]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
libpcap: Update to 1.10.3
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *      The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_ipsec.h"
46 #include "opt_inet.h"
47 #include "opt_inet6.h"
48 #include "opt_ratelimit.h"
49 #include "opt_route.h"
50 #include "opt_rss.h"
51
52 #include <sys/param.h>
53 #include <sys/hash.h>
54 #include <sys/systm.h>
55 #include <sys/libkern.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/eventhandler.h>
60 #include <sys/domain.h>
61 #include <sys/protosw.h>
62 #include <sys/smp.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sockio.h>
66 #include <sys/priv.h>
67 #include <sys/proc.h>
68 #include <sys/refcount.h>
69 #include <sys/jail.h>
70 #include <sys/kernel.h>
71 #include <sys/sysctl.h>
72
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76
77 #include <vm/uma.h>
78 #include <vm/vm.h>
79
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/if_private.h>
83 #include <net/if_types.h>
84 #include <net/if_llatbl.h>
85 #include <net/route.h>
86 #include <net/rss_config.h>
87 #include <net/vnet.h>
88
89 #if defined(INET) || defined(INET6)
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/in_pcb_var.h>
93 #include <netinet/tcp.h>
94 #ifdef INET
95 #include <netinet/in_var.h>
96 #include <netinet/in_fib.h>
97 #endif
98 #include <netinet/ip_var.h>
99 #ifdef INET6
100 #include <netinet/ip6.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #endif /* INET6 */
105 #include <net/route/nhop.h>
106 #endif
107
108 #include <netipsec/ipsec_support.h>
109
110 #include <security/mac/mac_framework.h>
111
112 #define INPCBLBGROUP_SIZMIN     8
113 #define INPCBLBGROUP_SIZMAX     256
114 #define INP_FREED       0x00000200      /* See in_pcb.h. */
115
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
126
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137
138 #ifdef INET
139 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140                             struct in_addr faddr, u_int fport_arg,
141                             struct in_addr laddr, u_int lport_arg,
142                             int lookupflags, uint8_t numa_domain);
143
144 #define RANGECHK(var, min, max) \
145         if ((var) < (min)) { (var) = (min); } \
146         else if ((var) > (max)) { (var) = (max); }
147
148 static int
149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151         int error;
152
153         error = sysctl_handle_int(oidp, arg1, arg2, req);
154         if (error == 0) {
155                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161         }
162         return (error);
163 }
164
165 #undef RANGECHK
166
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "IP Ports");
170
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174     "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178     "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182     "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186     "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190     "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194     "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196         CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197         &VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201         CTLFLAG_VNET | CTLFLAG_RW,
202         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212     "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214     &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216    &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218    &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220    &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222    &rate_limit_chg, "Total Rate limited change attempts");
223
224 #endif /* RATELIMIT */
225
226 #endif /* INET */
227
228 VNET_DEFINE(uint32_t, in_pcbhashseed);
229 static void
230 in_pcbhashseed_init(void)
231 {
232
233         V_in_pcbhashseed = arc4random();
234 }
235 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
236     in_pcbhashseed_init, 0);
237
238 static void in_pcbremhash(struct inpcb *);
239
240 /*
241  * in_pcb.c: manage the Protocol Control Blocks.
242  *
243  * NOTE: It is assumed that most of these functions will be called with
244  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
245  * functions often modify hash chains or addresses in pcbs.
246  */
247
248 static struct inpcblbgroup *
249 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred,
250     u_char vflag, uint16_t port, const union in_dependaddr *addr, int size,
251     uint8_t numa_domain)
252 {
253         struct inpcblbgroup *grp;
254         size_t bytes;
255
256         bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
257         grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
258         if (grp == NULL)
259                 return (NULL);
260         grp->il_cred = crhold(cred);
261         grp->il_vflag = vflag;
262         grp->il_lport = port;
263         grp->il_numa_domain = numa_domain;
264         grp->il_dependladdr = *addr;
265         grp->il_inpsiz = size;
266         CK_LIST_INSERT_HEAD(hdr, grp, il_list);
267         return (grp);
268 }
269
270 static void
271 in_pcblbgroup_free_deferred(epoch_context_t ctx)
272 {
273         struct inpcblbgroup *grp;
274
275         grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
276         crfree(grp->il_cred);
277         free(grp, M_PCB);
278 }
279
280 static void
281 in_pcblbgroup_free(struct inpcblbgroup *grp)
282 {
283
284         CK_LIST_REMOVE(grp, il_list);
285         NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
286 }
287
288 static struct inpcblbgroup *
289 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
290     struct inpcblbgroup *old_grp, int size)
291 {
292         struct inpcblbgroup *grp;
293         int i;
294
295         grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag,
296             old_grp->il_lport, &old_grp->il_dependladdr, size,
297             old_grp->il_numa_domain);
298         if (grp == NULL)
299                 return (NULL);
300
301         KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
302             ("invalid new local group size %d and old local group count %d",
303              grp->il_inpsiz, old_grp->il_inpcnt));
304
305         for (i = 0; i < old_grp->il_inpcnt; ++i)
306                 grp->il_inp[i] = old_grp->il_inp[i];
307         grp->il_inpcnt = old_grp->il_inpcnt;
308         in_pcblbgroup_free(old_grp);
309         return (grp);
310 }
311
312 /*
313  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
314  * and shrink group if possible.
315  */
316 static void
317 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
318     int i)
319 {
320         struct inpcblbgroup *grp, *new_grp;
321
322         grp = *grpp;
323         for (; i + 1 < grp->il_inpcnt; ++i)
324                 grp->il_inp[i] = grp->il_inp[i + 1];
325         grp->il_inpcnt--;
326
327         if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
328             grp->il_inpcnt <= grp->il_inpsiz / 4) {
329                 /* Shrink this group. */
330                 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
331                 if (new_grp != NULL)
332                         *grpp = new_grp;
333         }
334 }
335
336 /*
337  * Add PCB to load balance group for SO_REUSEPORT_LB option.
338  */
339 static int
340 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
341 {
342         const static struct timeval interval = { 60, 0 };
343         static struct timeval lastprint;
344         struct inpcbinfo *pcbinfo;
345         struct inpcblbgrouphead *hdr;
346         struct inpcblbgroup *grp;
347         uint32_t idx;
348
349         pcbinfo = inp->inp_pcbinfo;
350
351         INP_WLOCK_ASSERT(inp);
352         INP_HASH_WLOCK_ASSERT(pcbinfo);
353
354 #ifdef INET6
355         /*
356          * Don't allow IPv4 mapped INET6 wild socket.
357          */
358         if ((inp->inp_vflag & INP_IPV4) &&
359             inp->inp_laddr.s_addr == INADDR_ANY &&
360             INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
361                 return (0);
362         }
363 #endif
364
365         idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
366         hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
367         CK_LIST_FOREACH(grp, hdr, il_list) {
368                 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
369                     grp->il_vflag == inp->inp_vflag &&
370                     grp->il_lport == inp->inp_lport &&
371                     grp->il_numa_domain == numa_domain &&
372                     memcmp(&grp->il_dependladdr,
373                     &inp->inp_inc.inc_ie.ie_dependladdr,
374                     sizeof(grp->il_dependladdr)) == 0) {
375                         break;
376                 }
377         }
378         if (grp == NULL) {
379                 /* Create new load balance group. */
380                 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag,
381                     inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
382                     INPCBLBGROUP_SIZMIN, numa_domain);
383                 if (grp == NULL)
384                         return (ENOBUFS);
385         } else if (grp->il_inpcnt == grp->il_inpsiz) {
386                 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
387                         if (ratecheck(&lastprint, &interval))
388                                 printf("lb group port %d, limit reached\n",
389                                     ntohs(grp->il_lport));
390                         return (0);
391                 }
392
393                 /* Expand this local group. */
394                 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
395                 if (grp == NULL)
396                         return (ENOBUFS);
397         }
398
399         KASSERT(grp->il_inpcnt < grp->il_inpsiz,
400             ("invalid local group size %d and count %d", grp->il_inpsiz,
401             grp->il_inpcnt));
402
403         grp->il_inp[grp->il_inpcnt] = inp;
404         grp->il_inpcnt++;
405         return (0);
406 }
407
408 /*
409  * Remove PCB from load balance group.
410  */
411 static void
412 in_pcbremlbgrouphash(struct inpcb *inp)
413 {
414         struct inpcbinfo *pcbinfo;
415         struct inpcblbgrouphead *hdr;
416         struct inpcblbgroup *grp;
417         int i;
418
419         pcbinfo = inp->inp_pcbinfo;
420
421         INP_WLOCK_ASSERT(inp);
422         INP_HASH_WLOCK_ASSERT(pcbinfo);
423
424         hdr = &pcbinfo->ipi_lbgrouphashbase[
425             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
426         CK_LIST_FOREACH(grp, hdr, il_list) {
427                 for (i = 0; i < grp->il_inpcnt; ++i) {
428                         if (grp->il_inp[i] != inp)
429                                 continue;
430
431                         if (grp->il_inpcnt == 1) {
432                                 /* We are the last, free this local group. */
433                                 in_pcblbgroup_free(grp);
434                         } else {
435                                 /* Pull up inpcbs, shrink group if possible. */
436                                 in_pcblbgroup_reorder(hdr, &grp, i);
437                         }
438                         return;
439                 }
440         }
441 }
442
443 int
444 in_pcblbgroup_numa(struct inpcb *inp, int arg)
445 {
446         struct inpcbinfo *pcbinfo;
447         struct inpcblbgrouphead *hdr;
448         struct inpcblbgroup *grp;
449         int err, i;
450         uint8_t numa_domain;
451
452         switch (arg) {
453         case TCP_REUSPORT_LB_NUMA_NODOM:
454                 numa_domain = M_NODOM;
455                 break;
456         case TCP_REUSPORT_LB_NUMA_CURDOM:
457                 numa_domain = PCPU_GET(domain);
458                 break;
459         default:
460                 if (arg < 0 || arg >= vm_ndomains)
461                         return (EINVAL);
462                 numa_domain = arg;
463         }
464
465         err = 0;
466         pcbinfo = inp->inp_pcbinfo;
467         INP_WLOCK_ASSERT(inp);
468         INP_HASH_WLOCK(pcbinfo);
469         hdr = &pcbinfo->ipi_lbgrouphashbase[
470             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
471         CK_LIST_FOREACH(grp, hdr, il_list) {
472                 for (i = 0; i < grp->il_inpcnt; ++i) {
473                         if (grp->il_inp[i] != inp)
474                                 continue;
475
476                         if (grp->il_numa_domain == numa_domain) {
477                                 goto abort_with_hash_wlock;
478                         }
479
480                         /* Remove it from the old group. */
481                         in_pcbremlbgrouphash(inp);
482
483                         /* Add it to the new group based on numa domain. */
484                         in_pcbinslbgrouphash(inp, numa_domain);
485                         goto abort_with_hash_wlock;
486                 }
487         }
488         err = ENOENT;
489 abort_with_hash_wlock:
490         INP_HASH_WUNLOCK(pcbinfo);
491         return (err);
492 }
493
494 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
495 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
496
497 /*
498  * Initialize an inpcbinfo - a per-VNET instance of connections db.
499  */
500 void
501 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
502     u_int hash_nelements, u_int porthash_nelements)
503 {
504
505         mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
506         mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
507             NULL, MTX_DEF);
508 #ifdef VIMAGE
509         pcbinfo->ipi_vnet = curvnet;
510 #endif
511         CK_LIST_INIT(&pcbinfo->ipi_listhead);
512         pcbinfo->ipi_count = 0;
513         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
514             &pcbinfo->ipi_hashmask);
515         porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
516         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
517             &pcbinfo->ipi_porthashmask);
518         pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
519             &pcbinfo->ipi_lbgrouphashmask);
520         pcbinfo->ipi_zone = pcbstor->ips_zone;
521         pcbinfo->ipi_portzone = pcbstor->ips_portzone;
522         pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
523 }
524
525 /*
526  * Destroy an inpcbinfo.
527  */
528 void
529 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
530 {
531
532         KASSERT(pcbinfo->ipi_count == 0,
533             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
534
535         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
536         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
537             pcbinfo->ipi_porthashmask);
538         hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
539             pcbinfo->ipi_lbgrouphashmask);
540         mtx_destroy(&pcbinfo->ipi_hash_lock);
541         mtx_destroy(&pcbinfo->ipi_lock);
542 }
543
544 /*
545  * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
546  */
547 static void inpcb_dtor(void *, int, void *);
548 static void inpcb_fini(void *, int);
549 void
550 in_pcbstorage_init(void *arg)
551 {
552         struct inpcbstorage *pcbstor = arg;
553
554         pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
555             pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit,
556             inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
557         pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
558             sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
559         uma_zone_set_smr(pcbstor->ips_portzone,
560             uma_zone_get_smr(pcbstor->ips_zone));
561 }
562
563 /*
564  * Destroy a pcbstorage - used by unloadable protocols.
565  */
566 void
567 in_pcbstorage_destroy(void *arg)
568 {
569         struct inpcbstorage *pcbstor = arg;
570
571         uma_zdestroy(pcbstor->ips_zone);
572         uma_zdestroy(pcbstor->ips_portzone);
573 }
574
575 /*
576  * Allocate a PCB and associate it with the socket.
577  * On success return with the PCB locked.
578  */
579 int
580 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
581 {
582         struct inpcb *inp;
583 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
584         int error;
585 #endif
586
587         inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
588         if (inp == NULL)
589                 return (ENOBUFS);
590         bzero(&inp->inp_start_zero, inp_zero_size);
591 #ifdef NUMA
592         inp->inp_numa_domain = M_NODOM;
593 #endif
594         inp->inp_pcbinfo = pcbinfo;
595         inp->inp_socket = so;
596         inp->inp_cred = crhold(so->so_cred);
597         inp->inp_inc.inc_fibnum = so->so_fibnum;
598 #ifdef MAC
599         error = mac_inpcb_init(inp, M_NOWAIT);
600         if (error != 0)
601                 goto out;
602         mac_inpcb_create(so, inp);
603 #endif
604 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
605         error = ipsec_init_pcbpolicy(inp);
606         if (error != 0) {
607 #ifdef MAC
608                 mac_inpcb_destroy(inp);
609 #endif
610                 goto out;
611         }
612 #endif /*IPSEC*/
613 #ifdef INET6
614         if (INP_SOCKAF(so) == AF_INET6) {
615                 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
616                 if (V_ip6_v6only)
617                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
618 #ifdef INET
619                 else
620                         inp->inp_vflag |= INP_IPV4;
621 #endif
622                 if (V_ip6_auto_flowlabel)
623                         inp->inp_flags |= IN6P_AUTOFLOWLABEL;
624                 inp->in6p_hops = -1;    /* use kernel default */
625         }
626 #endif
627 #if defined(INET) && defined(INET6)
628         else
629 #endif
630 #ifdef INET
631                 inp->inp_vflag |= INP_IPV4;
632 #endif
633         /*
634          * Routes in inpcb's can cache L2 as well; they are guaranteed
635          * to be cleaned up.
636          */
637         inp->inp_route.ro_flags = RT_LLE_CACHE;
638         refcount_init(&inp->inp_refcount, 1);   /* Reference from socket. */
639         INP_WLOCK(inp);
640         INP_INFO_WLOCK(pcbinfo);
641         pcbinfo->ipi_count++;
642         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
643         CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
644         INP_INFO_WUNLOCK(pcbinfo);
645         so->so_pcb = inp;
646
647         return (0);
648
649 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
650 out:
651         uma_zfree_smr(pcbinfo->ipi_zone, inp);
652         return (error);
653 #endif
654 }
655
656 #ifdef INET
657 int
658 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
659 {
660         int anonport, error;
661
662         KASSERT(sin == NULL || sin->sin_family == AF_INET,
663             ("%s: invalid address family for %p", __func__, sin));
664         KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
665             ("%s: invalid address length for %p", __func__, sin));
666         INP_WLOCK_ASSERT(inp);
667         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
668
669         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
670                 return (EINVAL);
671         anonport = sin == NULL || sin->sin_port == 0;
672         error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
673             &inp->inp_lport, cred);
674         if (error)
675                 return (error);
676         if (in_pcbinshash(inp) != 0) {
677                 inp->inp_laddr.s_addr = INADDR_ANY;
678                 inp->inp_lport = 0;
679                 return (EAGAIN);
680         }
681         if (anonport)
682                 inp->inp_flags |= INP_ANONPORT;
683         return (0);
684 }
685 #endif
686
687 #if defined(INET) || defined(INET6)
688 /*
689  * Assign a local port like in_pcb_lport(), but also used with connect()
690  * and a foreign address and port.  If fsa is non-NULL, choose a local port
691  * that is unused with those, otherwise one that is completely unused.
692  * lsa can be NULL for IPv6.
693  */
694 int
695 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
696     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
697 {
698         struct inpcbinfo *pcbinfo;
699         struct inpcb *tmpinp;
700         unsigned short *lastport;
701         int count, error;
702         u_short aux, first, last, lport;
703 #ifdef INET
704         struct in_addr laddr, faddr;
705 #endif
706 #ifdef INET6
707         struct in6_addr *laddr6, *faddr6;
708 #endif
709
710         pcbinfo = inp->inp_pcbinfo;
711
712         /*
713          * Because no actual state changes occur here, a global write lock on
714          * the pcbinfo isn't required.
715          */
716         INP_LOCK_ASSERT(inp);
717         INP_HASH_LOCK_ASSERT(pcbinfo);
718
719         if (inp->inp_flags & INP_HIGHPORT) {
720                 first = V_ipport_hifirstauto;   /* sysctl */
721                 last  = V_ipport_hilastauto;
722                 lastport = &pcbinfo->ipi_lasthi;
723         } else if (inp->inp_flags & INP_LOWPORT) {
724                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
725                 if (error)
726                         return (error);
727                 first = V_ipport_lowfirstauto;  /* 1023 */
728                 last  = V_ipport_lowlastauto;   /* 600 */
729                 lastport = &pcbinfo->ipi_lastlow;
730         } else {
731                 first = V_ipport_firstauto;     /* sysctl */
732                 last  = V_ipport_lastauto;
733                 lastport = &pcbinfo->ipi_lastport;
734         }
735
736         /*
737          * Instead of having two loops further down counting up or down
738          * make sure that first is always <= last and go with only one
739          * code path implementing all logic.
740          */
741         if (first > last) {
742                 aux = first;
743                 first = last;
744                 last = aux;
745         }
746
747 #ifdef INET
748         laddr.s_addr = INADDR_ANY;      /* used by INET6+INET below too */
749         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
750                 if (lsa != NULL)
751                         laddr = ((struct sockaddr_in *)lsa)->sin_addr;
752                 if (fsa != NULL)
753                         faddr = ((struct sockaddr_in *)fsa)->sin_addr;
754         }
755 #endif
756 #ifdef INET6
757         laddr6 = NULL;
758         if ((inp->inp_vflag & INP_IPV6) != 0) {
759                 if (lsa != NULL)
760                         laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
761                 if (fsa != NULL)
762                         faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
763         }
764 #endif
765
766         tmpinp = NULL;
767         lport = *lportp;
768
769         if (V_ipport_randomized)
770                 *lastport = first + (arc4random() % (last - first));
771
772         count = last - first;
773
774         do {
775                 if (count-- < 0)        /* completely used? */
776                         return (EADDRNOTAVAIL);
777                 ++*lastport;
778                 if (*lastport < first || *lastport > last)
779                         *lastport = first;
780                 lport = htons(*lastport);
781
782                 if (fsa != NULL) {
783 #ifdef INET
784                         if (lsa->sa_family == AF_INET) {
785                                 tmpinp = in_pcblookup_hash_locked(pcbinfo,
786                                     faddr, fport, laddr, lport, lookupflags,
787                                     M_NODOM);
788                         }
789 #endif
790 #ifdef INET6
791                         if (lsa->sa_family == AF_INET6) {
792                                 tmpinp = in6_pcblookup_hash_locked(pcbinfo,
793                                     faddr6, fport, laddr6, lport, lookupflags,
794                                     M_NODOM);
795                         }
796 #endif
797                 } else {
798 #ifdef INET6
799                         if ((inp->inp_vflag & INP_IPV6) != 0) {
800                                 tmpinp = in6_pcblookup_local(pcbinfo,
801                                     &inp->in6p_laddr, lport, lookupflags, cred);
802 #ifdef INET
803                                 if (tmpinp == NULL &&
804                                     (inp->inp_vflag & INP_IPV4))
805                                         tmpinp = in_pcblookup_local(pcbinfo,
806                                             laddr, lport, lookupflags, cred);
807 #endif
808                         }
809 #endif
810 #if defined(INET) && defined(INET6)
811                         else
812 #endif
813 #ifdef INET
814                                 tmpinp = in_pcblookup_local(pcbinfo, laddr,
815                                     lport, lookupflags, cred);
816 #endif
817                 }
818         } while (tmpinp != NULL);
819
820         *lportp = lport;
821
822         return (0);
823 }
824
825 /*
826  * Select a local port (number) to use.
827  */
828 int
829 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
830     struct ucred *cred, int lookupflags)
831 {
832         struct sockaddr_in laddr;
833
834         if (laddrp) {
835                 bzero(&laddr, sizeof(laddr));
836                 laddr.sin_family = AF_INET;
837                 laddr.sin_addr = *laddrp;
838         }
839         return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
840             NULL, lportp, NULL, 0, cred, lookupflags));
841 }
842
843 /*
844  * Return cached socket options.
845  */
846 int
847 inp_so_options(const struct inpcb *inp)
848 {
849         int so_options;
850
851         so_options = 0;
852
853         if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
854                 so_options |= SO_REUSEPORT_LB;
855         if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
856                 so_options |= SO_REUSEPORT;
857         if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
858                 so_options |= SO_REUSEADDR;
859         return (so_options);
860 }
861 #endif /* INET || INET6 */
862
863 #ifdef INET
864 /*
865  * Set up a bind operation on a PCB, performing port allocation
866  * as required, but do not actually modify the PCB. Callers can
867  * either complete the bind by setting inp_laddr/inp_lport and
868  * calling in_pcbinshash(), or they can just use the resulting
869  * port and address to authorise the sending of a once-off packet.
870  *
871  * On error, the values of *laddrp and *lportp are not changed.
872  */
873 int
874 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
875     u_short *lportp, struct ucred *cred)
876 {
877         struct socket *so = inp->inp_socket;
878         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
879         struct in_addr laddr;
880         u_short lport = 0;
881         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
882         int error;
883
884         /*
885          * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
886          * so that we don't have to add to the (already messy) code below.
887          */
888         int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
889
890         /*
891          * No state changes, so read locks are sufficient here.
892          */
893         INP_LOCK_ASSERT(inp);
894         INP_HASH_LOCK_ASSERT(pcbinfo);
895
896         laddr.s_addr = *laddrp;
897         if (sin != NULL && laddr.s_addr != INADDR_ANY)
898                 return (EINVAL);
899         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
900                 lookupflags = INPLOOKUP_WILDCARD;
901         if (sin == NULL) {
902                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
903                         return (error);
904         } else {
905                 KASSERT(sin->sin_family == AF_INET,
906                     ("%s: invalid family for address %p", __func__, sin));
907                 KASSERT(sin->sin_len == sizeof(*sin),
908                     ("%s: invalid length for address %p", __func__, sin));
909
910                 error = prison_local_ip4(cred, &sin->sin_addr);
911                 if (error)
912                         return (error);
913                 if (sin->sin_port != *lportp) {
914                         /* Don't allow the port to change. */
915                         if (*lportp != 0)
916                                 return (EINVAL);
917                         lport = sin->sin_port;
918                 }
919                 /* NB: lport is left as 0 if the port isn't being changed. */
920                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
921                         /*
922                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
923                          * allow complete duplication of binding if
924                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
925                          * and a multicast address is bound on both
926                          * new and duplicated sockets.
927                          */
928                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
929                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
930                         /*
931                          * XXX: How to deal with SO_REUSEPORT_LB here?
932                          * Treat same as SO_REUSEPORT for now.
933                          */
934                         if ((so->so_options &
935                             (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
936                                 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
937                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
938                         sin->sin_port = 0;              /* yech... */
939                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
940                         /*
941                          * Is the address a local IP address?
942                          * If INP_BINDANY is set, then the socket may be bound
943                          * to any endpoint address, local or not.
944                          */
945                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
946                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
947                                 return (EADDRNOTAVAIL);
948                 }
949                 laddr = sin->sin_addr;
950                 if (lport) {
951                         struct inpcb *t;
952
953                         /* GROSS */
954                         if (ntohs(lport) <= V_ipport_reservedhigh &&
955                             ntohs(lport) >= V_ipport_reservedlow &&
956                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
957                                 return (EACCES);
958                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
959                             priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
960                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
961                                     lport, INPLOOKUP_WILDCARD, cred);
962         /*
963          * XXX
964          * This entire block sorely needs a rewrite.
965          */
966                                 if (t != NULL &&
967                                     (so->so_type != SOCK_STREAM ||
968                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
969                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
970                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
971                                      (t->inp_flags2 & INP_REUSEPORT) ||
972                                      (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
973                                     (inp->inp_cred->cr_uid !=
974                                      t->inp_cred->cr_uid))
975                                         return (EADDRINUSE);
976                         }
977                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
978                             lport, lookupflags, cred);
979                         if (t != NULL && (reuseport & inp_so_options(t)) == 0 &&
980                             (reuseport_lb & inp_so_options(t)) == 0) {
981 #ifdef INET6
982                                 if (ntohl(sin->sin_addr.s_addr) !=
983                                     INADDR_ANY ||
984                                     ntohl(t->inp_laddr.s_addr) !=
985                                     INADDR_ANY ||
986                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
987                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
988 #endif
989                                                 return (EADDRINUSE);
990                         }
991                 }
992         }
993         if (*lportp != 0)
994                 lport = *lportp;
995         if (lport == 0) {
996                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
997                 if (error != 0)
998                         return (error);
999         }
1000         *laddrp = laddr.s_addr;
1001         *lportp = lport;
1002         return (0);
1003 }
1004
1005 /*
1006  * Connect from a socket to a specified address.
1007  * Both address and port must be specified in argument sin.
1008  * If don't have a local address for this socket yet,
1009  * then pick one.
1010  */
1011 int
1012 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred,
1013     bool rehash)
1014 {
1015         u_short lport, fport;
1016         in_addr_t laddr, faddr;
1017         int anonport, error;
1018
1019         INP_WLOCK_ASSERT(inp);
1020         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1021
1022         lport = inp->inp_lport;
1023         laddr = inp->inp_laddr.s_addr;
1024         anonport = (lport == 0);
1025         error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport,
1026             cred);
1027         if (error)
1028                 return (error);
1029
1030         /* Do the initial binding of the local address if required. */
1031         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1032                 KASSERT(rehash == true,
1033                     ("Rehashing required for unbound inps"));
1034                 inp->inp_lport = lport;
1035                 inp->inp_laddr.s_addr = laddr;
1036                 if (in_pcbinshash(inp) != 0) {
1037                         inp->inp_laddr.s_addr = INADDR_ANY;
1038                         inp->inp_lport = 0;
1039                         return (EAGAIN);
1040                 }
1041         }
1042
1043         /* Commit the remaining changes. */
1044         inp->inp_lport = lport;
1045         inp->inp_laddr.s_addr = laddr;
1046         inp->inp_faddr.s_addr = faddr;
1047         inp->inp_fport = fport;
1048         if (rehash) {
1049                 in_pcbrehash(inp);
1050         } else {
1051                 in_pcbinshash(inp);
1052         }
1053
1054         if (anonport)
1055                 inp->inp_flags |= INP_ANONPORT;
1056         return (0);
1057 }
1058
1059 /*
1060  * Do proper source address selection on an unbound socket in case
1061  * of connect. Take jails into account as well.
1062  */
1063 int
1064 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1065     struct ucred *cred)
1066 {
1067         struct ifaddr *ifa;
1068         struct sockaddr *sa;
1069         struct sockaddr_in *sin, dst;
1070         struct nhop_object *nh;
1071         int error;
1072
1073         NET_EPOCH_ASSERT();
1074         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1075
1076         /*
1077          * Bypass source address selection and use the primary jail IP
1078          * if requested.
1079          */
1080         if (!prison_saddrsel_ip4(cred, laddr))
1081                 return (0);
1082
1083         error = 0;
1084
1085         nh = NULL;
1086         bzero(&dst, sizeof(dst));
1087         sin = &dst;
1088         sin->sin_family = AF_INET;
1089         sin->sin_len = sizeof(struct sockaddr_in);
1090         sin->sin_addr.s_addr = faddr->s_addr;
1091
1092         /*
1093          * If route is known our src addr is taken from the i/f,
1094          * else punt.
1095          *
1096          * Find out route to destination.
1097          */
1098         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1099                 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1100                     0, NHR_NONE, 0);
1101
1102         /*
1103          * If we found a route, use the address corresponding to
1104          * the outgoing interface.
1105          *
1106          * Otherwise assume faddr is reachable on a directly connected
1107          * network and try to find a corresponding interface to take
1108          * the source address from.
1109          */
1110         if (nh == NULL || nh->nh_ifp == NULL) {
1111                 struct in_ifaddr *ia;
1112                 struct ifnet *ifp;
1113
1114                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1115                                         inp->inp_socket->so_fibnum));
1116                 if (ia == NULL) {
1117                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1118                                                 inp->inp_socket->so_fibnum));
1119                 }
1120                 if (ia == NULL) {
1121                         error = ENETUNREACH;
1122                         goto done;
1123                 }
1124
1125                 if (!prison_flag(cred, PR_IP4)) {
1126                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1127                         goto done;
1128                 }
1129
1130                 ifp = ia->ia_ifp;
1131                 ia = NULL;
1132                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1133                         sa = ifa->ifa_addr;
1134                         if (sa->sa_family != AF_INET)
1135                                 continue;
1136                         sin = (struct sockaddr_in *)sa;
1137                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1138                                 ia = (struct in_ifaddr *)ifa;
1139                                 break;
1140                         }
1141                 }
1142                 if (ia != NULL) {
1143                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1144                         goto done;
1145                 }
1146
1147                 /* 3. As a last resort return the 'default' jail address. */
1148                 error = prison_get_ip4(cred, laddr);
1149                 goto done;
1150         }
1151
1152         /*
1153          * If the outgoing interface on the route found is not
1154          * a loopback interface, use the address from that interface.
1155          * In case of jails do those three steps:
1156          * 1. check if the interface address belongs to the jail. If so use it.
1157          * 2. check if we have any address on the outgoing interface
1158          *    belonging to this jail. If so use it.
1159          * 3. as a last resort return the 'default' jail address.
1160          */
1161         if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1162                 struct in_ifaddr *ia;
1163                 struct ifnet *ifp;
1164
1165                 /* If not jailed, use the default returned. */
1166                 if (!prison_flag(cred, PR_IP4)) {
1167                         ia = (struct in_ifaddr *)nh->nh_ifa;
1168                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1169                         goto done;
1170                 }
1171
1172                 /* Jailed. */
1173                 /* 1. Check if the iface address belongs to the jail. */
1174                 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1175                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1176                         ia = (struct in_ifaddr *)nh->nh_ifa;
1177                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1178                         goto done;
1179                 }
1180
1181                 /*
1182                  * 2. Check if we have any address on the outgoing interface
1183                  *    belonging to this jail.
1184                  */
1185                 ia = NULL;
1186                 ifp = nh->nh_ifp;
1187                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1188                         sa = ifa->ifa_addr;
1189                         if (sa->sa_family != AF_INET)
1190                                 continue;
1191                         sin = (struct sockaddr_in *)sa;
1192                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1193                                 ia = (struct in_ifaddr *)ifa;
1194                                 break;
1195                         }
1196                 }
1197                 if (ia != NULL) {
1198                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1199                         goto done;
1200                 }
1201
1202                 /* 3. As a last resort return the 'default' jail address. */
1203                 error = prison_get_ip4(cred, laddr);
1204                 goto done;
1205         }
1206
1207         /*
1208          * The outgoing interface is marked with 'loopback net', so a route
1209          * to ourselves is here.
1210          * Try to find the interface of the destination address and then
1211          * take the address from there. That interface is not necessarily
1212          * a loopback interface.
1213          * In case of jails, check that it is an address of the jail
1214          * and if we cannot find, fall back to the 'default' jail address.
1215          */
1216         if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1217                 struct in_ifaddr *ia;
1218
1219                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1220                                         inp->inp_socket->so_fibnum));
1221                 if (ia == NULL)
1222                         ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1223                                                 inp->inp_socket->so_fibnum));
1224                 if (ia == NULL)
1225                         ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1226
1227                 if (!prison_flag(cred, PR_IP4)) {
1228                         if (ia == NULL) {
1229                                 error = ENETUNREACH;
1230                                 goto done;
1231                         }
1232                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1233                         goto done;
1234                 }
1235
1236                 /* Jailed. */
1237                 if (ia != NULL) {
1238                         struct ifnet *ifp;
1239
1240                         ifp = ia->ia_ifp;
1241                         ia = NULL;
1242                         CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1243                                 sa = ifa->ifa_addr;
1244                                 if (sa->sa_family != AF_INET)
1245                                         continue;
1246                                 sin = (struct sockaddr_in *)sa;
1247                                 if (prison_check_ip4(cred,
1248                                     &sin->sin_addr) == 0) {
1249                                         ia = (struct in_ifaddr *)ifa;
1250                                         break;
1251                                 }
1252                         }
1253                         if (ia != NULL) {
1254                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1255                                 goto done;
1256                         }
1257                 }
1258
1259                 /* 3. As a last resort return the 'default' jail address. */
1260                 error = prison_get_ip4(cred, laddr);
1261                 goto done;
1262         }
1263
1264 done:
1265         if (error == 0 && laddr->s_addr == INADDR_ANY)
1266                 return (EHOSTUNREACH);
1267         return (error);
1268 }
1269
1270 /*
1271  * Set up for a connect from a socket to the specified address.
1272  * On entry, *laddrp and *lportp should contain the current local
1273  * address and port for the PCB; these are updated to the values
1274  * that should be placed in inp_laddr and inp_lport to complete
1275  * the connect.
1276  *
1277  * On success, *faddrp and *fportp will be set to the remote address
1278  * and port. These are not updated in the error case.
1279  */
1280 int
1281 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin,
1282     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1283     struct ucred *cred)
1284 {
1285         struct in_ifaddr *ia;
1286         struct in_addr laddr, faddr;
1287         u_short lport, fport;
1288         int error;
1289
1290         KASSERT(sin->sin_family == AF_INET,
1291             ("%s: invalid address family for %p", __func__, sin));
1292         KASSERT(sin->sin_len == sizeof(*sin),
1293             ("%s: invalid address length for %p", __func__, sin));
1294
1295         /*
1296          * Because a global state change doesn't actually occur here, a read
1297          * lock is sufficient.
1298          */
1299         NET_EPOCH_ASSERT();
1300         INP_LOCK_ASSERT(inp);
1301         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1302
1303         if (sin->sin_port == 0)
1304                 return (EADDRNOTAVAIL);
1305         laddr.s_addr = *laddrp;
1306         lport = *lportp;
1307         faddr = sin->sin_addr;
1308         fport = sin->sin_port;
1309 #ifdef ROUTE_MPATH
1310         if (CALC_FLOWID_OUTBOUND) {
1311                 uint32_t hash_val, hash_type;
1312
1313                 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1314                     inp->inp_socket->so_proto->pr_protocol, &hash_type);
1315
1316                 inp->inp_flowid = hash_val;
1317                 inp->inp_flowtype = hash_type;
1318         }
1319 #endif
1320         if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1321                 /*
1322                  * If the destination address is INADDR_ANY,
1323                  * use the primary local address.
1324                  * If the supplied address is INADDR_BROADCAST,
1325                  * and the primary interface supports broadcast,
1326                  * choose the broadcast address for that interface.
1327                  */
1328                 if (faddr.s_addr == INADDR_ANY) {
1329                         faddr =
1330                             IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1331                         if ((error = prison_get_ip4(cred, &faddr)) != 0)
1332                                 return (error);
1333                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1334                         if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1335                             IFF_BROADCAST)
1336                                 faddr = satosin(&CK_STAILQ_FIRST(
1337                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1338                 }
1339         }
1340         if (laddr.s_addr == INADDR_ANY) {
1341                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1342                 /*
1343                  * If the destination address is multicast and an outgoing
1344                  * interface has been set as a multicast option, prefer the
1345                  * address of that interface as our source address.
1346                  */
1347                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1348                     inp->inp_moptions != NULL) {
1349                         struct ip_moptions *imo;
1350                         struct ifnet *ifp;
1351
1352                         imo = inp->inp_moptions;
1353                         if (imo->imo_multicast_ifp != NULL) {
1354                                 ifp = imo->imo_multicast_ifp;
1355                                 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1356                                         if (ia->ia_ifp == ifp &&
1357                                             prison_check_ip4(cred,
1358                                             &ia->ia_addr.sin_addr) == 0)
1359                                                 break;
1360                                 }
1361                                 if (ia == NULL)
1362                                         error = EADDRNOTAVAIL;
1363                                 else {
1364                                         laddr = ia->ia_addr.sin_addr;
1365                                         error = 0;
1366                                 }
1367                         }
1368                 }
1369                 if (error)
1370                         return (error);
1371         }
1372
1373         if (lport != 0) {
1374                 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1375                     fport, laddr, lport, 0, M_NODOM) != NULL)
1376                         return (EADDRINUSE);
1377         } else {
1378                 struct sockaddr_in lsin, fsin;
1379
1380                 bzero(&lsin, sizeof(lsin));
1381                 bzero(&fsin, sizeof(fsin));
1382                 lsin.sin_family = AF_INET;
1383                 lsin.sin_addr = laddr;
1384                 fsin.sin_family = AF_INET;
1385                 fsin.sin_addr = faddr;
1386                 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1387                     &lport, (struct sockaddr *)& fsin, fport, cred,
1388                     INPLOOKUP_WILDCARD);
1389                 if (error)
1390                         return (error);
1391         }
1392         *laddrp = laddr.s_addr;
1393         *lportp = lport;
1394         *faddrp = faddr.s_addr;
1395         *fportp = fport;
1396         return (0);
1397 }
1398
1399 void
1400 in_pcbdisconnect(struct inpcb *inp)
1401 {
1402
1403         INP_WLOCK_ASSERT(inp);
1404         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1405
1406         inp->inp_laddr.s_addr = INADDR_ANY;
1407         inp->inp_faddr.s_addr = INADDR_ANY;
1408         inp->inp_fport = 0;
1409         in_pcbrehash(inp);
1410 }
1411 #endif /* INET */
1412
1413 /*
1414  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1415  * For most protocols, this will be invoked immediately prior to calling
1416  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1417  * socket, in which case in_pcbfree() is deferred.
1418  */
1419 void
1420 in_pcbdetach(struct inpcb *inp)
1421 {
1422
1423         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1424
1425 #ifdef RATELIMIT
1426         if (inp->inp_snd_tag != NULL)
1427                 in_pcbdetach_txrtlmt(inp);
1428 #endif
1429         inp->inp_socket->so_pcb = NULL;
1430         inp->inp_socket = NULL;
1431 }
1432
1433 /*
1434  * inpcb hash lookups are protected by SMR section.
1435  *
1436  * Once desired pcb has been found, switching from SMR section to a pcb
1437  * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1438  * here because SMR is a critical section.
1439  * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1440  */
1441 static inline void
1442 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1443 {
1444
1445         lock == INPLOOKUP_RLOCKPCB ?
1446             rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1447 }
1448
1449 static inline void
1450 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1451 {
1452
1453         lock == INPLOOKUP_RLOCKPCB ?
1454             rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1455 }
1456
1457 static inline int
1458 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1459 {
1460
1461         return (lock == INPLOOKUP_RLOCKPCB ?
1462             rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1463 }
1464
1465 static inline bool
1466 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1467 {
1468
1469         return (lock == INPLOOKUP_RLOCKPCB ?
1470             in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1471 }
1472
1473 static inline bool
1474 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1475 {
1476
1477         MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1478         SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1479
1480         if (__predict_true(inp_trylock(inp, lock))) {
1481                 if (__predict_false(inp->inp_flags & ignflags)) {
1482                         smr_exit(inp->inp_pcbinfo->ipi_smr);
1483                         inp_unlock(inp, lock);
1484                         return (false);
1485                 }
1486                 smr_exit(inp->inp_pcbinfo->ipi_smr);
1487                 return (true);
1488         }
1489
1490         if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1491                 smr_exit(inp->inp_pcbinfo->ipi_smr);
1492                 inp_lock(inp, lock);
1493                 if (__predict_false(in_pcbrele(inp, lock)))
1494                         return (false);
1495                 /*
1496                  * inp acquired through refcount & lock for sure didn't went
1497                  * through uma_zfree().  However, it may have already went
1498                  * through in_pcbfree() and has another reference, that
1499                  * prevented its release by our in_pcbrele().
1500                  */
1501                 if (__predict_false(inp->inp_flags & ignflags)) {
1502                         inp_unlock(inp, lock);
1503                         return (false);
1504                 }
1505                 return (true);
1506         } else {
1507                 smr_exit(inp->inp_pcbinfo->ipi_smr);
1508                 return (false);
1509         }
1510 }
1511
1512 bool
1513 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1514 {
1515
1516         /*
1517          * in_pcblookup() family of functions ignore not only freed entries,
1518          * that may be found due to lockless access to the hash, but dropped
1519          * entries, too.
1520          */
1521         return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1522 }
1523
1524 /*
1525  * inp_next() - inpcb hash/list traversal iterator
1526  *
1527  * Requires initialized struct inpcb_iterator for context.
1528  * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1529  *
1530  * - Iterator can have either write-lock or read-lock semantics, that can not
1531  *   be changed later.
1532  * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1533  *   a single hash slot.  Note: only rip_input() does the latter.
1534  * - Iterator may have optional bool matching function.  The matching function
1535  *   will be executed for each inpcb in the SMR context, so it can not acquire
1536  *   locks and can safely access only immutable fields of inpcb.
1537  *
1538  * A fresh initialized iterator has NULL inpcb in its context and that
1539  * means that inp_next() call would return the very first inpcb on the list
1540  * locked with desired semantic.  In all following calls the context pointer
1541  * shall hold the current inpcb pointer.  The KPI user is not supposed to
1542  * unlock the current inpcb!  Upon end of traversal inp_next() will return NULL
1543  * and write NULL to its context.  After end of traversal an iterator can be
1544  * reused.
1545  *
1546  * List traversals have the following features/constraints:
1547  * - New entries won't be seen, as they are always added to the head of a list.
1548  * - Removed entries won't stop traversal as long as they are not added to
1549  *   a different list. This is violated by in_pcbrehash().
1550  */
1551 #define II_LIST_FIRST(ipi, hash)                                        \
1552                 (((hash) == INP_ALL_LIST) ?                             \
1553                     CK_LIST_FIRST(&(ipi)->ipi_listhead) :               \
1554                     CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)]))
1555 #define II_LIST_NEXT(inp, hash)                                         \
1556                 (((hash) == INP_ALL_LIST) ?                             \
1557                     CK_LIST_NEXT((inp), inp_list) :                     \
1558                     CK_LIST_NEXT((inp), inp_hash))
1559 #define II_LOCK_ASSERT(inp, lock)                                       \
1560                 rw_assert(&(inp)->inp_lock,                             \
1561                     (lock) == INPLOOKUP_RLOCKPCB ?  RA_RLOCKED : RA_WLOCKED )
1562 struct inpcb *
1563 inp_next(struct inpcb_iterator *ii)
1564 {
1565         const struct inpcbinfo *ipi = ii->ipi;
1566         inp_match_t *match = ii->match;
1567         void *ctx = ii->ctx;
1568         inp_lookup_t lock = ii->lock;
1569         int hash = ii->hash;
1570         struct inpcb *inp;
1571
1572         if (ii->inp == NULL) {          /* First call. */
1573                 smr_enter(ipi->ipi_smr);
1574                 /* This is unrolled CK_LIST_FOREACH(). */
1575                 for (inp = II_LIST_FIRST(ipi, hash);
1576                     inp != NULL;
1577                     inp = II_LIST_NEXT(inp, hash)) {
1578                         if (match != NULL && (match)(inp, ctx) == false)
1579                                 continue;
1580                         if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1581                                 break;
1582                         else {
1583                                 smr_enter(ipi->ipi_smr);
1584                                 MPASS(inp != II_LIST_FIRST(ipi, hash));
1585                                 inp = II_LIST_FIRST(ipi, hash);
1586                                 if (inp == NULL)
1587                                         break;
1588                         }
1589                 }
1590
1591                 if (inp == NULL)
1592                         smr_exit(ipi->ipi_smr);
1593                 else
1594                         ii->inp = inp;
1595
1596                 return (inp);
1597         }
1598
1599         /* Not a first call. */
1600         smr_enter(ipi->ipi_smr);
1601 restart:
1602         inp = ii->inp;
1603         II_LOCK_ASSERT(inp, lock);
1604 next:
1605         inp = II_LIST_NEXT(inp, hash);
1606         if (inp == NULL) {
1607                 smr_exit(ipi->ipi_smr);
1608                 goto found;
1609         }
1610
1611         if (match != NULL && (match)(inp, ctx) == false)
1612                 goto next;
1613
1614         if (__predict_true(inp_trylock(inp, lock))) {
1615                 if (__predict_false(inp->inp_flags & INP_FREED)) {
1616                         /*
1617                          * Entries are never inserted in middle of a list, thus
1618                          * as long as we are in SMR, we can continue traversal.
1619                          * Jump to 'restart' should yield in the same result,
1620                          * but could produce unnecessary looping.  Could this
1621                          * looping be unbound?
1622                          */
1623                         inp_unlock(inp, lock);
1624                         goto next;
1625                 } else {
1626                         smr_exit(ipi->ipi_smr);
1627                         goto found;
1628                 }
1629         }
1630
1631         /*
1632          * Can't obtain lock immediately, thus going hard.  Once we exit the
1633          * SMR section we can no longer jump to 'next', and our only stable
1634          * anchoring point is ii->inp, which we keep locked for this case, so
1635          * we jump to 'restart'.
1636          */
1637         if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1638                 smr_exit(ipi->ipi_smr);
1639                 inp_lock(inp, lock);
1640                 if (__predict_false(in_pcbrele(inp, lock))) {
1641                         smr_enter(ipi->ipi_smr);
1642                         goto restart;
1643                 }
1644                 /*
1645                  * See comment in inp_smr_lock().
1646                  */
1647                 if (__predict_false(inp->inp_flags & INP_FREED)) {
1648                         inp_unlock(inp, lock);
1649                         smr_enter(ipi->ipi_smr);
1650                         goto restart;
1651                 }
1652         } else
1653                 goto next;
1654
1655 found:
1656         inp_unlock(ii->inp, lock);
1657         ii->inp = inp;
1658
1659         return (ii->inp);
1660 }
1661
1662 /*
1663  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1664  * stability of an inpcb pointer despite the inpcb lock being released or
1665  * SMR section exited.
1666  *
1667  * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1668  */
1669 void
1670 in_pcbref(struct inpcb *inp)
1671 {
1672         u_int old __diagused;
1673
1674         old = refcount_acquire(&inp->inp_refcount);
1675         KASSERT(old > 0, ("%s: refcount 0", __func__));
1676 }
1677
1678 /*
1679  * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1680  * freeing the pcb, if the reference was very last.
1681  */
1682 bool
1683 in_pcbrele_rlocked(struct inpcb *inp)
1684 {
1685
1686         INP_RLOCK_ASSERT(inp);
1687
1688         if (!refcount_release(&inp->inp_refcount))
1689                 return (false);
1690
1691         MPASS(inp->inp_flags & INP_FREED);
1692         MPASS(inp->inp_socket == NULL);
1693         MPASS(inp->inp_in_hpts == 0);
1694         INP_RUNLOCK(inp);
1695         uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1696         return (true);
1697 }
1698
1699 bool
1700 in_pcbrele_wlocked(struct inpcb *inp)
1701 {
1702
1703         INP_WLOCK_ASSERT(inp);
1704
1705         if (!refcount_release(&inp->inp_refcount))
1706                 return (false);
1707
1708         MPASS(inp->inp_flags & INP_FREED);
1709         MPASS(inp->inp_socket == NULL);
1710         MPASS(inp->inp_in_hpts == 0);
1711         INP_WUNLOCK(inp);
1712         uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1713         return (true);
1714 }
1715
1716 /*
1717  * Unconditionally schedule an inpcb to be freed by decrementing its
1718  * reference count, which should occur only after the inpcb has been detached
1719  * from its socket.  If another thread holds a temporary reference (acquired
1720  * using in_pcbref()) then the free is deferred until that reference is
1721  * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1722  *  Almost all work, including removal from global lists, is done in this
1723  * context, where the pcbinfo lock is held.
1724  */
1725 void
1726 in_pcbfree(struct inpcb *inp)
1727 {
1728         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1729 #ifdef INET
1730         struct ip_moptions *imo;
1731 #endif
1732 #ifdef INET6
1733         struct ip6_moptions *im6o;
1734 #endif
1735
1736         INP_WLOCK_ASSERT(inp);
1737         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1738         KASSERT((inp->inp_flags & INP_FREED) == 0,
1739             ("%s: called twice for pcb %p", __func__, inp));
1740
1741         inp->inp_flags |= INP_FREED;
1742         INP_INFO_WLOCK(pcbinfo);
1743         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1744         pcbinfo->ipi_count--;
1745         CK_LIST_REMOVE(inp, inp_list);
1746         INP_INFO_WUNLOCK(pcbinfo);
1747
1748         if (inp->inp_flags & INP_INHASHLIST)
1749                 in_pcbremhash(inp);
1750
1751         RO_INVALIDATE_CACHE(&inp->inp_route);
1752 #ifdef MAC
1753         mac_inpcb_destroy(inp);
1754 #endif
1755 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1756         if (inp->inp_sp != NULL)
1757                 ipsec_delete_pcbpolicy(inp);
1758 #endif
1759 #ifdef INET
1760         if (inp->inp_options)
1761                 (void)m_free(inp->inp_options);
1762         imo = inp->inp_moptions;
1763 #endif
1764 #ifdef INET6
1765         if (inp->inp_vflag & INP_IPV6PROTO) {
1766                 ip6_freepcbopts(inp->in6p_outputopts);
1767                 im6o = inp->in6p_moptions;
1768         } else
1769                 im6o = NULL;
1770 #endif
1771
1772         if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1773                 INP_WUNLOCK(inp);
1774         }
1775 #ifdef INET6
1776         ip6_freemoptions(im6o);
1777 #endif
1778 #ifdef INET
1779         inp_freemoptions(imo);
1780 #endif
1781         /* Destruction is finalized in inpcb_dtor(). */
1782 }
1783
1784 static void
1785 inpcb_dtor(void *mem, int size, void *arg)
1786 {
1787         struct inpcb *inp = mem;
1788
1789         crfree(inp->inp_cred);
1790 #ifdef INVARIANTS
1791         inp->inp_cred = NULL;
1792 #endif
1793 }
1794
1795 /*
1796  * Different protocols initialize their inpcbs differently - giving
1797  * different name to the lock.  But they all are disposed the same.
1798  */
1799 static void
1800 inpcb_fini(void *mem, int size)
1801 {
1802         struct inpcb *inp = mem;
1803
1804         INP_LOCK_DESTROY(inp);
1805 }
1806
1807 /*
1808  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1809  * port reservation, and preventing it from being returned by inpcb lookups.
1810  *
1811  * It is used by TCP to mark an inpcb as unused and avoid future packet
1812  * delivery or event notification when a socket remains open but TCP has
1813  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1814  * or a RST on the wire, and allows the port binding to be reused while still
1815  * maintaining the invariant that so_pcb always points to a valid inpcb until
1816  * in_pcbdetach().
1817  *
1818  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1819  * in_pcbnotifyall() and in_pcbpurgeif0()?
1820  */
1821 void
1822 in_pcbdrop(struct inpcb *inp)
1823 {
1824
1825         INP_WLOCK_ASSERT(inp);
1826 #ifdef INVARIANTS
1827         if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1828                 MPASS(inp->inp_refcount > 1);
1829 #endif
1830
1831         inp->inp_flags |= INP_DROPPED;
1832         if (inp->inp_flags & INP_INHASHLIST)
1833                 in_pcbremhash(inp);
1834 }
1835
1836 #ifdef INET
1837 /*
1838  * Common routines to return the socket addresses associated with inpcbs.
1839  */
1840 struct sockaddr *
1841 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1842 {
1843         struct sockaddr_in *sin;
1844
1845         sin = malloc(sizeof *sin, M_SONAME,
1846                 M_WAITOK | M_ZERO);
1847         sin->sin_family = AF_INET;
1848         sin->sin_len = sizeof(*sin);
1849         sin->sin_addr = *addr_p;
1850         sin->sin_port = port;
1851
1852         return (struct sockaddr *)sin;
1853 }
1854
1855 int
1856 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1857 {
1858         struct inpcb *inp;
1859         struct in_addr addr;
1860         in_port_t port;
1861
1862         inp = sotoinpcb(so);
1863         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1864
1865         INP_RLOCK(inp);
1866         port = inp->inp_lport;
1867         addr = inp->inp_laddr;
1868         INP_RUNLOCK(inp);
1869
1870         *nam = in_sockaddr(port, &addr);
1871         return 0;
1872 }
1873
1874 int
1875 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1876 {
1877         struct inpcb *inp;
1878         struct in_addr addr;
1879         in_port_t port;
1880
1881         inp = sotoinpcb(so);
1882         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1883
1884         INP_RLOCK(inp);
1885         port = inp->inp_fport;
1886         addr = inp->inp_faddr;
1887         INP_RUNLOCK(inp);
1888
1889         *nam = in_sockaddr(port, &addr);
1890         return 0;
1891 }
1892
1893 void
1894 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1895     struct inpcb *(*notify)(struct inpcb *, int))
1896 {
1897         struct inpcb *inp, *inp_temp;
1898
1899         INP_INFO_WLOCK(pcbinfo);
1900         CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) {
1901                 INP_WLOCK(inp);
1902 #ifdef INET6
1903                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1904                         INP_WUNLOCK(inp);
1905                         continue;
1906                 }
1907 #endif
1908                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1909                     inp->inp_socket == NULL) {
1910                         INP_WUNLOCK(inp);
1911                         continue;
1912                 }
1913                 if ((*notify)(inp, errno))
1914                         INP_WUNLOCK(inp);
1915         }
1916         INP_INFO_WUNLOCK(pcbinfo);
1917 }
1918
1919 static bool
1920 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1921 {
1922
1923         if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1924                 return (true);
1925         else
1926                 return (false);
1927 }
1928
1929 void
1930 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1931 {
1932         struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1933             inp_v4_multi_match, NULL);
1934         struct inpcb *inp;
1935         struct in_multi *inm;
1936         struct in_mfilter *imf;
1937         struct ip_moptions *imo;
1938
1939         IN_MULTI_LOCK_ASSERT();
1940
1941         while ((inp = inp_next(&inpi)) != NULL) {
1942                 INP_WLOCK_ASSERT(inp);
1943
1944                 imo = inp->inp_moptions;
1945                 /*
1946                  * Unselect the outgoing interface if it is being
1947                  * detached.
1948                  */
1949                 if (imo->imo_multicast_ifp == ifp)
1950                         imo->imo_multicast_ifp = NULL;
1951
1952                 /*
1953                  * Drop multicast group membership if we joined
1954                  * through the interface being detached.
1955                  *
1956                  * XXX This can all be deferred to an epoch_call
1957                  */
1958 restart:
1959                 IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1960                         if ((inm = imf->imf_inm) == NULL)
1961                                 continue;
1962                         if (inm->inm_ifp != ifp)
1963                                 continue;
1964                         ip_mfilter_remove(&imo->imo_head, imf);
1965                         in_leavegroup_locked(inm, NULL);
1966                         ip_mfilter_free(imf);
1967                         goto restart;
1968                 }
1969         }
1970 }
1971
1972 /*
1973  * Lookup a PCB based on the local address and port.  Caller must hold the
1974  * hash lock.  No inpcb locks or references are acquired.
1975  */
1976 #define INP_LOOKUP_MAPPED_PCB_COST      3
1977 struct inpcb *
1978 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1979     u_short lport, int lookupflags, struct ucred *cred)
1980 {
1981         struct inpcb *inp;
1982 #ifdef INET6
1983         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1984 #else
1985         int matchwild = 3;
1986 #endif
1987         int wildcard;
1988
1989         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1990             ("%s: invalid lookup flags %d", __func__, lookupflags));
1991         INP_HASH_LOCK_ASSERT(pcbinfo);
1992
1993         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1994                 struct inpcbhead *head;
1995                 /*
1996                  * Look for an unconnected (wildcard foreign addr) PCB that
1997                  * matches the local address and port we're looking for.
1998                  */
1999                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport,
2000                     pcbinfo->ipi_hashmask)];
2001                 CK_LIST_FOREACH(inp, head, inp_hash) {
2002 #ifdef INET6
2003                         /* XXX inp locking */
2004                         if ((inp->inp_vflag & INP_IPV4) == 0)
2005                                 continue;
2006 #endif
2007                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
2008                             inp->inp_laddr.s_addr == laddr.s_addr &&
2009                             inp->inp_lport == lport) {
2010                                 /*
2011                                  * Found?
2012                                  */
2013                                 if (prison_equal_ip4(cred->cr_prison,
2014                                     inp->inp_cred->cr_prison))
2015                                         return (inp);
2016                         }
2017                 }
2018                 /*
2019                  * Not found.
2020                  */
2021                 return (NULL);
2022         } else {
2023                 struct inpcbporthead *porthash;
2024                 struct inpcbport *phd;
2025                 struct inpcb *match = NULL;
2026                 /*
2027                  * Best fit PCB lookup.
2028                  *
2029                  * First see if this local port is in use by looking on the
2030                  * port hash list.
2031                  */
2032                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2033                     pcbinfo->ipi_porthashmask)];
2034                 CK_LIST_FOREACH(phd, porthash, phd_hash) {
2035                         if (phd->phd_port == lport)
2036                                 break;
2037                 }
2038                 if (phd != NULL) {
2039                         /*
2040                          * Port is in use by one or more PCBs. Look for best
2041                          * fit.
2042                          */
2043                         CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2044                                 wildcard = 0;
2045                                 if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2046                                     cred->cr_prison))
2047                                         continue;
2048 #ifdef INET6
2049                                 /* XXX inp locking */
2050                                 if ((inp->inp_vflag & INP_IPV4) == 0)
2051                                         continue;
2052                                 /*
2053                                  * We never select the PCB that has
2054                                  * INP_IPV6 flag and is bound to :: if
2055                                  * we have another PCB which is bound
2056                                  * to 0.0.0.0.  If a PCB has the
2057                                  * INP_IPV6 flag, then we set its cost
2058                                  * higher than IPv4 only PCBs.
2059                                  *
2060                                  * Note that the case only happens
2061                                  * when a socket is bound to ::, under
2062                                  * the condition that the use of the
2063                                  * mapped address is allowed.
2064                                  */
2065                                 if ((inp->inp_vflag & INP_IPV6) != 0)
2066                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2067 #endif
2068                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
2069                                         wildcard++;
2070                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
2071                                         if (laddr.s_addr == INADDR_ANY)
2072                                                 wildcard++;
2073                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
2074                                                 continue;
2075                                 } else {
2076                                         if (laddr.s_addr != INADDR_ANY)
2077                                                 wildcard++;
2078                                 }
2079                                 if (wildcard < matchwild) {
2080                                         match = inp;
2081                                         matchwild = wildcard;
2082                                         if (matchwild == 0)
2083                                                 break;
2084                                 }
2085                         }
2086                 }
2087                 return (match);
2088         }
2089 }
2090 #undef INP_LOOKUP_MAPPED_PCB_COST
2091
2092 static bool
2093 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain)
2094 {
2095         return (domain == M_NODOM || domain == grp->il_numa_domain);
2096 }
2097
2098 static struct inpcb *
2099 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2100     const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2101     uint16_t lport, int domain)
2102 {
2103         const struct inpcblbgrouphead *hdr;
2104         struct inpcblbgroup *grp;
2105         struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2106
2107         INP_HASH_LOCK_ASSERT(pcbinfo);
2108
2109         hdr = &pcbinfo->ipi_lbgrouphashbase[
2110             INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2111
2112         /*
2113          * Search for an LB group match based on the following criteria:
2114          * - prefer jailed groups to non-jailed groups
2115          * - prefer exact source address matches to wildcard matches
2116          * - prefer groups bound to the specified NUMA domain
2117          */
2118         jail_exact = jail_wild = local_exact = local_wild = NULL;
2119         CK_LIST_FOREACH(grp, hdr, il_list) {
2120                 bool injail;
2121
2122 #ifdef INET6
2123                 if (!(grp->il_vflag & INP_IPV4))
2124                         continue;
2125 #endif
2126                 if (grp->il_lport != lport)
2127                         continue;
2128
2129                 injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2130                 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2131                     laddr) != 0)
2132                         continue;
2133
2134                 if (grp->il_laddr.s_addr == laddr->s_addr) {
2135                         if (injail) {
2136                                 jail_exact = grp;
2137                                 if (in_pcblookup_lb_numa_match(grp, domain))
2138                                         /* This is a perfect match. */
2139                                         goto out;
2140                         } else if (local_exact == NULL ||
2141                             in_pcblookup_lb_numa_match(grp, domain)) {
2142                                 local_exact = grp;
2143                         }
2144                 } else if (grp->il_laddr.s_addr == INADDR_ANY) {
2145                         if (injail) {
2146                                 if (jail_wild == NULL ||
2147                                     in_pcblookup_lb_numa_match(grp, domain))
2148                                         jail_wild = grp;
2149                         } else if (local_wild == NULL ||
2150                             in_pcblookup_lb_numa_match(grp, domain)) {
2151                                 local_wild = grp;
2152                         }
2153                 }
2154         }
2155
2156         if (jail_exact != NULL)
2157                 grp = jail_exact;
2158         else if (jail_wild != NULL)
2159                 grp = jail_wild;
2160         else if (local_exact != NULL)
2161                 grp = local_exact;
2162         else
2163                 grp = local_wild;
2164         if (grp == NULL)
2165                 return (NULL);
2166 out:
2167         return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) %
2168             grp->il_inpcnt]);
2169 }
2170
2171 static struct inpcb *
2172 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2173     u_short fport, struct in_addr laddr, u_short lport)
2174 {
2175         struct inpcbhead *head;
2176         struct inpcb *inp, *match;
2177
2178         INP_HASH_LOCK_ASSERT(pcbinfo);
2179
2180         match = NULL;
2181         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport,
2182             pcbinfo->ipi_hashmask)];
2183         CK_LIST_FOREACH(inp, head, inp_hash) {
2184 #ifdef INET6
2185                 /* XXX inp locking */
2186                 if ((inp->inp_vflag & INP_IPV4) == 0)
2187                         continue;
2188 #endif
2189                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2190                     inp->inp_laddr.s_addr == laddr.s_addr &&
2191                     inp->inp_fport == fport &&
2192                     inp->inp_lport == lport)
2193                         return (inp);
2194         }
2195         return (match);
2196 }
2197
2198 static struct inpcb *
2199 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2200     u_short fport, struct in_addr laddr, u_short lport)
2201 {
2202         struct inpcbhead *head;
2203         struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2204 #ifdef INET6
2205         struct inpcb *local_wild_mapped;
2206 #endif
2207
2208         INP_HASH_LOCK_ASSERT(pcbinfo);
2209
2210         /*
2211          * Order of socket selection - we always prefer jails.
2212          *      1. jailed, non-wild.
2213          *      2. jailed, wild.
2214          *      3. non-jailed, non-wild.
2215          *      4. non-jailed, wild.
2216          */
2217         head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport,
2218             pcbinfo->ipi_hashmask)];
2219         local_wild = local_exact = jail_wild = NULL;
2220 #ifdef INET6
2221         local_wild_mapped = NULL;
2222 #endif
2223         CK_LIST_FOREACH(inp, head, inp_hash) {
2224                 bool injail;
2225
2226 #ifdef INET6
2227                 /* XXX inp locking */
2228                 if ((inp->inp_vflag & INP_IPV4) == 0)
2229                         continue;
2230 #endif
2231                 if (inp->inp_faddr.s_addr != INADDR_ANY ||
2232                     inp->inp_lport != lport)
2233                         continue;
2234
2235                 injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2236                 if (injail) {
2237                         if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2238                             &laddr) != 0)
2239                                 continue;
2240                 } else {
2241                         if (local_exact != NULL)
2242                                 continue;
2243                 }
2244
2245                 if (inp->inp_laddr.s_addr == laddr.s_addr) {
2246                         if (injail)
2247                                 return (inp);
2248                         local_exact = inp;
2249                 } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2250 #ifdef INET6
2251                         /* XXX inp locking, NULL check */
2252                         if (inp->inp_vflag & INP_IPV6PROTO)
2253                                 local_wild_mapped = inp;
2254                         else
2255 #endif
2256                                 if (injail)
2257                                         jail_wild = inp;
2258                                 else
2259                                         local_wild = inp;
2260                 }
2261         }
2262         if (jail_wild != NULL)
2263                 return (jail_wild);
2264         if (local_exact != NULL)
2265                 return (local_exact);
2266         if (local_wild != NULL)
2267                 return (local_wild);
2268 #ifdef INET6
2269         if (local_wild_mapped != NULL)
2270                 return (local_wild_mapped);
2271 #endif
2272         return (NULL);
2273 }
2274
2275 /*
2276  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2277  * that the caller has either locked the hash list, which usually happens
2278  * for bind(2) operations, or is in SMR section, which happens when sorting
2279  * out incoming packets.
2280  */
2281 static struct inpcb *
2282 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2283     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2284     uint8_t numa_domain)
2285 {
2286         struct inpcb *inp;
2287         const u_short fport = fport_arg, lport = lport_arg;
2288
2289         KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0,
2290             ("%s: invalid lookup flags %d", __func__, lookupflags));
2291         KASSERT(faddr.s_addr != INADDR_ANY,
2292             ("%s: invalid foreign address", __func__));
2293         KASSERT(laddr.s_addr != INADDR_ANY,
2294             ("%s: invalid local address", __func__));
2295         INP_HASH_LOCK_ASSERT(pcbinfo);
2296
2297         inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2298         if (inp != NULL)
2299                 return (inp);
2300
2301         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2302                 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, &laddr,
2303                     lport, numa_domain);
2304                 if (inp == NULL) {
2305                         inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr,
2306                             fport, laddr, lport);
2307                 }
2308         }
2309
2310         return (inp);
2311 }
2312
2313 static struct inpcb *
2314 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2315     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2316     uint8_t numa_domain)
2317 {
2318         struct inpcb *inp;
2319
2320         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2321             ("%s: invalid lookup flags %d", __func__, lookupflags));
2322         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2323             ("%s: LOCKPCB not set", __func__));
2324
2325         smr_enter(pcbinfo->ipi_smr);
2326         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2327             lookupflags & INPLOOKUP_WILDCARD, numa_domain);
2328         if (inp != NULL) {
2329                 if (__predict_false(inp_smr_lock(inp,
2330                     (lookupflags & INPLOOKUP_LOCKMASK)) == false))
2331                         inp = NULL;
2332         } else
2333                 smr_exit(pcbinfo->ipi_smr);
2334
2335         return (inp);
2336 }
2337
2338 /*
2339  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2340  * from which a pre-calculated hash value may be extracted.
2341  */
2342 struct inpcb *
2343 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2344     struct in_addr laddr, u_int lport, int lookupflags,
2345     struct ifnet *ifp __unused)
2346 {
2347         return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2348             lookupflags, M_NODOM));
2349 }
2350
2351 struct inpcb *
2352 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2353     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2354     struct ifnet *ifp __unused, struct mbuf *m)
2355 {
2356         return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2357             lookupflags, m->m_pkthdr.numa_domain));
2358 }
2359 #endif /* INET */
2360
2361 /*
2362  * Insert PCB onto various hash lists.
2363  */
2364 int
2365 in_pcbinshash(struct inpcb *inp)
2366 {
2367         struct inpcbhead *pcbhash;
2368         struct inpcbporthead *pcbporthash;
2369         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2370         struct inpcbport *phd;
2371
2372         INP_WLOCK_ASSERT(inp);
2373         INP_HASH_WLOCK_ASSERT(pcbinfo);
2374
2375         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2376             ("in_pcbinshash: INP_INHASHLIST"));
2377
2378 #ifdef INET6
2379         if (inp->inp_vflag & INP_IPV6)
2380                 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr,
2381                     inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2382         else
2383 #endif
2384                 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr,
2385                     inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2386
2387         pcbporthash = &pcbinfo->ipi_porthashbase[
2388             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2389
2390         /*
2391          * Add entry to load balance group.
2392          * Only do this if SO_REUSEPORT_LB is set.
2393          */
2394         if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) {
2395                 int error = in_pcbinslbgrouphash(inp, M_NODOM);
2396                 if (error != 0)
2397                         return (error);
2398         }
2399
2400         /*
2401          * Go through port list and look for a head for this lport.
2402          */
2403         CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2404                 if (phd->phd_port == inp->inp_lport)
2405                         break;
2406         }
2407
2408         /*
2409          * If none exists, malloc one and tack it on.
2410          */
2411         if (phd == NULL) {
2412                 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2413                 if (phd == NULL) {
2414                         if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
2415                                 in_pcbremlbgrouphash(inp);
2416                         return (ENOMEM);
2417                 }
2418                 phd->phd_port = inp->inp_lport;
2419                 CK_LIST_INIT(&phd->phd_pcblist);
2420                 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2421         }
2422         inp->inp_phd = phd;
2423         CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2424         CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2425         inp->inp_flags |= INP_INHASHLIST;
2426
2427         return (0);
2428 }
2429
2430 static void
2431 in_pcbremhash(struct inpcb *inp)
2432 {
2433         struct inpcbport *phd = inp->inp_phd;
2434
2435         INP_WLOCK_ASSERT(inp);
2436         MPASS(inp->inp_flags & INP_INHASHLIST);
2437
2438         INP_HASH_WLOCK(inp->inp_pcbinfo);
2439         if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
2440                 in_pcbremlbgrouphash(inp);
2441         CK_LIST_REMOVE(inp, inp_hash);
2442         CK_LIST_REMOVE(inp, inp_portlist);
2443         if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2444                 CK_LIST_REMOVE(phd, phd_hash);
2445                 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
2446         }
2447         INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2448         inp->inp_flags &= ~INP_INHASHLIST;
2449 }
2450
2451 /*
2452  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2453  * changed. NOTE: This does not handle the case of the lport changing (the
2454  * hashed port list would have to be updated as well), so the lport must
2455  * not change after in_pcbinshash() has been called.
2456  *
2457  * XXXGL: a race between this function and SMR-protected hash iterator
2458  * will lead to iterator traversing a possibly wrong hash list. However,
2459  * this race should have been here since change from rwlock to epoch.
2460  */
2461 void
2462 in_pcbrehash(struct inpcb *inp)
2463 {
2464         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2465         struct inpcbhead *head;
2466
2467         INP_WLOCK_ASSERT(inp);
2468         INP_HASH_WLOCK_ASSERT(pcbinfo);
2469
2470         KASSERT(inp->inp_flags & INP_INHASHLIST,
2471             ("in_pcbrehash: !INP_INHASHLIST"));
2472
2473 #ifdef INET6
2474         if (inp->inp_vflag & INP_IPV6)
2475                 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr,
2476                     inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2477         else
2478 #endif
2479                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr,
2480                     inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2481
2482         CK_LIST_REMOVE(inp, inp_hash);
2483         CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2484 }
2485
2486 /*
2487  * Check for alternatives when higher level complains
2488  * about service problems.  For now, invalidate cached
2489  * routing information.  If the route was created dynamically
2490  * (by a redirect), time to try a default gateway again.
2491  */
2492 void
2493 in_losing(struct inpcb *inp)
2494 {
2495
2496         RO_INVALIDATE_CACHE(&inp->inp_route);
2497         return;
2498 }
2499
2500 /*
2501  * A set label operation has occurred at the socket layer, propagate the
2502  * label change into the in_pcb for the socket.
2503  */
2504 void
2505 in_pcbsosetlabel(struct socket *so)
2506 {
2507 #ifdef MAC
2508         struct inpcb *inp;
2509
2510         inp = sotoinpcb(so);
2511         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2512
2513         INP_WLOCK(inp);
2514         SOCK_LOCK(so);
2515         mac_inpcb_sosetlabel(so, inp);
2516         SOCK_UNLOCK(so);
2517         INP_WUNLOCK(inp);
2518 #endif
2519 }
2520
2521 void
2522 inp_wlock(struct inpcb *inp)
2523 {
2524
2525         INP_WLOCK(inp);
2526 }
2527
2528 void
2529 inp_wunlock(struct inpcb *inp)
2530 {
2531
2532         INP_WUNLOCK(inp);
2533 }
2534
2535 void
2536 inp_rlock(struct inpcb *inp)
2537 {
2538
2539         INP_RLOCK(inp);
2540 }
2541
2542 void
2543 inp_runlock(struct inpcb *inp)
2544 {
2545
2546         INP_RUNLOCK(inp);
2547 }
2548
2549 #ifdef INVARIANT_SUPPORT
2550 void
2551 inp_lock_assert(struct inpcb *inp)
2552 {
2553
2554         INP_WLOCK_ASSERT(inp);
2555 }
2556
2557 void
2558 inp_unlock_assert(struct inpcb *inp)
2559 {
2560
2561         INP_UNLOCK_ASSERT(inp);
2562 }
2563 #endif
2564
2565 void
2566 inp_apply_all(struct inpcbinfo *pcbinfo,
2567     void (*func)(struct inpcb *, void *), void *arg)
2568 {
2569         struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2570             INPLOOKUP_WLOCKPCB);
2571         struct inpcb *inp;
2572
2573         while ((inp = inp_next(&inpi)) != NULL)
2574                 func(inp, arg);
2575 }
2576
2577 struct socket *
2578 inp_inpcbtosocket(struct inpcb *inp)
2579 {
2580
2581         INP_WLOCK_ASSERT(inp);
2582         return (inp->inp_socket);
2583 }
2584
2585 struct tcpcb *
2586 inp_inpcbtotcpcb(struct inpcb *inp)
2587 {
2588
2589         INP_WLOCK_ASSERT(inp);
2590         return ((struct tcpcb *)inp->inp_ppcb);
2591 }
2592
2593 int
2594 inp_ip_tos_get(const struct inpcb *inp)
2595 {
2596
2597         return (inp->inp_ip_tos);
2598 }
2599
2600 void
2601 inp_ip_tos_set(struct inpcb *inp, int val)
2602 {
2603
2604         inp->inp_ip_tos = val;
2605 }
2606
2607 void
2608 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2609     uint32_t *faddr, uint16_t *fp)
2610 {
2611
2612         INP_LOCK_ASSERT(inp);
2613         *laddr = inp->inp_laddr.s_addr;
2614         *faddr = inp->inp_faddr.s_addr;
2615         *lp = inp->inp_lport;
2616         *fp = inp->inp_fport;
2617 }
2618
2619 struct inpcb *
2620 so_sotoinpcb(struct socket *so)
2621 {
2622
2623         return (sotoinpcb(so));
2624 }
2625
2626 /*
2627  * Create an external-format (``xinpcb'') structure using the information in
2628  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2629  * reduce the spew of irrelevant information over this interface, to isolate
2630  * user code from changes in the kernel structure, and potentially to provide
2631  * information-hiding if we decide that some of this information should be
2632  * hidden from users.
2633  */
2634 void
2635 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2636 {
2637
2638         bzero(xi, sizeof(*xi));
2639         xi->xi_len = sizeof(struct xinpcb);
2640         if (inp->inp_socket)
2641                 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2642         bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2643         xi->inp_gencnt = inp->inp_gencnt;
2644         xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2645         xi->inp_flow = inp->inp_flow;
2646         xi->inp_flowid = inp->inp_flowid;
2647         xi->inp_flowtype = inp->inp_flowtype;
2648         xi->inp_flags = inp->inp_flags;
2649         xi->inp_flags2 = inp->inp_flags2;
2650         xi->in6p_cksum = inp->in6p_cksum;
2651         xi->in6p_hops = inp->in6p_hops;
2652         xi->inp_ip_tos = inp->inp_ip_tos;
2653         xi->inp_vflag = inp->inp_vflag;
2654         xi->inp_ip_ttl = inp->inp_ip_ttl;
2655         xi->inp_ip_p = inp->inp_ip_p;
2656         xi->inp_ip_minttl = inp->inp_ip_minttl;
2657 }
2658
2659 int
2660 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2661     int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2662 {
2663         struct sockopt sopt;
2664         struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2665             INPLOOKUP_WLOCKPCB);
2666         struct inpcb *inp;
2667         struct sockopt_parameters *params;
2668         struct socket *so;
2669         int error;
2670         char buf[1024];
2671
2672         if (req->oldptr != NULL || req->oldlen != 0)
2673                 return (EINVAL);
2674         if (req->newptr == NULL)
2675                 return (EPERM);
2676         if (req->newlen > sizeof(buf))
2677                 return (ENOMEM);
2678         error = SYSCTL_IN(req, buf, req->newlen);
2679         if (error != 0)
2680                 return (error);
2681         if (req->newlen < sizeof(struct sockopt_parameters))
2682                 return (EINVAL);
2683         params = (struct sockopt_parameters *)buf;
2684         sopt.sopt_level = params->sop_level;
2685         sopt.sopt_name = params->sop_optname;
2686         sopt.sopt_dir = SOPT_SET;
2687         sopt.sopt_val = params->sop_optval;
2688         sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2689         sopt.sopt_td = NULL;
2690 #ifdef INET6
2691         if (params->sop_inc.inc_flags & INC_ISIPV6) {
2692                 if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
2693                         params->sop_inc.inc6_laddr.s6_addr16[1] =
2694                             htons(params->sop_inc.inc6_zoneid & 0xffff);
2695                 if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
2696                         params->sop_inc.inc6_faddr.s6_addr16[1] =
2697                             htons(params->sop_inc.inc6_zoneid & 0xffff);
2698         }
2699 #endif
2700         if (params->sop_inc.inc_lport != htons(0)) {
2701                 if (params->sop_inc.inc_fport == htons(0))
2702                         inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport,
2703                             pcbinfo->ipi_hashmask);
2704                 else
2705 #ifdef INET6
2706                         if (params->sop_inc.inc_flags & INC_ISIPV6)
2707                                 inpi.hash = INP6_PCBHASH(
2708                                     &params->sop_inc.inc6_faddr,
2709                                     params->sop_inc.inc_lport,
2710                                     params->sop_inc.inc_fport,
2711                                     pcbinfo->ipi_hashmask);
2712                         else
2713 #endif
2714                                 inpi.hash = INP_PCBHASH(
2715                                     &params->sop_inc.inc_faddr,
2716                                     params->sop_inc.inc_lport,
2717                                     params->sop_inc.inc_fport,
2718                                     pcbinfo->ipi_hashmask);
2719         }
2720         while ((inp = inp_next(&inpi)) != NULL)
2721                 if (inp->inp_gencnt == params->sop_id) {
2722                         if (inp->inp_flags & INP_DROPPED) {
2723                                 INP_WUNLOCK(inp);
2724                                 return (ECONNRESET);
2725                         }
2726                         so = inp->inp_socket;
2727                         KASSERT(so != NULL, ("inp_socket == NULL"));
2728                         soref(so);
2729                         error = (*ctloutput_set)(inp, &sopt);
2730                         sorele(so);
2731                         break;
2732                 }
2733         if (inp == NULL)
2734                 error = ESRCH;
2735         return (error);
2736 }
2737
2738 #ifdef DDB
2739 static void
2740 db_print_indent(int indent)
2741 {
2742         int i;
2743
2744         for (i = 0; i < indent; i++)
2745                 db_printf(" ");
2746 }
2747
2748 static void
2749 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2750 {
2751         char faddr_str[48], laddr_str[48];
2752
2753         db_print_indent(indent);
2754         db_printf("%s at %p\n", name, inc);
2755
2756         indent += 2;
2757
2758 #ifdef INET6
2759         if (inc->inc_flags & INC_ISIPV6) {
2760                 /* IPv6. */
2761                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2762                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2763         } else
2764 #endif
2765         {
2766                 /* IPv4. */
2767                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2768                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2769         }
2770         db_print_indent(indent);
2771         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2772             ntohs(inc->inc_lport));
2773         db_print_indent(indent);
2774         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2775             ntohs(inc->inc_fport));
2776 }
2777
2778 static void
2779 db_print_inpflags(int inp_flags)
2780 {
2781         int comma;
2782
2783         comma = 0;
2784         if (inp_flags & INP_RECVOPTS) {
2785                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2786                 comma = 1;
2787         }
2788         if (inp_flags & INP_RECVRETOPTS) {
2789                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2790                 comma = 1;
2791         }
2792         if (inp_flags & INP_RECVDSTADDR) {
2793                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2794                 comma = 1;
2795         }
2796         if (inp_flags & INP_ORIGDSTADDR) {
2797                 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2798                 comma = 1;
2799         }
2800         if (inp_flags & INP_HDRINCL) {
2801                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2802                 comma = 1;
2803         }
2804         if (inp_flags & INP_HIGHPORT) {
2805                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2806                 comma = 1;
2807         }
2808         if (inp_flags & INP_LOWPORT) {
2809                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2810                 comma = 1;
2811         }
2812         if (inp_flags & INP_ANONPORT) {
2813                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2814                 comma = 1;
2815         }
2816         if (inp_flags & INP_RECVIF) {
2817                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2818                 comma = 1;
2819         }
2820         if (inp_flags & INP_MTUDISC) {
2821                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2822                 comma = 1;
2823         }
2824         if (inp_flags & INP_RECVTTL) {
2825                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2826                 comma = 1;
2827         }
2828         if (inp_flags & INP_DONTFRAG) {
2829                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2830                 comma = 1;
2831         }
2832         if (inp_flags & INP_RECVTOS) {
2833                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2834                 comma = 1;
2835         }
2836         if (inp_flags & IN6P_IPV6_V6ONLY) {
2837                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2838                 comma = 1;
2839         }
2840         if (inp_flags & IN6P_PKTINFO) {
2841                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2842                 comma = 1;
2843         }
2844         if (inp_flags & IN6P_HOPLIMIT) {
2845                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2846                 comma = 1;
2847         }
2848         if (inp_flags & IN6P_HOPOPTS) {
2849                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2850                 comma = 1;
2851         }
2852         if (inp_flags & IN6P_DSTOPTS) {
2853                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2854                 comma = 1;
2855         }
2856         if (inp_flags & IN6P_RTHDR) {
2857                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2858                 comma = 1;
2859         }
2860         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2861                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2862                 comma = 1;
2863         }
2864         if (inp_flags & IN6P_TCLASS) {
2865                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2866                 comma = 1;
2867         }
2868         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2869                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2870                 comma = 1;
2871         }
2872         if (inp_flags & INP_ONESBCAST) {
2873                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2874                 comma  = 1;
2875         }
2876         if (inp_flags & INP_DROPPED) {
2877                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2878                 comma  = 1;
2879         }
2880         if (inp_flags & INP_SOCKREF) {
2881                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2882                 comma  = 1;
2883         }
2884         if (inp_flags & IN6P_RFC2292) {
2885                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2886                 comma = 1;
2887         }
2888         if (inp_flags & IN6P_MTU) {
2889                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2890                 comma = 1;
2891         }
2892 }
2893
2894 static void
2895 db_print_inpvflag(u_char inp_vflag)
2896 {
2897         int comma;
2898
2899         comma = 0;
2900         if (inp_vflag & INP_IPV4) {
2901                 db_printf("%sINP_IPV4", comma ? ", " : "");
2902                 comma  = 1;
2903         }
2904         if (inp_vflag & INP_IPV6) {
2905                 db_printf("%sINP_IPV6", comma ? ", " : "");
2906                 comma  = 1;
2907         }
2908         if (inp_vflag & INP_IPV6PROTO) {
2909                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2910                 comma  = 1;
2911         }
2912 }
2913
2914 static void
2915 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2916 {
2917
2918         db_print_indent(indent);
2919         db_printf("%s at %p\n", name, inp);
2920
2921         indent += 2;
2922
2923         db_print_indent(indent);
2924         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2925
2926         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2927
2928         db_print_indent(indent);
2929         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2930             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2931
2932         db_print_indent(indent);
2933         db_printf("inp_label: %p   inp_flags: 0x%x (",
2934            inp->inp_label, inp->inp_flags);
2935         db_print_inpflags(inp->inp_flags);
2936         db_printf(")\n");
2937
2938         db_print_indent(indent);
2939         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2940             inp->inp_vflag);
2941         db_print_inpvflag(inp->inp_vflag);
2942         db_printf(")\n");
2943
2944         db_print_indent(indent);
2945         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2946             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2947
2948         db_print_indent(indent);
2949 #ifdef INET6
2950         if (inp->inp_vflag & INP_IPV6) {
2951                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2952                     "in6p_moptions: %p\n", inp->in6p_options,
2953                     inp->in6p_outputopts, inp->in6p_moptions);
2954                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2955                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2956                     inp->in6p_hops);
2957         } else
2958 #endif
2959         {
2960                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2961                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2962                     inp->inp_options, inp->inp_moptions);
2963         }
2964
2965         db_print_indent(indent);
2966         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2967             (uintmax_t)inp->inp_gencnt);
2968 }
2969
2970 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2971 {
2972         struct inpcb *inp;
2973
2974         if (!have_addr) {
2975                 db_printf("usage: show inpcb <addr>\n");
2976                 return;
2977         }
2978         inp = (struct inpcb *)addr;
2979
2980         db_print_inpcb(inp, "inpcb", 0);
2981 }
2982 #endif /* DDB */
2983
2984 #ifdef RATELIMIT
2985 /*
2986  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2987  * if any.
2988  */
2989 int
2990 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2991 {
2992         union if_snd_tag_modify_params params = {
2993                 .rate_limit.max_rate = max_pacing_rate,
2994                 .rate_limit.flags = M_NOWAIT,
2995         };
2996         struct m_snd_tag *mst;
2997         int error;
2998
2999         mst = inp->inp_snd_tag;
3000         if (mst == NULL)
3001                 return (EINVAL);
3002
3003         if (mst->sw->snd_tag_modify == NULL) {
3004                 error = EOPNOTSUPP;
3005         } else {
3006                 error = mst->sw->snd_tag_modify(mst, &params);
3007         }
3008         return (error);
3009 }
3010
3011 /*
3012  * Query existing TX rate limit based on the existing
3013  * "inp->inp_snd_tag", if any.
3014  */
3015 int
3016 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3017 {
3018         union if_snd_tag_query_params params = { };
3019         struct m_snd_tag *mst;
3020         int error;
3021
3022         mst = inp->inp_snd_tag;
3023         if (mst == NULL)
3024                 return (EINVAL);
3025
3026         if (mst->sw->snd_tag_query == NULL) {
3027                 error = EOPNOTSUPP;
3028         } else {
3029                 error = mst->sw->snd_tag_query(mst, &params);
3030                 if (error == 0 && p_max_pacing_rate != NULL)
3031                         *p_max_pacing_rate = params.rate_limit.max_rate;
3032         }
3033         return (error);
3034 }
3035
3036 /*
3037  * Query existing TX queue level based on the existing
3038  * "inp->inp_snd_tag", if any.
3039  */
3040 int
3041 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3042 {
3043         union if_snd_tag_query_params params = { };
3044         struct m_snd_tag *mst;
3045         int error;
3046
3047         mst = inp->inp_snd_tag;
3048         if (mst == NULL)
3049                 return (EINVAL);
3050
3051         if (mst->sw->snd_tag_query == NULL)
3052                 return (EOPNOTSUPP);
3053
3054         error = mst->sw->snd_tag_query(mst, &params);
3055         if (error == 0 && p_txqueue_level != NULL)
3056                 *p_txqueue_level = params.rate_limit.queue_level;
3057         return (error);
3058 }
3059
3060 /*
3061  * Allocate a new TX rate limit send tag from the network interface
3062  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3063  */
3064 int
3065 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3066     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3067
3068 {
3069         union if_snd_tag_alloc_params params = {
3070                 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3071                     IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3072                 .rate_limit.hdr.flowid = flowid,
3073                 .rate_limit.hdr.flowtype = flowtype,
3074                 .rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3075                 .rate_limit.max_rate = max_pacing_rate,
3076                 .rate_limit.flags = M_NOWAIT,
3077         };
3078         int error;
3079
3080         INP_WLOCK_ASSERT(inp);
3081
3082         /*
3083          * If there is already a send tag, or the INP is being torn
3084          * down, allocating a new send tag is not allowed. Else send
3085          * tags may leak.
3086          */
3087         if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3088                 return (EINVAL);
3089
3090         error = m_snd_tag_alloc(ifp, &params, st);
3091 #ifdef INET
3092         if (error == 0) {
3093                 counter_u64_add(rate_limit_set_ok, 1);
3094                 counter_u64_add(rate_limit_active, 1);
3095         } else if (error != EOPNOTSUPP)
3096                   counter_u64_add(rate_limit_alloc_fail, 1);
3097 #endif
3098         return (error);
3099 }
3100
3101 void
3102 in_pcbdetach_tag(struct m_snd_tag *mst)
3103 {
3104
3105         m_snd_tag_rele(mst);
3106 #ifdef INET
3107         counter_u64_add(rate_limit_active, -1);
3108 #endif
3109 }
3110
3111 /*
3112  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3113  * if any:
3114  */
3115 void
3116 in_pcbdetach_txrtlmt(struct inpcb *inp)
3117 {
3118         struct m_snd_tag *mst;
3119
3120         INP_WLOCK_ASSERT(inp);
3121
3122         mst = inp->inp_snd_tag;
3123         inp->inp_snd_tag = NULL;
3124
3125         if (mst == NULL)
3126                 return;
3127
3128         m_snd_tag_rele(mst);
3129 #ifdef INET
3130         counter_u64_add(rate_limit_active, -1);
3131 #endif
3132 }
3133
3134 int
3135 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3136 {
3137         int error;
3138
3139         /*
3140          * If the existing send tag is for the wrong interface due to
3141          * a route change, first drop the existing tag.  Set the
3142          * CHANGED flag so that we will keep trying to allocate a new
3143          * tag if we fail to allocate one this time.
3144          */
3145         if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3146                 in_pcbdetach_txrtlmt(inp);
3147                 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3148         }
3149
3150         /*
3151          * NOTE: When attaching to a network interface a reference is
3152          * made to ensure the network interface doesn't go away until
3153          * all ratelimit connections are gone. The network interface
3154          * pointers compared below represent valid network interfaces,
3155          * except when comparing towards NULL.
3156          */
3157         if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3158                 error = 0;
3159         } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3160                 if (inp->inp_snd_tag != NULL)
3161                         in_pcbdetach_txrtlmt(inp);
3162                 error = 0;
3163         } else if (inp->inp_snd_tag == NULL) {
3164                 /*
3165                  * In order to utilize packet pacing with RSS, we need
3166                  * to wait until there is a valid RSS hash before we
3167                  * can proceed:
3168                  */
3169                 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3170                         error = EAGAIN;
3171                 } else {
3172                         error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3173                             mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3174                 }
3175         } else {
3176                 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3177         }
3178         if (error == 0 || error == EOPNOTSUPP)
3179                 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3180
3181         return (error);
3182 }
3183
3184 /*
3185  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3186  * is set in the fast path and will attach/detach/modify the TX rate
3187  * limit send tag based on the socket's so_max_pacing_rate value.
3188  */
3189 void
3190 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3191 {
3192         struct socket *socket;
3193         uint32_t max_pacing_rate;
3194         bool did_upgrade;
3195
3196         if (inp == NULL)
3197                 return;
3198
3199         socket = inp->inp_socket;
3200         if (socket == NULL)
3201                 return;
3202
3203         if (!INP_WLOCKED(inp)) {
3204                 /*
3205                  * NOTE: If the write locking fails, we need to bail
3206                  * out and use the non-ratelimited ring for the
3207                  * transmit until there is a new chance to get the
3208                  * write lock.
3209                  */
3210                 if (!INP_TRY_UPGRADE(inp))
3211                         return;
3212                 did_upgrade = 1;
3213         } else {
3214                 did_upgrade = 0;
3215         }
3216
3217         /*
3218          * NOTE: The so_max_pacing_rate value is read unlocked,
3219          * because atomic updates are not required since the variable
3220          * is checked at every mbuf we send. It is assumed that the
3221          * variable read itself will be atomic.
3222          */
3223         max_pacing_rate = socket->so_max_pacing_rate;
3224
3225         in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3226
3227         if (did_upgrade)
3228                 INP_DOWNGRADE(inp);
3229 }
3230
3231 /*
3232  * Track route changes for TX rate limiting.
3233  */
3234 void
3235 in_pcboutput_eagain(struct inpcb *inp)
3236 {
3237         bool did_upgrade;
3238
3239         if (inp == NULL)
3240                 return;
3241
3242         if (inp->inp_snd_tag == NULL)
3243                 return;
3244
3245         if (!INP_WLOCKED(inp)) {
3246                 /*
3247                  * NOTE: If the write locking fails, we need to bail
3248                  * out and use the non-ratelimited ring for the
3249                  * transmit until there is a new chance to get the
3250                  * write lock.
3251                  */
3252                 if (!INP_TRY_UPGRADE(inp))
3253                         return;
3254                 did_upgrade = 1;
3255         } else {
3256                 did_upgrade = 0;
3257         }
3258
3259         /* detach rate limiting */
3260         in_pcbdetach_txrtlmt(inp);
3261
3262         /* make sure new mbuf send tag allocation is made */
3263         inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3264
3265         if (did_upgrade)
3266                 INP_DOWNGRADE(inp);
3267 }
3268
3269 #ifdef INET
3270 static void
3271 rl_init(void *st)
3272 {
3273         rate_limit_new = counter_u64_alloc(M_WAITOK);
3274         rate_limit_chg = counter_u64_alloc(M_WAITOK);
3275         rate_limit_active = counter_u64_alloc(M_WAITOK);
3276         rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3277         rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3278 }
3279
3280 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3281 #endif
3282 #endif /* RATELIMIT */