454
2455 /*
2456  * A helper function called by VFS before socket-type vnode reclamation.
2457  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2458  * use count.
2459  */
2460 void
2461 vfs_unp_reclaim(struct vnode *vp)
2462 {
2463         struct unpcb *unp;
2464         int active;
2465
2466         ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2467         KASSERT(vp->v_type == VSOCK,
2468             ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2469
2470         active = 0;
2471         UNP_LINK_WLOCK();
2472         VOP_UNP_CONNECT(vp, &unp);
2473         if (unp == NULL)
2474                 goto done;
2475         UNP_PCB_LOCK(unp);
2476         if (unp->unp_vnode == vp) {
2477                 VOP_UNP_DETACH(vp);
2478                 unp->unp_vnode = NULL;
2479                 active = 1;
2480         }
2481         UNP_PCB_UNLOCK(unp);
2482 done:
2483         UNP_LINK_WUNLOCK();
2484         if (active)
2485                 vunref(vp);
2486 }
2487
2488 #ifdef DDB
2489 static void
2490 db_print_indent(int indent)
2491 {
2492         int i;
2493
2494         for (i = 0; i < indent; i++)
2495                 db_printf(" ");
2496 }
2497
2498 static void
2499 db_print_unpflags(int unp_flags)
2500 {
2501         int comma;
2502
2503         comma = 0;
2504         if (unp_flags & UNP_HAVEPC) {
2505                 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2506                 comma = 1;
2507         }
2508         if (unp_flags & UNP_WANTCRED) {
2509                 db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2510                 comma = 1;
2511         }
2512         if (unp_flags & UNP_CONNWAIT) {
2513                 db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2514                 comma = 1;
2515         }
2516         if (unp_flags & UNP_CONNECTING) {
2517                 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2518                 comma = 1;
2519         }
2520         if (unp_flags & UNP_BINDING) {
2521                 db_printf("%sUNP_BINDING", comma ? ", " : "");
2522                 comma = 1;
2523         }
2524 }
2525
2526 static void
2527 db_print_xucred(int indent, struct xucred *xu)
2528 {
2529         int comma, i;
2530
2531         db_print_indent(indent);
2532         db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2533             xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2534         db_print_indent(indent);
2535         db_printf("cr_groups: ");
2536         comma = 0;
2537         for (i = 0; i < xu->cr_ngroups; i++) {
2538                 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2539                 comma = 1;
2540         }
2541         db_printf("\n");
2542 }
2543
2544 static void
2545 db_print_unprefs(int indent, struct unp_head *uh)
2546 {
2547         struct unpcb *unp;
2548         int counter;
2549
2550         counter = 0;
2551         LIST_FOREACH(unp, uh, unp_reflink) {
2552                 if (counter % 4 == 0)
2553                         db_print_indent(indent);
2554                 db_printf("%p  ", unp);
2555                 if (counter % 4 == 3)
2556                         db_printf("\n");
2557                 counter++;
2558         }
2559         if (counter != 0 && counter % 4 != 0)
2560                 db_printf("\n");
2561 }
2562
2563 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2564 {
2565         struct unpcb *unp;
2566
2567         if (!have_addr) {
2568                 db_printf("usage: show unpcb <addr>\n");
2569                 return;
2570         }
2571         unp = (struct unpcb *)addr;
2572
2573         db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2574             unp->unp_vnode);
2575
2576         db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2577             unp->unp_conn);
2578
2579         db_printf("unp_refs:\n");
2580         db_print_unprefs(2, &unp->unp_refs);
2581
2582         /* XXXRW: Would be nice to print the full address, if any. */
2583         db_printf("unp_addr: %p\n", unp->unp_addr);
2584
2585         db_printf("unp_gencnt: %llu\n",
2586             (unsigned long long)unp->unp_gencnt);
2587
2588         db_printf("unp_flags: %x (", unp->unp_flags);
2589         db_print_unpflags(unp->unp_flags);
2590         db_printf(")\n");
2591
2592         db_printf("unp_peercred:\n");
2593         db_print_xucred(2, &unp->unp_peercred);
2594
2595         db_printf("unp_refcount: %u\n", unp->unp_refcount);
2596 }
2597 #endif