]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/net/bpf_zerocopy.c
cdn-patch: offer option to mount /etc/keys before attaching geli devices
[FreeBSD/FreeBSD.git] / sys / net / bpf_zerocopy.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007 Seccuris Inc.
5  * All rights reserved.
6  *
7  * This software was developed by Robert N. M. Watson under contract to
8  * Seccuris Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_bpf.h"
36
37 #include <sys/param.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/sf_buf.h>
44 #include <sys/socket.h>
45 #include <sys/uio.h>
46
47 #include <machine/atomic.h>
48
49 #include <net/if.h>
50 #include <net/bpf.h>
51 #include <net/bpf_zerocopy.h>
52 #include <net/bpfdesc.h>
53
54 #include <vm/vm.h>
55 #include <vm/vm_param.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_extern.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_page.h>
60
61 /*
62  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
63  * are mapped into the kernel address space using sf_bufs and used directly
64  * by BPF.  Memory is wired since page faults cannot be tolerated in the
65  * contexts where the buffers are copied to (locks held, interrupt context,
66  * etc).  Access to shared memory buffers is synchronized using a header on
67  * each buffer, allowing the number of system calls to go to zero as BPF
68  * reaches saturation (buffers filled as fast as they can be drained by the
69  * user process).  Full details of the protocol for communicating between the
70  * user process and BPF may be found in bpf(4).
71  */
72
73 /*
74  * Maximum number of pages per buffer.  Since all BPF devices use two, the
75  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
76  * sf_bufs may be an issue, so do not set this too high.  On older systems,
77  * kernel address space limits may also be an issue.
78  */
79 #define BPF_MAX_PAGES   512
80
81 /*
82  * struct zbuf describes a memory buffer loaned by a user process to the
83  * kernel.  We represent this as a series of pages managed using an array of
84  * sf_bufs.  Even though the memory is contiguous in user space, it may not
85  * be mapped contiguously in the kernel (i.e., a set of physically
86  * non-contiguous pages in the direct map region) so we must implement
87  * scatter-gather copying.  One significant mitigating factor is that on
88  * systems with a direct memory map, we can avoid TLB misses.
89  *
90  * At the front of the shared memory region is a bpf_zbuf_header, which
91  * contains shared control data to allow user space and the kernel to
92  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
93  * knows that the space is not available.
94  */
95 struct zbuf {
96         vm_offset_t      zb_uaddr;      /* User address at time of setup. */
97         size_t           zb_size;       /* Size of buffer, incl. header. */
98         u_int            zb_numpages;   /* Number of pages. */
99         int              zb_flags;      /* Flags on zbuf. */
100         struct sf_buf   **zb_pages;     /* Pages themselves. */
101         struct bpf_zbuf_header  *zb_header;     /* Shared header. */
102 };
103
104 /*
105  * When a buffer has been assigned to userspace, flag it as such, as the
106  * buffer may remain in the store position as a result of the user process
107  * not yet having acknowledged the buffer in the hold position yet.
108  */
109 #define ZBUF_FLAG_ASSIGNED      0x00000001      /* Set when owned by user. */
110
111 /*
112  * Release a page we've previously wired.
113  */
114 static void
115 zbuf_page_free(vm_page_t pp)
116 {
117
118         vm_page_lock(pp);
119         if (vm_page_unwire(pp, PQ_INACTIVE) && pp->object == NULL)
120                 vm_page_free(pp);
121         vm_page_unlock(pp);
122 }
123
124 /*
125  * Free an sf_buf with attached page.
126  */
127 static void
128 zbuf_sfbuf_free(struct sf_buf *sf)
129 {
130         vm_page_t pp;
131
132         pp = sf_buf_page(sf);
133         sf_buf_free(sf);
134         zbuf_page_free(pp);
135 }
136
137 /*
138  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
139  * allocated zbufs to be freed so that it may be used even during a zbuf
140  * setup.
141  */
142 static void
143 zbuf_free(struct zbuf *zb)
144 {
145         int i;
146
147         for (i = 0; i < zb->zb_numpages; i++) {
148                 if (zb->zb_pages[i] != NULL)
149                         zbuf_sfbuf_free(zb->zb_pages[i]);
150         }
151         free(zb->zb_pages, M_BPF);
152         free(zb, M_BPF);
153 }
154
155 /*
156  * Given a user pointer to a page of user memory, return an sf_buf for the
157  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
158  * deadlock and use SFB_NOWAIT.
159  */
160 static struct sf_buf *
161 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
162 {
163         struct sf_buf *sf;
164         vm_page_t pp;
165
166         if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
167             VM_PROT_WRITE, &pp, 1) < 0)
168                 return (NULL);
169         vm_page_lock(pp);
170         vm_page_wire(pp);
171         vm_page_unhold(pp);
172         vm_page_unlock(pp);
173         sf = sf_buf_alloc(pp, SFB_NOWAIT);
174         if (sf == NULL) {
175                 zbuf_page_free(pp);
176                 return (NULL);
177         }
178         return (sf);
179 }
180
181 /*
182  * Create a zbuf describing a range of user address space memory.  Validate
183  * page alignment, size requirements, etc.
184  */
185 static int
186 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
187     struct zbuf **zbp)
188 {
189         struct zbuf *zb;
190         struct vm_map *map;
191         int error, i;
192
193         *zbp = NULL;
194
195         /*
196          * User address must be page-aligned.
197          */
198         if (uaddr & PAGE_MASK)
199                 return (EINVAL);
200
201         /*
202          * Length must be an integer number of full pages.
203          */
204         if (len & PAGE_MASK)
205                 return (EINVAL);
206
207         /*
208          * Length must not exceed per-buffer resource limit.
209          */
210         if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
211                 return (EINVAL);
212
213         /*
214          * Allocate the buffer and set up each page with is own sf_buf.
215          */
216         error = 0;
217         zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
218         zb->zb_uaddr = uaddr;
219         zb->zb_size = len;
220         zb->zb_numpages = len / PAGE_SIZE;
221         zb->zb_pages = malloc(sizeof(struct sf_buf *) *
222             zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
223         map = &td->td_proc->p_vmspace->vm_map;
224         for (i = 0; i < zb->zb_numpages; i++) {
225                 zb->zb_pages[i] = zbuf_sfbuf_get(map,
226                     uaddr + (i * PAGE_SIZE));
227                 if (zb->zb_pages[i] == NULL) {
228                         error = EFAULT;
229                         goto error;
230                 }
231         }
232         zb->zb_header =
233             (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
234         bzero(zb->zb_header, sizeof(*zb->zb_header));
235         *zbp = zb;
236         return (0);
237
238 error:
239         zbuf_free(zb);
240         return (error);
241 }
242
243 /*
244  * Copy bytes from a source into the specified zbuf.  The caller is
245  * responsible for performing bounds checking, etc.
246  */
247 void
248 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
249     void *src, u_int len)
250 {
251         u_int count, page, poffset;
252         u_char *src_bytes;
253         struct zbuf *zb;
254
255         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
256             ("bpf_zerocopy_append_bytes: not in zbuf mode"));
257         KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
258
259         src_bytes = (u_char *)src;
260         zb = (struct zbuf *)buf;
261
262         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
263             ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
264
265         /*
266          * Scatter-gather copy to user pages mapped into kernel address space
267          * using sf_bufs: copy up to a page at a time.
268          */
269         offset += sizeof(struct bpf_zbuf_header);
270         page = offset / PAGE_SIZE;
271         poffset = offset % PAGE_SIZE;
272         while (len > 0) {
273                 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
274                    " page overflow (%d p %d np)\n", page, zb->zb_numpages));
275
276                 count = min(len, PAGE_SIZE - poffset);
277                 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
278                     poffset, count);
279                 poffset += count;
280                 if (poffset == PAGE_SIZE) {
281                         poffset = 0;
282                         page++;
283                 }
284                 KASSERT(poffset < PAGE_SIZE,
285                     ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
286                     poffset));
287                 len -= count;
288                 src_bytes += count;
289         }
290 }
291
292 /*
293  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
294  * scatter-gather both from mbufs, which may be fragmented over memory, and
295  * to pages, which may not be contiguously mapped in kernel address space.
296  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
297  * checking that this will not exceed the buffer limit.
298  */
299 void
300 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
301     void *src, u_int len)
302 {
303         u_int count, moffset, page, poffset;
304         const struct mbuf *m;
305         struct zbuf *zb;
306
307         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
308             ("bpf_zerocopy_append_mbuf not in zbuf mode"));
309         KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
310
311         m = (struct mbuf *)src;
312         zb = (struct zbuf *)buf;
313
314         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
315             ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
316
317         /*
318          * Scatter gather both from an mbuf chain and to a user page set
319          * mapped into kernel address space using sf_bufs.  If we're lucky,
320          * each mbuf requires one copy operation, but if page alignment and
321          * mbuf alignment work out less well, we'll be doing two copies per
322          * mbuf.
323          */
324         offset += sizeof(struct bpf_zbuf_header);
325         page = offset / PAGE_SIZE;
326         poffset = offset % PAGE_SIZE;
327         moffset = 0;
328         while (len > 0) {
329                 KASSERT(page < zb->zb_numpages,
330                     ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
331                     "np)\n", page, zb->zb_numpages));
332                 KASSERT(m != NULL,
333                     ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
334
335                 count = min(m->m_len - moffset, len);
336                 count = min(count, PAGE_SIZE - poffset);
337                 bcopy(mtod(m, u_char *) + moffset,
338                     ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
339                     count);
340                 poffset += count;
341                 if (poffset == PAGE_SIZE) {
342                         poffset = 0;
343                         page++;
344                 }
345                 KASSERT(poffset < PAGE_SIZE,
346                     ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
347                     poffset));
348                 moffset += count;
349                 if (moffset == m->m_len) {
350                         m = m->m_next;
351                         moffset = 0;
352                 }
353                 len -= count;
354         }
355 }
356
357 /*
358  * Notification from the BPF framework that a buffer in the store position is
359  * rejecting packets and may be considered full.  We mark the buffer as
360  * immutable and assign to userspace so that it is immediately available for
361  * the user process to access.
362  */
363 void
364 bpf_zerocopy_buffull(struct bpf_d *d)
365 {
366         struct zbuf *zb;
367
368         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
369             ("bpf_zerocopy_buffull: not in zbuf mode"));
370
371         zb = (struct zbuf *)d->bd_sbuf;
372         KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
373
374         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
375                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
376                 zb->zb_header->bzh_kernel_len = d->bd_slen;
377                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
378         }
379 }
380
381 /*
382  * Notification from the BPF framework that a buffer has moved into the held
383  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
384  * the user process know and flag the buffer as assigned if it hasn't already
385  * been marked assigned due to filling while it was in the store position.
386  *
387  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
388  * on bd_hbuf and bd_hlen.
389  */
390 void
391 bpf_zerocopy_bufheld(struct bpf_d *d)
392 {
393         struct zbuf *zb;
394
395         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
396             ("bpf_zerocopy_bufheld: not in zbuf mode"));
397
398         zb = (struct zbuf *)d->bd_hbuf;
399         KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
400
401         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
402                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
403                 zb->zb_header->bzh_kernel_len = d->bd_hlen;
404                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
405         }
406 }
407
408 /*
409  * Notification from the BPF framework that the free buffer has been been
410  * rotated out of the held position to the free position.  This happens when
411  * the user acknowledges the held buffer.
412  */
413 void
414 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
415 {
416         struct zbuf *zb;
417
418         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
419             ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
420
421         KASSERT(d->bd_fbuf != NULL,
422             ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
423         zb = (struct zbuf *)d->bd_fbuf;
424         zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
425 }
426
427 /*
428  * Query from the BPF framework regarding whether the buffer currently in the
429  * held position can be moved to the free position, which can be indicated by
430  * the user process making their generation number equal to the kernel
431  * generation number.
432  */
433 int
434 bpf_zerocopy_canfreebuf(struct bpf_d *d)
435 {
436         struct zbuf *zb;
437
438         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
439             ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
440
441         zb = (struct zbuf *)d->bd_hbuf;
442         if (zb == NULL)
443                 return (0);
444         if (zb->zb_header->bzh_kernel_gen ==
445             atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
446                 return (1);
447         return (0);
448 }
449
450 /*
451  * Query from the BPF framework as to whether or not the buffer current in
452  * the store position can actually be written to.  This may return false if
453  * the store buffer is assigned to userspace before the hold buffer is
454  * acknowledged.
455  */
456 int
457 bpf_zerocopy_canwritebuf(struct bpf_d *d)
458 {
459         struct zbuf *zb;
460
461         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
462             ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
463
464         zb = (struct zbuf *)d->bd_sbuf;
465         KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
466
467         if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
468                 return (0);
469         return (1);
470 }
471
472 /*
473  * Free zero copy buffers at request of descriptor.
474  */
475 void
476 bpf_zerocopy_free(struct bpf_d *d)
477 {
478         struct zbuf *zb;
479
480         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
481             ("bpf_zerocopy_free: not in zbuf mode"));
482
483         zb = (struct zbuf *)d->bd_sbuf;
484         if (zb != NULL)
485                 zbuf_free(zb);
486         zb = (struct zbuf *)d->bd_hbuf;
487         if (zb != NULL)
488                 zbuf_free(zb);
489         zb = (struct zbuf *)d->bd_fbuf;
490         if (zb != NULL)
491                 zbuf_free(zb);
492 }
493
494 /*
495  * Ioctl to return the maximum buffer size.
496  */
497 int
498 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
499 {
500
501         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
502             ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
503
504         *i = BPF_MAX_PAGES * PAGE_SIZE;
505         return (0);
506 }
507
508 /*
509  * Ioctl to force rotation of the two buffers, if there's any data available.
510  * This can be used by user space to implement timeouts when waiting for a
511  * buffer to fill.
512  */
513 int
514 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
515     struct bpf_zbuf *bz)
516 {
517         struct zbuf *bzh;
518
519         bzero(bz, sizeof(*bz));
520         BPFD_LOCK(d);
521         if (d->bd_hbuf == NULL && d->bd_slen != 0) {
522                 ROTATE_BUFFERS(d);
523                 bzh = (struct zbuf *)d->bd_hbuf;
524                 bz->bz_bufa = (void *)bzh->zb_uaddr;
525                 bz->bz_buflen = d->bd_hlen;
526         }
527         BPFD_UNLOCK(d);
528         return (0);
529 }
530
531 /*
532  * Ioctl to configure zero-copy buffers -- may be done only once.
533  */
534 int
535 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
536     struct bpf_zbuf *bz)
537 {
538         struct zbuf *zba, *zbb;
539         int error;
540
541         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
542             ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
543
544         /*
545          * Must set both buffers.  Cannot clear them.
546          */
547         if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
548                 return (EINVAL);
549
550         /*
551          * Buffers must have a size greater than 0.  Alignment and other size
552          * validity checking is done in zbuf_setup().
553          */
554         if (bz->bz_buflen == 0)
555                 return (EINVAL);
556
557         /*
558          * Allocate new buffers.
559          */
560         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
561             &zba);
562         if (error)
563                 return (error);
564         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
565             &zbb);
566         if (error) {
567                 zbuf_free(zba);
568                 return (error);
569         }
570
571         /*
572          * We only allow buffers to be installed once, so atomically check
573          * that no buffers are currently installed and install new buffers.
574          */
575         BPFD_LOCK(d);
576         if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
577             d->bd_bif != NULL) {
578                 BPFD_UNLOCK(d);
579                 zbuf_free(zba);
580                 zbuf_free(zbb);
581                 return (EINVAL);
582         }
583
584         /*
585          * Point BPF descriptor at buffers; initialize sbuf as zba so that
586          * it is always filled first in the sequence, per bpf(4).
587          */
588         d->bd_fbuf = (caddr_t)zbb;
589         d->bd_sbuf = (caddr_t)zba;
590         d->bd_slen = 0;
591         d->bd_hlen = 0;
592
593         /*
594          * We expose only the space left in the buffer after the size of the
595          * shared management region.
596          */
597         d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
598         BPFD_UNLOCK(d);
599         return (0);
600 }