]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/net/rtsock.c
Import lib9p 9d5aee77bcc1bf0e79b0a3bfefff5fdf2146283c.
[FreeBSD/FreeBSD.git] / sys / net / rtsock.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      @(#)rtsock.c    8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_route.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_llatbl.h>
61 #include <net/if_types.h>
62 #include <net/netisr.h>
63 #include <net/raw_cb.h>
64 #include <net/route.h>
65 #include <net/route/route_ctl.h>
66 #include <net/route/route_var.h>
67 #ifdef RADIX_MPATH
68 #include <net/radix_mpath.h>
69 #endif
70 #include <net/vnet.h>
71
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #include <netinet/ip_carp.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #endif
79 #include <net/route/nhop.h>
80
81 #ifdef COMPAT_FREEBSD32
82 #include <sys/mount.h>
83 #include <compat/freebsd32/freebsd32.h>
84
85 struct if_msghdr32 {
86         uint16_t ifm_msglen;
87         uint8_t ifm_version;
88         uint8_t ifm_type;
89         int32_t ifm_addrs;
90         int32_t ifm_flags;
91         uint16_t ifm_index;
92         uint16_t _ifm_spare1;
93         struct  if_data ifm_data;
94 };
95
96 struct if_msghdrl32 {
97         uint16_t ifm_msglen;
98         uint8_t ifm_version;
99         uint8_t ifm_type;
100         int32_t ifm_addrs;
101         int32_t ifm_flags;
102         uint16_t ifm_index;
103         uint16_t _ifm_spare1;
104         uint16_t ifm_len;
105         uint16_t ifm_data_off;
106         uint32_t _ifm_spare2;
107         struct  if_data ifm_data;
108 };
109
110 struct ifa_msghdrl32 {
111         uint16_t ifam_msglen;
112         uint8_t ifam_version;
113         uint8_t ifam_type;
114         int32_t ifam_addrs;
115         int32_t ifam_flags;
116         uint16_t ifam_index;
117         uint16_t _ifam_spare1;
118         uint16_t ifam_len;
119         uint16_t ifam_data_off;
120         int32_t ifam_metric;
121         struct  if_data ifam_data;
122 };
123
124 #define SA_SIZE32(sa)                                           \
125     (  (((struct sockaddr *)(sa))->sa_len == 0) ?               \
126         sizeof(int)             :                               \
127         1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
128
129 #endif /* COMPAT_FREEBSD32 */
130
131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
132
133 /* NB: these are not modified */
134 static struct   sockaddr route_src = { 2, PF_ROUTE, };
135 static struct   sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
136
137 /* These are external hooks for CARP. */
138 int     (*carp_get_vhid_p)(struct ifaddr *);
139
140 /*
141  * Used by rtsock/raw_input callback code to decide whether to filter the update
142  * notification to a socket bound to a particular FIB.
143  */
144 #define RTS_FILTER_FIB  M_PROTO8
145
146 typedef struct {
147         int     ip_count;       /* attached w/ AF_INET */
148         int     ip6_count;      /* attached w/ AF_INET6 */
149         int     any_count;      /* total attached */
150 } route_cb_t;
151 VNET_DEFINE_STATIC(route_cb_t, route_cb);
152 #define V_route_cb VNET(route_cb)
153
154 struct mtx rtsock_mtx;
155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
156
157 #define RTSOCK_LOCK()   mtx_lock(&rtsock_mtx)
158 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
159 #define RTSOCK_LOCK_ASSERT()    mtx_assert(&rtsock_mtx, MA_OWNED)
160
161 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
162
163 struct walkarg {
164         int     w_tmemsize;
165         int     w_op, w_arg;
166         caddr_t w_tmem;
167         struct sysctl_req *w_req;
168 };
169
170 static void     rts_input(struct mbuf *m);
171 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
172 static int      rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
173                         struct walkarg *w, int *plen);
174 static int      rt_xaddrs(caddr_t cp, caddr_t cplim,
175                         struct rt_addrinfo *rtinfo);
176 static int      sysctl_dumpentry(struct radix_node *rn, void *vw);
177 static int      sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh,
178                         uint32_t weight, struct walkarg *w);
179 static int      sysctl_iflist(int af, struct walkarg *w);
180 static int      sysctl_ifmalist(int af, struct walkarg *w);
181 static int      route_output(struct mbuf *m, struct socket *so, ...);
182 static void     rt_getmetrics(const struct rtentry *rt,
183                         const struct nhop_object *nh, struct rt_metrics *out);
184 static void     rt_dispatch(struct mbuf *, sa_family_t);
185 static int      handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
186                         struct rt_msghdr *rtm, struct rib_cmd_info *rc);
187 static int      update_rtm_from_rc(struct rt_addrinfo *info,
188                         struct rt_msghdr **prtm, int alloc_len,
189                         struct rib_cmd_info *rc, struct nhop_object *nh);
190 static void     send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
191                         struct mbuf *m, sa_family_t saf, u_int fibnum,
192                         int rtm_errno);
193 static int      can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
194
195 static struct netisr_handler rtsock_nh = {
196         .nh_name = "rtsock",
197         .nh_handler = rts_input,
198         .nh_proto = NETISR_ROUTE,
199         .nh_policy = NETISR_POLICY_SOURCE,
200 };
201
202 static int
203 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
204 {
205         int error, qlimit;
206
207         netisr_getqlimit(&rtsock_nh, &qlimit);
208         error = sysctl_handle_int(oidp, &qlimit, 0, req);
209         if (error || !req->newptr)
210                 return (error);
211         if (qlimit < 1)
212                 return (EINVAL);
213         return (netisr_setqlimit(&rtsock_nh, qlimit));
214 }
215 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
216     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
217     0, 0, sysctl_route_netisr_maxqlen, "I",
218     "maximum routing socket dispatch queue length");
219
220 static void
221 vnet_rts_init(void)
222 {
223         int tmp;
224
225         if (IS_DEFAULT_VNET(curvnet)) {
226                 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
227                         rtsock_nh.nh_qlimit = tmp;
228                 netisr_register(&rtsock_nh);
229         }
230 #ifdef VIMAGE
231          else
232                 netisr_register_vnet(&rtsock_nh);
233 #endif
234 }
235 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
236     vnet_rts_init, 0);
237
238 #ifdef VIMAGE
239 static void
240 vnet_rts_uninit(void)
241 {
242
243         netisr_unregister_vnet(&rtsock_nh);
244 }
245 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
246     vnet_rts_uninit, 0);
247 #endif
248
249 static int
250 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
251     struct rawcb *rp)
252 {
253         int fibnum;
254
255         KASSERT(m != NULL, ("%s: m is NULL", __func__));
256         KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
257         KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
258
259         /* No filtering requested. */
260         if ((m->m_flags & RTS_FILTER_FIB) == 0)
261                 return (0);
262
263         /* Check if it is a rts and the fib matches the one of the socket. */
264         fibnum = M_GETFIB(m);
265         if (proto->sp_family != PF_ROUTE ||
266             rp->rcb_socket == NULL ||
267             rp->rcb_socket->so_fibnum == fibnum)
268                 return (0);
269
270         /* Filtering requested and no match, the socket shall be skipped. */
271         return (1);
272 }
273
274 static void
275 rts_input(struct mbuf *m)
276 {
277         struct sockproto route_proto;
278         unsigned short *family;
279         struct m_tag *tag;
280
281         route_proto.sp_family = PF_ROUTE;
282         tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
283         if (tag != NULL) {
284                 family = (unsigned short *)(tag + 1);
285                 route_proto.sp_protocol = *family;
286                 m_tag_delete(m, tag);
287         } else
288                 route_proto.sp_protocol = 0;
289
290         raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
291 }
292
293 /*
294  * It really doesn't make any sense at all for this code to share much
295  * with raw_usrreq.c, since its functionality is so restricted.  XXX
296  */
297 static void
298 rts_abort(struct socket *so)
299 {
300
301         raw_usrreqs.pru_abort(so);
302 }
303
304 static void
305 rts_close(struct socket *so)
306 {
307
308         raw_usrreqs.pru_close(so);
309 }
310
311 /* pru_accept is EOPNOTSUPP */
312
313 static int
314 rts_attach(struct socket *so, int proto, struct thread *td)
315 {
316         struct rawcb *rp;
317         int error;
318
319         KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
320
321         /* XXX */
322         rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
323
324         so->so_pcb = (caddr_t)rp;
325         so->so_fibnum = td->td_proc->p_fibnum;
326         error = raw_attach(so, proto);
327         rp = sotorawcb(so);
328         if (error) {
329                 so->so_pcb = NULL;
330                 free(rp, M_PCB);
331                 return error;
332         }
333         RTSOCK_LOCK();
334         switch(rp->rcb_proto.sp_protocol) {
335         case AF_INET:
336                 V_route_cb.ip_count++;
337                 break;
338         case AF_INET6:
339                 V_route_cb.ip6_count++;
340                 break;
341         }
342         V_route_cb.any_count++;
343         RTSOCK_UNLOCK();
344         soisconnected(so);
345         so->so_options |= SO_USELOOPBACK;
346         return 0;
347 }
348
349 static int
350 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
351 {
352
353         return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
354 }
355
356 static int
357 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
358 {
359
360         return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
361 }
362
363 /* pru_connect2 is EOPNOTSUPP */
364 /* pru_control is EOPNOTSUPP */
365
366 static void
367 rts_detach(struct socket *so)
368 {
369         struct rawcb *rp = sotorawcb(so);
370
371         KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
372
373         RTSOCK_LOCK();
374         switch(rp->rcb_proto.sp_protocol) {
375         case AF_INET:
376                 V_route_cb.ip_count--;
377                 break;
378         case AF_INET6:
379                 V_route_cb.ip6_count--;
380                 break;
381         }
382         V_route_cb.any_count--;
383         RTSOCK_UNLOCK();
384         raw_usrreqs.pru_detach(so);
385 }
386
387 static int
388 rts_disconnect(struct socket *so)
389 {
390
391         return (raw_usrreqs.pru_disconnect(so));
392 }
393
394 /* pru_listen is EOPNOTSUPP */
395
396 static int
397 rts_peeraddr(struct socket *so, struct sockaddr **nam)
398 {
399
400         return (raw_usrreqs.pru_peeraddr(so, nam));
401 }
402
403 /* pru_rcvd is EOPNOTSUPP */
404 /* pru_rcvoob is EOPNOTSUPP */
405
406 static int
407 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
408          struct mbuf *control, struct thread *td)
409 {
410
411         return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
412 }
413
414 /* pru_sense is null */
415
416 static int
417 rts_shutdown(struct socket *so)
418 {
419
420         return (raw_usrreqs.pru_shutdown(so));
421 }
422
423 static int
424 rts_sockaddr(struct socket *so, struct sockaddr **nam)
425 {
426
427         return (raw_usrreqs.pru_sockaddr(so, nam));
428 }
429
430 static struct pr_usrreqs route_usrreqs = {
431         .pru_abort =            rts_abort,
432         .pru_attach =           rts_attach,
433         .pru_bind =             rts_bind,
434         .pru_connect =          rts_connect,
435         .pru_detach =           rts_detach,
436         .pru_disconnect =       rts_disconnect,
437         .pru_peeraddr =         rts_peeraddr,
438         .pru_send =             rts_send,
439         .pru_shutdown =         rts_shutdown,
440         .pru_sockaddr =         rts_sockaddr,
441         .pru_close =            rts_close,
442 };
443
444 #ifndef _SOCKADDR_UNION_DEFINED
445 #define _SOCKADDR_UNION_DEFINED
446 /*
447  * The union of all possible address formats we handle.
448  */
449 union sockaddr_union {
450         struct sockaddr         sa;
451         struct sockaddr_in      sin;
452         struct sockaddr_in6     sin6;
453 };
454 #endif /* _SOCKADDR_UNION_DEFINED */
455
456 static int
457 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
458     struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
459 {
460 #if defined(INET) || defined(INET6)
461         struct epoch_tracker et;
462 #endif
463
464         /* First, see if the returned address is part of the jail. */
465         if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
466                 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
467                 return (0);
468         }
469
470         switch (info->rti_info[RTAX_DST]->sa_family) {
471 #ifdef INET
472         case AF_INET:
473         {
474                 struct in_addr ia;
475                 struct ifaddr *ifa;
476                 int found;
477
478                 found = 0;
479                 /*
480                  * Try to find an address on the given outgoing interface
481                  * that belongs to the jail.
482                  */
483                 NET_EPOCH_ENTER(et);
484                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
485                         struct sockaddr *sa;
486                         sa = ifa->ifa_addr;
487                         if (sa->sa_family != AF_INET)
488                                 continue;
489                         ia = ((struct sockaddr_in *)sa)->sin_addr;
490                         if (prison_check_ip4(cred, &ia) == 0) {
491                                 found = 1;
492                                 break;
493                         }
494                 }
495                 NET_EPOCH_EXIT(et);
496                 if (!found) {
497                         /*
498                          * As a last resort return the 'default' jail address.
499                          */
500                         ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
501                             sin_addr;
502                         if (prison_get_ip4(cred, &ia) != 0)
503                                 return (ESRCH);
504                 }
505                 bzero(&saun->sin, sizeof(struct sockaddr_in));
506                 saun->sin.sin_len = sizeof(struct sockaddr_in);
507                 saun->sin.sin_family = AF_INET;
508                 saun->sin.sin_addr.s_addr = ia.s_addr;
509                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
510                 break;
511         }
512 #endif
513 #ifdef INET6
514         case AF_INET6:
515         {
516                 struct in6_addr ia6;
517                 struct ifaddr *ifa;
518                 int found;
519
520                 found = 0;
521                 /*
522                  * Try to find an address on the given outgoing interface
523                  * that belongs to the jail.
524                  */
525                 NET_EPOCH_ENTER(et);
526                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
527                         struct sockaddr *sa;
528                         sa = ifa->ifa_addr;
529                         if (sa->sa_family != AF_INET6)
530                                 continue;
531                         bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
532                             &ia6, sizeof(struct in6_addr));
533                         if (prison_check_ip6(cred, &ia6) == 0) {
534                                 found = 1;
535                                 break;
536                         }
537                 }
538                 NET_EPOCH_EXIT(et);
539                 if (!found) {
540                         /*
541                          * As a last resort return the 'default' jail address.
542                          */
543                         ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
544                             sin6_addr;
545                         if (prison_get_ip6(cred, &ia6) != 0)
546                                 return (ESRCH);
547                 }
548                 bzero(&saun->sin6, sizeof(struct sockaddr_in6));
549                 saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
550                 saun->sin6.sin6_family = AF_INET6;
551                 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
552                 if (sa6_recoverscope(&saun->sin6) != 0)
553                         return (ESRCH);
554                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
555                 break;
556         }
557 #endif
558         default:
559                 return (ESRCH);
560         }
561         return (0);
562 }
563
564 /*
565  * Fills in @info based on userland-provided @rtm message.
566  *
567  * Returns 0 on success.
568  */
569 static int
570 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
571 {
572         int error;
573         sa_family_t saf;
574
575         rtm->rtm_pid = curproc->p_pid;
576         info->rti_addrs = rtm->rtm_addrs;
577
578         info->rti_mflags = rtm->rtm_inits;
579         info->rti_rmx = &rtm->rtm_rmx;
580
581         /*
582          * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
583          * link-local address because rtrequest requires addresses with
584          * embedded scope id.
585          */
586         if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
587                 return (EINVAL);
588
589         if (rtm->rtm_flags & RTF_RNH_LOCKED)
590                 return (EINVAL);
591         info->rti_flags = rtm->rtm_flags;
592         if (info->rti_info[RTAX_DST] == NULL ||
593             info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
594             (info->rti_info[RTAX_GATEWAY] != NULL &&
595              info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
596                 return (EINVAL);
597         saf = info->rti_info[RTAX_DST]->sa_family;
598         /*
599          * Verify that the caller has the appropriate privilege; RTM_GET
600          * is the only operation the non-superuser is allowed.
601          */
602         if (rtm->rtm_type != RTM_GET) {
603                 error = priv_check(curthread, PRIV_NET_ROUTE);
604                 if (error != 0)
605                         return (error);
606         }
607
608         /*
609          * The given gateway address may be an interface address.
610          * For example, issuing a "route change" command on a route
611          * entry that was created from a tunnel, and the gateway
612          * address given is the local end point. In this case the 
613          * RTF_GATEWAY flag must be cleared or the destination will
614          * not be reachable even though there is no error message.
615          */
616         if (info->rti_info[RTAX_GATEWAY] != NULL &&
617             info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
618                 struct rt_addrinfo ginfo;
619                 struct sockaddr *gdst;
620                 struct sockaddr_storage ss;
621
622                 bzero(&ginfo, sizeof(ginfo));
623                 bzero(&ss, sizeof(ss));
624                 ss.ss_len = sizeof(ss);
625
626                 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
627                 gdst = info->rti_info[RTAX_GATEWAY];
628
629                 /* 
630                  * A host route through the loopback interface is 
631                  * installed for each interface adddress. In pre 8.0
632                  * releases the interface address of a PPP link type
633                  * is not reachable locally. This behavior is fixed as 
634                  * part of the new L2/L3 redesign and rewrite work. The
635                  * signature of this interface address route is the
636                  * AF_LINK sa_family type of the gateway, and the
637                  * rt_ifp has the IFF_LOOPBACK flag set.
638                  */
639                 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
640                         if (ss.ss_family == AF_LINK &&
641                             ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
642                                 info->rti_flags &= ~RTF_GATEWAY;
643                                 info->rti_flags |= RTF_GWFLAG_COMPAT;
644                         }
645                         rib_free_info(&ginfo);
646                 }
647         }
648
649         return (0);
650 }
651
652 static struct nhop_object *
653 select_nhop(struct nhop_object *nh, const struct sockaddr *gw)
654 {
655         if (!NH_IS_NHGRP(nh))
656                 return (nh);
657 #ifdef ROUTE_MPATH
658         struct weightened_nhop *wn;
659         uint32_t num_nhops;
660         wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
661         if (gw == NULL)
662                 return (wn[0].nh);
663         for (int i = 0; i < num_nhops; i++) {
664                 if (match_nhop_gw(wn[i].nh, gw))
665                         return (wn[i].nh);
666         }
667 #endif
668         return (NULL);
669 }
670
671 /*
672  * Handles RTM_GET message from routing socket, returning matching rt.
673  *
674  * Returns:
675  * 0 on success, with locked and referenced matching rt in @rt_nrt
676  * errno of failure
677  */
678 static int
679 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
680     struct rt_msghdr *rtm, struct rib_cmd_info *rc)
681 {
682         RIB_RLOCK_TRACKER;
683         struct rib_head *rnh;
684         struct nhop_object *nh;
685         sa_family_t saf;
686
687         saf = info->rti_info[RTAX_DST]->sa_family;
688
689         rnh = rt_tables_get_rnh(fibnum, saf);
690         if (rnh == NULL)
691                 return (EAFNOSUPPORT);
692
693         RIB_RLOCK(rnh);
694
695         if (info->rti_info[RTAX_NETMASK] == NULL) {
696                 /*
697                  * Provide longest prefix match for
698                  * address lookup (no mask).
699                  * 'route -n get addr'
700                  */
701                 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
702                     info->rti_info[RTAX_DST], &rnh->head);
703         } else
704                 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
705                     info->rti_info[RTAX_DST],
706                     info->rti_info[RTAX_NETMASK], &rnh->head);
707
708         if (rc->rc_rt == NULL) {
709                 RIB_RUNLOCK(rnh);
710                 return (ESRCH);
711         }
712
713         nh = select_nhop(rc->rc_rt->rt_nhop, info->rti_info[RTAX_GATEWAY]);
714         if (nh == NULL) {
715                 RIB_RUNLOCK(rnh);
716                 return (ESRCH);
717         }
718         /*
719          * If performing proxied L2 entry insertion, and
720          * the actual PPP host entry is found, perform
721          * another search to retrieve the prefix route of
722          * the local end point of the PPP link.
723          * TODO: move this logic to userland.
724          */
725         if (rtm->rtm_flags & RTF_ANNOUNCE) {
726                 struct sockaddr laddr;
727                 struct nhop_object *nh;
728
729                 nh = rc->rc_rt->rt_nhop;
730                 if (nh->nh_ifp != NULL &&
731                     nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
732                         struct ifaddr *ifa;
733
734                         ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
735                                         RT_ALL_FIBS);
736                         if (ifa != NULL)
737                                 rt_maskedcopy(ifa->ifa_addr,
738                                               &laddr,
739                                               ifa->ifa_netmask);
740                 } else
741                         rt_maskedcopy(nh->nh_ifa->ifa_addr,
742                                       &laddr,
743                                       nh->nh_ifa->ifa_netmask);
744                 /* 
745                  * refactor rt and no lock operation necessary
746                  */
747                 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
748                     &rnh->head);
749                 if (rc->rc_rt == NULL) {
750                         RIB_RUNLOCK(rnh);
751                         return (ESRCH);
752                 }
753                 nh = select_nhop(rc->rc_rt->rt_nhop, info->rti_info[RTAX_GATEWAY]);
754                 if (nh == NULL) {
755                         RIB_RUNLOCK(rnh);
756                         return (ESRCH);
757                 }
758         }
759         rc->rc_nh_new = nh;
760         rc->rc_nh_weight = rc->rc_rt->rt_weight;
761         RIB_RUNLOCK(rnh);
762
763         return (0);
764 }
765
766 /*
767  * Update sockaddrs, flags, etc in @prtm based on @rc data.
768  * rtm can be reallocated.
769  *
770  * Returns 0 on success, along with pointer to (potentially reallocated)
771  *  rtm.
772  *
773  */
774 static int
775 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
776     int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
777 {
778         struct sockaddr_storage netmask_ss;
779         struct walkarg w;
780         union sockaddr_union saun;
781         struct rt_msghdr *rtm, *orig_rtm = NULL;
782         struct ifnet *ifp;
783         int error, len;
784
785         rtm = *prtm;
786
787         info->rti_info[RTAX_DST] = rt_key(rc->rc_rt);
788         info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
789         info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rc->rc_rt),
790             rt_mask(rc->rc_rt), &netmask_ss);
791         info->rti_info[RTAX_GENMASK] = 0;
792         ifp = nh->nh_ifp;
793         if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
794                 if (ifp) {
795                         info->rti_info[RTAX_IFP] =
796                             ifp->if_addr->ifa_addr;
797                         error = rtm_get_jailed(info, ifp, nh,
798                             &saun, curthread->td_ucred);
799                         if (error != 0)
800                                 return (error);
801                         if (ifp->if_flags & IFF_POINTOPOINT)
802                                 info->rti_info[RTAX_BRD] =
803                                     nh->nh_ifa->ifa_dstaddr;
804                         rtm->rtm_index = ifp->if_index;
805                 } else {
806                         info->rti_info[RTAX_IFP] = NULL;
807                         info->rti_info[RTAX_IFA] = NULL;
808                 }
809         } else if (ifp != NULL)
810                 rtm->rtm_index = ifp->if_index;
811
812         /* Check if we need to realloc storage */
813         rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
814         if (len > alloc_len) {
815                 struct rt_msghdr *tmp_rtm;
816
817                 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
818                 if (tmp_rtm == NULL)
819                         return (ENOBUFS);
820                 bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
821                 orig_rtm = rtm;
822                 rtm = tmp_rtm;
823                 alloc_len = len;
824
825                 /*
826                  * Delay freeing original rtm as info contains
827                  * data referencing it.
828                  */
829         }
830
831         w.w_tmem = (caddr_t)rtm;
832         w.w_tmemsize = alloc_len;
833         rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
834
835         rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
836         if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
837                 rtm->rtm_flags = RTF_GATEWAY | 
838                         (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
839         rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
840         rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
841         rtm->rtm_addrs = info->rti_addrs;
842
843         if (orig_rtm != NULL)
844                 free(orig_rtm, M_TEMP);
845         *prtm = rtm;
846
847         return (0);
848 }
849
850 #ifdef ROUTE_MPATH
851 static void
852 save_del_notification(struct rib_cmd_info *rc, void *_cbdata)
853 {
854         struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
855
856         if (rc->rc_cmd == RTM_DELETE)
857                 *rc_new = *rc;
858 }
859
860 static void
861 save_add_notification(struct rib_cmd_info *rc, void *_cbdata)
862 {
863         struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
864
865         if (rc->rc_cmd == RTM_ADD)
866                 *rc_new = *rc;
867 }
868 #endif
869
870 /*ARGSUSED*/
871 static int
872 route_output(struct mbuf *m, struct socket *so, ...)
873 {
874         struct rt_msghdr *rtm = NULL;
875         struct rtentry *rt = NULL;
876         struct rt_addrinfo info;
877         struct epoch_tracker et;
878 #ifdef INET6
879         struct sockaddr_storage ss;
880         struct sockaddr_in6 *sin6;
881         int i, rti_need_deembed = 0;
882 #endif
883         int alloc_len = 0, len, error = 0, fibnum;
884         sa_family_t saf = AF_UNSPEC;
885         struct walkarg w;
886         struct rib_cmd_info rc;
887         struct nhop_object *nh;
888
889         fibnum = so->so_fibnum;
890 #define senderr(e) { error = e; goto flush;}
891         if (m == NULL || ((m->m_len < sizeof(long)) &&
892                        (m = m_pullup(m, sizeof(long))) == NULL))
893                 return (ENOBUFS);
894         if ((m->m_flags & M_PKTHDR) == 0)
895                 panic("route_output");
896         NET_EPOCH_ENTER(et);
897         len = m->m_pkthdr.len;
898         if (len < sizeof(*rtm) ||
899             len != mtod(m, struct rt_msghdr *)->rtm_msglen)
900                 senderr(EINVAL);
901
902         /*
903          * Most of current messages are in range 200-240 bytes,
904          * minimize possible re-allocation on reply using larger size
905          * buffer aligned on 1k boundaty.
906          */
907         alloc_len = roundup2(len, 1024);
908         if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
909                 senderr(ENOBUFS);
910
911         m_copydata(m, 0, len, (caddr_t)rtm);
912         bzero(&info, sizeof(info));
913         bzero(&w, sizeof(w));
914         nh = NULL;
915
916         if (rtm->rtm_version != RTM_VERSION) {
917                 /* Do not touch message since format is unknown */
918                 free(rtm, M_TEMP);
919                 rtm = NULL;
920                 senderr(EPROTONOSUPPORT);
921         }
922
923         /*
924          * Starting from here, it is possible
925          * to alter original message and insert
926          * caller PID and error value.
927          */
928
929         if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
930                 senderr(error);
931         }
932
933         saf = info.rti_info[RTAX_DST]->sa_family;
934
935         /* support for new ARP code */
936         if (rtm->rtm_flags & RTF_LLDATA) {
937                 error = lla_rt_output(rtm, &info);
938 #ifdef INET6
939                 if (error == 0)
940                         rti_need_deembed = 1;
941 #endif
942                 goto flush;
943         }
944
945         switch (rtm->rtm_type) {
946         case RTM_ADD:
947         case RTM_CHANGE:
948                 if (rtm->rtm_type == RTM_ADD) {
949                         if (info.rti_info[RTAX_GATEWAY] == NULL)
950                                 senderr(EINVAL);
951                 }
952                 error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
953                 if (error == 0) {
954 #ifdef INET6
955                         rti_need_deembed = 1;
956 #endif
957 #ifdef ROUTE_MPATH
958                         if (NH_IS_NHGRP(rc.rc_nh_new) ||
959                             (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) {
960                                 struct rib_cmd_info rc_simple = {};
961                                 rib_decompose_notification(&rc,
962                                     save_add_notification, (void *)&rc_simple);
963                                 rc = rc_simple;
964                         }
965 #endif
966                         nh = rc.rc_nh_new;
967                         rtm->rtm_index = nh->nh_ifp->if_index;
968                 }
969                 break;
970
971         case RTM_DELETE:
972                 error = rib_action(fibnum, RTM_DELETE, &info, &rc);
973                 if (error == 0) {
974 #ifdef ROUTE_MPATH
975                         if (NH_IS_NHGRP(rc.rc_nh_old) ||
976                             (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) {
977                                 struct rib_cmd_info rc_simple = {};
978                                 rib_decompose_notification(&rc,
979                                     save_del_notification, (void *)&rc_simple);
980                                 rc = rc_simple;
981                         }
982 #endif
983                         nh = rc.rc_nh_old;
984                         goto report;
985                 }
986 #ifdef INET6
987                 /* rt_msg2() will not be used when RTM_DELETE fails. */
988                 rti_need_deembed = 1;
989 #endif
990                 break;
991
992         case RTM_GET:
993                 error = handle_rtm_get(&info, fibnum, rtm, &rc);
994                 if (error != 0)
995                         senderr(error);
996                 nh = rc.rc_nh_new;
997
998 report:
999                 if (!can_export_rte(curthread->td_ucred, rc.rc_rt)) {
1000                         senderr(ESRCH);
1001                 }
1002
1003                 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
1004                 /*
1005                  * Note that some sockaddr pointers may have changed to
1006                  * point to memory outsize @rtm. Some may be pointing
1007                  * to the on-stack variables.
1008                  * Given that, any pointer in @info CANNOT BE USED.
1009                  */
1010
1011                 /*
1012                  * scopeid deembedding has been performed while
1013                  * writing updated rtm in rtsock_msg_buffer().
1014                  * With that in mind, skip deembedding procedure below.
1015                  */
1016 #ifdef INET6
1017                 rti_need_deembed = 0;
1018 #endif
1019                 if (error != 0)
1020                         senderr(error);
1021                 break;
1022
1023         default:
1024                 senderr(EOPNOTSUPP);
1025         }
1026
1027 flush:
1028         NET_EPOCH_EXIT(et);
1029         rt = NULL;
1030
1031 #ifdef INET6
1032         if (rtm != NULL) {
1033                 if (rti_need_deembed) {
1034                         /* sin6_scope_id is recovered before sending rtm. */
1035                         sin6 = (struct sockaddr_in6 *)&ss;
1036                         for (i = 0; i < RTAX_MAX; i++) {
1037                                 if (info.rti_info[i] == NULL)
1038                                         continue;
1039                                 if (info.rti_info[i]->sa_family != AF_INET6)
1040                                         continue;
1041                                 bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1042                                 if (sa6_recoverscope(sin6) == 0)
1043                                         bcopy(sin6, info.rti_info[i],
1044                                                     sizeof(*sin6));
1045                         }
1046                 }
1047         }
1048 #endif
1049         send_rtm_reply(so, rtm, m, saf, fibnum, error);
1050
1051         return (error);
1052 }
1053
1054 /*
1055  * Sends the prepared reply message in @rtm to all rtsock clients.
1056  * Frees @m and @rtm.
1057  *
1058  */
1059 static void
1060 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1061     sa_family_t saf, u_int fibnum, int rtm_errno)
1062 {
1063         struct rawcb *rp = NULL;
1064
1065         /*
1066          * Check to see if we don't want our own messages.
1067          */
1068         if ((so->so_options & SO_USELOOPBACK) == 0) {
1069                 if (V_route_cb.any_count <= 1) {
1070                         if (rtm != NULL)
1071                                 free(rtm, M_TEMP);
1072                         m_freem(m);
1073                         return;
1074                 }
1075                 /* There is another listener, so construct message */
1076                 rp = sotorawcb(so);
1077         }
1078
1079         if (rtm != NULL) {
1080                 if (rtm_errno!= 0)
1081                         rtm->rtm_errno = rtm_errno;
1082                 else
1083                         rtm->rtm_flags |= RTF_DONE;
1084
1085                 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1086                 if (m->m_pkthdr.len < rtm->rtm_msglen) {
1087                         m_freem(m);
1088                         m = NULL;
1089                 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
1090                         m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1091
1092                 free(rtm, M_TEMP);
1093         }
1094         if (m != NULL) {
1095                 M_SETFIB(m, fibnum);
1096                 m->m_flags |= RTS_FILTER_FIB;
1097                 if (rp) {
1098                         /*
1099                          * XXX insure we don't get a copy by
1100                          * invalidating our protocol
1101                          */
1102                         unsigned short family = rp->rcb_proto.sp_family;
1103                         rp->rcb_proto.sp_family = 0;
1104                         rt_dispatch(m, saf);
1105                         rp->rcb_proto.sp_family = family;
1106                 } else
1107                         rt_dispatch(m, saf);
1108         }
1109 }
1110
1111 static void
1112 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
1113     struct rt_metrics *out)
1114 {
1115
1116         bzero(out, sizeof(*out));
1117         out->rmx_mtu = nh->nh_mtu;
1118         out->rmx_weight = rt->rt_weight;
1119         out->rmx_nhidx = nhop_get_idx(nh);
1120         /* Kernel -> userland timebase conversion. */
1121         out->rmx_expire = rt->rt_expire ?
1122             rt->rt_expire - time_uptime + time_second : 0;
1123 }
1124
1125 /*
1126  * Extract the addresses of the passed sockaddrs.
1127  * Do a little sanity checking so as to avoid bad memory references.
1128  * This data is derived straight from userland.
1129  */
1130 static int
1131 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1132 {
1133         struct sockaddr *sa;
1134         int i;
1135
1136         for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1137                 if ((rtinfo->rti_addrs & (1 << i)) == 0)
1138                         continue;
1139                 sa = (struct sockaddr *)cp;
1140                 /*
1141                  * It won't fit.
1142                  */
1143                 if (cp + sa->sa_len > cplim)
1144                         return (EINVAL);
1145                 /*
1146                  * there are no more.. quit now
1147                  * If there are more bits, they are in error.
1148                  * I've seen this. route(1) can evidently generate these. 
1149                  * This causes kernel to core dump.
1150                  * for compatibility, If we see this, point to a safe address.
1151                  */
1152                 if (sa->sa_len == 0) {
1153                         rtinfo->rti_info[i] = &sa_zero;
1154                         return (0); /* should be EINVAL but for compat */
1155                 }
1156                 /* accept it */
1157 #ifdef INET6
1158                 if (sa->sa_family == AF_INET6)
1159                         sa6_embedscope((struct sockaddr_in6 *)sa,
1160                             V_ip6_use_defzone);
1161 #endif
1162                 rtinfo->rti_info[i] = sa;
1163                 cp += SA_SIZE(sa);
1164         }
1165         return (0);
1166 }
1167
1168 /*
1169  * Fill in @dmask with valid netmask leaving original @smask
1170  * intact. Mostly used with radix netmasks.
1171  */
1172 struct sockaddr *
1173 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
1174     struct sockaddr_storage *dmask)
1175 {
1176         if (dst == NULL || smask == NULL)
1177                 return (NULL);
1178
1179         memset(dmask, 0, dst->sa_len);
1180         memcpy(dmask, smask, smask->sa_len);
1181         dmask->ss_len = dst->sa_len;
1182         dmask->ss_family = dst->sa_family;
1183
1184         return ((struct sockaddr *)dmask);
1185 }
1186
1187 /*
1188  * Writes information related to @rtinfo object to newly-allocated mbuf.
1189  * Assumes MCLBYTES is enough to construct any message.
1190  * Used for OS notifications of vaious events (if/ifa announces,etc)
1191  *
1192  * Returns allocated mbuf or NULL on failure.
1193  */
1194 static struct mbuf *
1195 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1196 {
1197         struct rt_msghdr *rtm;
1198         struct mbuf *m;
1199         int i;
1200         struct sockaddr *sa;
1201 #ifdef INET6
1202         struct sockaddr_storage ss;
1203         struct sockaddr_in6 *sin6;
1204 #endif
1205         int len, dlen;
1206
1207         switch (type) {
1208         case RTM_DELADDR:
1209         case RTM_NEWADDR:
1210                 len = sizeof(struct ifa_msghdr);
1211                 break;
1212
1213         case RTM_DELMADDR:
1214         case RTM_NEWMADDR:
1215                 len = sizeof(struct ifma_msghdr);
1216                 break;
1217
1218         case RTM_IFINFO:
1219                 len = sizeof(struct if_msghdr);
1220                 break;
1221
1222         case RTM_IFANNOUNCE:
1223         case RTM_IEEE80211:
1224                 len = sizeof(struct if_announcemsghdr);
1225                 break;
1226
1227         default:
1228                 len = sizeof(struct rt_msghdr);
1229         }
1230
1231         /* XXXGL: can we use MJUMPAGESIZE cluster here? */
1232         KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1233         if (len > MHLEN)
1234                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1235         else
1236                 m = m_gethdr(M_NOWAIT, MT_DATA);
1237         if (m == NULL)
1238                 return (m);
1239
1240         m->m_pkthdr.len = m->m_len = len;
1241         rtm = mtod(m, struct rt_msghdr *);
1242         bzero((caddr_t)rtm, len);
1243         for (i = 0; i < RTAX_MAX; i++) {
1244                 if ((sa = rtinfo->rti_info[i]) == NULL)
1245                         continue;
1246                 rtinfo->rti_addrs |= (1 << i);
1247                 dlen = SA_SIZE(sa);
1248 #ifdef INET6
1249                 if (sa->sa_family == AF_INET6) {
1250                         sin6 = (struct sockaddr_in6 *)&ss;
1251                         bcopy(sa, sin6, sizeof(*sin6));
1252                         if (sa6_recoverscope(sin6) == 0)
1253                                 sa = (struct sockaddr *)sin6;
1254                 }
1255 #endif
1256                 m_copyback(m, len, dlen, (caddr_t)sa);
1257                 len += dlen;
1258         }
1259         if (m->m_pkthdr.len != len) {
1260                 m_freem(m);
1261                 return (NULL);
1262         }
1263         rtm->rtm_msglen = len;
1264         rtm->rtm_version = RTM_VERSION;
1265         rtm->rtm_type = type;
1266         return (m);
1267 }
1268
1269 /*
1270  * Writes information related to @rtinfo object to preallocated buffer.
1271  * Stores needed size in @plen. If @w is NULL, calculates size without
1272  * writing.
1273  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1274  *
1275  * Returns 0 on success.
1276  *
1277  */
1278 static int
1279 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1280 {
1281         int i;
1282         int len, buflen = 0, dlen;
1283         caddr_t cp = NULL;
1284         struct rt_msghdr *rtm = NULL;
1285 #ifdef INET6
1286         struct sockaddr_storage ss;
1287         struct sockaddr_in6 *sin6;
1288 #endif
1289 #ifdef COMPAT_FREEBSD32
1290         bool compat32 = false;
1291 #endif
1292
1293         switch (type) {
1294         case RTM_DELADDR:
1295         case RTM_NEWADDR:
1296                 if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1297 #ifdef COMPAT_FREEBSD32
1298                         if (w->w_req->flags & SCTL_MASK32) {
1299                                 len = sizeof(struct ifa_msghdrl32);
1300                                 compat32 = true;
1301                         } else
1302 #endif
1303                                 len = sizeof(struct ifa_msghdrl);
1304                 } else
1305                         len = sizeof(struct ifa_msghdr);
1306                 break;
1307
1308         case RTM_IFINFO:
1309 #ifdef COMPAT_FREEBSD32
1310                 if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1311                         if (w->w_op == NET_RT_IFLISTL)
1312                                 len = sizeof(struct if_msghdrl32);
1313                         else
1314                                 len = sizeof(struct if_msghdr32);
1315                         compat32 = true;
1316                         break;
1317                 }
1318 #endif
1319                 if (w != NULL && w->w_op == NET_RT_IFLISTL)
1320                         len = sizeof(struct if_msghdrl);
1321                 else
1322                         len = sizeof(struct if_msghdr);
1323                 break;
1324
1325         case RTM_NEWMADDR:
1326                 len = sizeof(struct ifma_msghdr);
1327                 break;
1328
1329         default:
1330                 len = sizeof(struct rt_msghdr);
1331         }
1332
1333         if (w != NULL) {
1334                 rtm = (struct rt_msghdr *)w->w_tmem;
1335                 buflen = w->w_tmemsize - len;
1336                 cp = (caddr_t)w->w_tmem + len;
1337         }
1338
1339         rtinfo->rti_addrs = 0;
1340         for (i = 0; i < RTAX_MAX; i++) {
1341                 struct sockaddr *sa;
1342
1343                 if ((sa = rtinfo->rti_info[i]) == NULL)
1344                         continue;
1345                 rtinfo->rti_addrs |= (1 << i);
1346 #ifdef COMPAT_FREEBSD32
1347                 if (compat32)
1348                         dlen = SA_SIZE32(sa);
1349                 else
1350 #endif
1351                         dlen = SA_SIZE(sa);
1352                 if (cp != NULL && buflen >= dlen) {
1353 #ifdef INET6
1354                         if (sa->sa_family == AF_INET6) {
1355                                 sin6 = (struct sockaddr_in6 *)&ss;
1356                                 bcopy(sa, sin6, sizeof(*sin6));
1357                                 if (sa6_recoverscope(sin6) == 0)
1358                                         sa = (struct sockaddr *)sin6;
1359                         }
1360 #endif
1361                         bcopy((caddr_t)sa, cp, (unsigned)dlen);
1362                         cp += dlen;
1363                         buflen -= dlen;
1364                 } else if (cp != NULL) {
1365                         /*
1366                          * Buffer too small. Count needed size
1367                          * and return with error.
1368                          */
1369                         cp = NULL;
1370                 }
1371
1372                 len += dlen;
1373         }
1374
1375         if (cp != NULL) {
1376                 dlen = ALIGN(len) - len;
1377                 if (buflen < dlen)
1378                         cp = NULL;
1379                 else {
1380                         bzero(cp, dlen);
1381                         cp += dlen;
1382                         buflen -= dlen;
1383                 }
1384         }
1385         len = ALIGN(len);
1386
1387         if (cp != NULL) {
1388                 /* fill header iff buffer is large enough */
1389                 rtm->rtm_version = RTM_VERSION;
1390                 rtm->rtm_type = type;
1391                 rtm->rtm_msglen = len;
1392         }
1393
1394         *plen = len;
1395
1396         if (w != NULL && cp == NULL)
1397                 return (ENOBUFS);
1398
1399         return (0);
1400 }
1401
1402 /*
1403  * This routine is called to generate a message from the routing
1404  * socket indicating that a redirect has occurred, a routing lookup
1405  * has failed, or that a protocol has detected timeouts to a particular
1406  * destination.
1407  */
1408 void
1409 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1410     int fibnum)
1411 {
1412         struct rt_msghdr *rtm;
1413         struct mbuf *m;
1414         struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1415
1416         if (V_route_cb.any_count == 0)
1417                 return;
1418         m = rtsock_msg_mbuf(type, rtinfo);
1419         if (m == NULL)
1420                 return;
1421
1422         if (fibnum != RT_ALL_FIBS) {
1423                 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1424                     "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1425                 M_SETFIB(m, fibnum);
1426                 m->m_flags |= RTS_FILTER_FIB;
1427         }
1428
1429         rtm = mtod(m, struct rt_msghdr *);
1430         rtm->rtm_flags = RTF_DONE | flags;
1431         rtm->rtm_errno = error;
1432         rtm->rtm_addrs = rtinfo->rti_addrs;
1433         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1434 }
1435
1436 void
1437 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1438 {
1439
1440         rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1441 }
1442
1443 /*
1444  * This routine is called to generate a message from the routing
1445  * socket indicating that the status of a network interface has changed.
1446  */
1447 void
1448 rt_ifmsg(struct ifnet *ifp)
1449 {
1450         struct if_msghdr *ifm;
1451         struct mbuf *m;
1452         struct rt_addrinfo info;
1453
1454         if (V_route_cb.any_count == 0)
1455                 return;
1456         bzero((caddr_t)&info, sizeof(info));
1457         m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1458         if (m == NULL)
1459                 return;
1460         ifm = mtod(m, struct if_msghdr *);
1461         ifm->ifm_index = ifp->if_index;
1462         ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1463         if_data_copy(ifp, &ifm->ifm_data);
1464         ifm->ifm_addrs = 0;
1465         rt_dispatch(m, AF_UNSPEC);
1466 }
1467
1468 /*
1469  * Announce interface address arrival/withdraw.
1470  * Please do not call directly, use rt_addrmsg().
1471  * Assume input data to be valid.
1472  * Returns 0 on success.
1473  */
1474 int
1475 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1476 {
1477         struct rt_addrinfo info;
1478         struct sockaddr *sa;
1479         int ncmd;
1480         struct mbuf *m;
1481         struct ifa_msghdr *ifam;
1482         struct ifnet *ifp = ifa->ifa_ifp;
1483         struct sockaddr_storage ss;
1484
1485         if (V_route_cb.any_count == 0)
1486                 return (0);
1487
1488         ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1489
1490         bzero((caddr_t)&info, sizeof(info));
1491         info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1492         info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1493         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1494             info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1495         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1496         if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1497                 return (ENOBUFS);
1498         ifam = mtod(m, struct ifa_msghdr *);
1499         ifam->ifam_index = ifp->if_index;
1500         ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1501         ifam->ifam_flags = ifa->ifa_flags;
1502         ifam->ifam_addrs = info.rti_addrs;
1503
1504         if (fibnum != RT_ALL_FIBS) {
1505                 M_SETFIB(m, fibnum);
1506                 m->m_flags |= RTS_FILTER_FIB;
1507         }
1508
1509         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1510
1511         return (0);
1512 }
1513
1514 /*
1515  * Announce route addition/removal to rtsock based on @rt data.
1516  * Callers are advives to use rt_routemsg() instead of using this
1517  *  function directly.
1518  * Assume @rt data is consistent.
1519  *
1520  * Returns 0 on success.
1521  */
1522 int
1523 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1524     int fibnum)
1525 {
1526         struct sockaddr_storage ss;
1527         struct rt_addrinfo info;
1528         struct nhop_object *nh;
1529
1530         if (V_route_cb.any_count == 0)
1531                 return (0);
1532
1533         nh = rt->rt_nhop;
1534         bzero((caddr_t)&info, sizeof(info));
1535         info.rti_info[RTAX_DST] = rt_key(rt);
1536         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1537         info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
1538         info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
1539         info.rti_ifp = ifp;
1540
1541         return (rtsock_routemsg_info(cmd, &info, fibnum));
1542 }
1543
1544 int
1545 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1546 {
1547         struct rt_msghdr *rtm;
1548         struct sockaddr *sa;
1549         struct mbuf *m;
1550
1551         if (V_route_cb.any_count == 0)
1552                 return (0);
1553
1554         if (info->rti_flags & RTF_HOST)
1555                 info->rti_info[RTAX_NETMASK] = NULL;
1556
1557         m = rtsock_msg_mbuf(cmd, info);
1558         if (m == NULL)
1559                 return (ENOBUFS);
1560
1561         if (fibnum != RT_ALL_FIBS) {
1562                 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1563                     "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1564                 M_SETFIB(m, fibnum);
1565                 m->m_flags |= RTS_FILTER_FIB;
1566         }
1567
1568         rtm = mtod(m, struct rt_msghdr *);
1569         rtm->rtm_addrs = info->rti_addrs;
1570         if (info->rti_ifp != NULL)
1571                 rtm->rtm_index = info->rti_ifp->if_index;
1572         /* Add RTF_DONE to indicate command 'completion' required by API */
1573         info->rti_flags |= RTF_DONE;
1574         /* Reported routes has to be up */
1575         if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1576                 info->rti_flags |= RTF_UP;
1577         rtm->rtm_flags = info->rti_flags;
1578
1579         sa = info->rti_info[RTAX_DST];
1580         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1581
1582         return (0);
1583 }
1584
1585 /*
1586  * This is the analogue to the rt_newaddrmsg which performs the same
1587  * function but for multicast group memberhips.  This is easier since
1588  * there is no route state to worry about.
1589  */
1590 void
1591 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1592 {
1593         struct rt_addrinfo info;
1594         struct mbuf *m = NULL;
1595         struct ifnet *ifp = ifma->ifma_ifp;
1596         struct ifma_msghdr *ifmam;
1597
1598         if (V_route_cb.any_count == 0)
1599                 return;
1600
1601         bzero((caddr_t)&info, sizeof(info));
1602         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1603         if (ifp && ifp->if_addr)
1604                 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1605         else
1606                 info.rti_info[RTAX_IFP] = NULL;
1607         /*
1608          * If a link-layer address is present, present it as a ``gateway''
1609          * (similarly to how ARP entries, e.g., are presented).
1610          */
1611         info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1612         m = rtsock_msg_mbuf(cmd, &info);
1613         if (m == NULL)
1614                 return;
1615         ifmam = mtod(m, struct ifma_msghdr *);
1616         KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1617             __func__));
1618         ifmam->ifmam_index = ifp->if_index;
1619         ifmam->ifmam_addrs = info.rti_addrs;
1620         rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1621 }
1622
1623 static struct mbuf *
1624 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1625         struct rt_addrinfo *info)
1626 {
1627         struct if_announcemsghdr *ifan;
1628         struct mbuf *m;
1629
1630         if (V_route_cb.any_count == 0)
1631                 return NULL;
1632         bzero((caddr_t)info, sizeof(*info));
1633         m = rtsock_msg_mbuf(type, info);
1634         if (m != NULL) {
1635                 ifan = mtod(m, struct if_announcemsghdr *);
1636                 ifan->ifan_index = ifp->if_index;
1637                 strlcpy(ifan->ifan_name, ifp->if_xname,
1638                         sizeof(ifan->ifan_name));
1639                 ifan->ifan_what = what;
1640         }
1641         return m;
1642 }
1643
1644 /*
1645  * This is called to generate routing socket messages indicating
1646  * IEEE80211 wireless events.
1647  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1648  */
1649 void
1650 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1651 {
1652         struct mbuf *m;
1653         struct rt_addrinfo info;
1654
1655         m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1656         if (m != NULL) {
1657                 /*
1658                  * Append the ieee80211 data.  Try to stick it in the
1659                  * mbuf containing the ifannounce msg; otherwise allocate
1660                  * a new mbuf and append.
1661                  *
1662                  * NB: we assume m is a single mbuf.
1663                  */
1664                 if (data_len > M_TRAILINGSPACE(m)) {
1665                         struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1666                         if (n == NULL) {
1667                                 m_freem(m);
1668                                 return;
1669                         }
1670                         bcopy(data, mtod(n, void *), data_len);
1671                         n->m_len = data_len;
1672                         m->m_next = n;
1673                 } else if (data_len > 0) {
1674                         bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1675                         m->m_len += data_len;
1676                 }
1677                 if (m->m_flags & M_PKTHDR)
1678                         m->m_pkthdr.len += data_len;
1679                 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1680                 rt_dispatch(m, AF_UNSPEC);
1681         }
1682 }
1683
1684 /*
1685  * This is called to generate routing socket messages indicating
1686  * network interface arrival and departure.
1687  */
1688 void
1689 rt_ifannouncemsg(struct ifnet *ifp, int what)
1690 {
1691         struct mbuf *m;
1692         struct rt_addrinfo info;
1693
1694         m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1695         if (m != NULL)
1696                 rt_dispatch(m, AF_UNSPEC);
1697 }
1698
1699 static void
1700 rt_dispatch(struct mbuf *m, sa_family_t saf)
1701 {
1702         struct m_tag *tag;
1703
1704         /*
1705          * Preserve the family from the sockaddr, if any, in an m_tag for
1706          * use when injecting the mbuf into the routing socket buffer from
1707          * the netisr.
1708          */
1709         if (saf != AF_UNSPEC) {
1710                 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1711                     M_NOWAIT);
1712                 if (tag == NULL) {
1713                         m_freem(m);
1714                         return;
1715                 }
1716                 *(unsigned short *)(tag + 1) = saf;
1717                 m_tag_prepend(m, tag);
1718         }
1719 #ifdef VIMAGE
1720         if (V_loif)
1721                 m->m_pkthdr.rcvif = V_loif;
1722         else {
1723                 m_freem(m);
1724                 return;
1725         }
1726 #endif
1727         netisr_queue(NETISR_ROUTE, m);  /* mbuf is free'd on failure. */
1728 }
1729
1730 /*
1731  * Checks if rte can be exported v.r.t jails/vnets.
1732  *
1733  * Returns 1 if it can, 0 otherwise.
1734  */
1735 static int
1736 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1737 {
1738
1739         if ((rt->rte_flags & RTF_HOST) == 0
1740             ? jailed_without_vnet(td_ucred)
1741             : prison_if(td_ucred, rt_key_const(rt)) != 0)
1742                 return (0);
1743         return (1);
1744 }
1745
1746 /*
1747  * This is used in dumping the kernel table via sysctl().
1748  */
1749 static int
1750 sysctl_dumpentry(struct radix_node *rn, void *vw)
1751 {
1752         struct walkarg *w = vw;
1753         struct rtentry *rt = (struct rtentry *)rn;
1754         struct nhop_object *nh;
1755         int error = 0;
1756
1757         NET_EPOCH_ASSERT();
1758
1759         if (w->w_op == NET_RT_FLAGS && !(rt->rte_flags & w->w_arg))
1760                 return 0;
1761         if (!can_export_rte(w->w_req->td->td_ucred, rt))
1762                 return (0);
1763         nh = rt->rt_nhop;
1764 #ifdef ROUTE_MPATH
1765         if (NH_IS_NHGRP(nh)) {
1766                 struct weightened_nhop *wn;
1767                 uint32_t num_nhops;
1768                 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
1769                 for (int i = 0; i < num_nhops; i++) {
1770                         error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w);
1771                         if (error != 0)
1772                                 return (error);
1773                 }
1774         } else
1775 #endif
1776                 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w);
1777
1778         return (0);
1779 }
1780
1781
1782 static int
1783 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight,
1784     struct walkarg *w)
1785 {
1786         struct rt_addrinfo info;
1787         int error = 0, size;
1788         struct sockaddr_storage ss;
1789
1790         bzero((caddr_t)&info, sizeof(info));
1791         info.rti_info[RTAX_DST] = rt_key(rt);
1792         info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
1793         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1794             rt_mask(rt), &ss);
1795         info.rti_info[RTAX_GENMASK] = 0;
1796         if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
1797                 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
1798                 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
1799                 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
1800                         info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
1801         }
1802         if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1803                 return (error);
1804         if (w->w_req && w->w_tmem) {
1805                 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1806
1807                 bzero(&rtm->rtm_index,
1808                     sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1809                 if (rt->rte_flags & RTF_GWFLAG_COMPAT)
1810                         rtm->rtm_flags = RTF_GATEWAY | 
1811                                 (rt->rte_flags & ~RTF_GWFLAG_COMPAT);
1812                 else
1813                         rtm->rtm_flags = rt->rte_flags;
1814                 rtm->rtm_flags |= nhop_get_rtflags(nh);
1815                 rt_getmetrics(rt, nh, &rtm->rtm_rmx);
1816                 rtm->rtm_rmx.rmx_weight = weight;
1817                 rtm->rtm_index = nh->nh_ifp->if_index;
1818                 rtm->rtm_addrs = info.rti_addrs;
1819                 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1820                 return (error);
1821         }
1822         return (error);
1823 }
1824
1825 static int
1826 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1827     struct rt_addrinfo *info, struct walkarg *w, int len)
1828 {
1829         struct if_msghdrl *ifm;
1830         struct if_data *ifd;
1831
1832         ifm = (struct if_msghdrl *)w->w_tmem;
1833
1834 #ifdef COMPAT_FREEBSD32
1835         if (w->w_req->flags & SCTL_MASK32) {
1836                 struct if_msghdrl32 *ifm32;
1837
1838                 ifm32 = (struct if_msghdrl32 *)ifm;
1839                 ifm32->ifm_addrs = info->rti_addrs;
1840                 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1841                 ifm32->ifm_index = ifp->if_index;
1842                 ifm32->_ifm_spare1 = 0;
1843                 ifm32->ifm_len = sizeof(*ifm32);
1844                 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1845                 ifm32->_ifm_spare2 = 0;
1846                 ifd = &ifm32->ifm_data;
1847         } else
1848 #endif
1849         {
1850                 ifm->ifm_addrs = info->rti_addrs;
1851                 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1852                 ifm->ifm_index = ifp->if_index;
1853                 ifm->_ifm_spare1 = 0;
1854                 ifm->ifm_len = sizeof(*ifm);
1855                 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1856                 ifm->_ifm_spare2 = 0;
1857                 ifd = &ifm->ifm_data;
1858         }
1859
1860         memcpy(ifd, src_ifd, sizeof(*ifd));
1861
1862         return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1863 }
1864
1865 static int
1866 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1867     struct rt_addrinfo *info, struct walkarg *w, int len)
1868 {
1869         struct if_msghdr *ifm;
1870         struct if_data *ifd;
1871
1872         ifm = (struct if_msghdr *)w->w_tmem;
1873
1874 #ifdef COMPAT_FREEBSD32
1875         if (w->w_req->flags & SCTL_MASK32) {
1876                 struct if_msghdr32 *ifm32;
1877
1878                 ifm32 = (struct if_msghdr32 *)ifm;
1879                 ifm32->ifm_addrs = info->rti_addrs;
1880                 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1881                 ifm32->ifm_index = ifp->if_index;
1882                 ifm32->_ifm_spare1 = 0;
1883                 ifd = &ifm32->ifm_data;
1884         } else
1885 #endif
1886         {
1887                 ifm->ifm_addrs = info->rti_addrs;
1888                 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1889                 ifm->ifm_index = ifp->if_index;
1890                 ifm->_ifm_spare1 = 0;
1891                 ifd = &ifm->ifm_data;
1892         }
1893
1894         memcpy(ifd, src_ifd, sizeof(*ifd));
1895
1896         return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1897 }
1898
1899 static int
1900 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1901     struct walkarg *w, int len)
1902 {
1903         struct ifa_msghdrl *ifam;
1904         struct if_data *ifd;
1905
1906         ifam = (struct ifa_msghdrl *)w->w_tmem;
1907
1908 #ifdef COMPAT_FREEBSD32
1909         if (w->w_req->flags & SCTL_MASK32) {
1910                 struct ifa_msghdrl32 *ifam32;
1911
1912                 ifam32 = (struct ifa_msghdrl32 *)ifam;
1913                 ifam32->ifam_addrs = info->rti_addrs;
1914                 ifam32->ifam_flags = ifa->ifa_flags;
1915                 ifam32->ifam_index = ifa->ifa_ifp->if_index;
1916                 ifam32->_ifam_spare1 = 0;
1917                 ifam32->ifam_len = sizeof(*ifam32);
1918                 ifam32->ifam_data_off =
1919                     offsetof(struct ifa_msghdrl32, ifam_data);
1920                 ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1921                 ifd = &ifam32->ifam_data;
1922         } else
1923 #endif
1924         {
1925                 ifam->ifam_addrs = info->rti_addrs;
1926                 ifam->ifam_flags = ifa->ifa_flags;
1927                 ifam->ifam_index = ifa->ifa_ifp->if_index;
1928                 ifam->_ifam_spare1 = 0;
1929                 ifam->ifam_len = sizeof(*ifam);
1930                 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1931                 ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1932                 ifd = &ifam->ifam_data;
1933         }
1934
1935         bzero(ifd, sizeof(*ifd));
1936         ifd->ifi_datalen = sizeof(struct if_data);
1937         ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1938         ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1939         ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1940         ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1941
1942         /* Fixup if_data carp(4) vhid. */
1943         if (carp_get_vhid_p != NULL)
1944                 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1945
1946         return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1947 }
1948
1949 static int
1950 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1951     struct walkarg *w, int len)
1952 {
1953         struct ifa_msghdr *ifam;
1954
1955         ifam = (struct ifa_msghdr *)w->w_tmem;
1956         ifam->ifam_addrs = info->rti_addrs;
1957         ifam->ifam_flags = ifa->ifa_flags;
1958         ifam->ifam_index = ifa->ifa_ifp->if_index;
1959         ifam->_ifam_spare1 = 0;
1960         ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1961
1962         return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1963 }
1964
1965 static int
1966 sysctl_iflist(int af, struct walkarg *w)
1967 {
1968         struct ifnet *ifp;
1969         struct ifaddr *ifa;
1970         struct if_data ifd;
1971         struct rt_addrinfo info;
1972         int len, error = 0;
1973         struct sockaddr_storage ss;
1974
1975         bzero((caddr_t)&info, sizeof(info));
1976         bzero(&ifd, sizeof(ifd));
1977         CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1978                 if (w->w_arg && w->w_arg != ifp->if_index)
1979                         continue;
1980                 if_data_copy(ifp, &ifd);
1981                 ifa = ifp->if_addr;
1982                 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1983                 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1984                 if (error != 0)
1985                         goto done;
1986                 info.rti_info[RTAX_IFP] = NULL;
1987                 if (w->w_req && w->w_tmem) {
1988                         if (w->w_op == NET_RT_IFLISTL)
1989                                 error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1990                                     len);
1991                         else
1992                                 error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1993                                     len);
1994                         if (error)
1995                                 goto done;
1996                 }
1997                 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1998                         if (af && af != ifa->ifa_addr->sa_family)
1999                                 continue;
2000                         if (prison_if(w->w_req->td->td_ucred,
2001                             ifa->ifa_addr) != 0)
2002                                 continue;
2003                         info.rti_info[RTAX_IFA] = ifa->ifa_addr;
2004                         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
2005                             ifa->ifa_addr, ifa->ifa_netmask, &ss);
2006                         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
2007                         error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
2008                         if (error != 0)
2009                                 goto done;
2010                         if (w->w_req && w->w_tmem) {
2011                                 if (w->w_op == NET_RT_IFLISTL)
2012                                         error = sysctl_iflist_ifaml(ifa, &info,
2013                                             w, len);
2014                                 else
2015                                         error = sysctl_iflist_ifam(ifa, &info,
2016                                             w, len);
2017                                 if (error)
2018                                         goto done;
2019                         }
2020                 }
2021                 info.rti_info[RTAX_IFA] = NULL;
2022                 info.rti_info[RTAX_NETMASK] = NULL;
2023                 info.rti_info[RTAX_BRD] = NULL;
2024         }
2025 done:
2026         return (error);
2027 }
2028
2029 static int
2030 sysctl_ifmalist(int af, struct walkarg *w)
2031 {
2032         struct rt_addrinfo info;
2033         struct ifaddr *ifa;
2034         struct ifmultiaddr *ifma;
2035         struct ifnet *ifp;
2036         int error, len;
2037
2038         NET_EPOCH_ASSERT();
2039
2040         error = 0;
2041         bzero((caddr_t)&info, sizeof(info));
2042
2043         CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2044                 if (w->w_arg && w->w_arg != ifp->if_index)
2045                         continue;
2046                 ifa = ifp->if_addr;
2047                 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
2048                 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2049                         if (af && af != ifma->ifma_addr->sa_family)
2050                                 continue;
2051                         if (prison_if(w->w_req->td->td_ucred,
2052                             ifma->ifma_addr) != 0)
2053                                 continue;
2054                         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2055                         info.rti_info[RTAX_GATEWAY] =
2056                             (ifma->ifma_addr->sa_family != AF_LINK) ?
2057                             ifma->ifma_lladdr : NULL;
2058                         error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
2059                         if (error != 0)
2060                                 break;
2061                         if (w->w_req && w->w_tmem) {
2062                                 struct ifma_msghdr *ifmam;
2063
2064                                 ifmam = (struct ifma_msghdr *)w->w_tmem;
2065                                 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2066                                 ifmam->ifmam_flags = 0;
2067                                 ifmam->ifmam_addrs = info.rti_addrs;
2068                                 ifmam->_ifmam_spare1 = 0;
2069                                 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2070                                 if (error != 0)
2071                                         break;
2072                         }
2073                 }
2074                 if (error != 0)
2075                         break;
2076         }
2077         return (error);
2078 }
2079
2080 static int
2081 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2082 {
2083         RIB_RLOCK_TRACKER;
2084         struct epoch_tracker et;
2085         int     *name = (int *)arg1;
2086         u_int   namelen = arg2;
2087         struct rib_head *rnh = NULL; /* silence compiler. */
2088         int     i, lim, error = EINVAL;
2089         int     fib = 0;
2090         u_char  af;
2091         struct  walkarg w;
2092
2093         name ++;
2094         namelen--;
2095         if (req->newptr)
2096                 return (EPERM);
2097         if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) {
2098                 if (namelen == 3)
2099                         fib = req->td->td_proc->p_fibnum;
2100                 else if (namelen == 4)
2101                         fib = (name[3] == RT_ALL_FIBS) ?
2102                             req->td->td_proc->p_fibnum : name[3];
2103                 else
2104                         return ((namelen < 3) ? EISDIR : ENOTDIR);
2105                 if (fib < 0 || fib >= rt_numfibs)
2106                         return (EINVAL);
2107         } else if (namelen != 3)
2108                 return ((namelen < 3) ? EISDIR : ENOTDIR);
2109         af = name[0];
2110         if (af > AF_MAX)
2111                 return (EINVAL);
2112         bzero(&w, sizeof(w));
2113         w.w_op = name[1];
2114         w.w_arg = name[2];
2115         w.w_req = req;
2116
2117         error = sysctl_wire_old_buffer(req, 0);
2118         if (error)
2119                 return (error);
2120
2121         /*
2122          * Allocate reply buffer in advance.
2123          * All rtsock messages has maximum length of u_short.
2124          */
2125         w.w_tmemsize = 65536;
2126         w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2127
2128         NET_EPOCH_ENTER(et);
2129         switch (w.w_op) {
2130         case NET_RT_DUMP:
2131         case NET_RT_FLAGS:
2132                 if (af == 0) {                  /* dump all tables */
2133                         i = 1;
2134                         lim = AF_MAX;
2135                 } else                          /* dump only one table */
2136                         i = lim = af;
2137
2138                 /*
2139                  * take care of llinfo entries, the caller must
2140                  * specify an AF
2141                  */
2142                 if (w.w_op == NET_RT_FLAGS &&
2143                     (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2144                         if (af != 0)
2145                                 error = lltable_sysctl_dumparp(af, w.w_req);
2146                         else
2147                                 error = EINVAL;
2148                         break;
2149                 }
2150                 /*
2151                  * take care of routing entries
2152                  */
2153                 for (error = 0; error == 0 && i <= lim; i++) {
2154                         rnh = rt_tables_get_rnh(fib, i);
2155                         if (rnh != NULL) {
2156                                 RIB_RLOCK(rnh); 
2157                                 error = rnh->rnh_walktree(&rnh->head,
2158                                     sysctl_dumpentry, &w);
2159                                 RIB_RUNLOCK(rnh);
2160                         } else if (af != 0)
2161                                 error = EAFNOSUPPORT;
2162                 }
2163                 break;
2164         case NET_RT_NHOP:
2165         case NET_RT_NHGRP:
2166                 /* Allow dumping one specific af/fib at a time */
2167                 if (namelen < 4) {
2168                         error = EINVAL;
2169                         break;
2170                 }
2171                 fib = name[3];
2172                 if (fib < 0 || fib > rt_numfibs) {
2173                         error = EINVAL;
2174                         break;
2175                 }
2176                 rnh = rt_tables_get_rnh(fib, af);
2177                 if (rnh == NULL) {
2178                         error = EAFNOSUPPORT;
2179                         break;
2180                 }
2181                 if (w.w_op == NET_RT_NHOP)
2182                         error = nhops_dump_sysctl(rnh, w.w_req);
2183                 else
2184 #ifdef ROUTE_MPATH
2185                         error = nhgrp_dump_sysctl(rnh, w.w_req);
2186 #else
2187                         error = ENOTSUP;
2188 #endif
2189                 break;
2190         case NET_RT_IFLIST:
2191         case NET_RT_IFLISTL:
2192                 error = sysctl_iflist(af, &w);
2193                 break;
2194
2195         case NET_RT_IFMALIST:
2196                 error = sysctl_ifmalist(af, &w);
2197                 break;
2198         }
2199         NET_EPOCH_EXIT(et);
2200
2201         free(w.w_tmem, M_TEMP);
2202         return (error);
2203 }
2204
2205 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2206     sysctl_rtsock, "Return route tables and interface/address lists");
2207
2208 /*
2209  * Definitions of protocols supported in the ROUTE domain.
2210  */
2211
2212 static struct domain routedomain;               /* or at least forward */
2213
2214 static struct protosw routesw[] = {
2215 {
2216         .pr_type =              SOCK_RAW,
2217         .pr_domain =            &routedomain,
2218         .pr_flags =             PR_ATOMIC|PR_ADDR,
2219         .pr_output =            route_output,
2220         .pr_ctlinput =          raw_ctlinput,
2221         .pr_init =              raw_init,
2222         .pr_usrreqs =           &route_usrreqs
2223 }
2224 };
2225
2226 static struct domain routedomain = {
2227         .dom_family =           PF_ROUTE,
2228         .dom_name =             "route",
2229         .dom_protosw =          routesw,
2230         .dom_protoswNPROTOSW =  &routesw[nitems(routesw)]
2231 };
2232
2233 VNET_DOMAIN_SET(route);