]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
Avoid more literal-suffix errors with C++11
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
36  */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 #include "opt_rss.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/callout.h>
54 #include <sys/eventhandler.h>
55 #include <sys/domain.h>
56 #include <sys/protosw.h>
57 #include <sys/rmlock.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/refcount.h>
63 #include <sys/jail.h>
64 #include <sys/kernel.h>
65 #include <sys/sysctl.h>
66
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70
71 #include <vm/uma.h>
72
73 #include <net/if.h>
74 #include <net/if_var.h>
75 #include <net/if_types.h>
76 #include <net/route.h>
77 #include <net/rss_config.h>
78 #include <net/vnet.h>
79
80 #if defined(INET) || defined(INET6)
81 #include <netinet/in.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
84 #include <netinet/tcp_var.h>
85 #include <netinet/udp.h>
86 #include <netinet/udp_var.h>
87 #endif
88 #ifdef INET
89 #include <netinet/in_var.h>
90 #endif
91 #ifdef INET6
92 #include <netinet/ip6.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/in6_var.h>
95 #include <netinet6/ip6_var.h>
96 #endif /* INET6 */
97
98
99 #ifdef IPSEC
100 #include <netipsec/ipsec.h>
101 #include <netipsec/key.h>
102 #endif /* IPSEC */
103
104 #include <security/mac/mac_framework.h>
105
106 static struct callout   ipport_tick_callout;
107
108 /*
109  * These configure the range of local port addresses assigned to
110  * "unspecified" outgoing connections/packets/whatever.
111  */
112 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
113 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
114 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
115 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
116 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
117 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
118
119 /*
120  * Reserved ports accessible only to root. There are significant
121  * security considerations that must be accounted for when changing these,
122  * but the security benefits can be great. Please be careful.
123  */
124 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
125 VNET_DEFINE(int, ipport_reservedlow);
126
127 /* Variables dealing with random ephemeral port allocation. */
128 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
129 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
130 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
131 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
132 VNET_DEFINE(int, ipport_tcpallocs);
133 static VNET_DEFINE(int, ipport_tcplastcount);
134
135 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
136
137 static void     in_pcbremlists(struct inpcb *inp);
138 #ifdef INET
139 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140                             struct in_addr faddr, u_int fport_arg,
141                             struct in_addr laddr, u_int lport_arg,
142                             int lookupflags, struct ifnet *ifp);
143
144 #define RANGECHK(var, min, max) \
145         if ((var) < (min)) { (var) = (min); } \
146         else if ((var) > (max)) { (var) = (max); }
147
148 static int
149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151         int error;
152
153         error = sysctl_handle_int(oidp, arg1, arg2, req);
154         if (error == 0) {
155                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161         }
162         return (error);
163 }
164
165 #undef RANGECHK
166
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
168     "IP Ports");
169
170 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
171         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
172         &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
173 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
174         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
175         &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
176 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
177         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
178         &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
180         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
181         &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
183         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
184         &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
186         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
187         &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
188 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
189         CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
190         &VNET_NAME(ipport_reservedhigh), 0, "");
191 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
192         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
194         CTLFLAG_VNET | CTLFLAG_RW,
195         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
197         CTLFLAG_VNET | CTLFLAG_RW,
198         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
199         "allocations before switching to a sequental one");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
201         CTLFLAG_VNET | CTLFLAG_RW,
202         &VNET_NAME(ipport_randomtime), 0,
203         "Minimum time to keep sequental port "
204         "allocation before switching to a random one");
205 #endif /* INET */
206
207 /*
208  * in_pcb.c: manage the Protocol Control Blocks.
209  *
210  * NOTE: It is assumed that most of these functions will be called with
211  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
212  * functions often modify hash chains or addresses in pcbs.
213  */
214
215 /*
216  * Initialize an inpcbinfo -- we should be able to reduce the number of
217  * arguments in time.
218  */
219 void
220 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
221     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
222     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
223     uint32_t inpcbzone_flags, u_int hashfields)
224 {
225
226         INP_INFO_LOCK_INIT(pcbinfo, name);
227         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
228         INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
229 #ifdef VIMAGE
230         pcbinfo->ipi_vnet = curvnet;
231 #endif
232         pcbinfo->ipi_listhead = listhead;
233         LIST_INIT(pcbinfo->ipi_listhead);
234         pcbinfo->ipi_count = 0;
235         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
236             &pcbinfo->ipi_hashmask);
237         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
238             &pcbinfo->ipi_porthashmask);
239 #ifdef PCBGROUP
240         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
241 #endif
242         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
243             NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
244             inpcbzone_flags);
245         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
246         uma_zone_set_warning(pcbinfo->ipi_zone,
247             "kern.ipc.maxsockets limit reached");
248 }
249
250 /*
251  * Destroy an inpcbinfo.
252  */
253 void
254 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
255 {
256
257         KASSERT(pcbinfo->ipi_count == 0,
258             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
259
260         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
261         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
262             pcbinfo->ipi_porthashmask);
263 #ifdef PCBGROUP
264         in_pcbgroup_destroy(pcbinfo);
265 #endif
266         uma_zdestroy(pcbinfo->ipi_zone);
267         INP_LIST_LOCK_DESTROY(pcbinfo);
268         INP_HASH_LOCK_DESTROY(pcbinfo);
269         INP_INFO_LOCK_DESTROY(pcbinfo);
270 }
271
272 /*
273  * Allocate a PCB and associate it with the socket.
274  * On success return with the PCB locked.
275  */
276 int
277 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
278 {
279         struct inpcb *inp;
280         int error;
281
282 #ifdef INVARIANTS
283         if (pcbinfo == &V_tcbinfo) {
284                 INP_INFO_RLOCK_ASSERT(pcbinfo);
285         } else {
286                 INP_INFO_WLOCK_ASSERT(pcbinfo);
287         }
288 #endif
289
290         error = 0;
291         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
292         if (inp == NULL)
293                 return (ENOBUFS);
294         bzero(inp, inp_zero_size);
295         inp->inp_pcbinfo = pcbinfo;
296         inp->inp_socket = so;
297         inp->inp_cred = crhold(so->so_cred);
298         inp->inp_inc.inc_fibnum = so->so_fibnum;
299 #ifdef MAC
300         error = mac_inpcb_init(inp, M_NOWAIT);
301         if (error != 0)
302                 goto out;
303         mac_inpcb_create(so, inp);
304 #endif
305 #ifdef IPSEC
306         error = ipsec_init_policy(so, &inp->inp_sp);
307         if (error != 0) {
308 #ifdef MAC
309                 mac_inpcb_destroy(inp);
310 #endif
311                 goto out;
312         }
313 #endif /*IPSEC*/
314 #ifdef INET6
315         if (INP_SOCKAF(so) == AF_INET6) {
316                 inp->inp_vflag |= INP_IPV6PROTO;
317                 if (V_ip6_v6only)
318                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
319         }
320 #endif
321         INP_WLOCK(inp);
322         INP_LIST_WLOCK(pcbinfo);
323         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
324         pcbinfo->ipi_count++;
325         so->so_pcb = (caddr_t)inp;
326 #ifdef INET6
327         if (V_ip6_auto_flowlabel)
328                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
329 #endif
330         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
331         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
332         INP_LIST_WUNLOCK(pcbinfo);
333 #if defined(IPSEC) || defined(MAC)
334 out:
335         if (error != 0) {
336                 crfree(inp->inp_cred);
337                 uma_zfree(pcbinfo->ipi_zone, inp);
338         }
339 #endif
340         return (error);
341 }
342
343 #ifdef INET
344 int
345 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
346 {
347         int anonport, error;
348
349         INP_WLOCK_ASSERT(inp);
350         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
351
352         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
353                 return (EINVAL);
354         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
355         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
356             &inp->inp_lport, cred);
357         if (error)
358                 return (error);
359         if (in_pcbinshash(inp) != 0) {
360                 inp->inp_laddr.s_addr = INADDR_ANY;
361                 inp->inp_lport = 0;
362                 return (EAGAIN);
363         }
364         if (anonport)
365                 inp->inp_flags |= INP_ANONPORT;
366         return (0);
367 }
368 #endif
369
370 /*
371  * Select a local port (number) to use.
372  */
373 #if defined(INET) || defined(INET6)
374 int
375 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
376     struct ucred *cred, int lookupflags)
377 {
378         struct inpcbinfo *pcbinfo;
379         struct inpcb *tmpinp;
380         unsigned short *lastport;
381         int count, dorandom, error;
382         u_short aux, first, last, lport;
383 #ifdef INET
384         struct in_addr laddr;
385 #endif
386
387         pcbinfo = inp->inp_pcbinfo;
388
389         /*
390          * Because no actual state changes occur here, a global write lock on
391          * the pcbinfo isn't required.
392          */
393         INP_LOCK_ASSERT(inp);
394         INP_HASH_LOCK_ASSERT(pcbinfo);
395
396         if (inp->inp_flags & INP_HIGHPORT) {
397                 first = V_ipport_hifirstauto;   /* sysctl */
398                 last  = V_ipport_hilastauto;
399                 lastport = &pcbinfo->ipi_lasthi;
400         } else if (inp->inp_flags & INP_LOWPORT) {
401                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
402                 if (error)
403                         return (error);
404                 first = V_ipport_lowfirstauto;  /* 1023 */
405                 last  = V_ipport_lowlastauto;   /* 600 */
406                 lastport = &pcbinfo->ipi_lastlow;
407         } else {
408                 first = V_ipport_firstauto;     /* sysctl */
409                 last  = V_ipport_lastauto;
410                 lastport = &pcbinfo->ipi_lastport;
411         }
412         /*
413          * For UDP(-Lite), use random port allocation as long as the user
414          * allows it.  For TCP (and as of yet unknown) connections,
415          * use random port allocation only if the user allows it AND
416          * ipport_tick() allows it.
417          */
418         if (V_ipport_randomized &&
419                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
420                 pcbinfo == &V_ulitecbinfo))
421                 dorandom = 1;
422         else
423                 dorandom = 0;
424         /*
425          * It makes no sense to do random port allocation if
426          * we have the only port available.
427          */
428         if (first == last)
429                 dorandom = 0;
430         /* Make sure to not include UDP(-Lite) packets in the count. */
431         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
432                 V_ipport_tcpallocs++;
433         /*
434          * Instead of having two loops further down counting up or down
435          * make sure that first is always <= last and go with only one
436          * code path implementing all logic.
437          */
438         if (first > last) {
439                 aux = first;
440                 first = last;
441                 last = aux;
442         }
443
444 #ifdef INET
445         /* Make the compiler happy. */
446         laddr.s_addr = 0;
447         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
448                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
449                     __func__, inp));
450                 laddr = *laddrp;
451         }
452 #endif
453         tmpinp = NULL;  /* Make compiler happy. */
454         lport = *lportp;
455
456         if (dorandom)
457                 *lastport = first + (arc4random() % (last - first));
458
459         count = last - first;
460
461         do {
462                 if (count-- < 0)        /* completely used? */
463                         return (EADDRNOTAVAIL);
464                 ++*lastport;
465                 if (*lastport < first || *lastport > last)
466                         *lastport = first;
467                 lport = htons(*lastport);
468
469 #ifdef INET6
470                 if ((inp->inp_vflag & INP_IPV6) != 0)
471                         tmpinp = in6_pcblookup_local(pcbinfo,
472                             &inp->in6p_laddr, lport, lookupflags, cred);
473 #endif
474 #if defined(INET) && defined(INET6)
475                 else
476 #endif
477 #ifdef INET
478                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
479                             lport, lookupflags, cred);
480 #endif
481         } while (tmpinp != NULL);
482
483 #ifdef INET
484         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
485                 laddrp->s_addr = laddr.s_addr;
486 #endif
487         *lportp = lport;
488
489         return (0);
490 }
491
492 /*
493  * Return cached socket options.
494  */
495 short
496 inp_so_options(const struct inpcb *inp)
497 {
498    short so_options;
499
500    so_options = 0;
501
502    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
503            so_options |= SO_REUSEPORT;
504    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
505            so_options |= SO_REUSEADDR;
506    return (so_options);
507 }
508 #endif /* INET || INET6 */
509
510 /*
511  * Check if a new BINDMULTI socket is allowed to be created.
512  *
513  * ni points to the new inp.
514  * oi points to the exisitng inp.
515  *
516  * This checks whether the existing inp also has BINDMULTI and
517  * whether the credentials match.
518  */
519 int
520 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
521 {
522         /* Check permissions match */
523         if ((ni->inp_flags2 & INP_BINDMULTI) &&
524             (ni->inp_cred->cr_uid !=
525             oi->inp_cred->cr_uid))
526                 return (0);
527
528         /* Check the existing inp has BINDMULTI set */
529         if ((ni->inp_flags2 & INP_BINDMULTI) &&
530             ((oi->inp_flags2 & INP_BINDMULTI) == 0))
531                 return (0);
532
533         /*
534          * We're okay - either INP_BINDMULTI isn't set on ni, or
535          * it is and it matches the checks.
536          */
537         return (1);
538 }
539
540 #ifdef INET
541 /*
542  * Set up a bind operation on a PCB, performing port allocation
543  * as required, but do not actually modify the PCB. Callers can
544  * either complete the bind by setting inp_laddr/inp_lport and
545  * calling in_pcbinshash(), or they can just use the resulting
546  * port and address to authorise the sending of a once-off packet.
547  *
548  * On error, the values of *laddrp and *lportp are not changed.
549  */
550 int
551 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
552     u_short *lportp, struct ucred *cred)
553 {
554         struct socket *so = inp->inp_socket;
555         struct sockaddr_in *sin;
556         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
557         struct in_addr laddr;
558         u_short lport = 0;
559         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
560         int error;
561
562         /*
563          * No state changes, so read locks are sufficient here.
564          */
565         INP_LOCK_ASSERT(inp);
566         INP_HASH_LOCK_ASSERT(pcbinfo);
567
568         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
569                 return (EADDRNOTAVAIL);
570         laddr.s_addr = *laddrp;
571         if (nam != NULL && laddr.s_addr != INADDR_ANY)
572                 return (EINVAL);
573         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
574                 lookupflags = INPLOOKUP_WILDCARD;
575         if (nam == NULL) {
576                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
577                         return (error);
578         } else {
579                 sin = (struct sockaddr_in *)nam;
580                 if (nam->sa_len != sizeof (*sin))
581                         return (EINVAL);
582 #ifdef notdef
583                 /*
584                  * We should check the family, but old programs
585                  * incorrectly fail to initialize it.
586                  */
587                 if (sin->sin_family != AF_INET)
588                         return (EAFNOSUPPORT);
589 #endif
590                 error = prison_local_ip4(cred, &sin->sin_addr);
591                 if (error)
592                         return (error);
593                 if (sin->sin_port != *lportp) {
594                         /* Don't allow the port to change. */
595                         if (*lportp != 0)
596                                 return (EINVAL);
597                         lport = sin->sin_port;
598                 }
599                 /* NB: lport is left as 0 if the port isn't being changed. */
600                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
601                         /*
602                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
603                          * allow complete duplication of binding if
604                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
605                          * and a multicast address is bound on both
606                          * new and duplicated sockets.
607                          */
608                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
609                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
610                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
611                         sin->sin_port = 0;              /* yech... */
612                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
613                         /*
614                          * Is the address a local IP address? 
615                          * If INP_BINDANY is set, then the socket may be bound
616                          * to any endpoint address, local or not.
617                          */
618                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
619                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
620                                 return (EADDRNOTAVAIL);
621                 }
622                 laddr = sin->sin_addr;
623                 if (lport) {
624                         struct inpcb *t;
625                         struct tcptw *tw;
626
627                         /* GROSS */
628                         if (ntohs(lport) <= V_ipport_reservedhigh &&
629                             ntohs(lport) >= V_ipport_reservedlow &&
630                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
631                             0))
632                                 return (EACCES);
633                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
634                             priv_check_cred(inp->inp_cred,
635                             PRIV_NETINET_REUSEPORT, 0) != 0) {
636                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
637                                     lport, INPLOOKUP_WILDCARD, cred);
638         /*
639          * XXX
640          * This entire block sorely needs a rewrite.
641          */
642                                 if (t &&
643                                     ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
644                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
645                                     (so->so_type != SOCK_STREAM ||
646                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
647                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
648                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
649                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
650                                     (inp->inp_cred->cr_uid !=
651                                      t->inp_cred->cr_uid))
652                                         return (EADDRINUSE);
653
654                                 /*
655                                  * If the socket is a BINDMULTI socket, then
656                                  * the credentials need to match and the
657                                  * original socket also has to have been bound
658                                  * with BINDMULTI.
659                                  */
660                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
661                                         return (EADDRINUSE);
662                         }
663                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
664                             lport, lookupflags, cred);
665                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
666                                 /*
667                                  * XXXRW: If an incpb has had its timewait
668                                  * state recycled, we treat the address as
669                                  * being in use (for now).  This is better
670                                  * than a panic, but not desirable.
671                                  */
672                                 tw = intotw(t);
673                                 if (tw == NULL ||
674                                     (reuseport & tw->tw_so_options) == 0)
675                                         return (EADDRINUSE);
676                         } else if (t &&
677                             ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
678                             (reuseport & inp_so_options(t)) == 0) {
679 #ifdef INET6
680                                 if (ntohl(sin->sin_addr.s_addr) !=
681                                     INADDR_ANY ||
682                                     ntohl(t->inp_laddr.s_addr) !=
683                                     INADDR_ANY ||
684                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
685                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
686 #endif
687                                 return (EADDRINUSE);
688                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
689                                         return (EADDRINUSE);
690                         }
691                 }
692         }
693         if (*lportp != 0)
694                 lport = *lportp;
695         if (lport == 0) {
696                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
697                 if (error != 0)
698                         return (error);
699
700         }
701         *laddrp = laddr.s_addr;
702         *lportp = lport;
703         return (0);
704 }
705
706 /*
707  * Connect from a socket to a specified address.
708  * Both address and port must be specified in argument sin.
709  * If don't have a local address for this socket yet,
710  * then pick one.
711  */
712 int
713 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
714     struct ucred *cred, struct mbuf *m)
715 {
716         u_short lport, fport;
717         in_addr_t laddr, faddr;
718         int anonport, error;
719
720         INP_WLOCK_ASSERT(inp);
721         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
722
723         lport = inp->inp_lport;
724         laddr = inp->inp_laddr.s_addr;
725         anonport = (lport == 0);
726         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
727             NULL, cred);
728         if (error)
729                 return (error);
730
731         /* Do the initial binding of the local address if required. */
732         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
733                 inp->inp_lport = lport;
734                 inp->inp_laddr.s_addr = laddr;
735                 if (in_pcbinshash(inp) != 0) {
736                         inp->inp_laddr.s_addr = INADDR_ANY;
737                         inp->inp_lport = 0;
738                         return (EAGAIN);
739                 }
740         }
741
742         /* Commit the remaining changes. */
743         inp->inp_lport = lport;
744         inp->inp_laddr.s_addr = laddr;
745         inp->inp_faddr.s_addr = faddr;
746         inp->inp_fport = fport;
747         in_pcbrehash_mbuf(inp, m);
748
749         if (anonport)
750                 inp->inp_flags |= INP_ANONPORT;
751         return (0);
752 }
753
754 int
755 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
756 {
757
758         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
759 }
760
761 /*
762  * Do proper source address selection on an unbound socket in case
763  * of connect. Take jails into account as well.
764  */
765 int
766 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
767     struct ucred *cred)
768 {
769         struct ifaddr *ifa;
770         struct sockaddr *sa;
771         struct sockaddr_in *sin;
772         struct route sro;
773         int error;
774
775         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
776
777         /*
778          * Bypass source address selection and use the primary jail IP
779          * if requested.
780          */
781         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
782                 return (0);
783
784         error = 0;
785         bzero(&sro, sizeof(sro));
786
787         sin = (struct sockaddr_in *)&sro.ro_dst;
788         sin->sin_family = AF_INET;
789         sin->sin_len = sizeof(struct sockaddr_in);
790         sin->sin_addr.s_addr = faddr->s_addr;
791
792         /*
793          * If route is known our src addr is taken from the i/f,
794          * else punt.
795          *
796          * Find out route to destination.
797          */
798         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
799                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
800
801         /*
802          * If we found a route, use the address corresponding to
803          * the outgoing interface.
804          * 
805          * Otherwise assume faddr is reachable on a directly connected
806          * network and try to find a corresponding interface to take
807          * the source address from.
808          */
809         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
810                 struct in_ifaddr *ia;
811                 struct ifnet *ifp;
812
813                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
814                                         inp->inp_socket->so_fibnum));
815                 if (ia == NULL)
816                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
817                                                 inp->inp_socket->so_fibnum));
818                 if (ia == NULL) {
819                         error = ENETUNREACH;
820                         goto done;
821                 }
822
823                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
824                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
825                         ifa_free(&ia->ia_ifa);
826                         goto done;
827                 }
828
829                 ifp = ia->ia_ifp;
830                 ifa_free(&ia->ia_ifa);
831                 ia = NULL;
832                 IF_ADDR_RLOCK(ifp);
833                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
834
835                         sa = ifa->ifa_addr;
836                         if (sa->sa_family != AF_INET)
837                                 continue;
838                         sin = (struct sockaddr_in *)sa;
839                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
840                                 ia = (struct in_ifaddr *)ifa;
841                                 break;
842                         }
843                 }
844                 if (ia != NULL) {
845                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
846                         IF_ADDR_RUNLOCK(ifp);
847                         goto done;
848                 }
849                 IF_ADDR_RUNLOCK(ifp);
850
851                 /* 3. As a last resort return the 'default' jail address. */
852                 error = prison_get_ip4(cred, laddr);
853                 goto done;
854         }
855
856         /*
857          * If the outgoing interface on the route found is not
858          * a loopback interface, use the address from that interface.
859          * In case of jails do those three steps:
860          * 1. check if the interface address belongs to the jail. If so use it.
861          * 2. check if we have any address on the outgoing interface
862          *    belonging to this jail. If so use it.
863          * 3. as a last resort return the 'default' jail address.
864          */
865         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
866                 struct in_ifaddr *ia;
867                 struct ifnet *ifp;
868
869                 /* If not jailed, use the default returned. */
870                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
871                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
872                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
873                         goto done;
874                 }
875
876                 /* Jailed. */
877                 /* 1. Check if the iface address belongs to the jail. */
878                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
879                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
880                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
881                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
882                         goto done;
883                 }
884
885                 /*
886                  * 2. Check if we have any address on the outgoing interface
887                  *    belonging to this jail.
888                  */
889                 ia = NULL;
890                 ifp = sro.ro_rt->rt_ifp;
891                 IF_ADDR_RLOCK(ifp);
892                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
893                         sa = ifa->ifa_addr;
894                         if (sa->sa_family != AF_INET)
895                                 continue;
896                         sin = (struct sockaddr_in *)sa;
897                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
898                                 ia = (struct in_ifaddr *)ifa;
899                                 break;
900                         }
901                 }
902                 if (ia != NULL) {
903                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
904                         IF_ADDR_RUNLOCK(ifp);
905                         goto done;
906                 }
907                 IF_ADDR_RUNLOCK(ifp);
908
909                 /* 3. As a last resort return the 'default' jail address. */
910                 error = prison_get_ip4(cred, laddr);
911                 goto done;
912         }
913
914         /*
915          * The outgoing interface is marked with 'loopback net', so a route
916          * to ourselves is here.
917          * Try to find the interface of the destination address and then
918          * take the address from there. That interface is not necessarily
919          * a loopback interface.
920          * In case of jails, check that it is an address of the jail
921          * and if we cannot find, fall back to the 'default' jail address.
922          */
923         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
924                 struct sockaddr_in sain;
925                 struct in_ifaddr *ia;
926
927                 bzero(&sain, sizeof(struct sockaddr_in));
928                 sain.sin_family = AF_INET;
929                 sain.sin_len = sizeof(struct sockaddr_in);
930                 sain.sin_addr.s_addr = faddr->s_addr;
931
932                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
933                                         inp->inp_socket->so_fibnum));
934                 if (ia == NULL)
935                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
936                                                 inp->inp_socket->so_fibnum));
937                 if (ia == NULL)
938                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
939
940                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
941                         if (ia == NULL) {
942                                 error = ENETUNREACH;
943                                 goto done;
944                         }
945                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
946                         ifa_free(&ia->ia_ifa);
947                         goto done;
948                 }
949
950                 /* Jailed. */
951                 if (ia != NULL) {
952                         struct ifnet *ifp;
953
954                         ifp = ia->ia_ifp;
955                         ifa_free(&ia->ia_ifa);
956                         ia = NULL;
957                         IF_ADDR_RLOCK(ifp);
958                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
959
960                                 sa = ifa->ifa_addr;
961                                 if (sa->sa_family != AF_INET)
962                                         continue;
963                                 sin = (struct sockaddr_in *)sa;
964                                 if (prison_check_ip4(cred,
965                                     &sin->sin_addr) == 0) {
966                                         ia = (struct in_ifaddr *)ifa;
967                                         break;
968                                 }
969                         }
970                         if (ia != NULL) {
971                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
972                                 IF_ADDR_RUNLOCK(ifp);
973                                 goto done;
974                         }
975                         IF_ADDR_RUNLOCK(ifp);
976                 }
977
978                 /* 3. As a last resort return the 'default' jail address. */
979                 error = prison_get_ip4(cred, laddr);
980                 goto done;
981         }
982
983 done:
984         if (sro.ro_rt != NULL)
985                 RTFREE(sro.ro_rt);
986         return (error);
987 }
988
989 /*
990  * Set up for a connect from a socket to the specified address.
991  * On entry, *laddrp and *lportp should contain the current local
992  * address and port for the PCB; these are updated to the values
993  * that should be placed in inp_laddr and inp_lport to complete
994  * the connect.
995  *
996  * On success, *faddrp and *fportp will be set to the remote address
997  * and port. These are not updated in the error case.
998  *
999  * If the operation fails because the connection already exists,
1000  * *oinpp will be set to the PCB of that connection so that the
1001  * caller can decide to override it. In all other cases, *oinpp
1002  * is set to NULL.
1003  */
1004 int
1005 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1006     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1007     struct inpcb **oinpp, struct ucred *cred)
1008 {
1009         struct rm_priotracker in_ifa_tracker;
1010         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1011         struct in_ifaddr *ia;
1012         struct inpcb *oinp;
1013         struct in_addr laddr, faddr;
1014         u_short lport, fport;
1015         int error;
1016
1017         /*
1018          * Because a global state change doesn't actually occur here, a read
1019          * lock is sufficient.
1020          */
1021         INP_LOCK_ASSERT(inp);
1022         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1023
1024         if (oinpp != NULL)
1025                 *oinpp = NULL;
1026         if (nam->sa_len != sizeof (*sin))
1027                 return (EINVAL);
1028         if (sin->sin_family != AF_INET)
1029                 return (EAFNOSUPPORT);
1030         if (sin->sin_port == 0)
1031                 return (EADDRNOTAVAIL);
1032         laddr.s_addr = *laddrp;
1033         lport = *lportp;
1034         faddr = sin->sin_addr;
1035         fport = sin->sin_port;
1036
1037         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1038                 /*
1039                  * If the destination address is INADDR_ANY,
1040                  * use the primary local address.
1041                  * If the supplied address is INADDR_BROADCAST,
1042                  * and the primary interface supports broadcast,
1043                  * choose the broadcast address for that interface.
1044                  */
1045                 if (faddr.s_addr == INADDR_ANY) {
1046                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1047                         faddr =
1048                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1049                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1050                         if (cred != NULL &&
1051                             (error = prison_get_ip4(cred, &faddr)) != 0)
1052                                 return (error);
1053                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1054                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1055                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1056                             IFF_BROADCAST)
1057                                 faddr = satosin(&TAILQ_FIRST(
1058                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1059                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1060                 }
1061         }
1062         if (laddr.s_addr == INADDR_ANY) {
1063                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1064                 /*
1065                  * If the destination address is multicast and an outgoing
1066                  * interface has been set as a multicast option, prefer the
1067                  * address of that interface as our source address.
1068                  */
1069                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1070                     inp->inp_moptions != NULL) {
1071                         struct ip_moptions *imo;
1072                         struct ifnet *ifp;
1073
1074                         imo = inp->inp_moptions;
1075                         if (imo->imo_multicast_ifp != NULL) {
1076                                 ifp = imo->imo_multicast_ifp;
1077                                 IN_IFADDR_RLOCK(&in_ifa_tracker);
1078                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1079                                         if ((ia->ia_ifp == ifp) &&
1080                                             (cred == NULL ||
1081                                             prison_check_ip4(cred,
1082                                             &ia->ia_addr.sin_addr) == 0))
1083                                                 break;
1084                                 }
1085                                 if (ia == NULL)
1086                                         error = EADDRNOTAVAIL;
1087                                 else {
1088                                         laddr = ia->ia_addr.sin_addr;
1089                                         error = 0;
1090                                 }
1091                                 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1092                         }
1093                 }
1094                 if (error)
1095                         return (error);
1096         }
1097         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1098             laddr, lport, 0, NULL);
1099         if (oinp != NULL) {
1100                 if (oinpp != NULL)
1101                         *oinpp = oinp;
1102                 return (EADDRINUSE);
1103         }
1104         if (lport == 0) {
1105                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1106                     cred);
1107                 if (error)
1108                         return (error);
1109         }
1110         *laddrp = laddr.s_addr;
1111         *lportp = lport;
1112         *faddrp = faddr.s_addr;
1113         *fportp = fport;
1114         return (0);
1115 }
1116
1117 void
1118 in_pcbdisconnect(struct inpcb *inp)
1119 {
1120
1121         INP_WLOCK_ASSERT(inp);
1122         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1123
1124         inp->inp_faddr.s_addr = INADDR_ANY;
1125         inp->inp_fport = 0;
1126         in_pcbrehash(inp);
1127 }
1128 #endif /* INET */
1129
1130 /*
1131  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1132  * For most protocols, this will be invoked immediately prior to calling
1133  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1134  * socket, in which case in_pcbfree() is deferred.
1135  */
1136 void
1137 in_pcbdetach(struct inpcb *inp)
1138 {
1139
1140         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1141
1142         inp->inp_socket->so_pcb = NULL;
1143         inp->inp_socket = NULL;
1144 }
1145
1146 /*
1147  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1148  * stability of an inpcb pointer despite the inpcb lock being released.  This
1149  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1150  * but where the inpcb lock may already held, or when acquiring a reference
1151  * via a pcbgroup.
1152  *
1153  * in_pcbref() should be used only to provide brief memory stability, and
1154  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1155  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1156  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1157  * lock and rele are the *only* safe operations that may be performed on the
1158  * inpcb.
1159  *
1160  * While the inpcb will not be freed, releasing the inpcb lock means that the
1161  * connection's state may change, so the caller should be careful to
1162  * revalidate any cached state on reacquiring the lock.  Drop the reference
1163  * using in_pcbrele().
1164  */
1165 void
1166 in_pcbref(struct inpcb *inp)
1167 {
1168
1169         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1170
1171         refcount_acquire(&inp->inp_refcount);
1172 }
1173
1174 /*
1175  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1176  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1177  * return a flag indicating whether or not the inpcb remains valid.  If it is
1178  * valid, we return with the inpcb lock held.
1179  *
1180  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1181  * reference on an inpcb.  Historically more work was done here (actually, in
1182  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1183  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1184  * about memory stability (and continued use of the write lock).
1185  */
1186 int
1187 in_pcbrele_rlocked(struct inpcb *inp)
1188 {
1189         struct inpcbinfo *pcbinfo;
1190
1191         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1192
1193         INP_RLOCK_ASSERT(inp);
1194
1195         if (refcount_release(&inp->inp_refcount) == 0) {
1196                 /*
1197                  * If the inpcb has been freed, let the caller know, even if
1198                  * this isn't the last reference.
1199                  */
1200                 if (inp->inp_flags2 & INP_FREED) {
1201                         INP_RUNLOCK(inp);
1202                         return (1);
1203                 }
1204                 return (0);
1205         }
1206
1207         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1208
1209         INP_RUNLOCK(inp);
1210         pcbinfo = inp->inp_pcbinfo;
1211         uma_zfree(pcbinfo->ipi_zone, inp);
1212         return (1);
1213 }
1214
1215 int
1216 in_pcbrele_wlocked(struct inpcb *inp)
1217 {
1218         struct inpcbinfo *pcbinfo;
1219
1220         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1221
1222         INP_WLOCK_ASSERT(inp);
1223
1224         if (refcount_release(&inp->inp_refcount) == 0) {
1225                 /*
1226                  * If the inpcb has been freed, let the caller know, even if
1227                  * this isn't the last reference.
1228                  */
1229                 if (inp->inp_flags2 & INP_FREED) {
1230                         INP_WUNLOCK(inp);
1231                         return (1);
1232                 }
1233                 return (0);
1234         }
1235
1236         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1237
1238         INP_WUNLOCK(inp);
1239         pcbinfo = inp->inp_pcbinfo;
1240         uma_zfree(pcbinfo->ipi_zone, inp);
1241         return (1);
1242 }
1243
1244 /*
1245  * Temporary wrapper.
1246  */
1247 int
1248 in_pcbrele(struct inpcb *inp)
1249 {
1250
1251         return (in_pcbrele_wlocked(inp));
1252 }
1253
1254 /*
1255  * Unconditionally schedule an inpcb to be freed by decrementing its
1256  * reference count, which should occur only after the inpcb has been detached
1257  * from its socket.  If another thread holds a temporary reference (acquired
1258  * using in_pcbref()) then the free is deferred until that reference is
1259  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1260  * work, including removal from global lists, is done in this context, where
1261  * the pcbinfo lock is held.
1262  */
1263 void
1264 in_pcbfree(struct inpcb *inp)
1265 {
1266         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1267
1268         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1269
1270 #ifdef INVARIANTS
1271         if (pcbinfo == &V_tcbinfo) {
1272                 INP_INFO_LOCK_ASSERT(pcbinfo);
1273         } else {
1274                 INP_INFO_WLOCK_ASSERT(pcbinfo);
1275         }
1276 #endif
1277         INP_WLOCK_ASSERT(inp);
1278
1279         /* XXXRW: Do as much as possible here. */
1280 #ifdef IPSEC
1281         if (inp->inp_sp != NULL)
1282                 ipsec_delete_pcbpolicy(inp);
1283 #endif
1284         INP_LIST_WLOCK(pcbinfo);
1285         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1286         in_pcbremlists(inp);
1287         INP_LIST_WUNLOCK(pcbinfo);
1288 #ifdef INET6
1289         if (inp->inp_vflag & INP_IPV6PROTO) {
1290                 ip6_freepcbopts(inp->in6p_outputopts);
1291                 if (inp->in6p_moptions != NULL)
1292                         ip6_freemoptions(inp->in6p_moptions);
1293         }
1294 #endif
1295         if (inp->inp_options)
1296                 (void)m_free(inp->inp_options);
1297 #ifdef INET
1298         if (inp->inp_moptions != NULL)
1299                 inp_freemoptions(inp->inp_moptions);
1300 #endif
1301         if (inp->inp_route.ro_rt) {
1302                 RTFREE(inp->inp_route.ro_rt);
1303                 inp->inp_route.ro_rt = (struct rtentry *)NULL;
1304         }
1305
1306         inp->inp_vflag = 0;
1307         inp->inp_flags2 |= INP_FREED;
1308         crfree(inp->inp_cred);
1309 #ifdef MAC
1310         mac_inpcb_destroy(inp);
1311 #endif
1312         if (!in_pcbrele_wlocked(inp))
1313                 INP_WUNLOCK(inp);
1314 }
1315
1316 /*
1317  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1318  * port reservation, and preventing it from being returned by inpcb lookups.
1319  *
1320  * It is used by TCP to mark an inpcb as unused and avoid future packet
1321  * delivery or event notification when a socket remains open but TCP has
1322  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1323  * or a RST on the wire, and allows the port binding to be reused while still
1324  * maintaining the invariant that so_pcb always points to a valid inpcb until
1325  * in_pcbdetach().
1326  *
1327  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1328  * in_pcbnotifyall() and in_pcbpurgeif0()?
1329  */
1330 void
1331 in_pcbdrop(struct inpcb *inp)
1332 {
1333
1334         INP_WLOCK_ASSERT(inp);
1335
1336         /*
1337          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1338          * the hash lock...?
1339          */
1340         inp->inp_flags |= INP_DROPPED;
1341         if (inp->inp_flags & INP_INHASHLIST) {
1342                 struct inpcbport *phd = inp->inp_phd;
1343
1344                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1345                 LIST_REMOVE(inp, inp_hash);
1346                 LIST_REMOVE(inp, inp_portlist);
1347                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1348                         LIST_REMOVE(phd, phd_hash);
1349                         free(phd, M_PCB);
1350                 }
1351                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1352                 inp->inp_flags &= ~INP_INHASHLIST;
1353 #ifdef PCBGROUP
1354                 in_pcbgroup_remove(inp);
1355 #endif
1356         }
1357 }
1358
1359 #ifdef INET
1360 /*
1361  * Common routines to return the socket addresses associated with inpcbs.
1362  */
1363 struct sockaddr *
1364 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1365 {
1366         struct sockaddr_in *sin;
1367
1368         sin = malloc(sizeof *sin, M_SONAME,
1369                 M_WAITOK | M_ZERO);
1370         sin->sin_family = AF_INET;
1371         sin->sin_len = sizeof(*sin);
1372         sin->sin_addr = *addr_p;
1373         sin->sin_port = port;
1374
1375         return (struct sockaddr *)sin;
1376 }
1377
1378 int
1379 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1380 {
1381         struct inpcb *inp;
1382         struct in_addr addr;
1383         in_port_t port;
1384
1385         inp = sotoinpcb(so);
1386         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1387
1388         INP_RLOCK(inp);
1389         port = inp->inp_lport;
1390         addr = inp->inp_laddr;
1391         INP_RUNLOCK(inp);
1392
1393         *nam = in_sockaddr(port, &addr);
1394         return 0;
1395 }
1396
1397 int
1398 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1399 {
1400         struct inpcb *inp;
1401         struct in_addr addr;
1402         in_port_t port;
1403
1404         inp = sotoinpcb(so);
1405         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1406
1407         INP_RLOCK(inp);
1408         port = inp->inp_fport;
1409         addr = inp->inp_faddr;
1410         INP_RUNLOCK(inp);
1411
1412         *nam = in_sockaddr(port, &addr);
1413         return 0;
1414 }
1415
1416 void
1417 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1418     struct inpcb *(*notify)(struct inpcb *, int))
1419 {
1420         struct inpcb *inp, *inp_temp;
1421
1422         INP_INFO_WLOCK(pcbinfo);
1423         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1424                 INP_WLOCK(inp);
1425 #ifdef INET6
1426                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1427                         INP_WUNLOCK(inp);
1428                         continue;
1429                 }
1430 #endif
1431                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1432                     inp->inp_socket == NULL) {
1433                         INP_WUNLOCK(inp);
1434                         continue;
1435                 }
1436                 if ((*notify)(inp, errno))
1437                         INP_WUNLOCK(inp);
1438         }
1439         INP_INFO_WUNLOCK(pcbinfo);
1440 }
1441
1442 void
1443 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1444 {
1445         struct inpcb *inp;
1446         struct ip_moptions *imo;
1447         int i, gap;
1448
1449         INP_INFO_WLOCK(pcbinfo);
1450         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1451                 INP_WLOCK(inp);
1452                 imo = inp->inp_moptions;
1453                 if ((inp->inp_vflag & INP_IPV4) &&
1454                     imo != NULL) {
1455                         /*
1456                          * Unselect the outgoing interface if it is being
1457                          * detached.
1458                          */
1459                         if (imo->imo_multicast_ifp == ifp)
1460                                 imo->imo_multicast_ifp = NULL;
1461
1462                         /*
1463                          * Drop multicast group membership if we joined
1464                          * through the interface being detached.
1465                          */
1466                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1467                             i++) {
1468                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1469                                         in_delmulti(imo->imo_membership[i]);
1470                                         gap++;
1471                                 } else if (gap != 0)
1472                                         imo->imo_membership[i - gap] =
1473                                             imo->imo_membership[i];
1474                         }
1475                         imo->imo_num_memberships -= gap;
1476                 }
1477                 INP_WUNLOCK(inp);
1478         }
1479         INP_INFO_WUNLOCK(pcbinfo);
1480 }
1481
1482 /*
1483  * Lookup a PCB based on the local address and port.  Caller must hold the
1484  * hash lock.  No inpcb locks or references are acquired.
1485  */
1486 #define INP_LOOKUP_MAPPED_PCB_COST      3
1487 struct inpcb *
1488 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1489     u_short lport, int lookupflags, struct ucred *cred)
1490 {
1491         struct inpcb *inp;
1492 #ifdef INET6
1493         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1494 #else
1495         int matchwild = 3;
1496 #endif
1497         int wildcard;
1498
1499         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1500             ("%s: invalid lookup flags %d", __func__, lookupflags));
1501
1502         INP_HASH_LOCK_ASSERT(pcbinfo);
1503
1504         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1505                 struct inpcbhead *head;
1506                 /*
1507                  * Look for an unconnected (wildcard foreign addr) PCB that
1508                  * matches the local address and port we're looking for.
1509                  */
1510                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1511                     0, pcbinfo->ipi_hashmask)];
1512                 LIST_FOREACH(inp, head, inp_hash) {
1513 #ifdef INET6
1514                         /* XXX inp locking */
1515                         if ((inp->inp_vflag & INP_IPV4) == 0)
1516                                 continue;
1517 #endif
1518                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1519                             inp->inp_laddr.s_addr == laddr.s_addr &&
1520                             inp->inp_lport == lport) {
1521                                 /*
1522                                  * Found?
1523                                  */
1524                                 if (cred == NULL ||
1525                                     prison_equal_ip4(cred->cr_prison,
1526                                         inp->inp_cred->cr_prison))
1527                                         return (inp);
1528                         }
1529                 }
1530                 /*
1531                  * Not found.
1532                  */
1533                 return (NULL);
1534         } else {
1535                 struct inpcbporthead *porthash;
1536                 struct inpcbport *phd;
1537                 struct inpcb *match = NULL;
1538                 /*
1539                  * Best fit PCB lookup.
1540                  *
1541                  * First see if this local port is in use by looking on the
1542                  * port hash list.
1543                  */
1544                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1545                     pcbinfo->ipi_porthashmask)];
1546                 LIST_FOREACH(phd, porthash, phd_hash) {
1547                         if (phd->phd_port == lport)
1548                                 break;
1549                 }
1550                 if (phd != NULL) {
1551                         /*
1552                          * Port is in use by one or more PCBs. Look for best
1553                          * fit.
1554                          */
1555                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1556                                 wildcard = 0;
1557                                 if (cred != NULL &&
1558                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1559                                         cred->cr_prison))
1560                                         continue;
1561 #ifdef INET6
1562                                 /* XXX inp locking */
1563                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1564                                         continue;
1565                                 /*
1566                                  * We never select the PCB that has
1567                                  * INP_IPV6 flag and is bound to :: if
1568                                  * we have another PCB which is bound
1569                                  * to 0.0.0.0.  If a PCB has the
1570                                  * INP_IPV6 flag, then we set its cost
1571                                  * higher than IPv4 only PCBs.
1572                                  *
1573                                  * Note that the case only happens
1574                                  * when a socket is bound to ::, under
1575                                  * the condition that the use of the
1576                                  * mapped address is allowed.
1577                                  */
1578                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1579                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1580 #endif
1581                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1582                                         wildcard++;
1583                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1584                                         if (laddr.s_addr == INADDR_ANY)
1585                                                 wildcard++;
1586                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1587                                                 continue;
1588                                 } else {
1589                                         if (laddr.s_addr != INADDR_ANY)
1590                                                 wildcard++;
1591                                 }
1592                                 if (wildcard < matchwild) {
1593                                         match = inp;
1594                                         matchwild = wildcard;
1595                                         if (matchwild == 0)
1596                                                 break;
1597                                 }
1598                         }
1599                 }
1600                 return (match);
1601         }
1602 }
1603 #undef INP_LOOKUP_MAPPED_PCB_COST
1604
1605 #ifdef PCBGROUP
1606 /*
1607  * Lookup PCB in hash list, using pcbgroup tables.
1608  */
1609 static struct inpcb *
1610 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1611     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1612     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1613 {
1614         struct inpcbhead *head;
1615         struct inpcb *inp, *tmpinp;
1616         u_short fport = fport_arg, lport = lport_arg;
1617
1618         /*
1619          * First look for an exact match.
1620          */
1621         tmpinp = NULL;
1622         INP_GROUP_LOCK(pcbgroup);
1623         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1624             pcbgroup->ipg_hashmask)];
1625         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1626 #ifdef INET6
1627                 /* XXX inp locking */
1628                 if ((inp->inp_vflag & INP_IPV4) == 0)
1629                         continue;
1630 #endif
1631                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1632                     inp->inp_laddr.s_addr == laddr.s_addr &&
1633                     inp->inp_fport == fport &&
1634                     inp->inp_lport == lport) {
1635                         /*
1636                          * XXX We should be able to directly return
1637                          * the inp here, without any checks.
1638                          * Well unless both bound with SO_REUSEPORT?
1639                          */
1640                         if (prison_flag(inp->inp_cred, PR_IP4))
1641                                 goto found;
1642                         if (tmpinp == NULL)
1643                                 tmpinp = inp;
1644                 }
1645         }
1646         if (tmpinp != NULL) {
1647                 inp = tmpinp;
1648                 goto found;
1649         }
1650
1651 #ifdef  RSS
1652         /*
1653          * For incoming connections, we may wish to do a wildcard
1654          * match for an RSS-local socket.
1655          */
1656         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1657                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1658 #ifdef INET6
1659                 struct inpcb *local_wild_mapped = NULL;
1660 #endif
1661                 struct inpcb *jail_wild = NULL;
1662                 struct inpcbhead *head;
1663                 int injail;
1664
1665                 /*
1666                  * Order of socket selection - we always prefer jails.
1667                  *      1. jailed, non-wild.
1668                  *      2. jailed, wild.
1669                  *      3. non-jailed, non-wild.
1670                  *      4. non-jailed, wild.
1671                  */
1672
1673                 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1674                     lport, 0, pcbgroup->ipg_hashmask)];
1675                 LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1676 #ifdef INET6
1677                         /* XXX inp locking */
1678                         if ((inp->inp_vflag & INP_IPV4) == 0)
1679                                 continue;
1680 #endif
1681                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1682                             inp->inp_lport != lport)
1683                                 continue;
1684
1685                         injail = prison_flag(inp->inp_cred, PR_IP4);
1686                         if (injail) {
1687                                 if (prison_check_ip4(inp->inp_cred,
1688                                     &laddr) != 0)
1689                                         continue;
1690                         } else {
1691                                 if (local_exact != NULL)
1692                                         continue;
1693                         }
1694
1695                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1696                                 if (injail)
1697                                         goto found;
1698                                 else
1699                                         local_exact = inp;
1700                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1701 #ifdef INET6
1702                                 /* XXX inp locking, NULL check */
1703                                 if (inp->inp_vflag & INP_IPV6PROTO)
1704                                         local_wild_mapped = inp;
1705                                 else
1706 #endif
1707                                         if (injail)
1708                                                 jail_wild = inp;
1709                                         else
1710                                                 local_wild = inp;
1711                         }
1712                 } /* LIST_FOREACH */
1713
1714                 inp = jail_wild;
1715                 if (inp == NULL)
1716                         inp = local_exact;
1717                 if (inp == NULL)
1718                         inp = local_wild;
1719 #ifdef INET6
1720                 if (inp == NULL)
1721                         inp = local_wild_mapped;
1722 #endif
1723                 if (inp != NULL)
1724                         goto found;
1725         }
1726 #endif
1727
1728         /*
1729          * Then look for a wildcard match, if requested.
1730          */
1731         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1732                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1733 #ifdef INET6
1734                 struct inpcb *local_wild_mapped = NULL;
1735 #endif
1736                 struct inpcb *jail_wild = NULL;
1737                 struct inpcbhead *head;
1738                 int injail;
1739
1740                 /*
1741                  * Order of socket selection - we always prefer jails.
1742                  *      1. jailed, non-wild.
1743                  *      2. jailed, wild.
1744                  *      3. non-jailed, non-wild.
1745                  *      4. non-jailed, wild.
1746                  */
1747                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1748                     0, pcbinfo->ipi_wildmask)];
1749                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1750 #ifdef INET6
1751                         /* XXX inp locking */
1752                         if ((inp->inp_vflag & INP_IPV4) == 0)
1753                                 continue;
1754 #endif
1755                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1756                             inp->inp_lport != lport)
1757                                 continue;
1758
1759                         injail = prison_flag(inp->inp_cred, PR_IP4);
1760                         if (injail) {
1761                                 if (prison_check_ip4(inp->inp_cred,
1762                                     &laddr) != 0)
1763                                         continue;
1764                         } else {
1765                                 if (local_exact != NULL)
1766                                         continue;
1767                         }
1768
1769                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1770                                 if (injail)
1771                                         goto found;
1772                                 else
1773                                         local_exact = inp;
1774                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1775 #ifdef INET6
1776                                 /* XXX inp locking, NULL check */
1777                                 if (inp->inp_vflag & INP_IPV6PROTO)
1778                                         local_wild_mapped = inp;
1779                                 else
1780 #endif
1781                                         if (injail)
1782                                                 jail_wild = inp;
1783                                         else
1784                                                 local_wild = inp;
1785                         }
1786                 } /* LIST_FOREACH */
1787                 inp = jail_wild;
1788                 if (inp == NULL)
1789                         inp = local_exact;
1790                 if (inp == NULL)
1791                         inp = local_wild;
1792 #ifdef INET6
1793                 if (inp == NULL)
1794                         inp = local_wild_mapped;
1795 #endif
1796                 if (inp != NULL)
1797                         goto found;
1798         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1799         INP_GROUP_UNLOCK(pcbgroup);
1800         return (NULL);
1801
1802 found:
1803         in_pcbref(inp);
1804         INP_GROUP_UNLOCK(pcbgroup);
1805         if (lookupflags & INPLOOKUP_WLOCKPCB) {
1806                 INP_WLOCK(inp);
1807                 if (in_pcbrele_wlocked(inp))
1808                         return (NULL);
1809         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1810                 INP_RLOCK(inp);
1811                 if (in_pcbrele_rlocked(inp))
1812                         return (NULL);
1813         } else
1814                 panic("%s: locking bug", __func__);
1815         return (inp);
1816 }
1817 #endif /* PCBGROUP */
1818
1819 /*
1820  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1821  * that the caller has locked the hash list, and will not perform any further
1822  * locking or reference operations on either the hash list or the connection.
1823  */
1824 static struct inpcb *
1825 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1826     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1827     struct ifnet *ifp)
1828 {
1829         struct inpcbhead *head;
1830         struct inpcb *inp, *tmpinp;
1831         u_short fport = fport_arg, lport = lport_arg;
1832
1833         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1834             ("%s: invalid lookup flags %d", __func__, lookupflags));
1835
1836         INP_HASH_LOCK_ASSERT(pcbinfo);
1837
1838         /*
1839          * First look for an exact match.
1840          */
1841         tmpinp = NULL;
1842         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1843             pcbinfo->ipi_hashmask)];
1844         LIST_FOREACH(inp, head, inp_hash) {
1845 #ifdef INET6
1846                 /* XXX inp locking */
1847                 if ((inp->inp_vflag & INP_IPV4) == 0)
1848                         continue;
1849 #endif
1850                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1851                     inp->inp_laddr.s_addr == laddr.s_addr &&
1852                     inp->inp_fport == fport &&
1853                     inp->inp_lport == lport) {
1854                         /*
1855                          * XXX We should be able to directly return
1856                          * the inp here, without any checks.
1857                          * Well unless both bound with SO_REUSEPORT?
1858                          */
1859                         if (prison_flag(inp->inp_cred, PR_IP4))
1860                                 return (inp);
1861                         if (tmpinp == NULL)
1862                                 tmpinp = inp;
1863                 }
1864         }
1865         if (tmpinp != NULL)
1866                 return (tmpinp);
1867
1868         /*
1869          * Then look for a wildcard match, if requested.
1870          */
1871         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1872                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1873 #ifdef INET6
1874                 struct inpcb *local_wild_mapped = NULL;
1875 #endif
1876                 struct inpcb *jail_wild = NULL;
1877                 int injail;
1878
1879                 /*
1880                  * Order of socket selection - we always prefer jails.
1881                  *      1. jailed, non-wild.
1882                  *      2. jailed, wild.
1883                  *      3. non-jailed, non-wild.
1884                  *      4. non-jailed, wild.
1885                  */
1886
1887                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1888                     0, pcbinfo->ipi_hashmask)];
1889                 LIST_FOREACH(inp, head, inp_hash) {
1890 #ifdef INET6
1891                         /* XXX inp locking */
1892                         if ((inp->inp_vflag & INP_IPV4) == 0)
1893                                 continue;
1894 #endif
1895                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1896                             inp->inp_lport != lport)
1897                                 continue;
1898
1899                         injail = prison_flag(inp->inp_cred, PR_IP4);
1900                         if (injail) {
1901                                 if (prison_check_ip4(inp->inp_cred,
1902                                     &laddr) != 0)
1903                                         continue;
1904                         } else {
1905                                 if (local_exact != NULL)
1906                                         continue;
1907                         }
1908
1909                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1910                                 if (injail)
1911                                         return (inp);
1912                                 else
1913                                         local_exact = inp;
1914                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1915 #ifdef INET6
1916                                 /* XXX inp locking, NULL check */
1917                                 if (inp->inp_vflag & INP_IPV6PROTO)
1918                                         local_wild_mapped = inp;
1919                                 else
1920 #endif
1921                                         if (injail)
1922                                                 jail_wild = inp;
1923                                         else
1924                                                 local_wild = inp;
1925                         }
1926                 } /* LIST_FOREACH */
1927                 if (jail_wild != NULL)
1928                         return (jail_wild);
1929                 if (local_exact != NULL)
1930                         return (local_exact);
1931                 if (local_wild != NULL)
1932                         return (local_wild);
1933 #ifdef INET6
1934                 if (local_wild_mapped != NULL)
1935                         return (local_wild_mapped);
1936 #endif
1937         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1938
1939         return (NULL);
1940 }
1941
1942 /*
1943  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1944  * hash list lock, and will return the inpcb locked (i.e., requires
1945  * INPLOOKUP_LOCKPCB).
1946  */
1947 static struct inpcb *
1948 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1949     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1950     struct ifnet *ifp)
1951 {
1952         struct inpcb *inp;
1953
1954         INP_HASH_RLOCK(pcbinfo);
1955         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1956             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1957         if (inp != NULL) {
1958                 in_pcbref(inp);
1959                 INP_HASH_RUNLOCK(pcbinfo);
1960                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1961                         INP_WLOCK(inp);
1962                         if (in_pcbrele_wlocked(inp))
1963                                 return (NULL);
1964                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1965                         INP_RLOCK(inp);
1966                         if (in_pcbrele_rlocked(inp))
1967                                 return (NULL);
1968                 } else
1969                         panic("%s: locking bug", __func__);
1970         } else
1971                 INP_HASH_RUNLOCK(pcbinfo);
1972         return (inp);
1973 }
1974
1975 /*
1976  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1977  * from which a pre-calculated hash value may be extracted.
1978  *
1979  * Possibly more of this logic should be in in_pcbgroup.c.
1980  */
1981 struct inpcb *
1982 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1983     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1984 {
1985 #if defined(PCBGROUP) && !defined(RSS)
1986         struct inpcbgroup *pcbgroup;
1987 #endif
1988
1989         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1990             ("%s: invalid lookup flags %d", __func__, lookupflags));
1991         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1992             ("%s: LOCKPCB not set", __func__));
1993
1994         /*
1995          * When not using RSS, use connection groups in preference to the
1996          * reservation table when looking up 4-tuples.  When using RSS, just
1997          * use the reservation table, due to the cost of the Toeplitz hash
1998          * in software.
1999          *
2000          * XXXRW: This policy belongs in the pcbgroup code, as in principle
2001          * we could be doing RSS with a non-Toeplitz hash that is affordable
2002          * in software.
2003          */
2004 #if defined(PCBGROUP) && !defined(RSS)
2005         if (in_pcbgroup_enabled(pcbinfo)) {
2006                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2007                     fport);
2008                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2009                     laddr, lport, lookupflags, ifp));
2010         }
2011 #endif
2012         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2013             lookupflags, ifp));
2014 }
2015
2016 struct inpcb *
2017 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2018     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2019     struct ifnet *ifp, struct mbuf *m)
2020 {
2021 #ifdef PCBGROUP
2022         struct inpcbgroup *pcbgroup;
2023 #endif
2024
2025         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2026             ("%s: invalid lookup flags %d", __func__, lookupflags));
2027         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2028             ("%s: LOCKPCB not set", __func__));
2029
2030 #ifdef PCBGROUP
2031         /*
2032          * If we can use a hardware-generated hash to look up the connection
2033          * group, use that connection group to find the inpcb.  Otherwise
2034          * fall back on a software hash -- or the reservation table if we're
2035          * using RSS.
2036          *
2037          * XXXRW: As above, that policy belongs in the pcbgroup code.
2038          */
2039         if (in_pcbgroup_enabled(pcbinfo) &&
2040             !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2041                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2042                     m->m_pkthdr.flowid);
2043                 if (pcbgroup != NULL)
2044                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2045                             fport, laddr, lport, lookupflags, ifp));
2046 #ifndef RSS
2047                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2048                     fport);
2049                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2050                     laddr, lport, lookupflags, ifp));
2051 #endif
2052         }
2053 #endif
2054         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2055             lookupflags, ifp));
2056 }
2057 #endif /* INET */
2058
2059 /*
2060  * Insert PCB onto various hash lists.
2061  */
2062 static int
2063 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2064 {
2065         struct inpcbhead *pcbhash;
2066         struct inpcbporthead *pcbporthash;
2067         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2068         struct inpcbport *phd;
2069         u_int32_t hashkey_faddr;
2070
2071         INP_WLOCK_ASSERT(inp);
2072         INP_HASH_WLOCK_ASSERT(pcbinfo);
2073
2074         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2075             ("in_pcbinshash: INP_INHASHLIST"));
2076
2077 #ifdef INET6
2078         if (inp->inp_vflag & INP_IPV6)
2079                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2080         else
2081 #endif
2082         hashkey_faddr = inp->inp_faddr.s_addr;
2083
2084         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2085                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2086
2087         pcbporthash = &pcbinfo->ipi_porthashbase[
2088             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2089
2090         /*
2091          * Go through port list and look for a head for this lport.
2092          */
2093         LIST_FOREACH(phd, pcbporthash, phd_hash) {
2094                 if (phd->phd_port == inp->inp_lport)
2095                         break;
2096         }
2097         /*
2098          * If none exists, malloc one and tack it on.
2099          */
2100         if (phd == NULL) {
2101                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2102                 if (phd == NULL) {
2103                         return (ENOBUFS); /* XXX */
2104                 }
2105                 phd->phd_port = inp->inp_lport;
2106                 LIST_INIT(&phd->phd_pcblist);
2107                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2108         }
2109         inp->inp_phd = phd;
2110         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2111         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2112         inp->inp_flags |= INP_INHASHLIST;
2113 #ifdef PCBGROUP
2114         if (do_pcbgroup_update)
2115                 in_pcbgroup_update(inp);
2116 #endif
2117         return (0);
2118 }
2119
2120 /*
2121  * For now, there are two public interfaces to insert an inpcb into the hash
2122  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2123  * is used only in the TCP syncache, where in_pcbinshash is called before the
2124  * full 4-tuple is set for the inpcb, and we don't want to install in the
2125  * pcbgroup until later.
2126  *
2127  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2128  * connection groups, and partially initialised inpcbs should not be exposed
2129  * to either reservation hash tables or pcbgroups.
2130  */
2131 int
2132 in_pcbinshash(struct inpcb *inp)
2133 {
2134
2135         return (in_pcbinshash_internal(inp, 1));
2136 }
2137
2138 int
2139 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2140 {
2141
2142         return (in_pcbinshash_internal(inp, 0));
2143 }
2144
2145 /*
2146  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2147  * changed. NOTE: This does not handle the case of the lport changing (the
2148  * hashed port list would have to be updated as well), so the lport must
2149  * not change after in_pcbinshash() has been called.
2150  */
2151 void
2152 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2153 {
2154         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2155         struct inpcbhead *head;
2156         u_int32_t hashkey_faddr;
2157
2158         INP_WLOCK_ASSERT(inp);
2159         INP_HASH_WLOCK_ASSERT(pcbinfo);
2160
2161         KASSERT(inp->inp_flags & INP_INHASHLIST,
2162             ("in_pcbrehash: !INP_INHASHLIST"));
2163
2164 #ifdef INET6
2165         if (inp->inp_vflag & INP_IPV6)
2166                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2167         else
2168 #endif
2169         hashkey_faddr = inp->inp_faddr.s_addr;
2170
2171         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2172                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2173
2174         LIST_REMOVE(inp, inp_hash);
2175         LIST_INSERT_HEAD(head, inp, inp_hash);
2176
2177 #ifdef PCBGROUP
2178         if (m != NULL)
2179                 in_pcbgroup_update_mbuf(inp, m);
2180         else
2181                 in_pcbgroup_update(inp);
2182 #endif
2183 }
2184
2185 void
2186 in_pcbrehash(struct inpcb *inp)
2187 {
2188
2189         in_pcbrehash_mbuf(inp, NULL);
2190 }
2191
2192 /*
2193  * Remove PCB from various lists.
2194  */
2195 static void
2196 in_pcbremlists(struct inpcb *inp)
2197 {
2198         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2199
2200 #ifdef INVARIANTS
2201         if (pcbinfo == &V_tcbinfo) {
2202                 INP_INFO_RLOCK_ASSERT(pcbinfo);
2203         } else {
2204                 INP_INFO_WLOCK_ASSERT(pcbinfo);
2205         }
2206 #endif
2207
2208         INP_WLOCK_ASSERT(inp);
2209         INP_LIST_WLOCK_ASSERT(pcbinfo);
2210
2211         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2212         if (inp->inp_flags & INP_INHASHLIST) {
2213                 struct inpcbport *phd = inp->inp_phd;
2214
2215                 INP_HASH_WLOCK(pcbinfo);
2216                 LIST_REMOVE(inp, inp_hash);
2217                 LIST_REMOVE(inp, inp_portlist);
2218                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2219                         LIST_REMOVE(phd, phd_hash);
2220                         free(phd, M_PCB);
2221                 }
2222                 INP_HASH_WUNLOCK(pcbinfo);
2223                 inp->inp_flags &= ~INP_INHASHLIST;
2224         }
2225         LIST_REMOVE(inp, inp_list);
2226         pcbinfo->ipi_count--;
2227 #ifdef PCBGROUP
2228         in_pcbgroup_remove(inp);
2229 #endif
2230 }
2231
2232 /*
2233  * Check for alternatives when higher level complains
2234  * about service problems.  For now, invalidate cached
2235  * routing information.  If the route was created dynamically
2236  * (by a redirect), time to try a default gateway again.
2237  */
2238 void
2239 in_losing(struct inpcb *inp)
2240 {
2241
2242         if (inp->inp_route.ro_rt) {
2243                 RTFREE(inp->inp_route.ro_rt);
2244                 inp->inp_route.ro_rt = (struct rtentry *)NULL;
2245         }
2246         return;
2247 }
2248
2249 /*
2250  * A set label operation has occurred at the socket layer, propagate the
2251  * label change into the in_pcb for the socket.
2252  */
2253 void
2254 in_pcbsosetlabel(struct socket *so)
2255 {
2256 #ifdef MAC
2257         struct inpcb *inp;
2258
2259         inp = sotoinpcb(so);
2260         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2261
2262         INP_WLOCK(inp);
2263         SOCK_LOCK(so);
2264         mac_inpcb_sosetlabel(so, inp);
2265         SOCK_UNLOCK(so);
2266         INP_WUNLOCK(inp);
2267 #endif
2268 }
2269
2270 /*
2271  * ipport_tick runs once per second, determining if random port allocation
2272  * should be continued.  If more than ipport_randomcps ports have been
2273  * allocated in the last second, then we return to sequential port
2274  * allocation. We return to random allocation only once we drop below
2275  * ipport_randomcps for at least ipport_randomtime seconds.
2276  */
2277 static void
2278 ipport_tick(void *xtp)
2279 {
2280         VNET_ITERATOR_DECL(vnet_iter);
2281
2282         VNET_LIST_RLOCK_NOSLEEP();
2283         VNET_FOREACH(vnet_iter) {
2284                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2285                 if (V_ipport_tcpallocs <=
2286                     V_ipport_tcplastcount + V_ipport_randomcps) {
2287                         if (V_ipport_stoprandom > 0)
2288                                 V_ipport_stoprandom--;
2289                 } else
2290                         V_ipport_stoprandom = V_ipport_randomtime;
2291                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2292                 CURVNET_RESTORE();
2293         }
2294         VNET_LIST_RUNLOCK_NOSLEEP();
2295         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2296 }
2297
2298 static void
2299 ip_fini(void *xtp)
2300 {
2301
2302         callout_stop(&ipport_tick_callout);
2303 }
2304
2305 /* 
2306  * The ipport_callout should start running at about the time we attach the
2307  * inet or inet6 domains.
2308  */
2309 static void
2310 ipport_tick_init(const void *unused __unused)
2311 {
2312
2313         /* Start ipport_tick. */
2314         callout_init(&ipport_tick_callout, 1);
2315         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2316         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2317                 SHUTDOWN_PRI_DEFAULT);
2318 }
2319 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2320     ipport_tick_init, NULL);
2321
2322 void
2323 inp_wlock(struct inpcb *inp)
2324 {
2325
2326         INP_WLOCK(inp);
2327 }
2328
2329 void
2330 inp_wunlock(struct inpcb *inp)
2331 {
2332
2333         INP_WUNLOCK(inp);
2334 }
2335
2336 void
2337 inp_rlock(struct inpcb *inp)
2338 {
2339
2340         INP_RLOCK(inp);
2341 }
2342
2343 void
2344 inp_runlock(struct inpcb *inp)
2345 {
2346
2347         INP_RUNLOCK(inp);
2348 }
2349
2350 #ifdef INVARIANTS
2351 void
2352 inp_lock_assert(struct inpcb *inp)
2353 {
2354
2355         INP_WLOCK_ASSERT(inp);
2356 }
2357
2358 void
2359 inp_unlock_assert(struct inpcb *inp)
2360 {
2361
2362         INP_UNLOCK_ASSERT(inp);
2363 }
2364 #endif
2365
2366 void
2367 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2368 {
2369         struct inpcb *inp;
2370
2371         INP_INFO_WLOCK(&V_tcbinfo);
2372         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2373                 INP_WLOCK(inp);
2374                 func(inp, arg);
2375                 INP_WUNLOCK(inp);
2376         }
2377         INP_INFO_WUNLOCK(&V_tcbinfo);
2378 }
2379
2380 struct socket *
2381 inp_inpcbtosocket(struct inpcb *inp)
2382 {
2383
2384         INP_WLOCK_ASSERT(inp);
2385         return (inp->inp_socket);
2386 }
2387
2388 struct tcpcb *
2389 inp_inpcbtotcpcb(struct inpcb *inp)
2390 {
2391
2392         INP_WLOCK_ASSERT(inp);
2393         return ((struct tcpcb *)inp->inp_ppcb);
2394 }
2395
2396 int
2397 inp_ip_tos_get(const struct inpcb *inp)
2398 {
2399
2400         return (inp->inp_ip_tos);
2401 }
2402
2403 void
2404 inp_ip_tos_set(struct inpcb *inp, int val)
2405 {
2406
2407         inp->inp_ip_tos = val;
2408 }
2409
2410 void
2411 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2412     uint32_t *faddr, uint16_t *fp)
2413 {
2414
2415         INP_LOCK_ASSERT(inp);
2416         *laddr = inp->inp_laddr.s_addr;
2417         *faddr = inp->inp_faddr.s_addr;
2418         *lp = inp->inp_lport;
2419         *fp = inp->inp_fport;
2420 }
2421
2422 struct inpcb *
2423 so_sotoinpcb(struct socket *so)
2424 {
2425
2426         return (sotoinpcb(so));
2427 }
2428
2429 struct tcpcb *
2430 so_sototcpcb(struct socket *so)
2431 {
2432
2433         return (sototcpcb(so));
2434 }
2435
2436 #ifdef DDB
2437 static void
2438 db_print_indent(int indent)
2439 {
2440         int i;
2441
2442         for (i = 0; i < indent; i++)
2443                 db_printf(" ");
2444 }
2445
2446 static void
2447 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2448 {
2449         char faddr_str[48], laddr_str[48];
2450
2451         db_print_indent(indent);
2452         db_printf("%s at %p\n", name, inc);
2453
2454         indent += 2;
2455
2456 #ifdef INET6
2457         if (inc->inc_flags & INC_ISIPV6) {
2458                 /* IPv6. */
2459                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2460                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2461         } else
2462 #endif
2463         {
2464                 /* IPv4. */
2465                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2466                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2467         }
2468         db_print_indent(indent);
2469         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2470             ntohs(inc->inc_lport));
2471         db_print_indent(indent);
2472         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2473             ntohs(inc->inc_fport));
2474 }
2475
2476 static void
2477 db_print_inpflags(int inp_flags)
2478 {
2479         int comma;
2480
2481         comma = 0;
2482         if (inp_flags & INP_RECVOPTS) {
2483                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2484                 comma = 1;
2485         }
2486         if (inp_flags & INP_RECVRETOPTS) {
2487                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2488                 comma = 1;
2489         }
2490         if (inp_flags & INP_RECVDSTADDR) {
2491                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2492                 comma = 1;
2493         }
2494         if (inp_flags & INP_HDRINCL) {
2495                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2496                 comma = 1;
2497         }
2498         if (inp_flags & INP_HIGHPORT) {
2499                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2500                 comma = 1;
2501         }
2502         if (inp_flags & INP_LOWPORT) {
2503                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2504                 comma = 1;
2505         }
2506         if (inp_flags & INP_ANONPORT) {
2507                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2508                 comma = 1;
2509         }
2510         if (inp_flags & INP_RECVIF) {
2511                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2512                 comma = 1;
2513         }
2514         if (inp_flags & INP_MTUDISC) {
2515                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2516                 comma = 1;
2517         }
2518         if (inp_flags & INP_RECVTTL) {
2519                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2520                 comma = 1;
2521         }
2522         if (inp_flags & INP_DONTFRAG) {
2523                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2524                 comma = 1;
2525         }
2526         if (inp_flags & INP_RECVTOS) {
2527                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2528                 comma = 1;
2529         }
2530         if (inp_flags & IN6P_IPV6_V6ONLY) {
2531                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2532                 comma = 1;
2533         }
2534         if (inp_flags & IN6P_PKTINFO) {
2535                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2536                 comma = 1;
2537         }
2538         if (inp_flags & IN6P_HOPLIMIT) {
2539                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2540                 comma = 1;
2541         }
2542         if (inp_flags & IN6P_HOPOPTS) {
2543                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2544                 comma = 1;
2545         }
2546         if (inp_flags & IN6P_DSTOPTS) {
2547                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2548                 comma = 1;
2549         }
2550         if (inp_flags & IN6P_RTHDR) {
2551                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2552                 comma = 1;
2553         }
2554         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2555                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2556                 comma = 1;
2557         }
2558         if (inp_flags & IN6P_TCLASS) {
2559                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2560                 comma = 1;
2561         }
2562         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2563                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2564                 comma = 1;
2565         }
2566         if (inp_flags & INP_TIMEWAIT) {
2567                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2568                 comma  = 1;
2569         }
2570         if (inp_flags & INP_ONESBCAST) {
2571                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2572                 comma  = 1;
2573         }
2574         if (inp_flags & INP_DROPPED) {
2575                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2576                 comma  = 1;
2577         }
2578         if (inp_flags & INP_SOCKREF) {
2579                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2580                 comma  = 1;
2581         }
2582         if (inp_flags & IN6P_RFC2292) {
2583                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2584                 comma = 1;
2585         }
2586         if (inp_flags & IN6P_MTU) {
2587                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2588                 comma = 1;
2589         }
2590 }
2591
2592 static void
2593 db_print_inpvflag(u_char inp_vflag)
2594 {
2595         int comma;
2596
2597         comma = 0;
2598         if (inp_vflag & INP_IPV4) {
2599                 db_printf("%sINP_IPV4", comma ? ", " : "");
2600                 comma  = 1;
2601         }
2602         if (inp_vflag & INP_IPV6) {
2603                 db_printf("%sINP_IPV6", comma ? ", " : "");
2604                 comma  = 1;
2605         }
2606         if (inp_vflag & INP_IPV6PROTO) {
2607                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2608                 comma  = 1;
2609         }
2610 }
2611
2612 static void
2613 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2614 {
2615
2616         db_print_indent(indent);
2617         db_printf("%s at %p\n", name, inp);
2618
2619         indent += 2;
2620
2621         db_print_indent(indent);
2622         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2623
2624         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2625
2626         db_print_indent(indent);
2627         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2628             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2629
2630         db_print_indent(indent);
2631         db_printf("inp_label: %p   inp_flags: 0x%x (",
2632            inp->inp_label, inp->inp_flags);
2633         db_print_inpflags(inp->inp_flags);
2634         db_printf(")\n");
2635
2636         db_print_indent(indent);
2637         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2638             inp->inp_vflag);
2639         db_print_inpvflag(inp->inp_vflag);
2640         db_printf(")\n");
2641
2642         db_print_indent(indent);
2643         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2644             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2645
2646         db_print_indent(indent);
2647 #ifdef INET6
2648         if (inp->inp_vflag & INP_IPV6) {
2649                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2650                     "in6p_moptions: %p\n", inp->in6p_options,
2651                     inp->in6p_outputopts, inp->in6p_moptions);
2652                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2653                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2654                     inp->in6p_hops);
2655         } else
2656 #endif
2657         {
2658                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2659                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2660                     inp->inp_options, inp->inp_moptions);
2661         }
2662
2663         db_print_indent(indent);
2664         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2665             (uintmax_t)inp->inp_gencnt);
2666 }
2667
2668 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2669 {
2670         struct inpcb *inp;
2671
2672         if (!have_addr) {
2673                 db_printf("usage: show inpcb <addr>\n");
2674                 return;
2675         }
2676         inp = (struct inpcb *)addr;
2677
2678         db_print_inpcb(inp, "inpcb", 0);
2679 }
2680 #endif /* DDB */