]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
Merge sync of head
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
36  */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 #include "opt_rss.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/callout.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/refcount.h>
60 #include <sys/jail.h>
61 #include <sys/kernel.h>
62 #include <sys/sysctl.h>
63
64 #ifdef DDB
65 #include <ddb/ddb.h>
66 #endif
67
68 #include <vm/uma.h>
69
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_types.h>
73 #include <net/route.h>
74 #include <net/rss_config.h>
75 #include <net/vnet.h>
76
77 #if defined(INET) || defined(INET6)
78 #include <netinet/in.h>
79 #include <netinet/in_pcb.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/udp.h>
83 #include <netinet/udp_var.h>
84 #endif
85 #ifdef INET
86 #include <netinet/in_var.h>
87 #endif
88 #ifdef INET6
89 #include <netinet/ip6.h>
90 #include <netinet6/in6_pcb.h>
91 #include <netinet6/in6_var.h>
92 #include <netinet6/ip6_var.h>
93 #endif /* INET6 */
94
95
96 #ifdef IPSEC
97 #include <netipsec/ipsec.h>
98 #include <netipsec/key.h>
99 #endif /* IPSEC */
100
101 #include <security/mac/mac_framework.h>
102
103 static struct callout   ipport_tick_callout;
104
105 /*
106  * These configure the range of local port addresses assigned to
107  * "unspecified" outgoing connections/packets/whatever.
108  */
109 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
110 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
111 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
112 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
113 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
114 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
115
116 /*
117  * Reserved ports accessible only to root. There are significant
118  * security considerations that must be accounted for when changing these,
119  * but the security benefits can be great. Please be careful.
120  */
121 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
122 VNET_DEFINE(int, ipport_reservedlow);
123
124 /* Variables dealing with random ephemeral port allocation. */
125 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
126 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
127 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
128 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
129 VNET_DEFINE(int, ipport_tcpallocs);
130 static VNET_DEFINE(int, ipport_tcplastcount);
131
132 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
133
134 static void     in_pcbremlists(struct inpcb *inp);
135 #ifdef INET
136 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
137                             struct in_addr faddr, u_int fport_arg,
138                             struct in_addr laddr, u_int lport_arg,
139                             int lookupflags, struct ifnet *ifp);
140
141 #define RANGECHK(var, min, max) \
142         if ((var) < (min)) { (var) = (min); } \
143         else if ((var) > (max)) { (var) = (max); }
144
145 static int
146 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
147 {
148         int error;
149
150         error = sysctl_handle_int(oidp, arg1, arg2, req);
151         if (error == 0) {
152                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
153                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
154                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
155                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
156                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
157                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
158         }
159         return (error);
160 }
161
162 #undef RANGECHK
163
164 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
165     "IP Ports");
166
167 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
168         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
169         &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
170 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
171         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
172         &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
173 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
174         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
175         &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
176 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
177         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
178         &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
180         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
181         &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
183         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
184         &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
185 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
186         CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
187         &VNET_NAME(ipport_reservedhigh), 0, "");
188 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
189         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
190 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
191         CTLFLAG_VNET | CTLFLAG_RW,
192         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
194         CTLFLAG_VNET | CTLFLAG_RW,
195         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
196         "allocations before switching to a sequental one");
197 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
198         CTLFLAG_VNET | CTLFLAG_RW,
199         &VNET_NAME(ipport_randomtime), 0,
200         "Minimum time to keep sequental port "
201         "allocation before switching to a random one");
202 #endif /* INET */
203
204 /*
205  * in_pcb.c: manage the Protocol Control Blocks.
206  *
207  * NOTE: It is assumed that most of these functions will be called with
208  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
209  * functions often modify hash chains or addresses in pcbs.
210  */
211
212 /*
213  * Initialize an inpcbinfo -- we should be able to reduce the number of
214  * arguments in time.
215  */
216 void
217 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
218     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
219     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
220     uint32_t inpcbzone_flags, u_int hashfields)
221 {
222
223         INP_INFO_LOCK_INIT(pcbinfo, name);
224         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
225 #ifdef VIMAGE
226         pcbinfo->ipi_vnet = curvnet;
227 #endif
228         pcbinfo->ipi_listhead = listhead;
229         LIST_INIT(pcbinfo->ipi_listhead);
230         pcbinfo->ipi_count = 0;
231         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
232             &pcbinfo->ipi_hashmask);
233         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
234             &pcbinfo->ipi_porthashmask);
235 #ifdef PCBGROUP
236         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
237 #endif
238         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
239             NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
240             inpcbzone_flags);
241         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
242         uma_zone_set_warning(pcbinfo->ipi_zone,
243             "kern.ipc.maxsockets limit reached");
244 }
245
246 /*
247  * Destroy an inpcbinfo.
248  */
249 void
250 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
251 {
252
253         KASSERT(pcbinfo->ipi_count == 0,
254             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
255
256         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
257         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
258             pcbinfo->ipi_porthashmask);
259 #ifdef PCBGROUP
260         in_pcbgroup_destroy(pcbinfo);
261 #endif
262         uma_zdestroy(pcbinfo->ipi_zone);
263         INP_HASH_LOCK_DESTROY(pcbinfo);
264         INP_INFO_LOCK_DESTROY(pcbinfo);
265 }
266
267 /*
268  * Allocate a PCB and associate it with the socket.
269  * On success return with the PCB locked.
270  */
271 int
272 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
273 {
274         struct inpcb *inp;
275         int error;
276
277         INP_INFO_WLOCK_ASSERT(pcbinfo);
278         error = 0;
279         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
280         if (inp == NULL)
281                 return (ENOBUFS);
282         bzero(inp, inp_zero_size);
283         inp->inp_pcbinfo = pcbinfo;
284         inp->inp_socket = so;
285         inp->inp_cred = crhold(so->so_cred);
286         inp->inp_inc.inc_fibnum = so->so_fibnum;
287 #ifdef MAC
288         error = mac_inpcb_init(inp, M_NOWAIT);
289         if (error != 0)
290                 goto out;
291         mac_inpcb_create(so, inp);
292 #endif
293 #ifdef IPSEC
294         error = ipsec_init_policy(so, &inp->inp_sp);
295         if (error != 0) {
296 #ifdef MAC
297                 mac_inpcb_destroy(inp);
298 #endif
299                 goto out;
300         }
301 #endif /*IPSEC*/
302 #ifdef INET6
303         if (INP_SOCKAF(so) == AF_INET6) {
304                 inp->inp_vflag |= INP_IPV6PROTO;
305                 if (V_ip6_v6only)
306                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
307         }
308 #endif
309         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
310         pcbinfo->ipi_count++;
311         so->so_pcb = (caddr_t)inp;
312 #ifdef INET6
313         if (V_ip6_auto_flowlabel)
314                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
315 #endif
316         INP_WLOCK(inp);
317         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
318         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
319 #if defined(IPSEC) || defined(MAC)
320 out:
321         if (error != 0) {
322                 crfree(inp->inp_cred);
323                 uma_zfree(pcbinfo->ipi_zone, inp);
324         }
325 #endif
326         return (error);
327 }
328
329 #ifdef INET
330 int
331 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
332 {
333         int anonport, error;
334
335         INP_WLOCK_ASSERT(inp);
336         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
337
338         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
339                 return (EINVAL);
340         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
341         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
342             &inp->inp_lport, cred);
343         if (error)
344                 return (error);
345         if (in_pcbinshash(inp) != 0) {
346                 inp->inp_laddr.s_addr = INADDR_ANY;
347                 inp->inp_lport = 0;
348                 return (EAGAIN);
349         }
350         if (anonport)
351                 inp->inp_flags |= INP_ANONPORT;
352         return (0);
353 }
354 #endif
355
356 /*
357  * Select a local port (number) to use.
358  */
359 #if defined(INET) || defined(INET6)
360 int
361 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
362     struct ucred *cred, int lookupflags)
363 {
364         struct inpcbinfo *pcbinfo;
365         struct inpcb *tmpinp;
366         unsigned short *lastport;
367         int count, dorandom, error;
368         u_short aux, first, last, lport;
369 #ifdef INET
370         struct in_addr laddr;
371 #endif
372
373         pcbinfo = inp->inp_pcbinfo;
374
375         /*
376          * Because no actual state changes occur here, a global write lock on
377          * the pcbinfo isn't required.
378          */
379         INP_LOCK_ASSERT(inp);
380         INP_HASH_LOCK_ASSERT(pcbinfo);
381
382         if (inp->inp_flags & INP_HIGHPORT) {
383                 first = V_ipport_hifirstauto;   /* sysctl */
384                 last  = V_ipport_hilastauto;
385                 lastport = &pcbinfo->ipi_lasthi;
386         } else if (inp->inp_flags & INP_LOWPORT) {
387                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
388                 if (error)
389                         return (error);
390                 first = V_ipport_lowfirstauto;  /* 1023 */
391                 last  = V_ipport_lowlastauto;   /* 600 */
392                 lastport = &pcbinfo->ipi_lastlow;
393         } else {
394                 first = V_ipport_firstauto;     /* sysctl */
395                 last  = V_ipport_lastauto;
396                 lastport = &pcbinfo->ipi_lastport;
397         }
398         /*
399          * For UDP(-Lite), use random port allocation as long as the user
400          * allows it.  For TCP (and as of yet unknown) connections,
401          * use random port allocation only if the user allows it AND
402          * ipport_tick() allows it.
403          */
404         if (V_ipport_randomized &&
405                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
406                 pcbinfo == &V_ulitecbinfo))
407                 dorandom = 1;
408         else
409                 dorandom = 0;
410         /*
411          * It makes no sense to do random port allocation if
412          * we have the only port available.
413          */
414         if (first == last)
415                 dorandom = 0;
416         /* Make sure to not include UDP(-Lite) packets in the count. */
417         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
418                 V_ipport_tcpallocs++;
419         /*
420          * Instead of having two loops further down counting up or down
421          * make sure that first is always <= last and go with only one
422          * code path implementing all logic.
423          */
424         if (first > last) {
425                 aux = first;
426                 first = last;
427                 last = aux;
428         }
429
430 #ifdef INET
431         /* Make the compiler happy. */
432         laddr.s_addr = 0;
433         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
434                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
435                     __func__, inp));
436                 laddr = *laddrp;
437         }
438 #endif
439         tmpinp = NULL;  /* Make compiler happy. */
440         lport = *lportp;
441
442         if (dorandom)
443                 *lastport = first + (arc4random() % (last - first));
444
445         count = last - first;
446
447         do {
448                 if (count-- < 0)        /* completely used? */
449                         return (EADDRNOTAVAIL);
450                 ++*lastport;
451                 if (*lastport < first || *lastport > last)
452                         *lastport = first;
453                 lport = htons(*lastport);
454
455 #ifdef INET6
456                 if ((inp->inp_vflag & INP_IPV6) != 0)
457                         tmpinp = in6_pcblookup_local(pcbinfo,
458                             &inp->in6p_laddr, lport, lookupflags, cred);
459 #endif
460 #if defined(INET) && defined(INET6)
461                 else
462 #endif
463 #ifdef INET
464                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
465                             lport, lookupflags, cred);
466 #endif
467         } while (tmpinp != NULL);
468
469 #ifdef INET
470         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
471                 laddrp->s_addr = laddr.s_addr;
472 #endif
473         *lportp = lport;
474
475         return (0);
476 }
477
478 /*
479  * Return cached socket options.
480  */
481 short
482 inp_so_options(const struct inpcb *inp)
483 {
484    short so_options;
485
486    so_options = 0;
487
488    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
489            so_options |= SO_REUSEPORT;
490    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
491            so_options |= SO_REUSEADDR;
492    return (so_options);
493 }
494 #endif /* INET || INET6 */
495
496 /*
497  * Check if a new BINDMULTI socket is allowed to be created.
498  *
499  * ni points to the new inp.
500  * oi points to the exisitng inp.
501  *
502  * This checks whether the existing inp also has BINDMULTI and
503  * whether the credentials match.
504  */
505 int
506 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
507 {
508         /* Check permissions match */
509         if ((ni->inp_flags2 & INP_BINDMULTI) &&
510             (ni->inp_cred->cr_uid !=
511             oi->inp_cred->cr_uid))
512                 return (0);
513
514         /* Check the existing inp has BINDMULTI set */
515         if ((ni->inp_flags2 & INP_BINDMULTI) &&
516             ((oi->inp_flags2 & INP_BINDMULTI) == 0))
517                 return (0);
518
519         /*
520          * We're okay - either INP_BINDMULTI isn't set on ni, or
521          * it is and it matches the checks.
522          */
523         return (1);
524 }
525
526 #ifdef INET
527 /*
528  * Set up a bind operation on a PCB, performing port allocation
529  * as required, but do not actually modify the PCB. Callers can
530  * either complete the bind by setting inp_laddr/inp_lport and
531  * calling in_pcbinshash(), or they can just use the resulting
532  * port and address to authorise the sending of a once-off packet.
533  *
534  * On error, the values of *laddrp and *lportp are not changed.
535  */
536 int
537 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
538     u_short *lportp, struct ucred *cred)
539 {
540         struct socket *so = inp->inp_socket;
541         struct sockaddr_in *sin;
542         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
543         struct in_addr laddr;
544         u_short lport = 0;
545         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
546         int error;
547
548         /*
549          * No state changes, so read locks are sufficient here.
550          */
551         INP_LOCK_ASSERT(inp);
552         INP_HASH_LOCK_ASSERT(pcbinfo);
553
554         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
555                 return (EADDRNOTAVAIL);
556         laddr.s_addr = *laddrp;
557         if (nam != NULL && laddr.s_addr != INADDR_ANY)
558                 return (EINVAL);
559         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
560                 lookupflags = INPLOOKUP_WILDCARD;
561         if (nam == NULL) {
562                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
563                         return (error);
564         } else {
565                 sin = (struct sockaddr_in *)nam;
566                 if (nam->sa_len != sizeof (*sin))
567                         return (EINVAL);
568 #ifdef notdef
569                 /*
570                  * We should check the family, but old programs
571                  * incorrectly fail to initialize it.
572                  */
573                 if (sin->sin_family != AF_INET)
574                         return (EAFNOSUPPORT);
575 #endif
576                 error = prison_local_ip4(cred, &sin->sin_addr);
577                 if (error)
578                         return (error);
579                 if (sin->sin_port != *lportp) {
580                         /* Don't allow the port to change. */
581                         if (*lportp != 0)
582                                 return (EINVAL);
583                         lport = sin->sin_port;
584                 }
585                 /* NB: lport is left as 0 if the port isn't being changed. */
586                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
587                         /*
588                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
589                          * allow complete duplication of binding if
590                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
591                          * and a multicast address is bound on both
592                          * new and duplicated sockets.
593                          */
594                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
595                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
596                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
597                         sin->sin_port = 0;              /* yech... */
598                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
599                         /*
600                          * Is the address a local IP address? 
601                          * If INP_BINDANY is set, then the socket may be bound
602                          * to any endpoint address, local or not.
603                          */
604                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
605                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
606                                 return (EADDRNOTAVAIL);
607                 }
608                 laddr = sin->sin_addr;
609                 if (lport) {
610                         struct inpcb *t;
611                         struct tcptw *tw;
612
613                         /* GROSS */
614                         if (ntohs(lport) <= V_ipport_reservedhigh &&
615                             ntohs(lport) >= V_ipport_reservedlow &&
616                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
617                             0))
618                                 return (EACCES);
619                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
620                             priv_check_cred(inp->inp_cred,
621                             PRIV_NETINET_REUSEPORT, 0) != 0) {
622                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
623                                     lport, INPLOOKUP_WILDCARD, cred);
624         /*
625          * XXX
626          * This entire block sorely needs a rewrite.
627          */
628                                 if (t &&
629                                     ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
630                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
631                                     (so->so_type != SOCK_STREAM ||
632                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
633                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
634                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
635                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
636                                     (inp->inp_cred->cr_uid !=
637                                      t->inp_cred->cr_uid))
638                                         return (EADDRINUSE);
639
640                                 /*
641                                  * If the socket is a BINDMULTI socket, then
642                                  * the credentials need to match and the
643                                  * original socket also has to have been bound
644                                  * with BINDMULTI.
645                                  */
646                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
647                                         return (EADDRINUSE);
648                         }
649                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
650                             lport, lookupflags, cred);
651                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
652                                 /*
653                                  * XXXRW: If an incpb has had its timewait
654                                  * state recycled, we treat the address as
655                                  * being in use (for now).  This is better
656                                  * than a panic, but not desirable.
657                                  */
658                                 tw = intotw(t);
659                                 if (tw == NULL ||
660                                     (reuseport & tw->tw_so_options) == 0)
661                                         return (EADDRINUSE);
662                         } else if (t &&
663                             ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
664                             (reuseport & inp_so_options(t)) == 0) {
665 #ifdef INET6
666                                 if (ntohl(sin->sin_addr.s_addr) !=
667                                     INADDR_ANY ||
668                                     ntohl(t->inp_laddr.s_addr) !=
669                                     INADDR_ANY ||
670                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
671                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
672 #endif
673                                 return (EADDRINUSE);
674                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
675                                         return (EADDRINUSE);
676                         }
677                 }
678         }
679         if (*lportp != 0)
680                 lport = *lportp;
681         if (lport == 0) {
682                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
683                 if (error != 0)
684                         return (error);
685
686         }
687         *laddrp = laddr.s_addr;
688         *lportp = lport;
689         return (0);
690 }
691
692 /*
693  * Connect from a socket to a specified address.
694  * Both address and port must be specified in argument sin.
695  * If don't have a local address for this socket yet,
696  * then pick one.
697  */
698 int
699 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
700     struct ucred *cred, struct mbuf *m)
701 {
702         u_short lport, fport;
703         in_addr_t laddr, faddr;
704         int anonport, error;
705
706         INP_WLOCK_ASSERT(inp);
707         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
708
709         lport = inp->inp_lport;
710         laddr = inp->inp_laddr.s_addr;
711         anonport = (lport == 0);
712         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
713             NULL, cred);
714         if (error)
715                 return (error);
716
717         /* Do the initial binding of the local address if required. */
718         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
719                 inp->inp_lport = lport;
720                 inp->inp_laddr.s_addr = laddr;
721                 if (in_pcbinshash(inp) != 0) {
722                         inp->inp_laddr.s_addr = INADDR_ANY;
723                         inp->inp_lport = 0;
724                         return (EAGAIN);
725                 }
726         }
727
728         /* Commit the remaining changes. */
729         inp->inp_lport = lport;
730         inp->inp_laddr.s_addr = laddr;
731         inp->inp_faddr.s_addr = faddr;
732         inp->inp_fport = fport;
733         in_pcbrehash_mbuf(inp, m);
734
735         if (anonport)
736                 inp->inp_flags |= INP_ANONPORT;
737         return (0);
738 }
739
740 int
741 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
742 {
743
744         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
745 }
746
747 /*
748  * Do proper source address selection on an unbound socket in case
749  * of connect. Take jails into account as well.
750  */
751 int
752 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
753     struct ucred *cred)
754 {
755         struct ifaddr *ifa;
756         struct sockaddr *sa;
757         struct sockaddr_in *sin;
758         struct route sro;
759         int error;
760
761         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
762
763         /*
764          * Bypass source address selection and use the primary jail IP
765          * if requested.
766          */
767         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
768                 return (0);
769
770         error = 0;
771         bzero(&sro, sizeof(sro));
772
773         sin = (struct sockaddr_in *)&sro.ro_dst;
774         sin->sin_family = AF_INET;
775         sin->sin_len = sizeof(struct sockaddr_in);
776         sin->sin_addr.s_addr = faddr->s_addr;
777
778         /*
779          * If route is known our src addr is taken from the i/f,
780          * else punt.
781          *
782          * Find out route to destination.
783          */
784         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
785                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
786
787         /*
788          * If we found a route, use the address corresponding to
789          * the outgoing interface.
790          * 
791          * Otherwise assume faddr is reachable on a directly connected
792          * network and try to find a corresponding interface to take
793          * the source address from.
794          */
795         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
796                 struct in_ifaddr *ia;
797                 struct ifnet *ifp;
798
799                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
800                                         inp->inp_socket->so_fibnum));
801                 if (ia == NULL)
802                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
803                                                 inp->inp_socket->so_fibnum));
804                 if (ia == NULL) {
805                         error = ENETUNREACH;
806                         goto done;
807                 }
808
809                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
810                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
811                         ifa_free(&ia->ia_ifa);
812                         goto done;
813                 }
814
815                 ifp = ia->ia_ifp;
816                 ifa_free(&ia->ia_ifa);
817                 ia = NULL;
818                 IF_ADDR_RLOCK(ifp);
819                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
820
821                         sa = ifa->ifa_addr;
822                         if (sa->sa_family != AF_INET)
823                                 continue;
824                         sin = (struct sockaddr_in *)sa;
825                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
826                                 ia = (struct in_ifaddr *)ifa;
827                                 break;
828                         }
829                 }
830                 if (ia != NULL) {
831                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
832                         IF_ADDR_RUNLOCK(ifp);
833                         goto done;
834                 }
835                 IF_ADDR_RUNLOCK(ifp);
836
837                 /* 3. As a last resort return the 'default' jail address. */
838                 error = prison_get_ip4(cred, laddr);
839                 goto done;
840         }
841
842         /*
843          * If the outgoing interface on the route found is not
844          * a loopback interface, use the address from that interface.
845          * In case of jails do those three steps:
846          * 1. check if the interface address belongs to the jail. If so use it.
847          * 2. check if we have any address on the outgoing interface
848          *    belonging to this jail. If so use it.
849          * 3. as a last resort return the 'default' jail address.
850          */
851         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
852                 struct in_ifaddr *ia;
853                 struct ifnet *ifp;
854
855                 /* If not jailed, use the default returned. */
856                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
857                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
858                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
859                         goto done;
860                 }
861
862                 /* Jailed. */
863                 /* 1. Check if the iface address belongs to the jail. */
864                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
865                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
866                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
867                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
868                         goto done;
869                 }
870
871                 /*
872                  * 2. Check if we have any address on the outgoing interface
873                  *    belonging to this jail.
874                  */
875                 ia = NULL;
876                 ifp = sro.ro_rt->rt_ifp;
877                 IF_ADDR_RLOCK(ifp);
878                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
879                         sa = ifa->ifa_addr;
880                         if (sa->sa_family != AF_INET)
881                                 continue;
882                         sin = (struct sockaddr_in *)sa;
883                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
884                                 ia = (struct in_ifaddr *)ifa;
885                                 break;
886                         }
887                 }
888                 if (ia != NULL) {
889                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
890                         IF_ADDR_RUNLOCK(ifp);
891                         goto done;
892                 }
893                 IF_ADDR_RUNLOCK(ifp);
894
895                 /* 3. As a last resort return the 'default' jail address. */
896                 error = prison_get_ip4(cred, laddr);
897                 goto done;
898         }
899
900         /*
901          * The outgoing interface is marked with 'loopback net', so a route
902          * to ourselves is here.
903          * Try to find the interface of the destination address and then
904          * take the address from there. That interface is not necessarily
905          * a loopback interface.
906          * In case of jails, check that it is an address of the jail
907          * and if we cannot find, fall back to the 'default' jail address.
908          */
909         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
910                 struct sockaddr_in sain;
911                 struct in_ifaddr *ia;
912
913                 bzero(&sain, sizeof(struct sockaddr_in));
914                 sain.sin_family = AF_INET;
915                 sain.sin_len = sizeof(struct sockaddr_in);
916                 sain.sin_addr.s_addr = faddr->s_addr;
917
918                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
919                                         inp->inp_socket->so_fibnum));
920                 if (ia == NULL)
921                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
922                                                 inp->inp_socket->so_fibnum));
923                 if (ia == NULL)
924                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
925
926                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
927                         if (ia == NULL) {
928                                 error = ENETUNREACH;
929                                 goto done;
930                         }
931                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
932                         ifa_free(&ia->ia_ifa);
933                         goto done;
934                 }
935
936                 /* Jailed. */
937                 if (ia != NULL) {
938                         struct ifnet *ifp;
939
940                         ifp = ia->ia_ifp;
941                         ifa_free(&ia->ia_ifa);
942                         ia = NULL;
943                         IF_ADDR_RLOCK(ifp);
944                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
945
946                                 sa = ifa->ifa_addr;
947                                 if (sa->sa_family != AF_INET)
948                                         continue;
949                                 sin = (struct sockaddr_in *)sa;
950                                 if (prison_check_ip4(cred,
951                                     &sin->sin_addr) == 0) {
952                                         ia = (struct in_ifaddr *)ifa;
953                                         break;
954                                 }
955                         }
956                         if (ia != NULL) {
957                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
958                                 IF_ADDR_RUNLOCK(ifp);
959                                 goto done;
960                         }
961                         IF_ADDR_RUNLOCK(ifp);
962                 }
963
964                 /* 3. As a last resort return the 'default' jail address. */
965                 error = prison_get_ip4(cred, laddr);
966                 goto done;
967         }
968
969 done:
970         if (sro.ro_rt != NULL)
971                 RTFREE(sro.ro_rt);
972         return (error);
973 }
974
975 /*
976  * Set up for a connect from a socket to the specified address.
977  * On entry, *laddrp and *lportp should contain the current local
978  * address and port for the PCB; these are updated to the values
979  * that should be placed in inp_laddr and inp_lport to complete
980  * the connect.
981  *
982  * On success, *faddrp and *fportp will be set to the remote address
983  * and port. These are not updated in the error case.
984  *
985  * If the operation fails because the connection already exists,
986  * *oinpp will be set to the PCB of that connection so that the
987  * caller can decide to override it. In all other cases, *oinpp
988  * is set to NULL.
989  */
990 int
991 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
992     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
993     struct inpcb **oinpp, struct ucred *cred)
994 {
995         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
996         struct in_ifaddr *ia;
997         struct inpcb *oinp;
998         struct in_addr laddr, faddr;
999         u_short lport, fport;
1000         int error;
1001
1002         /*
1003          * Because a global state change doesn't actually occur here, a read
1004          * lock is sufficient.
1005          */
1006         INP_LOCK_ASSERT(inp);
1007         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1008
1009         if (oinpp != NULL)
1010                 *oinpp = NULL;
1011         if (nam->sa_len != sizeof (*sin))
1012                 return (EINVAL);
1013         if (sin->sin_family != AF_INET)
1014                 return (EAFNOSUPPORT);
1015         if (sin->sin_port == 0)
1016                 return (EADDRNOTAVAIL);
1017         laddr.s_addr = *laddrp;
1018         lport = *lportp;
1019         faddr = sin->sin_addr;
1020         fport = sin->sin_port;
1021
1022         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1023                 /*
1024                  * If the destination address is INADDR_ANY,
1025                  * use the primary local address.
1026                  * If the supplied address is INADDR_BROADCAST,
1027                  * and the primary interface supports broadcast,
1028                  * choose the broadcast address for that interface.
1029                  */
1030                 if (faddr.s_addr == INADDR_ANY) {
1031                         IN_IFADDR_RLOCK();
1032                         faddr =
1033                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1034                         IN_IFADDR_RUNLOCK();
1035                         if (cred != NULL &&
1036                             (error = prison_get_ip4(cred, &faddr)) != 0)
1037                                 return (error);
1038                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1039                         IN_IFADDR_RLOCK();
1040                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1041                             IFF_BROADCAST)
1042                                 faddr = satosin(&TAILQ_FIRST(
1043                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1044                         IN_IFADDR_RUNLOCK();
1045                 }
1046         }
1047         if (laddr.s_addr == INADDR_ANY) {
1048                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1049                 /*
1050                  * If the destination address is multicast and an outgoing
1051                  * interface has been set as a multicast option, prefer the
1052                  * address of that interface as our source address.
1053                  */
1054                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1055                     inp->inp_moptions != NULL) {
1056                         struct ip_moptions *imo;
1057                         struct ifnet *ifp;
1058
1059                         imo = inp->inp_moptions;
1060                         if (imo->imo_multicast_ifp != NULL) {
1061                                 ifp = imo->imo_multicast_ifp;
1062                                 IN_IFADDR_RLOCK();
1063                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1064                                         if ((ia->ia_ifp == ifp) &&
1065                                             (cred == NULL ||
1066                                             prison_check_ip4(cred,
1067                                             &ia->ia_addr.sin_addr) == 0))
1068                                                 break;
1069                                 }
1070                                 if (ia == NULL)
1071                                         error = EADDRNOTAVAIL;
1072                                 else {
1073                                         laddr = ia->ia_addr.sin_addr;
1074                                         error = 0;
1075                                 }
1076                                 IN_IFADDR_RUNLOCK();
1077                         }
1078                 }
1079                 if (error)
1080                         return (error);
1081         }
1082         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1083             laddr, lport, 0, NULL);
1084         if (oinp != NULL) {
1085                 if (oinpp != NULL)
1086                         *oinpp = oinp;
1087                 return (EADDRINUSE);
1088         }
1089         if (lport == 0) {
1090                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1091                     cred);
1092                 if (error)
1093                         return (error);
1094         }
1095         *laddrp = laddr.s_addr;
1096         *lportp = lport;
1097         *faddrp = faddr.s_addr;
1098         *fportp = fport;
1099         return (0);
1100 }
1101
1102 void
1103 in_pcbdisconnect(struct inpcb *inp)
1104 {
1105
1106         INP_WLOCK_ASSERT(inp);
1107         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1108
1109         inp->inp_faddr.s_addr = INADDR_ANY;
1110         inp->inp_fport = 0;
1111         in_pcbrehash(inp);
1112 }
1113 #endif /* INET */
1114
1115 /*
1116  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1117  * For most protocols, this will be invoked immediately prior to calling
1118  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1119  * socket, in which case in_pcbfree() is deferred.
1120  */
1121 void
1122 in_pcbdetach(struct inpcb *inp)
1123 {
1124
1125         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1126
1127         inp->inp_socket->so_pcb = NULL;
1128         inp->inp_socket = NULL;
1129 }
1130
1131 /*
1132  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1133  * stability of an inpcb pointer despite the inpcb lock being released.  This
1134  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1135  * but where the inpcb lock may already held, or when acquiring a reference
1136  * via a pcbgroup.
1137  *
1138  * in_pcbref() should be used only to provide brief memory stability, and
1139  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1140  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1141  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1142  * lock and rele are the *only* safe operations that may be performed on the
1143  * inpcb.
1144  *
1145  * While the inpcb will not be freed, releasing the inpcb lock means that the
1146  * connection's state may change, so the caller should be careful to
1147  * revalidate any cached state on reacquiring the lock.  Drop the reference
1148  * using in_pcbrele().
1149  */
1150 void
1151 in_pcbref(struct inpcb *inp)
1152 {
1153
1154         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1155
1156         refcount_acquire(&inp->inp_refcount);
1157 }
1158
1159 /*
1160  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1161  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1162  * return a flag indicating whether or not the inpcb remains valid.  If it is
1163  * valid, we return with the inpcb lock held.
1164  *
1165  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1166  * reference on an inpcb.  Historically more work was done here (actually, in
1167  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1168  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1169  * about memory stability (and continued use of the write lock).
1170  */
1171 int
1172 in_pcbrele_rlocked(struct inpcb *inp)
1173 {
1174         struct inpcbinfo *pcbinfo;
1175
1176         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1177
1178         INP_RLOCK_ASSERT(inp);
1179
1180         if (refcount_release(&inp->inp_refcount) == 0) {
1181                 /*
1182                  * If the inpcb has been freed, let the caller know, even if
1183                  * this isn't the last reference.
1184                  */
1185                 if (inp->inp_flags2 & INP_FREED) {
1186                         INP_RUNLOCK(inp);
1187                         return (1);
1188                 }
1189                 return (0);
1190         }
1191
1192         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1193
1194         INP_RUNLOCK(inp);
1195         pcbinfo = inp->inp_pcbinfo;
1196         uma_zfree(pcbinfo->ipi_zone, inp);
1197         return (1);
1198 }
1199
1200 int
1201 in_pcbrele_wlocked(struct inpcb *inp)
1202 {
1203         struct inpcbinfo *pcbinfo;
1204
1205         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1206
1207         INP_WLOCK_ASSERT(inp);
1208
1209         if (refcount_release(&inp->inp_refcount) == 0)
1210                 return (0);
1211
1212         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1213
1214         INP_WUNLOCK(inp);
1215         pcbinfo = inp->inp_pcbinfo;
1216         uma_zfree(pcbinfo->ipi_zone, inp);
1217         return (1);
1218 }
1219
1220 /*
1221  * Temporary wrapper.
1222  */
1223 int
1224 in_pcbrele(struct inpcb *inp)
1225 {
1226
1227         return (in_pcbrele_wlocked(inp));
1228 }
1229
1230 /*
1231  * Unconditionally schedule an inpcb to be freed by decrementing its
1232  * reference count, which should occur only after the inpcb has been detached
1233  * from its socket.  If another thread holds a temporary reference (acquired
1234  * using in_pcbref()) then the free is deferred until that reference is
1235  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1236  * work, including removal from global lists, is done in this context, where
1237  * the pcbinfo lock is held.
1238  */
1239 void
1240 in_pcbfree(struct inpcb *inp)
1241 {
1242         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1243
1244         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1245
1246         INP_INFO_WLOCK_ASSERT(pcbinfo);
1247         INP_WLOCK_ASSERT(inp);
1248
1249         /* XXXRW: Do as much as possible here. */
1250 #ifdef IPSEC
1251         if (inp->inp_sp != NULL)
1252                 ipsec_delete_pcbpolicy(inp);
1253 #endif
1254         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1255         in_pcbremlists(inp);
1256 #ifdef INET6
1257         if (inp->inp_vflag & INP_IPV6PROTO) {
1258                 ip6_freepcbopts(inp->in6p_outputopts);
1259                 if (inp->in6p_moptions != NULL)
1260                         ip6_freemoptions(inp->in6p_moptions);
1261         }
1262 #endif
1263         if (inp->inp_options)
1264                 (void)m_free(inp->inp_options);
1265 #ifdef INET
1266         if (inp->inp_moptions != NULL)
1267                 inp_freemoptions(inp->inp_moptions);
1268 #endif
1269         inp->inp_vflag = 0;
1270         inp->inp_flags2 |= INP_FREED;
1271         crfree(inp->inp_cred);
1272 #ifdef MAC
1273         mac_inpcb_destroy(inp);
1274 #endif
1275         if (!in_pcbrele_wlocked(inp))
1276                 INP_WUNLOCK(inp);
1277 }
1278
1279 /*
1280  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1281  * port reservation, and preventing it from being returned by inpcb lookups.
1282  *
1283  * It is used by TCP to mark an inpcb as unused and avoid future packet
1284  * delivery or event notification when a socket remains open but TCP has
1285  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1286  * or a RST on the wire, and allows the port binding to be reused while still
1287  * maintaining the invariant that so_pcb always points to a valid inpcb until
1288  * in_pcbdetach().
1289  *
1290  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1291  * in_pcbnotifyall() and in_pcbpurgeif0()?
1292  */
1293 void
1294 in_pcbdrop(struct inpcb *inp)
1295 {
1296
1297         INP_WLOCK_ASSERT(inp);
1298
1299         /*
1300          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1301          * the hash lock...?
1302          */
1303         inp->inp_flags |= INP_DROPPED;
1304         if (inp->inp_flags & INP_INHASHLIST) {
1305                 struct inpcbport *phd = inp->inp_phd;
1306
1307                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1308                 LIST_REMOVE(inp, inp_hash);
1309                 LIST_REMOVE(inp, inp_portlist);
1310                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1311                         LIST_REMOVE(phd, phd_hash);
1312                         free(phd, M_PCB);
1313                 }
1314                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1315                 inp->inp_flags &= ~INP_INHASHLIST;
1316 #ifdef PCBGROUP
1317                 in_pcbgroup_remove(inp);
1318 #endif
1319         }
1320 }
1321
1322 #ifdef INET
1323 /*
1324  * Common routines to return the socket addresses associated with inpcbs.
1325  */
1326 struct sockaddr *
1327 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1328 {
1329         struct sockaddr_in *sin;
1330
1331         sin = malloc(sizeof *sin, M_SONAME,
1332                 M_WAITOK | M_ZERO);
1333         sin->sin_family = AF_INET;
1334         sin->sin_len = sizeof(*sin);
1335         sin->sin_addr = *addr_p;
1336         sin->sin_port = port;
1337
1338         return (struct sockaddr *)sin;
1339 }
1340
1341 int
1342 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1343 {
1344         struct inpcb *inp;
1345         struct in_addr addr;
1346         in_port_t port;
1347
1348         inp = sotoinpcb(so);
1349         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1350
1351         INP_RLOCK(inp);
1352         port = inp->inp_lport;
1353         addr = inp->inp_laddr;
1354         INP_RUNLOCK(inp);
1355
1356         *nam = in_sockaddr(port, &addr);
1357         return 0;
1358 }
1359
1360 int
1361 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1362 {
1363         struct inpcb *inp;
1364         struct in_addr addr;
1365         in_port_t port;
1366
1367         inp = sotoinpcb(so);
1368         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1369
1370         INP_RLOCK(inp);
1371         port = inp->inp_fport;
1372         addr = inp->inp_faddr;
1373         INP_RUNLOCK(inp);
1374
1375         *nam = in_sockaddr(port, &addr);
1376         return 0;
1377 }
1378
1379 void
1380 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1381     struct inpcb *(*notify)(struct inpcb *, int))
1382 {
1383         struct inpcb *inp, *inp_temp;
1384
1385         INP_INFO_WLOCK(pcbinfo);
1386         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1387                 INP_WLOCK(inp);
1388 #ifdef INET6
1389                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1390                         INP_WUNLOCK(inp);
1391                         continue;
1392                 }
1393 #endif
1394                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1395                     inp->inp_socket == NULL) {
1396                         INP_WUNLOCK(inp);
1397                         continue;
1398                 }
1399                 if ((*notify)(inp, errno))
1400                         INP_WUNLOCK(inp);
1401         }
1402         INP_INFO_WUNLOCK(pcbinfo);
1403 }
1404
1405 void
1406 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1407 {
1408         struct inpcb *inp;
1409         struct ip_moptions *imo;
1410         int i, gap;
1411
1412         INP_INFO_RLOCK(pcbinfo);
1413         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1414                 INP_WLOCK(inp);
1415                 imo = inp->inp_moptions;
1416                 if ((inp->inp_vflag & INP_IPV4) &&
1417                     imo != NULL) {
1418                         /*
1419                          * Unselect the outgoing interface if it is being
1420                          * detached.
1421                          */
1422                         if (imo->imo_multicast_ifp == ifp)
1423                                 imo->imo_multicast_ifp = NULL;
1424
1425                         /*
1426                          * Drop multicast group membership if we joined
1427                          * through the interface being detached.
1428                          */
1429                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1430                             i++) {
1431                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1432                                         in_delmulti(imo->imo_membership[i]);
1433                                         gap++;
1434                                 } else if (gap != 0)
1435                                         imo->imo_membership[i - gap] =
1436                                             imo->imo_membership[i];
1437                         }
1438                         imo->imo_num_memberships -= gap;
1439                 }
1440                 INP_WUNLOCK(inp);
1441         }
1442         INP_INFO_RUNLOCK(pcbinfo);
1443 }
1444
1445 /*
1446  * Lookup a PCB based on the local address and port.  Caller must hold the
1447  * hash lock.  No inpcb locks or references are acquired.
1448  */
1449 #define INP_LOOKUP_MAPPED_PCB_COST      3
1450 struct inpcb *
1451 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1452     u_short lport, int lookupflags, struct ucred *cred)
1453 {
1454         struct inpcb *inp;
1455 #ifdef INET6
1456         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1457 #else
1458         int matchwild = 3;
1459 #endif
1460         int wildcard;
1461
1462         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1463             ("%s: invalid lookup flags %d", __func__, lookupflags));
1464
1465         INP_HASH_LOCK_ASSERT(pcbinfo);
1466
1467         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1468                 struct inpcbhead *head;
1469                 /*
1470                  * Look for an unconnected (wildcard foreign addr) PCB that
1471                  * matches the local address and port we're looking for.
1472                  */
1473                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1474                     0, pcbinfo->ipi_hashmask)];
1475                 LIST_FOREACH(inp, head, inp_hash) {
1476 #ifdef INET6
1477                         /* XXX inp locking */
1478                         if ((inp->inp_vflag & INP_IPV4) == 0)
1479                                 continue;
1480 #endif
1481                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1482                             inp->inp_laddr.s_addr == laddr.s_addr &&
1483                             inp->inp_lport == lport) {
1484                                 /*
1485                                  * Found?
1486                                  */
1487                                 if (cred == NULL ||
1488                                     prison_equal_ip4(cred->cr_prison,
1489                                         inp->inp_cred->cr_prison))
1490                                         return (inp);
1491                         }
1492                 }
1493                 /*
1494                  * Not found.
1495                  */
1496                 return (NULL);
1497         } else {
1498                 struct inpcbporthead *porthash;
1499                 struct inpcbport *phd;
1500                 struct inpcb *match = NULL;
1501                 /*
1502                  * Best fit PCB lookup.
1503                  *
1504                  * First see if this local port is in use by looking on the
1505                  * port hash list.
1506                  */
1507                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1508                     pcbinfo->ipi_porthashmask)];
1509                 LIST_FOREACH(phd, porthash, phd_hash) {
1510                         if (phd->phd_port == lport)
1511                                 break;
1512                 }
1513                 if (phd != NULL) {
1514                         /*
1515                          * Port is in use by one or more PCBs. Look for best
1516                          * fit.
1517                          */
1518                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1519                                 wildcard = 0;
1520                                 if (cred != NULL &&
1521                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1522                                         cred->cr_prison))
1523                                         continue;
1524 #ifdef INET6
1525                                 /* XXX inp locking */
1526                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1527                                         continue;
1528                                 /*
1529                                  * We never select the PCB that has
1530                                  * INP_IPV6 flag and is bound to :: if
1531                                  * we have another PCB which is bound
1532                                  * to 0.0.0.0.  If a PCB has the
1533                                  * INP_IPV6 flag, then we set its cost
1534                                  * higher than IPv4 only PCBs.
1535                                  *
1536                                  * Note that the case only happens
1537                                  * when a socket is bound to ::, under
1538                                  * the condition that the use of the
1539                                  * mapped address is allowed.
1540                                  */
1541                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1542                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1543 #endif
1544                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1545                                         wildcard++;
1546                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1547                                         if (laddr.s_addr == INADDR_ANY)
1548                                                 wildcard++;
1549                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1550                                                 continue;
1551                                 } else {
1552                                         if (laddr.s_addr != INADDR_ANY)
1553                                                 wildcard++;
1554                                 }
1555                                 if (wildcard < matchwild) {
1556                                         match = inp;
1557                                         matchwild = wildcard;
1558                                         if (matchwild == 0)
1559                                                 break;
1560                                 }
1561                         }
1562                 }
1563                 return (match);
1564         }
1565 }
1566 #undef INP_LOOKUP_MAPPED_PCB_COST
1567
1568 #ifdef PCBGROUP
1569 /*
1570  * Lookup PCB in hash list, using pcbgroup tables.
1571  */
1572 static struct inpcb *
1573 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1574     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1575     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1576 {
1577         struct inpcbhead *head;
1578         struct inpcb *inp, *tmpinp;
1579         u_short fport = fport_arg, lport = lport_arg;
1580
1581         /*
1582          * First look for an exact match.
1583          */
1584         tmpinp = NULL;
1585         INP_GROUP_LOCK(pcbgroup);
1586         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1587             pcbgroup->ipg_hashmask)];
1588         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1589 #ifdef INET6
1590                 /* XXX inp locking */
1591                 if ((inp->inp_vflag & INP_IPV4) == 0)
1592                         continue;
1593 #endif
1594                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1595                     inp->inp_laddr.s_addr == laddr.s_addr &&
1596                     inp->inp_fport == fport &&
1597                     inp->inp_lport == lport) {
1598                         /*
1599                          * XXX We should be able to directly return
1600                          * the inp here, without any checks.
1601                          * Well unless both bound with SO_REUSEPORT?
1602                          */
1603                         if (prison_flag(inp->inp_cred, PR_IP4))
1604                                 goto found;
1605                         if (tmpinp == NULL)
1606                                 tmpinp = inp;
1607                 }
1608         }
1609         if (tmpinp != NULL) {
1610                 inp = tmpinp;
1611                 goto found;
1612         }
1613
1614 #ifdef  RSS
1615         /*
1616          * For incoming connections, we may wish to do a wildcard
1617          * match for an RSS-local socket.
1618          */
1619         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1620                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1621 #ifdef INET6
1622                 struct inpcb *local_wild_mapped = NULL;
1623 #endif
1624                 struct inpcb *jail_wild = NULL;
1625                 struct inpcbhead *head;
1626                 int injail;
1627
1628                 /*
1629                  * Order of socket selection - we always prefer jails.
1630                  *      1. jailed, non-wild.
1631                  *      2. jailed, wild.
1632                  *      3. non-jailed, non-wild.
1633                  *      4. non-jailed, wild.
1634                  */
1635
1636                 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1637                     lport, 0, pcbgroup->ipg_hashmask)];
1638                 LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1639 #ifdef INET6
1640                         /* XXX inp locking */
1641                         if ((inp->inp_vflag & INP_IPV4) == 0)
1642                                 continue;
1643 #endif
1644                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1645                             inp->inp_lport != lport)
1646                                 continue;
1647
1648                         injail = prison_flag(inp->inp_cred, PR_IP4);
1649                         if (injail) {
1650                                 if (prison_check_ip4(inp->inp_cred,
1651                                     &laddr) != 0)
1652                                         continue;
1653                         } else {
1654                                 if (local_exact != NULL)
1655                                         continue;
1656                         }
1657
1658                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1659                                 if (injail)
1660                                         goto found;
1661                                 else
1662                                         local_exact = inp;
1663                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1664 #ifdef INET6
1665                                 /* XXX inp locking, NULL check */
1666                                 if (inp->inp_vflag & INP_IPV6PROTO)
1667                                         local_wild_mapped = inp;
1668                                 else
1669 #endif
1670                                         if (injail)
1671                                                 jail_wild = inp;
1672                                         else
1673                                                 local_wild = inp;
1674                         }
1675                 } /* LIST_FOREACH */
1676
1677                 inp = jail_wild;
1678                 if (inp == NULL)
1679                         inp = local_exact;
1680                 if (inp == NULL)
1681                         inp = local_wild;
1682 #ifdef INET6
1683                 if (inp == NULL)
1684                         inp = local_wild_mapped;
1685 #endif
1686                 if (inp != NULL)
1687                         goto found;
1688         }
1689 #endif
1690
1691         /*
1692          * Then look for a wildcard match, if requested.
1693          */
1694         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1695                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1696 #ifdef INET6
1697                 struct inpcb *local_wild_mapped = NULL;
1698 #endif
1699                 struct inpcb *jail_wild = NULL;
1700                 struct inpcbhead *head;
1701                 int injail;
1702
1703                 /*
1704                  * Order of socket selection - we always prefer jails.
1705                  *      1. jailed, non-wild.
1706                  *      2. jailed, wild.
1707                  *      3. non-jailed, non-wild.
1708                  *      4. non-jailed, wild.
1709                  */
1710                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1711                     0, pcbinfo->ipi_wildmask)];
1712                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1713 #ifdef INET6
1714                         /* XXX inp locking */
1715                         if ((inp->inp_vflag & INP_IPV4) == 0)
1716                                 continue;
1717 #endif
1718                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1719                             inp->inp_lport != lport)
1720                                 continue;
1721
1722                         injail = prison_flag(inp->inp_cred, PR_IP4);
1723                         if (injail) {
1724                                 if (prison_check_ip4(inp->inp_cred,
1725                                     &laddr) != 0)
1726                                         continue;
1727                         } else {
1728                                 if (local_exact != NULL)
1729                                         continue;
1730                         }
1731
1732                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1733                                 if (injail)
1734                                         goto found;
1735                                 else
1736                                         local_exact = inp;
1737                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1738 #ifdef INET6
1739                                 /* XXX inp locking, NULL check */
1740                                 if (inp->inp_vflag & INP_IPV6PROTO)
1741                                         local_wild_mapped = inp;
1742                                 else
1743 #endif
1744                                         if (injail)
1745                                                 jail_wild = inp;
1746                                         else
1747                                                 local_wild = inp;
1748                         }
1749                 } /* LIST_FOREACH */
1750                 inp = jail_wild;
1751                 if (inp == NULL)
1752                         inp = local_exact;
1753                 if (inp == NULL)
1754                         inp = local_wild;
1755 #ifdef INET6
1756                 if (inp == NULL)
1757                         inp = local_wild_mapped;
1758 #endif
1759                 if (inp != NULL)
1760                         goto found;
1761         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1762         INP_GROUP_UNLOCK(pcbgroup);
1763         return (NULL);
1764
1765 found:
1766         in_pcbref(inp);
1767         INP_GROUP_UNLOCK(pcbgroup);
1768         if (lookupflags & INPLOOKUP_WLOCKPCB) {
1769                 INP_WLOCK(inp);
1770                 if (in_pcbrele_wlocked(inp))
1771                         return (NULL);
1772         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1773                 INP_RLOCK(inp);
1774                 if (in_pcbrele_rlocked(inp))
1775                         return (NULL);
1776         } else
1777                 panic("%s: locking bug", __func__);
1778         return (inp);
1779 }
1780 #endif /* PCBGROUP */
1781
1782 /*
1783  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1784  * that the caller has locked the hash list, and will not perform any further
1785  * locking or reference operations on either the hash list or the connection.
1786  */
1787 static struct inpcb *
1788 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1789     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1790     struct ifnet *ifp)
1791 {
1792         struct inpcbhead *head;
1793         struct inpcb *inp, *tmpinp;
1794         u_short fport = fport_arg, lport = lport_arg;
1795
1796         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1797             ("%s: invalid lookup flags %d", __func__, lookupflags));
1798
1799         INP_HASH_LOCK_ASSERT(pcbinfo);
1800
1801         /*
1802          * First look for an exact match.
1803          */
1804         tmpinp = NULL;
1805         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1806             pcbinfo->ipi_hashmask)];
1807         LIST_FOREACH(inp, head, inp_hash) {
1808 #ifdef INET6
1809                 /* XXX inp locking */
1810                 if ((inp->inp_vflag & INP_IPV4) == 0)
1811                         continue;
1812 #endif
1813                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1814                     inp->inp_laddr.s_addr == laddr.s_addr &&
1815                     inp->inp_fport == fport &&
1816                     inp->inp_lport == lport) {
1817                         /*
1818                          * XXX We should be able to directly return
1819                          * the inp here, without any checks.
1820                          * Well unless both bound with SO_REUSEPORT?
1821                          */
1822                         if (prison_flag(inp->inp_cred, PR_IP4))
1823                                 return (inp);
1824                         if (tmpinp == NULL)
1825                                 tmpinp = inp;
1826                 }
1827         }
1828         if (tmpinp != NULL)
1829                 return (tmpinp);
1830
1831         /*
1832          * Then look for a wildcard match, if requested.
1833          */
1834         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1835                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1836 #ifdef INET6
1837                 struct inpcb *local_wild_mapped = NULL;
1838 #endif
1839                 struct inpcb *jail_wild = NULL;
1840                 int injail;
1841
1842                 /*
1843                  * Order of socket selection - we always prefer jails.
1844                  *      1. jailed, non-wild.
1845                  *      2. jailed, wild.
1846                  *      3. non-jailed, non-wild.
1847                  *      4. non-jailed, wild.
1848                  */
1849
1850                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1851                     0, pcbinfo->ipi_hashmask)];
1852                 LIST_FOREACH(inp, head, inp_hash) {
1853 #ifdef INET6
1854                         /* XXX inp locking */
1855                         if ((inp->inp_vflag & INP_IPV4) == 0)
1856                                 continue;
1857 #endif
1858                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1859                             inp->inp_lport != lport)
1860                                 continue;
1861
1862                         injail = prison_flag(inp->inp_cred, PR_IP4);
1863                         if (injail) {
1864                                 if (prison_check_ip4(inp->inp_cred,
1865                                     &laddr) != 0)
1866                                         continue;
1867                         } else {
1868                                 if (local_exact != NULL)
1869                                         continue;
1870                         }
1871
1872                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1873                                 if (injail)
1874                                         return (inp);
1875                                 else
1876                                         local_exact = inp;
1877                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1878 #ifdef INET6
1879                                 /* XXX inp locking, NULL check */
1880                                 if (inp->inp_vflag & INP_IPV6PROTO)
1881                                         local_wild_mapped = inp;
1882                                 else
1883 #endif
1884                                         if (injail)
1885                                                 jail_wild = inp;
1886                                         else
1887                                                 local_wild = inp;
1888                         }
1889                 } /* LIST_FOREACH */
1890                 if (jail_wild != NULL)
1891                         return (jail_wild);
1892                 if (local_exact != NULL)
1893                         return (local_exact);
1894                 if (local_wild != NULL)
1895                         return (local_wild);
1896 #ifdef INET6
1897                 if (local_wild_mapped != NULL)
1898                         return (local_wild_mapped);
1899 #endif
1900         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1901
1902         return (NULL);
1903 }
1904
1905 /*
1906  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1907  * hash list lock, and will return the inpcb locked (i.e., requires
1908  * INPLOOKUP_LOCKPCB).
1909  */
1910 static struct inpcb *
1911 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1912     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1913     struct ifnet *ifp)
1914 {
1915         struct inpcb *inp;
1916
1917         INP_HASH_RLOCK(pcbinfo);
1918         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1919             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1920         if (inp != NULL) {
1921                 in_pcbref(inp);
1922                 INP_HASH_RUNLOCK(pcbinfo);
1923                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1924                         INP_WLOCK(inp);
1925                         if (in_pcbrele_wlocked(inp))
1926                                 return (NULL);
1927                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1928                         INP_RLOCK(inp);
1929                         if (in_pcbrele_rlocked(inp))
1930                                 return (NULL);
1931                 } else
1932                         panic("%s: locking bug", __func__);
1933         } else
1934                 INP_HASH_RUNLOCK(pcbinfo);
1935         return (inp);
1936 }
1937
1938 /*
1939  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1940  * from which a pre-calculated hash value may be extracted.
1941  *
1942  * Possibly more of this logic should be in in_pcbgroup.c.
1943  */
1944 struct inpcb *
1945 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1946     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1947 {
1948 #if defined(PCBGROUP) && !defined(RSS)
1949         struct inpcbgroup *pcbgroup;
1950 #endif
1951
1952         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1953             ("%s: invalid lookup flags %d", __func__, lookupflags));
1954         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1955             ("%s: LOCKPCB not set", __func__));
1956
1957         /*
1958          * When not using RSS, use connection groups in preference to the
1959          * reservation table when looking up 4-tuples.  When using RSS, just
1960          * use the reservation table, due to the cost of the Toeplitz hash
1961          * in software.
1962          *
1963          * XXXRW: This policy belongs in the pcbgroup code, as in principle
1964          * we could be doing RSS with a non-Toeplitz hash that is affordable
1965          * in software.
1966          */
1967 #if defined(PCBGROUP) && !defined(RSS)
1968         if (in_pcbgroup_enabled(pcbinfo)) {
1969                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1970                     fport);
1971                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1972                     laddr, lport, lookupflags, ifp));
1973         }
1974 #endif
1975         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1976             lookupflags, ifp));
1977 }
1978
1979 struct inpcb *
1980 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1981     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1982     struct ifnet *ifp, struct mbuf *m)
1983 {
1984 #ifdef PCBGROUP
1985         struct inpcbgroup *pcbgroup;
1986 #endif
1987
1988         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1989             ("%s: invalid lookup flags %d", __func__, lookupflags));
1990         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1991             ("%s: LOCKPCB not set", __func__));
1992
1993 #ifdef PCBGROUP
1994         /*
1995          * If we can use a hardware-generated hash to look up the connection
1996          * group, use that connection group to find the inpcb.  Otherwise
1997          * fall back on a software hash -- or the reservation table if we're
1998          * using RSS.
1999          *
2000          * XXXRW: As above, that policy belongs in the pcbgroup code.
2001          */
2002         if (in_pcbgroup_enabled(pcbinfo) &&
2003             !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2004                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2005                     m->m_pkthdr.flowid);
2006                 if (pcbgroup != NULL)
2007                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2008                             fport, laddr, lport, lookupflags, ifp));
2009 #ifndef RSS
2010                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2011                     fport);
2012                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2013                     laddr, lport, lookupflags, ifp));
2014 #endif
2015         }
2016 #endif
2017         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2018             lookupflags, ifp));
2019 }
2020 #endif /* INET */
2021
2022 /*
2023  * Insert PCB onto various hash lists.
2024  */
2025 static int
2026 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2027 {
2028         struct inpcbhead *pcbhash;
2029         struct inpcbporthead *pcbporthash;
2030         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2031         struct inpcbport *phd;
2032         u_int32_t hashkey_faddr;
2033
2034         INP_WLOCK_ASSERT(inp);
2035         INP_HASH_WLOCK_ASSERT(pcbinfo);
2036
2037         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2038             ("in_pcbinshash: INP_INHASHLIST"));
2039
2040 #ifdef INET6
2041         if (inp->inp_vflag & INP_IPV6)
2042                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2043         else
2044 #endif
2045         hashkey_faddr = inp->inp_faddr.s_addr;
2046
2047         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2048                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2049
2050         pcbporthash = &pcbinfo->ipi_porthashbase[
2051             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2052
2053         /*
2054          * Go through port list and look for a head for this lport.
2055          */
2056         LIST_FOREACH(phd, pcbporthash, phd_hash) {
2057                 if (phd->phd_port == inp->inp_lport)
2058                         break;
2059         }
2060         /*
2061          * If none exists, malloc one and tack it on.
2062          */
2063         if (phd == NULL) {
2064                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2065                 if (phd == NULL) {
2066                         return (ENOBUFS); /* XXX */
2067                 }
2068                 phd->phd_port = inp->inp_lport;
2069                 LIST_INIT(&phd->phd_pcblist);
2070                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2071         }
2072         inp->inp_phd = phd;
2073         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2074         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2075         inp->inp_flags |= INP_INHASHLIST;
2076 #ifdef PCBGROUP
2077         if (do_pcbgroup_update)
2078                 in_pcbgroup_update(inp);
2079 #endif
2080         return (0);
2081 }
2082
2083 /*
2084  * For now, there are two public interfaces to insert an inpcb into the hash
2085  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2086  * is used only in the TCP syncache, where in_pcbinshash is called before the
2087  * full 4-tuple is set for the inpcb, and we don't want to install in the
2088  * pcbgroup until later.
2089  *
2090  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2091  * connection groups, and partially initialised inpcbs should not be exposed
2092  * to either reservation hash tables or pcbgroups.
2093  */
2094 int
2095 in_pcbinshash(struct inpcb *inp)
2096 {
2097
2098         return (in_pcbinshash_internal(inp, 1));
2099 }
2100
2101 int
2102 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2103 {
2104
2105         return (in_pcbinshash_internal(inp, 0));
2106 }
2107
2108 /*
2109  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2110  * changed. NOTE: This does not handle the case of the lport changing (the
2111  * hashed port list would have to be updated as well), so the lport must
2112  * not change after in_pcbinshash() has been called.
2113  */
2114 void
2115 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2116 {
2117         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2118         struct inpcbhead *head;
2119         u_int32_t hashkey_faddr;
2120
2121         INP_WLOCK_ASSERT(inp);
2122         INP_HASH_WLOCK_ASSERT(pcbinfo);
2123
2124         KASSERT(inp->inp_flags & INP_INHASHLIST,
2125             ("in_pcbrehash: !INP_INHASHLIST"));
2126
2127 #ifdef INET6
2128         if (inp->inp_vflag & INP_IPV6)
2129                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2130         else
2131 #endif
2132         hashkey_faddr = inp->inp_faddr.s_addr;
2133
2134         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2135                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2136
2137         LIST_REMOVE(inp, inp_hash);
2138         LIST_INSERT_HEAD(head, inp, inp_hash);
2139
2140 #ifdef PCBGROUP
2141         if (m != NULL)
2142                 in_pcbgroup_update_mbuf(inp, m);
2143         else
2144                 in_pcbgroup_update(inp);
2145 #endif
2146 }
2147
2148 void
2149 in_pcbrehash(struct inpcb *inp)
2150 {
2151
2152         in_pcbrehash_mbuf(inp, NULL);
2153 }
2154
2155 /*
2156  * Remove PCB from various lists.
2157  */
2158 static void
2159 in_pcbremlists(struct inpcb *inp)
2160 {
2161         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2162
2163         INP_INFO_WLOCK_ASSERT(pcbinfo);
2164         INP_WLOCK_ASSERT(inp);
2165
2166         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2167         if (inp->inp_flags & INP_INHASHLIST) {
2168                 struct inpcbport *phd = inp->inp_phd;
2169
2170                 INP_HASH_WLOCK(pcbinfo);
2171                 LIST_REMOVE(inp, inp_hash);
2172                 LIST_REMOVE(inp, inp_portlist);
2173                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2174                         LIST_REMOVE(phd, phd_hash);
2175                         free(phd, M_PCB);
2176                 }
2177                 INP_HASH_WUNLOCK(pcbinfo);
2178                 inp->inp_flags &= ~INP_INHASHLIST;
2179         }
2180         LIST_REMOVE(inp, inp_list);
2181         pcbinfo->ipi_count--;
2182 #ifdef PCBGROUP
2183         in_pcbgroup_remove(inp);
2184 #endif
2185 }
2186
2187 /*
2188  * A set label operation has occurred at the socket layer, propagate the
2189  * label change into the in_pcb for the socket.
2190  */
2191 void
2192 in_pcbsosetlabel(struct socket *so)
2193 {
2194 #ifdef MAC
2195         struct inpcb *inp;
2196
2197         inp = sotoinpcb(so);
2198         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2199
2200         INP_WLOCK(inp);
2201         SOCK_LOCK(so);
2202         mac_inpcb_sosetlabel(so, inp);
2203         SOCK_UNLOCK(so);
2204         INP_WUNLOCK(inp);
2205 #endif
2206 }
2207
2208 /*
2209  * ipport_tick runs once per second, determining if random port allocation
2210  * should be continued.  If more than ipport_randomcps ports have been
2211  * allocated in the last second, then we return to sequential port
2212  * allocation. We return to random allocation only once we drop below
2213  * ipport_randomcps for at least ipport_randomtime seconds.
2214  */
2215 static void
2216 ipport_tick(void *xtp)
2217 {
2218         VNET_ITERATOR_DECL(vnet_iter);
2219
2220         VNET_LIST_RLOCK_NOSLEEP();
2221         VNET_FOREACH(vnet_iter) {
2222                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2223                 if (V_ipport_tcpallocs <=
2224                     V_ipport_tcplastcount + V_ipport_randomcps) {
2225                         if (V_ipport_stoprandom > 0)
2226                                 V_ipport_stoprandom--;
2227                 } else
2228                         V_ipport_stoprandom = V_ipport_randomtime;
2229                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2230                 CURVNET_RESTORE();
2231         }
2232         VNET_LIST_RUNLOCK_NOSLEEP();
2233         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2234 }
2235
2236 static void
2237 ip_fini(void *xtp)
2238 {
2239
2240         callout_stop(&ipport_tick_callout);
2241 }
2242
2243 /* 
2244  * The ipport_callout should start running at about the time we attach the
2245  * inet or inet6 domains.
2246  */
2247 static void
2248 ipport_tick_init(const void *unused __unused)
2249 {
2250
2251         /* Start ipport_tick. */
2252         callout_init(&ipport_tick_callout, 1);
2253         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2254         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2255                 SHUTDOWN_PRI_DEFAULT);
2256 }
2257 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2258     ipport_tick_init, NULL);
2259
2260 void
2261 inp_wlock(struct inpcb *inp)
2262 {
2263
2264         INP_WLOCK(inp);
2265 }
2266
2267 void
2268 inp_wunlock(struct inpcb *inp)
2269 {
2270
2271         INP_WUNLOCK(inp);
2272 }
2273
2274 void
2275 inp_rlock(struct inpcb *inp)
2276 {
2277
2278         INP_RLOCK(inp);
2279 }
2280
2281 void
2282 inp_runlock(struct inpcb *inp)
2283 {
2284
2285         INP_RUNLOCK(inp);
2286 }
2287
2288 #ifdef INVARIANTS
2289 void
2290 inp_lock_assert(struct inpcb *inp)
2291 {
2292
2293         INP_WLOCK_ASSERT(inp);
2294 }
2295
2296 void
2297 inp_unlock_assert(struct inpcb *inp)
2298 {
2299
2300         INP_UNLOCK_ASSERT(inp);
2301 }
2302 #endif
2303
2304 void
2305 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2306 {
2307         struct inpcb *inp;
2308
2309         INP_INFO_RLOCK(&V_tcbinfo);
2310         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2311                 INP_WLOCK(inp);
2312                 func(inp, arg);
2313                 INP_WUNLOCK(inp);
2314         }
2315         INP_INFO_RUNLOCK(&V_tcbinfo);
2316 }
2317
2318 struct socket *
2319 inp_inpcbtosocket(struct inpcb *inp)
2320 {
2321
2322         INP_WLOCK_ASSERT(inp);
2323         return (inp->inp_socket);
2324 }
2325
2326 struct tcpcb *
2327 inp_inpcbtotcpcb(struct inpcb *inp)
2328 {
2329
2330         INP_WLOCK_ASSERT(inp);
2331         return ((struct tcpcb *)inp->inp_ppcb);
2332 }
2333
2334 int
2335 inp_ip_tos_get(const struct inpcb *inp)
2336 {
2337
2338         return (inp->inp_ip_tos);
2339 }
2340
2341 void
2342 inp_ip_tos_set(struct inpcb *inp, int val)
2343 {
2344
2345         inp->inp_ip_tos = val;
2346 }
2347
2348 void
2349 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2350     uint32_t *faddr, uint16_t *fp)
2351 {
2352
2353         INP_LOCK_ASSERT(inp);
2354         *laddr = inp->inp_laddr.s_addr;
2355         *faddr = inp->inp_faddr.s_addr;
2356         *lp = inp->inp_lport;
2357         *fp = inp->inp_fport;
2358 }
2359
2360 struct inpcb *
2361 so_sotoinpcb(struct socket *so)
2362 {
2363
2364         return (sotoinpcb(so));
2365 }
2366
2367 struct tcpcb *
2368 so_sototcpcb(struct socket *so)
2369 {
2370
2371         return (sototcpcb(so));
2372 }
2373
2374 #ifdef DDB
2375 static void
2376 db_print_indent(int indent)
2377 {
2378         int i;
2379
2380         for (i = 0; i < indent; i++)
2381                 db_printf(" ");
2382 }
2383
2384 static void
2385 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2386 {
2387         char faddr_str[48], laddr_str[48];
2388
2389         db_print_indent(indent);
2390         db_printf("%s at %p\n", name, inc);
2391
2392         indent += 2;
2393
2394 #ifdef INET6
2395         if (inc->inc_flags & INC_ISIPV6) {
2396                 /* IPv6. */
2397                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2398                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2399         } else
2400 #endif
2401         {
2402                 /* IPv4. */
2403                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2404                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2405         }
2406         db_print_indent(indent);
2407         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2408             ntohs(inc->inc_lport));
2409         db_print_indent(indent);
2410         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2411             ntohs(inc->inc_fport));
2412 }
2413
2414 static void
2415 db_print_inpflags(int inp_flags)
2416 {
2417         int comma;
2418
2419         comma = 0;
2420         if (inp_flags & INP_RECVOPTS) {
2421                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2422                 comma = 1;
2423         }
2424         if (inp_flags & INP_RECVRETOPTS) {
2425                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2426                 comma = 1;
2427         }
2428         if (inp_flags & INP_RECVDSTADDR) {
2429                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2430                 comma = 1;
2431         }
2432         if (inp_flags & INP_HDRINCL) {
2433                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2434                 comma = 1;
2435         }
2436         if (inp_flags & INP_HIGHPORT) {
2437                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2438                 comma = 1;
2439         }
2440         if (inp_flags & INP_LOWPORT) {
2441                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2442                 comma = 1;
2443         }
2444         if (inp_flags & INP_ANONPORT) {
2445                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2446                 comma = 1;
2447         }
2448         if (inp_flags & INP_RECVIF) {
2449                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2450                 comma = 1;
2451         }
2452         if (inp_flags & INP_MTUDISC) {
2453                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2454                 comma = 1;
2455         }
2456         if (inp_flags & INP_RECVTTL) {
2457                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2458                 comma = 1;
2459         }
2460         if (inp_flags & INP_DONTFRAG) {
2461                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2462                 comma = 1;
2463         }
2464         if (inp_flags & INP_RECVTOS) {
2465                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2466                 comma = 1;
2467         }
2468         if (inp_flags & IN6P_IPV6_V6ONLY) {
2469                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2470                 comma = 1;
2471         }
2472         if (inp_flags & IN6P_PKTINFO) {
2473                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2474                 comma = 1;
2475         }
2476         if (inp_flags & IN6P_HOPLIMIT) {
2477                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2478                 comma = 1;
2479         }
2480         if (inp_flags & IN6P_HOPOPTS) {
2481                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2482                 comma = 1;
2483         }
2484         if (inp_flags & IN6P_DSTOPTS) {
2485                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2486                 comma = 1;
2487         }
2488         if (inp_flags & IN6P_RTHDR) {
2489                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2490                 comma = 1;
2491         }
2492         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2493                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2494                 comma = 1;
2495         }
2496         if (inp_flags & IN6P_TCLASS) {
2497                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2498                 comma = 1;
2499         }
2500         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2501                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2502                 comma = 1;
2503         }
2504         if (inp_flags & INP_TIMEWAIT) {
2505                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2506                 comma  = 1;
2507         }
2508         if (inp_flags & INP_ONESBCAST) {
2509                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2510                 comma  = 1;
2511         }
2512         if (inp_flags & INP_DROPPED) {
2513                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2514                 comma  = 1;
2515         }
2516         if (inp_flags & INP_SOCKREF) {
2517                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2518                 comma  = 1;
2519         }
2520         if (inp_flags & IN6P_RFC2292) {
2521                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2522                 comma = 1;
2523         }
2524         if (inp_flags & IN6P_MTU) {
2525                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2526                 comma = 1;
2527         }
2528 }
2529
2530 static void
2531 db_print_inpvflag(u_char inp_vflag)
2532 {
2533         int comma;
2534
2535         comma = 0;
2536         if (inp_vflag & INP_IPV4) {
2537                 db_printf("%sINP_IPV4", comma ? ", " : "");
2538                 comma  = 1;
2539         }
2540         if (inp_vflag & INP_IPV6) {
2541                 db_printf("%sINP_IPV6", comma ? ", " : "");
2542                 comma  = 1;
2543         }
2544         if (inp_vflag & INP_IPV6PROTO) {
2545                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2546                 comma  = 1;
2547         }
2548 }
2549
2550 static void
2551 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2552 {
2553
2554         db_print_indent(indent);
2555         db_printf("%s at %p\n", name, inp);
2556
2557         indent += 2;
2558
2559         db_print_indent(indent);
2560         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2561
2562         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2563
2564         db_print_indent(indent);
2565         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2566             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2567
2568         db_print_indent(indent);
2569         db_printf("inp_label: %p   inp_flags: 0x%x (",
2570            inp->inp_label, inp->inp_flags);
2571         db_print_inpflags(inp->inp_flags);
2572         db_printf(")\n");
2573
2574         db_print_indent(indent);
2575         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2576             inp->inp_vflag);
2577         db_print_inpvflag(inp->inp_vflag);
2578         db_printf(")\n");
2579
2580         db_print_indent(indent);
2581         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2582             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2583
2584         db_print_indent(indent);
2585 #ifdef INET6
2586         if (inp->inp_vflag & INP_IPV6) {
2587                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2588                     "in6p_moptions: %p\n", inp->in6p_options,
2589                     inp->in6p_outputopts, inp->in6p_moptions);
2590                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2591                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2592                     inp->in6p_hops);
2593         } else
2594 #endif
2595         {
2596                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2597                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2598                     inp->inp_options, inp->inp_moptions);
2599         }
2600
2601         db_print_indent(indent);
2602         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2603             (uintmax_t)inp->inp_gencnt);
2604 }
2605
2606 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2607 {
2608         struct inpcb *inp;
2609
2610         if (!have_addr) {
2611                 db_printf("usage: show inpcb <addr>\n");
2612                 return;
2613         }
2614         inp = (struct inpcb *)addr;
2615
2616         db_print_inpcb(inp, "inpcb", 0);
2617 }
2618 #endif /* DDB */