]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/net80211/ieee80211_crypto_wep.c
Merge branch 'releng/11.3' into releng-CDN/11.3
[FreeBSD/FreeBSD.git] / sys / net80211 / ieee80211_crypto_wep.c
1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 /*
30  * IEEE 802.11 WEP crypto support.
31  */
32 #include "opt_wlan.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h> 
36 #include <sys/mbuf.h>   
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/endian.h>
41
42 #include <sys/socket.h>
43
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h>
47
48 #include <net80211/ieee80211_var.h>
49
50 static  void *wep_attach(struct ieee80211vap *, struct ieee80211_key *);
51 static  void wep_detach(struct ieee80211_key *);
52 static  int wep_setkey(struct ieee80211_key *);
53 static  void wep_setiv(struct ieee80211_key *, uint8_t *);
54 static  int wep_encap(struct ieee80211_key *, struct mbuf *);
55 static  int wep_decap(struct ieee80211_key *, struct mbuf *, int);
56 static  int wep_enmic(struct ieee80211_key *, struct mbuf *, int);
57 static  int wep_demic(struct ieee80211_key *, struct mbuf *, int);
58
59 static const struct ieee80211_cipher wep = {
60         .ic_name        = "WEP",
61         .ic_cipher      = IEEE80211_CIPHER_WEP,
62         .ic_header      = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
63         .ic_trailer     = IEEE80211_WEP_CRCLEN,
64         .ic_miclen      = 0,
65         .ic_attach      = wep_attach,
66         .ic_detach      = wep_detach,
67         .ic_setkey      = wep_setkey,
68         .ic_setiv       = wep_setiv,
69         .ic_encap       = wep_encap,
70         .ic_decap       = wep_decap,
71         .ic_enmic       = wep_enmic,
72         .ic_demic       = wep_demic,
73 };
74
75 static  int wep_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
76 static  int wep_decrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
77
78 struct wep_ctx {
79         struct ieee80211vap *wc_vap;    /* for diagnostics+statistics */
80         struct ieee80211com *wc_ic;
81         uint32_t        wc_iv;          /* initial vector for crypto */
82 };
83
84 /* number of references from net80211 layer */
85 static  int nrefs = 0;
86
87 static void *
88 wep_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
89 {
90         struct wep_ctx *ctx;
91
92         ctx = (struct wep_ctx *) IEEE80211_MALLOC(sizeof(struct wep_ctx),
93                 M_80211_CRYPTO, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
94         if (ctx == NULL) {
95                 vap->iv_stats.is_crypto_nomem++;
96                 return NULL;
97         }
98
99         ctx->wc_vap = vap;
100         ctx->wc_ic = vap->iv_ic;
101         get_random_bytes(&ctx->wc_iv, sizeof(ctx->wc_iv));
102         nrefs++;                        /* NB: we assume caller locking */
103         return ctx;
104 }
105
106 static void
107 wep_detach(struct ieee80211_key *k)
108 {
109         struct wep_ctx *ctx = k->wk_private;
110
111         IEEE80211_FREE(ctx, M_80211_CRYPTO);
112         KASSERT(nrefs > 0, ("imbalanced attach/detach"));
113         nrefs--;                        /* NB: we assume caller locking */
114 }
115
116 static int
117 wep_setkey(struct ieee80211_key *k)
118 {
119         return k->wk_keylen >= 40/NBBY;
120 }
121
122 static void
123 wep_setiv(struct ieee80211_key *k, uint8_t *ivp)
124 {
125         struct wep_ctx *ctx = k->wk_private;
126         struct ieee80211vap *vap = ctx->wc_vap;
127         uint32_t iv;
128         uint8_t keyid;
129
130         keyid = ieee80211_crypto_get_keyid(vap, k) << 6;
131
132         /*
133          * XXX
134          * IV must not duplicate during the lifetime of the key.
135          * But no mechanism to renew keys is defined in IEEE 802.11
136          * for WEP.  And the IV may be duplicated at other stations
137          * because the session key itself is shared.  So we use a
138          * pseudo random IV for now, though it is not the right way.
139          *
140          * NB: Rather than use a strictly random IV we select a
141          * random one to start and then increment the value for
142          * each frame.  This is an explicit tradeoff between
143          * overhead and security.  Given the basic insecurity of
144          * WEP this seems worthwhile.
145          */
146
147         /*
148          * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
149          * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
150          */
151         iv = ctx->wc_iv;
152         if ((iv & 0xff00) == 0xff00) {
153                 int B = (iv & 0xff0000) >> 16;
154                 if (3 <= B && B < 16)
155                         iv += 0x0100;
156         }
157         ctx->wc_iv = iv + 1;
158
159         /*
160          * NB: Preserve byte order of IV for packet
161          *     sniffers; it doesn't matter otherwise.
162          */
163 #if _BYTE_ORDER == _BIG_ENDIAN
164         ivp[0] = iv >> 0;
165         ivp[1] = iv >> 8;
166         ivp[2] = iv >> 16;
167 #else
168         ivp[2] = iv >> 0;
169         ivp[1] = iv >> 8;
170         ivp[0] = iv >> 16;
171 #endif
172         ivp[3] = keyid;
173 }
174
175 /*
176  * Add privacy headers appropriate for the specified key.
177  */
178 static int
179 wep_encap(struct ieee80211_key *k, struct mbuf *m)
180 {
181         struct wep_ctx *ctx = k->wk_private;
182         struct ieee80211com *ic = ctx->wc_ic;
183         uint8_t *ivp;
184         int hdrlen;
185
186         hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
187
188         /*
189          * Copy down 802.11 header and add the IV + KeyID.
190          */
191         M_PREPEND(m, wep.ic_header, M_NOWAIT);
192         if (m == NULL)
193                 return 0;
194         ivp = mtod(m, uint8_t *);
195         ovbcopy(ivp + wep.ic_header, ivp, hdrlen);
196         ivp += hdrlen;
197
198         wep_setiv(k, ivp);
199
200         /*
201          * Finally, do software encrypt if needed.
202          */
203         if ((k->wk_flags & IEEE80211_KEY_SWENCRYPT) &&
204             !wep_encrypt(k, m, hdrlen))
205                 return 0;
206
207         return 1;
208 }
209
210 /*
211  * Add MIC to the frame as needed.
212  */
213 static int
214 wep_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
215 {
216
217         return 1;
218 }
219
220 /*
221  * Validate and strip privacy headers (and trailer) for a
222  * received frame.  If necessary, decrypt the frame using
223  * the specified key.
224  */
225 static int
226 wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
227 {
228         struct wep_ctx *ctx = k->wk_private;
229         struct ieee80211vap *vap = ctx->wc_vap;
230         struct ieee80211_frame *wh;
231
232         wh = mtod(m, struct ieee80211_frame *);
233
234         /*
235          * Check if the device handled the decrypt in hardware.
236          * If so we just strip the header; otherwise we need to
237          * handle the decrypt in software.
238          */
239         if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
240             !wep_decrypt(k, m, hdrlen)) {
241                 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
242                     "%s", "WEP ICV mismatch on decrypt");
243                 vap->iv_stats.is_rx_wepfail++;
244                 return 0;
245         }
246
247         /*
248          * Copy up 802.11 header and strip crypto bits.
249          */
250         ovbcopy(mtod(m, void *), mtod(m, uint8_t *) + wep.ic_header, hdrlen);
251         m_adj(m, wep.ic_header);
252         m_adj(m, -wep.ic_trailer);
253
254         return 1;
255 }
256
257 /*
258  * Verify and strip MIC from the frame.
259  */
260 static int
261 wep_demic(struct ieee80211_key *k, struct mbuf *skb, int force)
262 {
263         return 1;
264 }
265
266 static const uint32_t crc32_table[256] = {
267         0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
268         0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
269         0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
270         0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
271         0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
272         0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
273         0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
274         0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
275         0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
276         0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
277         0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
278         0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
279         0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
280         0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
281         0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
282         0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
283         0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
284         0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
285         0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
286         0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
287         0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
288         0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
289         0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
290         0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
291         0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
292         0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
293         0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
294         0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
295         0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
296         0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
297         0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
298         0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
299         0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
300         0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
301         0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
302         0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
303         0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
304         0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
305         0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
306         0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
307         0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
308         0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
309         0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
310         0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
311         0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
312         0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
313         0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
314         0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
315         0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
316         0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
317         0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
318         0x2d02ef8dL
319 };
320
321 static int
322 wep_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
323 {
324 #define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
325         struct wep_ctx *ctx = key->wk_private;
326         struct ieee80211vap *vap = ctx->wc_vap;
327         struct mbuf *m = m0;
328         uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
329         uint8_t icv[IEEE80211_WEP_CRCLEN];
330         uint32_t i, j, k, crc;
331         size_t buflen, data_len;
332         uint8_t S[256];
333         uint8_t *pos;
334         u_int off, keylen;
335
336         vap->iv_stats.is_crypto_wep++;
337
338         /* NB: this assumes the header was pulled up */
339         memcpy(rc4key, mtod(m, uint8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
340         memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
341
342         /* Setup RC4 state */
343         for (i = 0; i < 256; i++)
344                 S[i] = i;
345         j = 0;
346         keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
347         for (i = 0; i < 256; i++) {
348                 j = (j + S[i] + rc4key[i % keylen]) & 0xff;
349                 S_SWAP(i, j);
350         }
351
352         off = hdrlen + wep.ic_header;
353         data_len = m->m_pkthdr.len - off;
354
355         /* Compute CRC32 over unencrypted data and apply RC4 to data */
356         crc = ~0;
357         i = j = 0;
358         pos = mtod(m, uint8_t *) + off;
359         buflen = m->m_len - off;
360         for (;;) {
361                 if (buflen > data_len)
362                         buflen = data_len;
363                 data_len -= buflen;
364                 for (k = 0; k < buflen; k++) {
365                         crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
366                         i = (i + 1) & 0xff;
367                         j = (j + S[i]) & 0xff;
368                         S_SWAP(i, j);
369                         *pos++ ^= S[(S[i] + S[j]) & 0xff];
370                 }
371                 if (m->m_next == NULL) {
372                         if (data_len != 0) {            /* out of data */
373                                 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
374                                     ether_sprintf(mtod(m0,
375                                         struct ieee80211_frame *)->i_addr2),
376                                     "out of data for WEP (data_len %zu)",
377                                     data_len);
378                                 /* XXX stat */
379                                 return 0;
380                         }
381                         break;
382                 }
383                 m = m->m_next;
384                 pos = mtod(m, uint8_t *);
385                 buflen = m->m_len;
386         }
387         crc = ~crc;
388
389         /* Append little-endian CRC32 and encrypt it to produce ICV */
390         icv[0] = crc;
391         icv[1] = crc >> 8;
392         icv[2] = crc >> 16;
393         icv[3] = crc >> 24;
394         for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
395                 i = (i + 1) & 0xff;
396                 j = (j + S[i]) & 0xff;
397                 S_SWAP(i, j);
398                 icv[k] ^= S[(S[i] + S[j]) & 0xff];
399         }
400         return m_append(m0, IEEE80211_WEP_CRCLEN, icv);
401 #undef S_SWAP
402 }
403
404 static int
405 wep_decrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
406 {
407 #define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
408         struct wep_ctx *ctx = key->wk_private;
409         struct ieee80211vap *vap = ctx->wc_vap;
410         struct mbuf *m = m0;
411         uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
412         uint8_t icv[IEEE80211_WEP_CRCLEN];
413         uint32_t i, j, k, crc;
414         size_t buflen, data_len;
415         uint8_t S[256];
416         uint8_t *pos;
417         u_int off, keylen;
418
419         vap->iv_stats.is_crypto_wep++;
420
421         /* NB: this assumes the header was pulled up */
422         memcpy(rc4key, mtod(m, uint8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
423         memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
424
425         /* Setup RC4 state */
426         for (i = 0; i < 256; i++)
427                 S[i] = i;
428         j = 0;
429         keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
430         for (i = 0; i < 256; i++) {
431                 j = (j + S[i] + rc4key[i % keylen]) & 0xff;
432                 S_SWAP(i, j);
433         }
434
435         off = hdrlen + wep.ic_header;
436         data_len = m->m_pkthdr.len - (off + wep.ic_trailer);
437
438         /* Compute CRC32 over unencrypted data and apply RC4 to data */
439         crc = ~0;
440         i = j = 0;
441         pos = mtod(m, uint8_t *) + off;
442         buflen = m->m_len - off;
443         for (;;) {
444                 if (buflen > data_len)
445                         buflen = data_len;
446                 data_len -= buflen;
447                 for (k = 0; k < buflen; k++) {
448                         i = (i + 1) & 0xff;
449                         j = (j + S[i]) & 0xff;
450                         S_SWAP(i, j);
451                         *pos ^= S[(S[i] + S[j]) & 0xff];
452                         crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
453                         pos++;
454                 }
455                 m = m->m_next;
456                 if (m == NULL) {
457                         if (data_len != 0) {            /* out of data */
458                                 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
459                                     mtod(m0, struct ieee80211_frame *)->i_addr2,
460                                     "out of data for WEP (data_len %zu)",
461                                     data_len);
462                                 return 0;
463                         }
464                         break;
465                 }
466                 pos = mtod(m, uint8_t *);
467                 buflen = m->m_len;
468         }
469         crc = ~crc;
470
471         /* Encrypt little-endian CRC32 and verify that it matches with
472          * received ICV */
473         icv[0] = crc;
474         icv[1] = crc >> 8;
475         icv[2] = crc >> 16;
476         icv[3] = crc >> 24;
477         for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
478                 i = (i + 1) & 0xff;
479                 j = (j + S[i]) & 0xff;
480                 S_SWAP(i, j);
481                 /* XXX assumes ICV is contiguous in mbuf */
482                 if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
483                         /* ICV mismatch - drop frame */
484                         return 0;
485                 }
486         }
487         return 1;
488 #undef S_SWAP
489 }
490
491 /*
492  * Module glue.
493  */
494 IEEE80211_CRYPTO_MODULE(wep, 1);