]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
Revert r332894 at the request of the submitter.
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *      The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
38  */
39
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75
76 #include <vm/uma.h>
77
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106
107 #include <netipsec/ipsec_support.h>
108
109 #include <security/mac/mac_framework.h>
110
111 static struct callout   ipport_tick_callout;
112
113 /*
114  * These configure the range of local port addresses assigned to
115  * "unspecified" outgoing connections/packets/whatever.
116  */
117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
123
124 /*
125  * Reserved ports accessible only to root. There are significant
126  * security considerations that must be accounted for when changing these,
127  * but the security benefits can be great. Please be careful.
128  */
129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
130 VNET_DEFINE(int, ipport_reservedlow);
131
132 /* Variables dealing with random ephemeral port allocation. */
133 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
134 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
135 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
136 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
137 VNET_DEFINE(int, ipport_tcpallocs);
138 static VNET_DEFINE(int, ipport_tcplastcount);
139
140 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
141
142 static void     in_pcbremlists(struct inpcb *inp);
143 #ifdef INET
144 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
145                             struct in_addr faddr, u_int fport_arg,
146                             struct in_addr laddr, u_int lport_arg,
147                             int lookupflags, struct ifnet *ifp);
148
149 #define RANGECHK(var, min, max) \
150         if ((var) < (min)) { (var) = (min); } \
151         else if ((var) > (max)) { (var) = (max); }
152
153 static int
154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
155 {
156         int error;
157
158         error = sysctl_handle_int(oidp, arg1, arg2, req);
159         if (error == 0) {
160                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
161                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
162                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
163                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
164                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
165                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
166         }
167         return (error);
168 }
169
170 #undef RANGECHK
171
172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
173     "IP Ports");
174
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
176         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177         &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
179         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180         &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
182         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183         &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
185         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186         &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189         &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192         &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
194         CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
195         &VNET_NAME(ipport_reservedhigh), 0, "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
197         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
199         CTLFLAG_VNET | CTLFLAG_RW,
200         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
202         CTLFLAG_VNET | CTLFLAG_RW,
203         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
204         "allocations before switching to a sequental one");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
206         CTLFLAG_VNET | CTLFLAG_RW,
207         &VNET_NAME(ipport_randomtime), 0,
208         "Minimum time to keep sequental port "
209         "allocation before switching to a random one");
210 #endif /* INET */
211
212 /*
213  * in_pcb.c: manage the Protocol Control Blocks.
214  *
215  * NOTE: It is assumed that most of these functions will be called with
216  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
217  * functions often modify hash chains or addresses in pcbs.
218  */
219
220 /*
221  * Different protocols initialize their inpcbs differently - giving
222  * different name to the lock.  But they all are disposed the same.
223  */
224 static void
225 inpcb_fini(void *mem, int size)
226 {
227         struct inpcb *inp = mem;
228
229         INP_LOCK_DESTROY(inp);
230 }
231
232 /*
233  * Initialize an inpcbinfo -- we should be able to reduce the number of
234  * arguments in time.
235  */
236 void
237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
238     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
239     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
240 {
241
242         INP_INFO_LOCK_INIT(pcbinfo, name);
243         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
244         INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
245 #ifdef VIMAGE
246         pcbinfo->ipi_vnet = curvnet;
247 #endif
248         pcbinfo->ipi_listhead = listhead;
249         LIST_INIT(pcbinfo->ipi_listhead);
250         pcbinfo->ipi_count = 0;
251         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
252             &pcbinfo->ipi_hashmask);
253         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
254             &pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
257 #endif
258         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
259             NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
260         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
261         uma_zone_set_warning(pcbinfo->ipi_zone,
262             "kern.ipc.maxsockets limit reached");
263 }
264
265 /*
266  * Destroy an inpcbinfo.
267  */
268 void
269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
270 {
271
272         KASSERT(pcbinfo->ipi_count == 0,
273             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
274
275         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
276         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
277             pcbinfo->ipi_porthashmask);
278 #ifdef PCBGROUP
279         in_pcbgroup_destroy(pcbinfo);
280 #endif
281         uma_zdestroy(pcbinfo->ipi_zone);
282         INP_LIST_LOCK_DESTROY(pcbinfo);
283         INP_HASH_LOCK_DESTROY(pcbinfo);
284         INP_INFO_LOCK_DESTROY(pcbinfo);
285 }
286
287 /*
288  * Allocate a PCB and associate it with the socket.
289  * On success return with the PCB locked.
290  */
291 int
292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
293 {
294         struct inpcb *inp;
295         int error;
296
297 #ifdef INVARIANTS
298         if (pcbinfo == &V_tcbinfo) {
299                 INP_INFO_RLOCK_ASSERT(pcbinfo);
300         } else {
301                 INP_INFO_WLOCK_ASSERT(pcbinfo);
302         }
303 #endif
304
305         error = 0;
306         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
307         if (inp == NULL)
308                 return (ENOBUFS);
309         bzero(&inp->inp_start_zero, inp_zero_size);
310         inp->inp_pcbinfo = pcbinfo;
311         inp->inp_socket = so;
312         inp->inp_cred = crhold(so->so_cred);
313         inp->inp_inc.inc_fibnum = so->so_fibnum;
314 #ifdef MAC
315         error = mac_inpcb_init(inp, M_NOWAIT);
316         if (error != 0)
317                 goto out;
318         mac_inpcb_create(so, inp);
319 #endif
320 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
321         error = ipsec_init_pcbpolicy(inp);
322         if (error != 0) {
323 #ifdef MAC
324                 mac_inpcb_destroy(inp);
325 #endif
326                 goto out;
327         }
328 #endif /*IPSEC*/
329 #ifdef INET6
330         if (INP_SOCKAF(so) == AF_INET6) {
331                 inp->inp_vflag |= INP_IPV6PROTO;
332                 if (V_ip6_v6only)
333                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
334         }
335 #endif
336         INP_WLOCK(inp);
337         INP_LIST_WLOCK(pcbinfo);
338         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
339         pcbinfo->ipi_count++;
340         so->so_pcb = (caddr_t)inp;
341 #ifdef INET6
342         if (V_ip6_auto_flowlabel)
343                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
344 #endif
345         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
346         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
347
348         /*
349          * Routes in inpcb's can cache L2 as well; they are guaranteed
350          * to be cleaned up.
351          */
352         inp->inp_route.ro_flags = RT_LLE_CACHE;
353         INP_LIST_WUNLOCK(pcbinfo);
354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
355 out:
356         if (error != 0) {
357                 crfree(inp->inp_cred);
358                 uma_zfree(pcbinfo->ipi_zone, inp);
359         }
360 #endif
361         return (error);
362 }
363
364 #ifdef INET
365 int
366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
367 {
368         int anonport, error;
369
370         INP_WLOCK_ASSERT(inp);
371         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
372
373         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
374                 return (EINVAL);
375         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
376         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
377             &inp->inp_lport, cred);
378         if (error)
379                 return (error);
380         if (in_pcbinshash(inp) != 0) {
381                 inp->inp_laddr.s_addr = INADDR_ANY;
382                 inp->inp_lport = 0;
383                 return (EAGAIN);
384         }
385         if (anonport)
386                 inp->inp_flags |= INP_ANONPORT;
387         return (0);
388 }
389 #endif
390
391 /*
392  * Select a local port (number) to use.
393  */
394 #if defined(INET) || defined(INET6)
395 int
396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
397     struct ucred *cred, int lookupflags)
398 {
399         struct inpcbinfo *pcbinfo;
400         struct inpcb *tmpinp;
401         unsigned short *lastport;
402         int count, dorandom, error;
403         u_short aux, first, last, lport;
404 #ifdef INET
405         struct in_addr laddr;
406 #endif
407
408         pcbinfo = inp->inp_pcbinfo;
409
410         /*
411          * Because no actual state changes occur here, a global write lock on
412          * the pcbinfo isn't required.
413          */
414         INP_LOCK_ASSERT(inp);
415         INP_HASH_LOCK_ASSERT(pcbinfo);
416
417         if (inp->inp_flags & INP_HIGHPORT) {
418                 first = V_ipport_hifirstauto;   /* sysctl */
419                 last  = V_ipport_hilastauto;
420                 lastport = &pcbinfo->ipi_lasthi;
421         } else if (inp->inp_flags & INP_LOWPORT) {
422                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
423                 if (error)
424                         return (error);
425                 first = V_ipport_lowfirstauto;  /* 1023 */
426                 last  = V_ipport_lowlastauto;   /* 600 */
427                 lastport = &pcbinfo->ipi_lastlow;
428         } else {
429                 first = V_ipport_firstauto;     /* sysctl */
430                 last  = V_ipport_lastauto;
431                 lastport = &pcbinfo->ipi_lastport;
432         }
433         /*
434          * For UDP(-Lite), use random port allocation as long as the user
435          * allows it.  For TCP (and as of yet unknown) connections,
436          * use random port allocation only if the user allows it AND
437          * ipport_tick() allows it.
438          */
439         if (V_ipport_randomized &&
440                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
441                 pcbinfo == &V_ulitecbinfo))
442                 dorandom = 1;
443         else
444                 dorandom = 0;
445         /*
446          * It makes no sense to do random port allocation if
447          * we have the only port available.
448          */
449         if (first == last)
450                 dorandom = 0;
451         /* Make sure to not include UDP(-Lite) packets in the count. */
452         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
453                 V_ipport_tcpallocs++;
454         /*
455          * Instead of having two loops further down counting up or down
456          * make sure that first is always <= last and go with only one
457          * code path implementing all logic.
458          */
459         if (first > last) {
460                 aux = first;
461                 first = last;
462                 last = aux;
463         }
464
465 #ifdef INET
466         /* Make the compiler happy. */
467         laddr.s_addr = 0;
468         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
469                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
470                     __func__, inp));
471                 laddr = *laddrp;
472         }
473 #endif
474         tmpinp = NULL;  /* Make compiler happy. */
475         lport = *lportp;
476
477         if (dorandom)
478                 *lastport = first + (arc4random() % (last - first));
479
480         count = last - first;
481
482         do {
483                 if (count-- < 0)        /* completely used? */
484                         return (EADDRNOTAVAIL);
485                 ++*lastport;
486                 if (*lastport < first || *lastport > last)
487                         *lastport = first;
488                 lport = htons(*lastport);
489
490 #ifdef INET6
491                 if ((inp->inp_vflag & INP_IPV6) != 0)
492                         tmpinp = in6_pcblookup_local(pcbinfo,
493                             &inp->in6p_laddr, lport, lookupflags, cred);
494 #endif
495 #if defined(INET) && defined(INET6)
496                 else
497 #endif
498 #ifdef INET
499                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
500                             lport, lookupflags, cred);
501 #endif
502         } while (tmpinp != NULL);
503
504 #ifdef INET
505         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
506                 laddrp->s_addr = laddr.s_addr;
507 #endif
508         *lportp = lport;
509
510         return (0);
511 }
512
513 /*
514  * Return cached socket options.
515  */
516 short
517 inp_so_options(const struct inpcb *inp)
518 {
519    short so_options;
520
521    so_options = 0;
522
523    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
524            so_options |= SO_REUSEPORT;
525    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
526            so_options |= SO_REUSEADDR;
527    return (so_options);
528 }
529 #endif /* INET || INET6 */
530
531 /*
532  * Check if a new BINDMULTI socket is allowed to be created.
533  *
534  * ni points to the new inp.
535  * oi points to the exisitng inp.
536  *
537  * This checks whether the existing inp also has BINDMULTI and
538  * whether the credentials match.
539  */
540 int
541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
542 {
543         /* Check permissions match */
544         if ((ni->inp_flags2 & INP_BINDMULTI) &&
545             (ni->inp_cred->cr_uid !=
546             oi->inp_cred->cr_uid))
547                 return (0);
548
549         /* Check the existing inp has BINDMULTI set */
550         if ((ni->inp_flags2 & INP_BINDMULTI) &&
551             ((oi->inp_flags2 & INP_BINDMULTI) == 0))
552                 return (0);
553
554         /*
555          * We're okay - either INP_BINDMULTI isn't set on ni, or
556          * it is and it matches the checks.
557          */
558         return (1);
559 }
560
561 #ifdef INET
562 /*
563  * Set up a bind operation on a PCB, performing port allocation
564  * as required, but do not actually modify the PCB. Callers can
565  * either complete the bind by setting inp_laddr/inp_lport and
566  * calling in_pcbinshash(), or they can just use the resulting
567  * port and address to authorise the sending of a once-off packet.
568  *
569  * On error, the values of *laddrp and *lportp are not changed.
570  */
571 int
572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
573     u_short *lportp, struct ucred *cred)
574 {
575         struct socket *so = inp->inp_socket;
576         struct sockaddr_in *sin;
577         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
578         struct in_addr laddr;
579         u_short lport = 0;
580         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
581         int error;
582
583         /*
584          * No state changes, so read locks are sufficient here.
585          */
586         INP_LOCK_ASSERT(inp);
587         INP_HASH_LOCK_ASSERT(pcbinfo);
588
589         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
590                 return (EADDRNOTAVAIL);
591         laddr.s_addr = *laddrp;
592         if (nam != NULL && laddr.s_addr != INADDR_ANY)
593                 return (EINVAL);
594         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
595                 lookupflags = INPLOOKUP_WILDCARD;
596         if (nam == NULL) {
597                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
598                         return (error);
599         } else {
600                 sin = (struct sockaddr_in *)nam;
601                 if (nam->sa_len != sizeof (*sin))
602                         return (EINVAL);
603 #ifdef notdef
604                 /*
605                  * We should check the family, but old programs
606                  * incorrectly fail to initialize it.
607                  */
608                 if (sin->sin_family != AF_INET)
609                         return (EAFNOSUPPORT);
610 #endif
611                 error = prison_local_ip4(cred, &sin->sin_addr);
612                 if (error)
613                         return (error);
614                 if (sin->sin_port != *lportp) {
615                         /* Don't allow the port to change. */
616                         if (*lportp != 0)
617                                 return (EINVAL);
618                         lport = sin->sin_port;
619                 }
620                 /* NB: lport is left as 0 if the port isn't being changed. */
621                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
622                         /*
623                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
624                          * allow complete duplication of binding if
625                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
626                          * and a multicast address is bound on both
627                          * new and duplicated sockets.
628                          */
629                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
630                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
631                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
632                         sin->sin_port = 0;              /* yech... */
633                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
634                         /*
635                          * Is the address a local IP address? 
636                          * If INP_BINDANY is set, then the socket may be bound
637                          * to any endpoint address, local or not.
638                          */
639                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
640                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
641                                 return (EADDRNOTAVAIL);
642                 }
643                 laddr = sin->sin_addr;
644                 if (lport) {
645                         struct inpcb *t;
646                         struct tcptw *tw;
647
648                         /* GROSS */
649                         if (ntohs(lport) <= V_ipport_reservedhigh &&
650                             ntohs(lport) >= V_ipport_reservedlow &&
651                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
652                             0))
653                                 return (EACCES);
654                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
655                             priv_check_cred(inp->inp_cred,
656                             PRIV_NETINET_REUSEPORT, 0) != 0) {
657                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
658                                     lport, INPLOOKUP_WILDCARD, cred);
659         /*
660          * XXX
661          * This entire block sorely needs a rewrite.
662          */
663                                 if (t &&
664                                     ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
665                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
666                                     (so->so_type != SOCK_STREAM ||
667                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
668                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
669                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
670                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
671                                     (inp->inp_cred->cr_uid !=
672                                      t->inp_cred->cr_uid))
673                                         return (EADDRINUSE);
674
675                                 /*
676                                  * If the socket is a BINDMULTI socket, then
677                                  * the credentials need to match and the
678                                  * original socket also has to have been bound
679                                  * with BINDMULTI.
680                                  */
681                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
682                                         return (EADDRINUSE);
683                         }
684                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
685                             lport, lookupflags, cred);
686                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
687                                 /*
688                                  * XXXRW: If an incpb has had its timewait
689                                  * state recycled, we treat the address as
690                                  * being in use (for now).  This is better
691                                  * than a panic, but not desirable.
692                                  */
693                                 tw = intotw(t);
694                                 if (tw == NULL ||
695                                     (reuseport & tw->tw_so_options) == 0)
696                                         return (EADDRINUSE);
697                         } else if (t &&
698                             ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
699                             (reuseport & inp_so_options(t)) == 0) {
700 #ifdef INET6
701                                 if (ntohl(sin->sin_addr.s_addr) !=
702                                     INADDR_ANY ||
703                                     ntohl(t->inp_laddr.s_addr) !=
704                                     INADDR_ANY ||
705                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
706                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
707 #endif
708                                 return (EADDRINUSE);
709                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
710                                         return (EADDRINUSE);
711                         }
712                 }
713         }
714         if (*lportp != 0)
715                 lport = *lportp;
716         if (lport == 0) {
717                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
718                 if (error != 0)
719                         return (error);
720
721         }
722         *laddrp = laddr.s_addr;
723         *lportp = lport;
724         return (0);
725 }
726
727 /*
728  * Connect from a socket to a specified address.
729  * Both address and port must be specified in argument sin.
730  * If don't have a local address for this socket yet,
731  * then pick one.
732  */
733 int
734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
735     struct ucred *cred, struct mbuf *m)
736 {
737         u_short lport, fport;
738         in_addr_t laddr, faddr;
739         int anonport, error;
740
741         INP_WLOCK_ASSERT(inp);
742         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
743
744         lport = inp->inp_lport;
745         laddr = inp->inp_laddr.s_addr;
746         anonport = (lport == 0);
747         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
748             NULL, cred);
749         if (error)
750                 return (error);
751
752         /* Do the initial binding of the local address if required. */
753         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
754                 inp->inp_lport = lport;
755                 inp->inp_laddr.s_addr = laddr;
756                 if (in_pcbinshash(inp) != 0) {
757                         inp->inp_laddr.s_addr = INADDR_ANY;
758                         inp->inp_lport = 0;
759                         return (EAGAIN);
760                 }
761         }
762
763         /* Commit the remaining changes. */
764         inp->inp_lport = lport;
765         inp->inp_laddr.s_addr = laddr;
766         inp->inp_faddr.s_addr = faddr;
767         inp->inp_fport = fport;
768         in_pcbrehash_mbuf(inp, m);
769
770         if (anonport)
771                 inp->inp_flags |= INP_ANONPORT;
772         return (0);
773 }
774
775 int
776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
777 {
778
779         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
780 }
781
782 /*
783  * Do proper source address selection on an unbound socket in case
784  * of connect. Take jails into account as well.
785  */
786 int
787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
788     struct ucred *cred)
789 {
790         struct ifaddr *ifa;
791         struct sockaddr *sa;
792         struct sockaddr_in *sin;
793         struct route sro;
794         int error;
795
796         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
797
798         /*
799          * Bypass source address selection and use the primary jail IP
800          * if requested.
801          */
802         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
803                 return (0);
804
805         error = 0;
806         bzero(&sro, sizeof(sro));
807
808         sin = (struct sockaddr_in *)&sro.ro_dst;
809         sin->sin_family = AF_INET;
810         sin->sin_len = sizeof(struct sockaddr_in);
811         sin->sin_addr.s_addr = faddr->s_addr;
812
813         /*
814          * If route is known our src addr is taken from the i/f,
815          * else punt.
816          *
817          * Find out route to destination.
818          */
819         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
820                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
821
822         /*
823          * If we found a route, use the address corresponding to
824          * the outgoing interface.
825          * 
826          * Otherwise assume faddr is reachable on a directly connected
827          * network and try to find a corresponding interface to take
828          * the source address from.
829          */
830         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
831                 struct in_ifaddr *ia;
832                 struct ifnet *ifp;
833
834                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
835                                         inp->inp_socket->so_fibnum));
836                 if (ia == NULL)
837                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
838                                                 inp->inp_socket->so_fibnum));
839                 if (ia == NULL) {
840                         error = ENETUNREACH;
841                         goto done;
842                 }
843
844                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
845                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
846                         ifa_free(&ia->ia_ifa);
847                         goto done;
848                 }
849
850                 ifp = ia->ia_ifp;
851                 ifa_free(&ia->ia_ifa);
852                 ia = NULL;
853                 IF_ADDR_RLOCK(ifp);
854                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
855
856                         sa = ifa->ifa_addr;
857                         if (sa->sa_family != AF_INET)
858                                 continue;
859                         sin = (struct sockaddr_in *)sa;
860                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
861                                 ia = (struct in_ifaddr *)ifa;
862                                 break;
863                         }
864                 }
865                 if (ia != NULL) {
866                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
867                         IF_ADDR_RUNLOCK(ifp);
868                         goto done;
869                 }
870                 IF_ADDR_RUNLOCK(ifp);
871
872                 /* 3. As a last resort return the 'default' jail address. */
873                 error = prison_get_ip4(cred, laddr);
874                 goto done;
875         }
876
877         /*
878          * If the outgoing interface on the route found is not
879          * a loopback interface, use the address from that interface.
880          * In case of jails do those three steps:
881          * 1. check if the interface address belongs to the jail. If so use it.
882          * 2. check if we have any address on the outgoing interface
883          *    belonging to this jail. If so use it.
884          * 3. as a last resort return the 'default' jail address.
885          */
886         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
887                 struct in_ifaddr *ia;
888                 struct ifnet *ifp;
889
890                 /* If not jailed, use the default returned. */
891                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
892                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
893                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
894                         goto done;
895                 }
896
897                 /* Jailed. */
898                 /* 1. Check if the iface address belongs to the jail. */
899                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
900                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
901                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
902                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
903                         goto done;
904                 }
905
906                 /*
907                  * 2. Check if we have any address on the outgoing interface
908                  *    belonging to this jail.
909                  */
910                 ia = NULL;
911                 ifp = sro.ro_rt->rt_ifp;
912                 IF_ADDR_RLOCK(ifp);
913                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
914                         sa = ifa->ifa_addr;
915                         if (sa->sa_family != AF_INET)
916                                 continue;
917                         sin = (struct sockaddr_in *)sa;
918                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
919                                 ia = (struct in_ifaddr *)ifa;
920                                 break;
921                         }
922                 }
923                 if (ia != NULL) {
924                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
925                         IF_ADDR_RUNLOCK(ifp);
926                         goto done;
927                 }
928                 IF_ADDR_RUNLOCK(ifp);
929
930                 /* 3. As a last resort return the 'default' jail address. */
931                 error = prison_get_ip4(cred, laddr);
932                 goto done;
933         }
934
935         /*
936          * The outgoing interface is marked with 'loopback net', so a route
937          * to ourselves is here.
938          * Try to find the interface of the destination address and then
939          * take the address from there. That interface is not necessarily
940          * a loopback interface.
941          * In case of jails, check that it is an address of the jail
942          * and if we cannot find, fall back to the 'default' jail address.
943          */
944         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
945                 struct sockaddr_in sain;
946                 struct in_ifaddr *ia;
947
948                 bzero(&sain, sizeof(struct sockaddr_in));
949                 sain.sin_family = AF_INET;
950                 sain.sin_len = sizeof(struct sockaddr_in);
951                 sain.sin_addr.s_addr = faddr->s_addr;
952
953                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
954                                         inp->inp_socket->so_fibnum));
955                 if (ia == NULL)
956                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
957                                                 inp->inp_socket->so_fibnum));
958                 if (ia == NULL)
959                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
960
961                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
962                         if (ia == NULL) {
963                                 error = ENETUNREACH;
964                                 goto done;
965                         }
966                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
967                         ifa_free(&ia->ia_ifa);
968                         goto done;
969                 }
970
971                 /* Jailed. */
972                 if (ia != NULL) {
973                         struct ifnet *ifp;
974
975                         ifp = ia->ia_ifp;
976                         ifa_free(&ia->ia_ifa);
977                         ia = NULL;
978                         IF_ADDR_RLOCK(ifp);
979                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
980
981                                 sa = ifa->ifa_addr;
982                                 if (sa->sa_family != AF_INET)
983                                         continue;
984                                 sin = (struct sockaddr_in *)sa;
985                                 if (prison_check_ip4(cred,
986                                     &sin->sin_addr) == 0) {
987                                         ia = (struct in_ifaddr *)ifa;
988                                         break;
989                                 }
990                         }
991                         if (ia != NULL) {
992                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
993                                 IF_ADDR_RUNLOCK(ifp);
994                                 goto done;
995                         }
996                         IF_ADDR_RUNLOCK(ifp);
997                 }
998
999                 /* 3. As a last resort return the 'default' jail address. */
1000                 error = prison_get_ip4(cred, laddr);
1001                 goto done;
1002         }
1003
1004 done:
1005         if (sro.ro_rt != NULL)
1006                 RTFREE(sro.ro_rt);
1007         return (error);
1008 }
1009
1010 /*
1011  * Set up for a connect from a socket to the specified address.
1012  * On entry, *laddrp and *lportp should contain the current local
1013  * address and port for the PCB; these are updated to the values
1014  * that should be placed in inp_laddr and inp_lport to complete
1015  * the connect.
1016  *
1017  * On success, *faddrp and *fportp will be set to the remote address
1018  * and port. These are not updated in the error case.
1019  *
1020  * If the operation fails because the connection already exists,
1021  * *oinpp will be set to the PCB of that connection so that the
1022  * caller can decide to override it. In all other cases, *oinpp
1023  * is set to NULL.
1024  */
1025 int
1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1027     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1028     struct inpcb **oinpp, struct ucred *cred)
1029 {
1030         struct rm_priotracker in_ifa_tracker;
1031         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1032         struct in_ifaddr *ia;
1033         struct inpcb *oinp;
1034         struct in_addr laddr, faddr;
1035         u_short lport, fport;
1036         int error;
1037
1038         /*
1039          * Because a global state change doesn't actually occur here, a read
1040          * lock is sufficient.
1041          */
1042         INP_LOCK_ASSERT(inp);
1043         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1044
1045         if (oinpp != NULL)
1046                 *oinpp = NULL;
1047         if (nam->sa_len != sizeof (*sin))
1048                 return (EINVAL);
1049         if (sin->sin_family != AF_INET)
1050                 return (EAFNOSUPPORT);
1051         if (sin->sin_port == 0)
1052                 return (EADDRNOTAVAIL);
1053         laddr.s_addr = *laddrp;
1054         lport = *lportp;
1055         faddr = sin->sin_addr;
1056         fport = sin->sin_port;
1057
1058         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1059                 /*
1060                  * If the destination address is INADDR_ANY,
1061                  * use the primary local address.
1062                  * If the supplied address is INADDR_BROADCAST,
1063                  * and the primary interface supports broadcast,
1064                  * choose the broadcast address for that interface.
1065                  */
1066                 if (faddr.s_addr == INADDR_ANY) {
1067                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1068                         faddr =
1069                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1070                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1071                         if (cred != NULL &&
1072                             (error = prison_get_ip4(cred, &faddr)) != 0)
1073                                 return (error);
1074                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1075                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1076                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1077                             IFF_BROADCAST)
1078                                 faddr = satosin(&TAILQ_FIRST(
1079                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1080                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1081                 }
1082         }
1083         if (laddr.s_addr == INADDR_ANY) {
1084                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1085                 /*
1086                  * If the destination address is multicast and an outgoing
1087                  * interface has been set as a multicast option, prefer the
1088                  * address of that interface as our source address.
1089                  */
1090                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1091                     inp->inp_moptions != NULL) {
1092                         struct ip_moptions *imo;
1093                         struct ifnet *ifp;
1094
1095                         imo = inp->inp_moptions;
1096                         if (imo->imo_multicast_ifp != NULL) {
1097                                 ifp = imo->imo_multicast_ifp;
1098                                 IN_IFADDR_RLOCK(&in_ifa_tracker);
1099                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1100                                         if ((ia->ia_ifp == ifp) &&
1101                                             (cred == NULL ||
1102                                             prison_check_ip4(cred,
1103                                             &ia->ia_addr.sin_addr) == 0))
1104                                                 break;
1105                                 }
1106                                 if (ia == NULL)
1107                                         error = EADDRNOTAVAIL;
1108                                 else {
1109                                         laddr = ia->ia_addr.sin_addr;
1110                                         error = 0;
1111                                 }
1112                                 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1113                         }
1114                 }
1115                 if (error)
1116                         return (error);
1117         }
1118         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1119             laddr, lport, 0, NULL);
1120         if (oinp != NULL) {
1121                 if (oinpp != NULL)
1122                         *oinpp = oinp;
1123                 return (EADDRINUSE);
1124         }
1125         if (lport == 0) {
1126                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1127                     cred);
1128                 if (error)
1129                         return (error);
1130         }
1131         *laddrp = laddr.s_addr;
1132         *lportp = lport;
1133         *faddrp = faddr.s_addr;
1134         *fportp = fport;
1135         return (0);
1136 }
1137
1138 void
1139 in_pcbdisconnect(struct inpcb *inp)
1140 {
1141
1142         INP_WLOCK_ASSERT(inp);
1143         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1144
1145         inp->inp_faddr.s_addr = INADDR_ANY;
1146         inp->inp_fport = 0;
1147         in_pcbrehash(inp);
1148 }
1149 #endif /* INET */
1150
1151 /*
1152  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1153  * For most protocols, this will be invoked immediately prior to calling
1154  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1155  * socket, in which case in_pcbfree() is deferred.
1156  */
1157 void
1158 in_pcbdetach(struct inpcb *inp)
1159 {
1160
1161         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1162
1163 #ifdef RATELIMIT
1164         if (inp->inp_snd_tag != NULL)
1165                 in_pcbdetach_txrtlmt(inp);
1166 #endif
1167         inp->inp_socket->so_pcb = NULL;
1168         inp->inp_socket = NULL;
1169 }
1170
1171 /*
1172  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1173  * stability of an inpcb pointer despite the inpcb lock being released.  This
1174  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1175  * but where the inpcb lock may already held, or when acquiring a reference
1176  * via a pcbgroup.
1177  *
1178  * in_pcbref() should be used only to provide brief memory stability, and
1179  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1180  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1181  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1182  * lock and rele are the *only* safe operations that may be performed on the
1183  * inpcb.
1184  *
1185  * While the inpcb will not be freed, releasing the inpcb lock means that the
1186  * connection's state may change, so the caller should be careful to
1187  * revalidate any cached state on reacquiring the lock.  Drop the reference
1188  * using in_pcbrele().
1189  */
1190 void
1191 in_pcbref(struct inpcb *inp)
1192 {
1193
1194         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1195
1196         refcount_acquire(&inp->inp_refcount);
1197 }
1198
1199 /*
1200  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1201  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1202  * return a flag indicating whether or not the inpcb remains valid.  If it is
1203  * valid, we return with the inpcb lock held.
1204  *
1205  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1206  * reference on an inpcb.  Historically more work was done here (actually, in
1207  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1208  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1209  * about memory stability (and continued use of the write lock).
1210  */
1211 int
1212 in_pcbrele_rlocked(struct inpcb *inp)
1213 {
1214         struct inpcbinfo *pcbinfo;
1215
1216         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1217
1218         INP_RLOCK_ASSERT(inp);
1219
1220         if (refcount_release(&inp->inp_refcount) == 0) {
1221                 /*
1222                  * If the inpcb has been freed, let the caller know, even if
1223                  * this isn't the last reference.
1224                  */
1225                 if (inp->inp_flags2 & INP_FREED) {
1226                         INP_RUNLOCK(inp);
1227                         return (1);
1228                 }
1229                 return (0);
1230         }
1231         
1232         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1233 #ifdef TCPHPTS
1234         if (inp->inp_in_hpts || inp->inp_in_input) {
1235                 struct tcp_hpts_entry *hpts;
1236                 /*
1237                  * We should not be on the hpts at 
1238                  * this point in any form. we must
1239                  * get the lock to be sure.
1240                  */
1241                 hpts = tcp_hpts_lock(inp);
1242                 if (inp->inp_in_hpts)
1243                         panic("Hpts:%p inp:%p at free still on hpts",
1244                               hpts, inp);
1245                 mtx_unlock(&hpts->p_mtx);
1246                 hpts = tcp_input_lock(inp);
1247                 if (inp->inp_in_input) 
1248                         panic("Hpts:%p inp:%p at free still on input hpts",
1249                               hpts, inp);
1250                 mtx_unlock(&hpts->p_mtx);
1251         }
1252 #endif
1253         INP_RUNLOCK(inp);
1254         pcbinfo = inp->inp_pcbinfo;
1255         uma_zfree(pcbinfo->ipi_zone, inp);
1256         return (1);
1257 }
1258
1259 int
1260 in_pcbrele_wlocked(struct inpcb *inp)
1261 {
1262         struct inpcbinfo *pcbinfo;
1263
1264         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1265
1266         INP_WLOCK_ASSERT(inp);
1267
1268         if (refcount_release(&inp->inp_refcount) == 0) {
1269                 /*
1270                  * If the inpcb has been freed, let the caller know, even if
1271                  * this isn't the last reference.
1272                  */
1273                 if (inp->inp_flags2 & INP_FREED) {
1274                         INP_WUNLOCK(inp);
1275                         return (1);
1276                 }
1277                 return (0);
1278         }
1279
1280         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1281 #ifdef TCPHPTS
1282         if (inp->inp_in_hpts || inp->inp_in_input) {
1283                 struct tcp_hpts_entry *hpts;
1284                 /*
1285                  * We should not be on the hpts at 
1286                  * this point in any form. we must
1287                  * get the lock to be sure.
1288                  */
1289                 hpts = tcp_hpts_lock(inp);
1290                 if (inp->inp_in_hpts)
1291                         panic("Hpts:%p inp:%p at free still on hpts",
1292                               hpts, inp);
1293                 mtx_unlock(&hpts->p_mtx);
1294                 hpts = tcp_input_lock(inp);
1295                 if (inp->inp_in_input) 
1296                         panic("Hpts:%p inp:%p at free still on input hpts",
1297                               hpts, inp);
1298                 mtx_unlock(&hpts->p_mtx);
1299         }
1300 #endif
1301         INP_WUNLOCK(inp);
1302         pcbinfo = inp->inp_pcbinfo;
1303         uma_zfree(pcbinfo->ipi_zone, inp);
1304         return (1);
1305 }
1306
1307 /*
1308  * Temporary wrapper.
1309  */
1310 int
1311 in_pcbrele(struct inpcb *inp)
1312 {
1313
1314         return (in_pcbrele_wlocked(inp));
1315 }
1316
1317 /*
1318  * Unconditionally schedule an inpcb to be freed by decrementing its
1319  * reference count, which should occur only after the inpcb has been detached
1320  * from its socket.  If another thread holds a temporary reference (acquired
1321  * using in_pcbref()) then the free is deferred until that reference is
1322  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1323  * work, including removal from global lists, is done in this context, where
1324  * the pcbinfo lock is held.
1325  */
1326 void
1327 in_pcbfree(struct inpcb *inp)
1328 {
1329         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1330
1331         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1332
1333         KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1334             ("%s: called twice for pcb %p", __func__, inp));
1335         if (inp->inp_flags2 & INP_FREED) {
1336                 INP_WUNLOCK(inp);
1337                 return;
1338         }
1339
1340 #ifdef INVARIANTS
1341         if (pcbinfo == &V_tcbinfo) {
1342                 INP_INFO_LOCK_ASSERT(pcbinfo);
1343         } else {
1344                 INP_INFO_WLOCK_ASSERT(pcbinfo);
1345         }
1346 #endif
1347         INP_WLOCK_ASSERT(inp);
1348
1349         /* XXXRW: Do as much as possible here. */
1350 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1351         if (inp->inp_sp != NULL)
1352                 ipsec_delete_pcbpolicy(inp);
1353 #endif
1354         INP_LIST_WLOCK(pcbinfo);
1355         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1356         in_pcbremlists(inp);
1357         INP_LIST_WUNLOCK(pcbinfo);
1358 #ifdef INET6
1359         if (inp->inp_vflag & INP_IPV6PROTO) {
1360                 ip6_freepcbopts(inp->in6p_outputopts);
1361                 if (inp->in6p_moptions != NULL)
1362                         ip6_freemoptions(inp->in6p_moptions);
1363         }
1364 #endif
1365         if (inp->inp_options)
1366                 (void)m_free(inp->inp_options);
1367 #ifdef INET
1368         if (inp->inp_moptions != NULL)
1369                 inp_freemoptions(inp->inp_moptions);
1370 #endif
1371         RO_INVALIDATE_CACHE(&inp->inp_route);
1372
1373         inp->inp_vflag = 0;
1374         inp->inp_flags2 |= INP_FREED;
1375         crfree(inp->inp_cred);
1376 #ifdef MAC
1377         mac_inpcb_destroy(inp);
1378 #endif
1379         if (!in_pcbrele_wlocked(inp))
1380                 INP_WUNLOCK(inp);
1381 }
1382
1383 /*
1384  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1385  * port reservation, and preventing it from being returned by inpcb lookups.
1386  *
1387  * It is used by TCP to mark an inpcb as unused and avoid future packet
1388  * delivery or event notification when a socket remains open but TCP has
1389  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1390  * or a RST on the wire, and allows the port binding to be reused while still
1391  * maintaining the invariant that so_pcb always points to a valid inpcb until
1392  * in_pcbdetach().
1393  *
1394  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1395  * in_pcbnotifyall() and in_pcbpurgeif0()?
1396  */
1397 void
1398 in_pcbdrop(struct inpcb *inp)
1399 {
1400
1401         INP_WLOCK_ASSERT(inp);
1402
1403         /*
1404          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1405          * the hash lock...?
1406          */
1407         inp->inp_flags |= INP_DROPPED;
1408         if (inp->inp_flags & INP_INHASHLIST) {
1409                 struct inpcbport *phd = inp->inp_phd;
1410
1411                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1412                 LIST_REMOVE(inp, inp_hash);
1413                 LIST_REMOVE(inp, inp_portlist);
1414                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1415                         LIST_REMOVE(phd, phd_hash);
1416                         free(phd, M_PCB);
1417                 }
1418                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1419                 inp->inp_flags &= ~INP_INHASHLIST;
1420 #ifdef PCBGROUP
1421                 in_pcbgroup_remove(inp);
1422 #endif
1423         }
1424 }
1425
1426 #ifdef INET
1427 /*
1428  * Common routines to return the socket addresses associated with inpcbs.
1429  */
1430 struct sockaddr *
1431 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1432 {
1433         struct sockaddr_in *sin;
1434
1435         sin = malloc(sizeof *sin, M_SONAME,
1436                 M_WAITOK | M_ZERO);
1437         sin->sin_family = AF_INET;
1438         sin->sin_len = sizeof(*sin);
1439         sin->sin_addr = *addr_p;
1440         sin->sin_port = port;
1441
1442         return (struct sockaddr *)sin;
1443 }
1444
1445 int
1446 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1447 {
1448         struct inpcb *inp;
1449         struct in_addr addr;
1450         in_port_t port;
1451
1452         inp = sotoinpcb(so);
1453         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1454
1455         INP_RLOCK(inp);
1456         port = inp->inp_lport;
1457         addr = inp->inp_laddr;
1458         INP_RUNLOCK(inp);
1459
1460         *nam = in_sockaddr(port, &addr);
1461         return 0;
1462 }
1463
1464 int
1465 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1466 {
1467         struct inpcb *inp;
1468         struct in_addr addr;
1469         in_port_t port;
1470
1471         inp = sotoinpcb(so);
1472         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1473
1474         INP_RLOCK(inp);
1475         port = inp->inp_fport;
1476         addr = inp->inp_faddr;
1477         INP_RUNLOCK(inp);
1478
1479         *nam = in_sockaddr(port, &addr);
1480         return 0;
1481 }
1482
1483 void
1484 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1485     struct inpcb *(*notify)(struct inpcb *, int))
1486 {
1487         struct inpcb *inp, *inp_temp;
1488
1489         INP_INFO_WLOCK(pcbinfo);
1490         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1491                 INP_WLOCK(inp);
1492 #ifdef INET6
1493                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1494                         INP_WUNLOCK(inp);
1495                         continue;
1496                 }
1497 #endif
1498                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1499                     inp->inp_socket == NULL) {
1500                         INP_WUNLOCK(inp);
1501                         continue;
1502                 }
1503                 if ((*notify)(inp, errno))
1504                         INP_WUNLOCK(inp);
1505         }
1506         INP_INFO_WUNLOCK(pcbinfo);
1507 }
1508
1509 void
1510 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1511 {
1512         struct inpcb *inp;
1513         struct ip_moptions *imo;
1514         int i, gap;
1515
1516         INP_INFO_WLOCK(pcbinfo);
1517         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1518                 INP_WLOCK(inp);
1519                 imo = inp->inp_moptions;
1520                 if ((inp->inp_vflag & INP_IPV4) &&
1521                     imo != NULL) {
1522                         /*
1523                          * Unselect the outgoing interface if it is being
1524                          * detached.
1525                          */
1526                         if (imo->imo_multicast_ifp == ifp)
1527                                 imo->imo_multicast_ifp = NULL;
1528
1529                         /*
1530                          * Drop multicast group membership if we joined
1531                          * through the interface being detached.
1532                          */
1533                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1534                             i++) {
1535                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1536                                         in_delmulti(imo->imo_membership[i]);
1537                                         gap++;
1538                                 } else if (gap != 0)
1539                                         imo->imo_membership[i - gap] =
1540                                             imo->imo_membership[i];
1541                         }
1542                         imo->imo_num_memberships -= gap;
1543                 }
1544                 INP_WUNLOCK(inp);
1545         }
1546         INP_INFO_WUNLOCK(pcbinfo);
1547 }
1548
1549 /*
1550  * Lookup a PCB based on the local address and port.  Caller must hold the
1551  * hash lock.  No inpcb locks or references are acquired.
1552  */
1553 #define INP_LOOKUP_MAPPED_PCB_COST      3
1554 struct inpcb *
1555 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1556     u_short lport, int lookupflags, struct ucred *cred)
1557 {
1558         struct inpcb *inp;
1559 #ifdef INET6
1560         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1561 #else
1562         int matchwild = 3;
1563 #endif
1564         int wildcard;
1565
1566         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1567             ("%s: invalid lookup flags %d", __func__, lookupflags));
1568
1569         INP_HASH_LOCK_ASSERT(pcbinfo);
1570
1571         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1572                 struct inpcbhead *head;
1573                 /*
1574                  * Look for an unconnected (wildcard foreign addr) PCB that
1575                  * matches the local address and port we're looking for.
1576                  */
1577                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1578                     0, pcbinfo->ipi_hashmask)];
1579                 LIST_FOREACH(inp, head, inp_hash) {
1580 #ifdef INET6
1581                         /* XXX inp locking */
1582                         if ((inp->inp_vflag & INP_IPV4) == 0)
1583                                 continue;
1584 #endif
1585                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1586                             inp->inp_laddr.s_addr == laddr.s_addr &&
1587                             inp->inp_lport == lport) {
1588                                 /*
1589                                  * Found?
1590                                  */
1591                                 if (cred == NULL ||
1592                                     prison_equal_ip4(cred->cr_prison,
1593                                         inp->inp_cred->cr_prison))
1594                                         return (inp);
1595                         }
1596                 }
1597                 /*
1598                  * Not found.
1599                  */
1600                 return (NULL);
1601         } else {
1602                 struct inpcbporthead *porthash;
1603                 struct inpcbport *phd;
1604                 struct inpcb *match = NULL;
1605                 /*
1606                  * Best fit PCB lookup.
1607                  *
1608                  * First see if this local port is in use by looking on the
1609                  * port hash list.
1610                  */
1611                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1612                     pcbinfo->ipi_porthashmask)];
1613                 LIST_FOREACH(phd, porthash, phd_hash) {
1614                         if (phd->phd_port == lport)
1615                                 break;
1616                 }
1617                 if (phd != NULL) {
1618                         /*
1619                          * Port is in use by one or more PCBs. Look for best
1620                          * fit.
1621                          */
1622                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1623                                 wildcard = 0;
1624                                 if (cred != NULL &&
1625                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1626                                         cred->cr_prison))
1627                                         continue;
1628 #ifdef INET6
1629                                 /* XXX inp locking */
1630                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1631                                         continue;
1632                                 /*
1633                                  * We never select the PCB that has
1634                                  * INP_IPV6 flag and is bound to :: if
1635                                  * we have another PCB which is bound
1636                                  * to 0.0.0.0.  If a PCB has the
1637                                  * INP_IPV6 flag, then we set its cost
1638                                  * higher than IPv4 only PCBs.
1639                                  *
1640                                  * Note that the case only happens
1641                                  * when a socket is bound to ::, under
1642                                  * the condition that the use of the
1643                                  * mapped address is allowed.
1644                                  */
1645                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1646                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1647 #endif
1648                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1649                                         wildcard++;
1650                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1651                                         if (laddr.s_addr == INADDR_ANY)
1652                                                 wildcard++;
1653                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1654                                                 continue;
1655                                 } else {
1656                                         if (laddr.s_addr != INADDR_ANY)
1657                                                 wildcard++;
1658                                 }
1659                                 if (wildcard < matchwild) {
1660                                         match = inp;
1661                                         matchwild = wildcard;
1662                                         if (matchwild == 0)
1663                                                 break;
1664                                 }
1665                         }
1666                 }
1667                 return (match);
1668         }
1669 }
1670 #undef INP_LOOKUP_MAPPED_PCB_COST
1671
1672 #ifdef PCBGROUP
1673 /*
1674  * Lookup PCB in hash list, using pcbgroup tables.
1675  */
1676 static struct inpcb *
1677 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1678     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1679     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1680 {
1681         struct inpcbhead *head;
1682         struct inpcb *inp, *tmpinp;
1683         u_short fport = fport_arg, lport = lport_arg;
1684         bool locked;
1685
1686         /*
1687          * First look for an exact match.
1688          */
1689         tmpinp = NULL;
1690         INP_GROUP_LOCK(pcbgroup);
1691         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1692             pcbgroup->ipg_hashmask)];
1693         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1694 #ifdef INET6
1695                 /* XXX inp locking */
1696                 if ((inp->inp_vflag & INP_IPV4) == 0)
1697                         continue;
1698 #endif
1699                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1700                     inp->inp_laddr.s_addr == laddr.s_addr &&
1701                     inp->inp_fport == fport &&
1702                     inp->inp_lport == lport) {
1703                         /*
1704                          * XXX We should be able to directly return
1705                          * the inp here, without any checks.
1706                          * Well unless both bound with SO_REUSEPORT?
1707                          */
1708                         if (prison_flag(inp->inp_cred, PR_IP4))
1709                                 goto found;
1710                         if (tmpinp == NULL)
1711                                 tmpinp = inp;
1712                 }
1713         }
1714         if (tmpinp != NULL) {
1715                 inp = tmpinp;
1716                 goto found;
1717         }
1718
1719 #ifdef  RSS
1720         /*
1721          * For incoming connections, we may wish to do a wildcard
1722          * match for an RSS-local socket.
1723          */
1724         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1725                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1726 #ifdef INET6
1727                 struct inpcb *local_wild_mapped = NULL;
1728 #endif
1729                 struct inpcb *jail_wild = NULL;
1730                 struct inpcbhead *head;
1731                 int injail;
1732
1733                 /*
1734                  * Order of socket selection - we always prefer jails.
1735                  *      1. jailed, non-wild.
1736                  *      2. jailed, wild.
1737                  *      3. non-jailed, non-wild.
1738                  *      4. non-jailed, wild.
1739                  */
1740
1741                 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1742                     lport, 0, pcbgroup->ipg_hashmask)];
1743                 LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1744 #ifdef INET6
1745                         /* XXX inp locking */
1746                         if ((inp->inp_vflag & INP_IPV4) == 0)
1747                                 continue;
1748 #endif
1749                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1750                             inp->inp_lport != lport)
1751                                 continue;
1752
1753                         injail = prison_flag(inp->inp_cred, PR_IP4);
1754                         if (injail) {
1755                                 if (prison_check_ip4(inp->inp_cred,
1756                                     &laddr) != 0)
1757                                         continue;
1758                         } else {
1759                                 if (local_exact != NULL)
1760                                         continue;
1761                         }
1762
1763                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1764                                 if (injail)
1765                                         goto found;
1766                                 else
1767                                         local_exact = inp;
1768                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1769 #ifdef INET6
1770                                 /* XXX inp locking, NULL check */
1771                                 if (inp->inp_vflag & INP_IPV6PROTO)
1772                                         local_wild_mapped = inp;
1773                                 else
1774 #endif
1775                                         if (injail)
1776                                                 jail_wild = inp;
1777                                         else
1778                                                 local_wild = inp;
1779                         }
1780                 } /* LIST_FOREACH */
1781
1782                 inp = jail_wild;
1783                 if (inp == NULL)
1784                         inp = local_exact;
1785                 if (inp == NULL)
1786                         inp = local_wild;
1787 #ifdef INET6
1788                 if (inp == NULL)
1789                         inp = local_wild_mapped;
1790 #endif
1791                 if (inp != NULL)
1792                         goto found;
1793         }
1794 #endif
1795
1796         /*
1797          * Then look for a wildcard match, if requested.
1798          */
1799         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1800                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1801 #ifdef INET6
1802                 struct inpcb *local_wild_mapped = NULL;
1803 #endif
1804                 struct inpcb *jail_wild = NULL;
1805                 struct inpcbhead *head;
1806                 int injail;
1807
1808                 /*
1809                  * Order of socket selection - we always prefer jails.
1810                  *      1. jailed, non-wild.
1811                  *      2. jailed, wild.
1812                  *      3. non-jailed, non-wild.
1813                  *      4. non-jailed, wild.
1814                  */
1815                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1816                     0, pcbinfo->ipi_wildmask)];
1817                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1818 #ifdef INET6
1819                         /* XXX inp locking */
1820                         if ((inp->inp_vflag & INP_IPV4) == 0)
1821                                 continue;
1822 #endif
1823                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1824                             inp->inp_lport != lport)
1825                                 continue;
1826
1827                         injail = prison_flag(inp->inp_cred, PR_IP4);
1828                         if (injail) {
1829                                 if (prison_check_ip4(inp->inp_cred,
1830                                     &laddr) != 0)
1831                                         continue;
1832                         } else {
1833                                 if (local_exact != NULL)
1834                                         continue;
1835                         }
1836
1837                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1838                                 if (injail)
1839                                         goto found;
1840                                 else
1841                                         local_exact = inp;
1842                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1843 #ifdef INET6
1844                                 /* XXX inp locking, NULL check */
1845                                 if (inp->inp_vflag & INP_IPV6PROTO)
1846                                         local_wild_mapped = inp;
1847                                 else
1848 #endif
1849                                         if (injail)
1850                                                 jail_wild = inp;
1851                                         else
1852                                                 local_wild = inp;
1853                         }
1854                 } /* LIST_FOREACH */
1855                 inp = jail_wild;
1856                 if (inp == NULL)
1857                         inp = local_exact;
1858                 if (inp == NULL)
1859                         inp = local_wild;
1860 #ifdef INET6
1861                 if (inp == NULL)
1862                         inp = local_wild_mapped;
1863 #endif
1864                 if (inp != NULL)
1865                         goto found;
1866         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1867         INP_GROUP_UNLOCK(pcbgroup);
1868         return (NULL);
1869
1870 found:
1871         if (lookupflags & INPLOOKUP_WLOCKPCB)
1872                 locked = INP_TRY_WLOCK(inp);
1873         else if (lookupflags & INPLOOKUP_RLOCKPCB)
1874                 locked = INP_TRY_RLOCK(inp);
1875         else
1876                 panic("%s: locking bug", __func__);
1877         if (!locked)
1878                 in_pcbref(inp);
1879         INP_GROUP_UNLOCK(pcbgroup);
1880         if (!locked) {
1881                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1882                         INP_WLOCK(inp);
1883                         if (in_pcbrele_wlocked(inp))
1884                                 return (NULL);
1885                 } else {
1886                         INP_RLOCK(inp);
1887                         if (in_pcbrele_rlocked(inp))
1888                                 return (NULL);
1889                 }
1890         }
1891 #ifdef INVARIANTS
1892         if (lookupflags & INPLOOKUP_WLOCKPCB)
1893                 INP_WLOCK_ASSERT(inp);
1894         else
1895                 INP_RLOCK_ASSERT(inp);
1896 #endif
1897         return (inp);
1898 }
1899 #endif /* PCBGROUP */
1900
1901 /*
1902  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1903  * that the caller has locked the hash list, and will not perform any further
1904  * locking or reference operations on either the hash list or the connection.
1905  */
1906 static struct inpcb *
1907 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1908     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1909     struct ifnet *ifp)
1910 {
1911         struct inpcbhead *head;
1912         struct inpcb *inp, *tmpinp;
1913         u_short fport = fport_arg, lport = lport_arg;
1914
1915         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1916             ("%s: invalid lookup flags %d", __func__, lookupflags));
1917
1918         INP_HASH_LOCK_ASSERT(pcbinfo);
1919
1920         /*
1921          * First look for an exact match.
1922          */
1923         tmpinp = NULL;
1924         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1925             pcbinfo->ipi_hashmask)];
1926         LIST_FOREACH(inp, head, inp_hash) {
1927 #ifdef INET6
1928                 /* XXX inp locking */
1929                 if ((inp->inp_vflag & INP_IPV4) == 0)
1930                         continue;
1931 #endif
1932                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1933                     inp->inp_laddr.s_addr == laddr.s_addr &&
1934                     inp->inp_fport == fport &&
1935                     inp->inp_lport == lport) {
1936                         /*
1937                          * XXX We should be able to directly return
1938                          * the inp here, without any checks.
1939                          * Well unless both bound with SO_REUSEPORT?
1940                          */
1941                         if (prison_flag(inp->inp_cred, PR_IP4))
1942                                 return (inp);
1943                         if (tmpinp == NULL)
1944                                 tmpinp = inp;
1945                 }
1946         }
1947         if (tmpinp != NULL)
1948                 return (tmpinp);
1949
1950         /*
1951          * Then look for a wildcard match, if requested.
1952          */
1953         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1954                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1955 #ifdef INET6
1956                 struct inpcb *local_wild_mapped = NULL;
1957 #endif
1958                 struct inpcb *jail_wild = NULL;
1959                 int injail;
1960
1961                 /*
1962                  * Order of socket selection - we always prefer jails.
1963                  *      1. jailed, non-wild.
1964                  *      2. jailed, wild.
1965                  *      3. non-jailed, non-wild.
1966                  *      4. non-jailed, wild.
1967                  */
1968
1969                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1970                     0, pcbinfo->ipi_hashmask)];
1971                 LIST_FOREACH(inp, head, inp_hash) {
1972 #ifdef INET6
1973                         /* XXX inp locking */
1974                         if ((inp->inp_vflag & INP_IPV4) == 0)
1975                                 continue;
1976 #endif
1977                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1978                             inp->inp_lport != lport)
1979                                 continue;
1980
1981                         injail = prison_flag(inp->inp_cred, PR_IP4);
1982                         if (injail) {
1983                                 if (prison_check_ip4(inp->inp_cred,
1984                                     &laddr) != 0)
1985                                         continue;
1986                         } else {
1987                                 if (local_exact != NULL)
1988                                         continue;
1989                         }
1990
1991                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1992                                 if (injail)
1993                                         return (inp);
1994                                 else
1995                                         local_exact = inp;
1996                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1997 #ifdef INET6
1998                                 /* XXX inp locking, NULL check */
1999                                 if (inp->inp_vflag & INP_IPV6PROTO)
2000                                         local_wild_mapped = inp;
2001                                 else
2002 #endif
2003                                         if (injail)
2004                                                 jail_wild = inp;
2005                                         else
2006                                                 local_wild = inp;
2007                         }
2008                 } /* LIST_FOREACH */
2009                 if (jail_wild != NULL)
2010                         return (jail_wild);
2011                 if (local_exact != NULL)
2012                         return (local_exact);
2013                 if (local_wild != NULL)
2014                         return (local_wild);
2015 #ifdef INET6
2016                 if (local_wild_mapped != NULL)
2017                         return (local_wild_mapped);
2018 #endif
2019         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2020
2021         return (NULL);
2022 }
2023
2024 /*
2025  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2026  * hash list lock, and will return the inpcb locked (i.e., requires
2027  * INPLOOKUP_LOCKPCB).
2028  */
2029 static struct inpcb *
2030 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2031     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2032     struct ifnet *ifp)
2033 {
2034         struct inpcb *inp;
2035         bool locked;
2036
2037         INP_HASH_RLOCK(pcbinfo);
2038         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2039             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2040         if (inp != NULL) {
2041                 if (lookupflags & INPLOOKUP_WLOCKPCB)
2042                         locked = INP_TRY_WLOCK(inp);
2043                 else if (lookupflags & INPLOOKUP_RLOCKPCB)
2044                         locked = INP_TRY_RLOCK(inp);
2045                 else
2046                         panic("%s: locking bug", __func__);
2047                 if (!locked)
2048                         in_pcbref(inp);
2049                 INP_HASH_RUNLOCK(pcbinfo);
2050                 if (!locked) {
2051                         if (lookupflags & INPLOOKUP_WLOCKPCB) {
2052                                 INP_WLOCK(inp);
2053                                 if (in_pcbrele_wlocked(inp))
2054                                         return (NULL);
2055                         } else {
2056                                 INP_RLOCK(inp);
2057                                 if (in_pcbrele_rlocked(inp))
2058                                         return (NULL);
2059                         }
2060                 }
2061 #ifdef INVARIANTS
2062                 if (lookupflags & INPLOOKUP_WLOCKPCB)
2063                         INP_WLOCK_ASSERT(inp);
2064                 else
2065                         INP_RLOCK_ASSERT(inp);
2066 #endif
2067         } else
2068                 INP_HASH_RUNLOCK(pcbinfo);
2069         return (inp);
2070 }
2071
2072 /*
2073  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2074  * from which a pre-calculated hash value may be extracted.
2075  *
2076  * Possibly more of this logic should be in in_pcbgroup.c.
2077  */
2078 struct inpcb *
2079 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2080     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2081 {
2082 #if defined(PCBGROUP) && !defined(RSS)
2083         struct inpcbgroup *pcbgroup;
2084 #endif
2085
2086         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2087             ("%s: invalid lookup flags %d", __func__, lookupflags));
2088         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2089             ("%s: LOCKPCB not set", __func__));
2090
2091         /*
2092          * When not using RSS, use connection groups in preference to the
2093          * reservation table when looking up 4-tuples.  When using RSS, just
2094          * use the reservation table, due to the cost of the Toeplitz hash
2095          * in software.
2096          *
2097          * XXXRW: This policy belongs in the pcbgroup code, as in principle
2098          * we could be doing RSS with a non-Toeplitz hash that is affordable
2099          * in software.
2100          */
2101 #if defined(PCBGROUP) && !defined(RSS)
2102         if (in_pcbgroup_enabled(pcbinfo)) {
2103                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2104                     fport);
2105                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2106                     laddr, lport, lookupflags, ifp));
2107         }
2108 #endif
2109         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2110             lookupflags, ifp));
2111 }
2112
2113 struct inpcb *
2114 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2115     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2116     struct ifnet *ifp, struct mbuf *m)
2117 {
2118 #ifdef PCBGROUP
2119         struct inpcbgroup *pcbgroup;
2120 #endif
2121
2122         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2123             ("%s: invalid lookup flags %d", __func__, lookupflags));
2124         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2125             ("%s: LOCKPCB not set", __func__));
2126
2127 #ifdef PCBGROUP
2128         /*
2129          * If we can use a hardware-generated hash to look up the connection
2130          * group, use that connection group to find the inpcb.  Otherwise
2131          * fall back on a software hash -- or the reservation table if we're
2132          * using RSS.
2133          *
2134          * XXXRW: As above, that policy belongs in the pcbgroup code.
2135          */
2136         if (in_pcbgroup_enabled(pcbinfo) &&
2137             !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2138                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2139                     m->m_pkthdr.flowid);
2140                 if (pcbgroup != NULL)
2141                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2142                             fport, laddr, lport, lookupflags, ifp));
2143 #ifndef RSS
2144                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2145                     fport);
2146                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2147                     laddr, lport, lookupflags, ifp));
2148 #endif
2149         }
2150 #endif
2151         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2152             lookupflags, ifp));
2153 }
2154 #endif /* INET */
2155
2156 /*
2157  * Insert PCB onto various hash lists.
2158  */
2159 static int
2160 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2161 {
2162         struct inpcbhead *pcbhash;
2163         struct inpcbporthead *pcbporthash;
2164         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2165         struct inpcbport *phd;
2166         u_int32_t hashkey_faddr;
2167
2168         INP_WLOCK_ASSERT(inp);
2169         INP_HASH_WLOCK_ASSERT(pcbinfo);
2170
2171         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2172             ("in_pcbinshash: INP_INHASHLIST"));
2173
2174 #ifdef INET6
2175         if (inp->inp_vflag & INP_IPV6)
2176                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2177         else
2178 #endif
2179         hashkey_faddr = inp->inp_faddr.s_addr;
2180
2181         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2182                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2183
2184         pcbporthash = &pcbinfo->ipi_porthashbase[
2185             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2186
2187         /*
2188          * Go through port list and look for a head for this lport.
2189          */
2190         LIST_FOREACH(phd, pcbporthash, phd_hash) {
2191                 if (phd->phd_port == inp->inp_lport)
2192                         break;
2193         }
2194         /*
2195          * If none exists, malloc one and tack it on.
2196          */
2197         if (phd == NULL) {
2198                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2199                 if (phd == NULL) {
2200                         return (ENOBUFS); /* XXX */
2201                 }
2202                 phd->phd_port = inp->inp_lport;
2203                 LIST_INIT(&phd->phd_pcblist);
2204                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2205         }
2206         inp->inp_phd = phd;
2207         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2208         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2209         inp->inp_flags |= INP_INHASHLIST;
2210 #ifdef PCBGROUP
2211         if (do_pcbgroup_update)
2212                 in_pcbgroup_update(inp);
2213 #endif
2214         return (0);
2215 }
2216
2217 /*
2218  * For now, there are two public interfaces to insert an inpcb into the hash
2219  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2220  * is used only in the TCP syncache, where in_pcbinshash is called before the
2221  * full 4-tuple is set for the inpcb, and we don't want to install in the
2222  * pcbgroup until later.
2223  *
2224  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2225  * connection groups, and partially initialised inpcbs should not be exposed
2226  * to either reservation hash tables or pcbgroups.
2227  */
2228 int
2229 in_pcbinshash(struct inpcb *inp)
2230 {
2231
2232         return (in_pcbinshash_internal(inp, 1));
2233 }
2234
2235 int
2236 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2237 {
2238
2239         return (in_pcbinshash_internal(inp, 0));
2240 }
2241
2242 /*
2243  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2244  * changed. NOTE: This does not handle the case of the lport changing (the
2245  * hashed port list would have to be updated as well), so the lport must
2246  * not change after in_pcbinshash() has been called.
2247  */
2248 void
2249 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2250 {
2251         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2252         struct inpcbhead *head;
2253         u_int32_t hashkey_faddr;
2254
2255         INP_WLOCK_ASSERT(inp);
2256         INP_HASH_WLOCK_ASSERT(pcbinfo);
2257
2258         KASSERT(inp->inp_flags & INP_INHASHLIST,
2259             ("in_pcbrehash: !INP_INHASHLIST"));
2260
2261 #ifdef INET6
2262         if (inp->inp_vflag & INP_IPV6)
2263                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2264         else
2265 #endif
2266         hashkey_faddr = inp->inp_faddr.s_addr;
2267
2268         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2269                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2270
2271         LIST_REMOVE(inp, inp_hash);
2272         LIST_INSERT_HEAD(head, inp, inp_hash);
2273
2274 #ifdef PCBGROUP
2275         if (m != NULL)
2276                 in_pcbgroup_update_mbuf(inp, m);
2277         else
2278                 in_pcbgroup_update(inp);
2279 #endif
2280 }
2281
2282 void
2283 in_pcbrehash(struct inpcb *inp)
2284 {
2285
2286         in_pcbrehash_mbuf(inp, NULL);
2287 }
2288
2289 /*
2290  * Remove PCB from various lists.
2291  */
2292 static void
2293 in_pcbremlists(struct inpcb *inp)
2294 {
2295         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2296
2297 #ifdef INVARIANTS
2298         if (pcbinfo == &V_tcbinfo) {
2299                 INP_INFO_RLOCK_ASSERT(pcbinfo);
2300         } else {
2301                 INP_INFO_WLOCK_ASSERT(pcbinfo);
2302         }
2303 #endif
2304
2305         INP_WLOCK_ASSERT(inp);
2306         INP_LIST_WLOCK_ASSERT(pcbinfo);
2307
2308         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2309         if (inp->inp_flags & INP_INHASHLIST) {
2310                 struct inpcbport *phd = inp->inp_phd;
2311
2312                 INP_HASH_WLOCK(pcbinfo);
2313                 LIST_REMOVE(inp, inp_hash);
2314                 LIST_REMOVE(inp, inp_portlist);
2315                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2316                         LIST_REMOVE(phd, phd_hash);
2317                         free(phd, M_PCB);
2318                 }
2319                 INP_HASH_WUNLOCK(pcbinfo);
2320                 inp->inp_flags &= ~INP_INHASHLIST;
2321         }
2322         LIST_REMOVE(inp, inp_list);
2323         pcbinfo->ipi_count--;
2324 #ifdef PCBGROUP
2325         in_pcbgroup_remove(inp);
2326 #endif
2327 }
2328
2329 /*
2330  * Check for alternatives when higher level complains
2331  * about service problems.  For now, invalidate cached
2332  * routing information.  If the route was created dynamically
2333  * (by a redirect), time to try a default gateway again.
2334  */
2335 void
2336 in_losing(struct inpcb *inp)
2337 {
2338
2339         RO_INVALIDATE_CACHE(&inp->inp_route);
2340         return;
2341 }
2342
2343 /*
2344  * A set label operation has occurred at the socket layer, propagate the
2345  * label change into the in_pcb for the socket.
2346  */
2347 void
2348 in_pcbsosetlabel(struct socket *so)
2349 {
2350 #ifdef MAC
2351         struct inpcb *inp;
2352
2353         inp = sotoinpcb(so);
2354         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2355
2356         INP_WLOCK(inp);
2357         SOCK_LOCK(so);
2358         mac_inpcb_sosetlabel(so, inp);
2359         SOCK_UNLOCK(so);
2360         INP_WUNLOCK(inp);
2361 #endif
2362 }
2363
2364 /*
2365  * ipport_tick runs once per second, determining if random port allocation
2366  * should be continued.  If more than ipport_randomcps ports have been
2367  * allocated in the last second, then we return to sequential port
2368  * allocation. We return to random allocation only once we drop below
2369  * ipport_randomcps for at least ipport_randomtime seconds.
2370  */
2371 static void
2372 ipport_tick(void *xtp)
2373 {
2374         VNET_ITERATOR_DECL(vnet_iter);
2375
2376         VNET_LIST_RLOCK_NOSLEEP();
2377         VNET_FOREACH(vnet_iter) {
2378                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2379                 if (V_ipport_tcpallocs <=
2380                     V_ipport_tcplastcount + V_ipport_randomcps) {
2381                         if (V_ipport_stoprandom > 0)
2382                                 V_ipport_stoprandom--;
2383                 } else
2384                         V_ipport_stoprandom = V_ipport_randomtime;
2385                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2386                 CURVNET_RESTORE();
2387         }
2388         VNET_LIST_RUNLOCK_NOSLEEP();
2389         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2390 }
2391
2392 static void
2393 ip_fini(void *xtp)
2394 {
2395
2396         callout_stop(&ipport_tick_callout);
2397 }
2398
2399 /* 
2400  * The ipport_callout should start running at about the time we attach the
2401  * inet or inet6 domains.
2402  */
2403 static void
2404 ipport_tick_init(const void *unused __unused)
2405 {
2406
2407         /* Start ipport_tick. */
2408         callout_init(&ipport_tick_callout, 1);
2409         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2410         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2411                 SHUTDOWN_PRI_DEFAULT);
2412 }
2413 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2414     ipport_tick_init, NULL);
2415
2416 void
2417 inp_wlock(struct inpcb *inp)
2418 {
2419
2420         INP_WLOCK(inp);
2421 }
2422
2423 void
2424 inp_wunlock(struct inpcb *inp)
2425 {
2426
2427         INP_WUNLOCK(inp);
2428 }
2429
2430 void
2431 inp_rlock(struct inpcb *inp)
2432 {
2433
2434         INP_RLOCK(inp);
2435 }
2436
2437 void
2438 inp_runlock(struct inpcb *inp)
2439 {
2440
2441         INP_RUNLOCK(inp);
2442 }
2443
2444 #ifdef INVARIANT_SUPPORT
2445 void
2446 inp_lock_assert(struct inpcb *inp)
2447 {
2448
2449         INP_WLOCK_ASSERT(inp);
2450 }
2451
2452 void
2453 inp_unlock_assert(struct inpcb *inp)
2454 {
2455
2456         INP_UNLOCK_ASSERT(inp);
2457 }
2458 #endif
2459
2460 void
2461 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2462 {
2463         struct inpcb *inp;
2464
2465         INP_INFO_WLOCK(&V_tcbinfo);
2466         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2467                 INP_WLOCK(inp);
2468                 func(inp, arg);
2469                 INP_WUNLOCK(inp);
2470         }
2471         INP_INFO_WUNLOCK(&V_tcbinfo);
2472 }
2473
2474 struct socket *
2475 inp_inpcbtosocket(struct inpcb *inp)
2476 {
2477
2478         INP_WLOCK_ASSERT(inp);
2479         return (inp->inp_socket);
2480 }
2481
2482 struct tcpcb *
2483 inp_inpcbtotcpcb(struct inpcb *inp)
2484 {
2485
2486         INP_WLOCK_ASSERT(inp);
2487         return ((struct tcpcb *)inp->inp_ppcb);
2488 }
2489
2490 int
2491 inp_ip_tos_get(const struct inpcb *inp)
2492 {
2493
2494         return (inp->inp_ip_tos);
2495 }
2496
2497 void
2498 inp_ip_tos_set(struct inpcb *inp, int val)
2499 {
2500
2501         inp->inp_ip_tos = val;
2502 }
2503
2504 void
2505 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2506     uint32_t *faddr, uint16_t *fp)
2507 {
2508
2509         INP_LOCK_ASSERT(inp);
2510         *laddr = inp->inp_laddr.s_addr;
2511         *faddr = inp->inp_faddr.s_addr;
2512         *lp = inp->inp_lport;
2513         *fp = inp->inp_fport;
2514 }
2515
2516 struct inpcb *
2517 so_sotoinpcb(struct socket *so)
2518 {
2519
2520         return (sotoinpcb(so));
2521 }
2522
2523 struct tcpcb *
2524 so_sototcpcb(struct socket *so)
2525 {
2526
2527         return (sototcpcb(so));
2528 }
2529
2530 /*
2531  * Create an external-format (``xinpcb'') structure using the information in
2532  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2533  * reduce the spew of irrelevant information over this interface, to isolate
2534  * user code from changes in the kernel structure, and potentially to provide
2535  * information-hiding if we decide that some of this information should be
2536  * hidden from users.
2537  */
2538 void
2539 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2540 {
2541
2542         xi->xi_len = sizeof(struct xinpcb);
2543         if (inp->inp_socket)
2544                 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2545         else
2546                 bzero(&xi->xi_socket, sizeof(struct xsocket));
2547         bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2548         xi->inp_gencnt = inp->inp_gencnt;
2549         xi->inp_ppcb = inp->inp_ppcb;
2550         xi->inp_flow = inp->inp_flow;
2551         xi->inp_flowid = inp->inp_flowid;
2552         xi->inp_flowtype = inp->inp_flowtype;
2553         xi->inp_flags = inp->inp_flags;
2554         xi->inp_flags2 = inp->inp_flags2;
2555         xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2556         xi->in6p_cksum = inp->in6p_cksum;
2557         xi->in6p_hops = inp->in6p_hops;
2558         xi->inp_ip_tos = inp->inp_ip_tos;
2559         xi->inp_vflag = inp->inp_vflag;
2560         xi->inp_ip_ttl = inp->inp_ip_ttl;
2561         xi->inp_ip_p = inp->inp_ip_p;
2562         xi->inp_ip_minttl = inp->inp_ip_minttl;
2563 }
2564
2565 #ifdef DDB
2566 static void
2567 db_print_indent(int indent)
2568 {
2569         int i;
2570
2571         for (i = 0; i < indent; i++)
2572                 db_printf(" ");
2573 }
2574
2575 static void
2576 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2577 {
2578         char faddr_str[48], laddr_str[48];
2579
2580         db_print_indent(indent);
2581         db_printf("%s at %p\n", name, inc);
2582
2583         indent += 2;
2584
2585 #ifdef INET6
2586         if (inc->inc_flags & INC_ISIPV6) {
2587                 /* IPv6. */
2588                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2589                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2590         } else
2591 #endif
2592         {
2593                 /* IPv4. */
2594                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2595                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2596         }
2597         db_print_indent(indent);
2598         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2599             ntohs(inc->inc_lport));
2600         db_print_indent(indent);
2601         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2602             ntohs(inc->inc_fport));
2603 }
2604
2605 static void
2606 db_print_inpflags(int inp_flags)
2607 {
2608         int comma;
2609
2610         comma = 0;
2611         if (inp_flags & INP_RECVOPTS) {
2612                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2613                 comma = 1;
2614         }
2615         if (inp_flags & INP_RECVRETOPTS) {
2616                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2617                 comma = 1;
2618         }
2619         if (inp_flags & INP_RECVDSTADDR) {
2620                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2621                 comma = 1;
2622         }
2623         if (inp_flags & INP_ORIGDSTADDR) {
2624                 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2625                 comma = 1;
2626         }
2627         if (inp_flags & INP_HDRINCL) {
2628                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2629                 comma = 1;
2630         }
2631         if (inp_flags & INP_HIGHPORT) {
2632                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2633                 comma = 1;
2634         }
2635         if (inp_flags & INP_LOWPORT) {
2636                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2637                 comma = 1;
2638         }
2639         if (inp_flags & INP_ANONPORT) {
2640                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2641                 comma = 1;
2642         }
2643         if (inp_flags & INP_RECVIF) {
2644                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2645                 comma = 1;
2646         }
2647         if (inp_flags & INP_MTUDISC) {
2648                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2649                 comma = 1;
2650         }
2651         if (inp_flags & INP_RECVTTL) {
2652                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2653                 comma = 1;
2654         }
2655         if (inp_flags & INP_DONTFRAG) {
2656                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2657                 comma = 1;
2658         }
2659         if (inp_flags & INP_RECVTOS) {
2660                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2661                 comma = 1;
2662         }
2663         if (inp_flags & IN6P_IPV6_V6ONLY) {
2664                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2665                 comma = 1;
2666         }
2667         if (inp_flags & IN6P_PKTINFO) {
2668                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2669                 comma = 1;
2670         }
2671         if (inp_flags & IN6P_HOPLIMIT) {
2672                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2673                 comma = 1;
2674         }
2675         if (inp_flags & IN6P_HOPOPTS) {
2676                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2677                 comma = 1;
2678         }
2679         if (inp_flags & IN6P_DSTOPTS) {
2680                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2681                 comma = 1;
2682         }
2683         if (inp_flags & IN6P_RTHDR) {
2684                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2685                 comma = 1;
2686         }
2687         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2688                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2689                 comma = 1;
2690         }
2691         if (inp_flags & IN6P_TCLASS) {
2692                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2693                 comma = 1;
2694         }
2695         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2696                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2697                 comma = 1;
2698         }
2699         if (inp_flags & INP_TIMEWAIT) {
2700                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2701                 comma  = 1;
2702         }
2703         if (inp_flags & INP_ONESBCAST) {
2704                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2705                 comma  = 1;
2706         }
2707         if (inp_flags & INP_DROPPED) {
2708                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2709                 comma  = 1;
2710         }
2711         if (inp_flags & INP_SOCKREF) {
2712                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2713                 comma  = 1;
2714         }
2715         if (inp_flags & IN6P_RFC2292) {
2716                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2717                 comma = 1;
2718         }
2719         if (inp_flags & IN6P_MTU) {
2720                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2721                 comma = 1;
2722         }
2723 }
2724
2725 static void
2726 db_print_inpvflag(u_char inp_vflag)
2727 {
2728         int comma;
2729
2730         comma = 0;
2731         if (inp_vflag & INP_IPV4) {
2732                 db_printf("%sINP_IPV4", comma ? ", " : "");
2733                 comma  = 1;
2734         }
2735         if (inp_vflag & INP_IPV6) {
2736                 db_printf("%sINP_IPV6", comma ? ", " : "");
2737                 comma  = 1;
2738         }
2739         if (inp_vflag & INP_IPV6PROTO) {
2740                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2741                 comma  = 1;
2742         }
2743 }
2744
2745 static void
2746 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2747 {
2748
2749         db_print_indent(indent);
2750         db_printf("%s at %p\n", name, inp);
2751
2752         indent += 2;
2753
2754         db_print_indent(indent);
2755         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2756
2757         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2758
2759         db_print_indent(indent);
2760         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2761             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2762
2763         db_print_indent(indent);
2764         db_printf("inp_label: %p   inp_flags: 0x%x (",
2765            inp->inp_label, inp->inp_flags);
2766         db_print_inpflags(inp->inp_flags);
2767         db_printf(")\n");
2768
2769         db_print_indent(indent);
2770         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2771             inp->inp_vflag);
2772         db_print_inpvflag(inp->inp_vflag);
2773         db_printf(")\n");
2774
2775         db_print_indent(indent);
2776         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2777             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2778
2779         db_print_indent(indent);
2780 #ifdef INET6
2781         if (inp->inp_vflag & INP_IPV6) {
2782                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2783                     "in6p_moptions: %p\n", inp->in6p_options,
2784                     inp->in6p_outputopts, inp->in6p_moptions);
2785                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2786                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2787                     inp->in6p_hops);
2788         } else
2789 #endif
2790         {
2791                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2792                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2793                     inp->inp_options, inp->inp_moptions);
2794         }
2795
2796         db_print_indent(indent);
2797         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2798             (uintmax_t)inp->inp_gencnt);
2799 }
2800
2801 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2802 {
2803         struct inpcb *inp;
2804
2805         if (!have_addr) {
2806                 db_printf("usage: show inpcb <addr>\n");
2807                 return;
2808         }
2809         inp = (struct inpcb *)addr;
2810
2811         db_print_inpcb(inp, "inpcb", 0);
2812 }
2813 #endif /* DDB */
2814
2815 #ifdef RATELIMIT
2816 /*
2817  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2818  * if any.
2819  */
2820 int
2821 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2822 {
2823         union if_snd_tag_modify_params params = {
2824                 .rate_limit.max_rate = max_pacing_rate,
2825         };
2826         struct m_snd_tag *mst;
2827         struct ifnet *ifp;
2828         int error;
2829
2830         mst = inp->inp_snd_tag;
2831         if (mst == NULL)
2832                 return (EINVAL);
2833
2834         ifp = mst->ifp;
2835         if (ifp == NULL)
2836                 return (EINVAL);
2837
2838         if (ifp->if_snd_tag_modify == NULL) {
2839                 error = EOPNOTSUPP;
2840         } else {
2841                 error = ifp->if_snd_tag_modify(mst, &params);
2842         }
2843         return (error);
2844 }
2845
2846 /*
2847  * Query existing TX rate limit based on the existing
2848  * "inp->inp_snd_tag", if any.
2849  */
2850 int
2851 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2852 {
2853         union if_snd_tag_query_params params = { };
2854         struct m_snd_tag *mst;
2855         struct ifnet *ifp;
2856         int error;
2857
2858         mst = inp->inp_snd_tag;
2859         if (mst == NULL)
2860                 return (EINVAL);
2861
2862         ifp = mst->ifp;
2863         if (ifp == NULL)
2864                 return (EINVAL);
2865
2866         if (ifp->if_snd_tag_query == NULL) {
2867                 error = EOPNOTSUPP;
2868         } else {
2869                 error = ifp->if_snd_tag_query(mst, &params);
2870                 if (error == 0 &&  p_max_pacing_rate != NULL)
2871                         *p_max_pacing_rate = params.rate_limit.max_rate;
2872         }
2873         return (error);
2874 }
2875
2876 /*
2877  * Query existing TX queue level based on the existing
2878  * "inp->inp_snd_tag", if any.
2879  */
2880 int
2881 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2882 {
2883         union if_snd_tag_query_params params = { };
2884         struct m_snd_tag *mst;
2885         struct ifnet *ifp;
2886         int error;
2887
2888         mst = inp->inp_snd_tag;
2889         if (mst == NULL)
2890                 return (EINVAL);
2891
2892         ifp = mst->ifp;
2893         if (ifp == NULL)
2894                 return (EINVAL);
2895
2896         if (ifp->if_snd_tag_query == NULL)
2897                 return (EOPNOTSUPP);
2898
2899         error = ifp->if_snd_tag_query(mst, &params);
2900         if (error == 0 &&  p_txqueue_level != NULL)
2901                 *p_txqueue_level = params.rate_limit.queue_level;
2902         return (error);
2903 }
2904
2905 /*
2906  * Allocate a new TX rate limit send tag from the network interface
2907  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2908  */
2909 int
2910 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2911     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2912 {
2913         union if_snd_tag_alloc_params params = {
2914                 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2915                     IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2916                 .rate_limit.hdr.flowid = flowid,
2917                 .rate_limit.hdr.flowtype = flowtype,
2918                 .rate_limit.max_rate = max_pacing_rate,
2919         };
2920         int error;
2921
2922         INP_WLOCK_ASSERT(inp);
2923
2924         if (inp->inp_snd_tag != NULL)
2925                 return (EINVAL);
2926
2927         if (ifp->if_snd_tag_alloc == NULL) {
2928                 error = EOPNOTSUPP;
2929         } else {
2930                 error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2931
2932                 /*
2933                  * At success increment the refcount on
2934                  * the send tag's network interface:
2935                  */
2936                 if (error == 0)
2937                         if_ref(inp->inp_snd_tag->ifp);
2938         }
2939         return (error);
2940 }
2941
2942 /*
2943  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2944  * if any:
2945  */
2946 void
2947 in_pcbdetach_txrtlmt(struct inpcb *inp)
2948 {
2949         struct m_snd_tag *mst;
2950         struct ifnet *ifp;
2951
2952         INP_WLOCK_ASSERT(inp);
2953
2954         mst = inp->inp_snd_tag;
2955         inp->inp_snd_tag = NULL;
2956
2957         if (mst == NULL)
2958                 return;
2959
2960         ifp = mst->ifp;
2961         if (ifp == NULL)
2962                 return;
2963
2964         /*
2965          * If the device was detached while we still had reference(s)
2966          * on the ifp, we assume if_snd_tag_free() was replaced with
2967          * stubs.
2968          */
2969         ifp->if_snd_tag_free(mst);
2970
2971         /* release reference count on network interface */
2972         if_rele(ifp);
2973 }
2974
2975 /*
2976  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
2977  * is set in the fast path and will attach/detach/modify the TX rate
2978  * limit send tag based on the socket's so_max_pacing_rate value.
2979  */
2980 void
2981 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
2982 {
2983         struct socket *socket;
2984         uint32_t max_pacing_rate;
2985         bool did_upgrade;
2986         int error;
2987
2988         if (inp == NULL)
2989                 return;
2990
2991         socket = inp->inp_socket;
2992         if (socket == NULL)
2993                 return;
2994
2995         if (!INP_WLOCKED(inp)) {
2996                 /*
2997                  * NOTE: If the write locking fails, we need to bail
2998                  * out and use the non-ratelimited ring for the
2999                  * transmit until there is a new chance to get the
3000                  * write lock.
3001                  */
3002                 if (!INP_TRY_UPGRADE(inp))
3003                         return;
3004                 did_upgrade = 1;
3005         } else {
3006                 did_upgrade = 0;
3007         }
3008
3009         /*
3010          * NOTE: The so_max_pacing_rate value is read unlocked,
3011          * because atomic updates are not required since the variable
3012          * is checked at every mbuf we send. It is assumed that the
3013          * variable read itself will be atomic.
3014          */
3015         max_pacing_rate = socket->so_max_pacing_rate;
3016
3017         /*
3018          * NOTE: When attaching to a network interface a reference is
3019          * made to ensure the network interface doesn't go away until
3020          * all ratelimit connections are gone. The network interface
3021          * pointers compared below represent valid network interfaces,
3022          * except when comparing towards NULL.
3023          */
3024         if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3025                 error = 0;
3026         } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3027                 if (inp->inp_snd_tag != NULL)
3028                         in_pcbdetach_txrtlmt(inp);
3029                 error = 0;
3030         } else if (inp->inp_snd_tag == NULL) {
3031                 /*
3032                  * In order to utilize packet pacing with RSS, we need
3033                  * to wait until there is a valid RSS hash before we
3034                  * can proceed:
3035                  */
3036                 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3037                         error = EAGAIN;
3038                 } else {
3039                         error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3040                             mb->m_pkthdr.flowid, max_pacing_rate);
3041                 }
3042         } else {
3043                 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3044         }
3045         if (error == 0 || error == EOPNOTSUPP)
3046                 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3047         if (did_upgrade)
3048                 INP_DOWNGRADE(inp);
3049 }
3050
3051 /*
3052  * Track route changes for TX rate limiting.
3053  */
3054 void
3055 in_pcboutput_eagain(struct inpcb *inp)
3056 {
3057         struct socket *socket;
3058         bool did_upgrade;
3059
3060         if (inp == NULL)
3061                 return;
3062
3063         socket = inp->inp_socket;
3064         if (socket == NULL)
3065                 return;
3066
3067         if (inp->inp_snd_tag == NULL)
3068                 return;
3069
3070         if (!INP_WLOCKED(inp)) {
3071                 /*
3072                  * NOTE: If the write locking fails, we need to bail
3073                  * out and use the non-ratelimited ring for the
3074                  * transmit until there is a new chance to get the
3075                  * write lock.
3076                  */
3077                 if (!INP_TRY_UPGRADE(inp))
3078                         return;
3079                 did_upgrade = 1;
3080         } else {
3081                 did_upgrade = 0;
3082         }
3083
3084         /* detach rate limiting */
3085         in_pcbdetach_txrtlmt(inp);
3086
3087         /* make sure new mbuf send tag allocation is made */
3088         inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3089
3090         if (did_upgrade)
3091                 INP_DOWNGRADE(inp);
3092 }
3093 #endif /* RATELIMIT */