]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
MFV r336991, r337001:
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *      The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
38  */
39
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75
76 #include <vm/uma.h>
77
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106
107 #include <netipsec/ipsec_support.h>
108
109 #include <security/mac/mac_framework.h>
110
111 #define INPCBLBGROUP_SIZMIN     8
112 #define INPCBLBGROUP_SIZMAX     256
113
114 static struct callout   ipport_tick_callout;
115
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
126
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142
143 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
144
145 static void     in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148                             struct in_addr faddr, u_int fport_arg,
149                             struct in_addr laddr, u_int lport_arg,
150                             int lookupflags, struct ifnet *ifp);
151
152 #define RANGECHK(var, min, max) \
153         if ((var) < (min)) { (var) = (min); } \
154         else if ((var) > (max)) { (var) = (max); }
155
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159         int error;
160
161         error = sysctl_handle_int(oidp, arg1, arg2, req);
162         if (error == 0) {
163                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169         }
170         return (error);
171 }
172
173 #undef RANGECHK
174
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
176     "IP Ports");
177
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
179         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180         &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
182         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183         &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
185         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186         &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
188         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189         &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
191         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192         &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
194         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
195         &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
197         CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
198         &VNET_NAME(ipport_reservedhigh), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
200         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
202         CTLFLAG_VNET | CTLFLAG_RW,
203         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
205         CTLFLAG_VNET | CTLFLAG_RW,
206         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
207         "allocations before switching to a sequental one");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
209         CTLFLAG_VNET | CTLFLAG_RW,
210         &VNET_NAME(ipport_randomtime), 0,
211         "Minimum time to keep sequental port "
212         "allocation before switching to a random one");
213 #endif /* INET */
214
215 /*
216  * in_pcb.c: manage the Protocol Control Blocks.
217  *
218  * NOTE: It is assumed that most of these functions will be called with
219  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
220  * functions often modify hash chains or addresses in pcbs.
221  */
222
223 static struct inpcblbgroup *
224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
225     uint16_t port, const union in_dependaddr *addr, int size)
226 {
227         struct inpcblbgroup *grp;
228         size_t bytes;
229
230         bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
231         grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
232         if (!grp)
233                 return (NULL);
234         grp->il_vflag = vflag;
235         grp->il_lport = port;
236         grp->il_dependladdr = *addr;
237         grp->il_inpsiz = size;
238         LIST_INSERT_HEAD(hdr, grp, il_list);
239         return (grp);
240 }
241
242 static void
243 in_pcblbgroup_free(struct inpcblbgroup *grp)
244 {
245
246         LIST_REMOVE(grp, il_list);
247         free(grp, M_TEMP);
248 }
249
250 static struct inpcblbgroup *
251 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
252     struct inpcblbgroup *old_grp, int size)
253 {
254         struct inpcblbgroup *grp;
255         int i;
256
257         grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
258             old_grp->il_lport, &old_grp->il_dependladdr, size);
259         if (!grp)
260                 return (NULL);
261
262         KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
263             ("invalid new local group size %d and old local group count %d",
264              grp->il_inpsiz, old_grp->il_inpcnt));
265
266         for (i = 0; i < old_grp->il_inpcnt; ++i)
267                 grp->il_inp[i] = old_grp->il_inp[i];
268         grp->il_inpcnt = old_grp->il_inpcnt;
269         in_pcblbgroup_free(old_grp);
270         return (grp);
271 }
272
273 /*
274  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
275  * and shrink group if possible.
276  */
277 static void
278 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
279     int i)
280 {
281         struct inpcblbgroup *grp = *grpp;
282
283         for (; i + 1 < grp->il_inpcnt; ++i)
284                 grp->il_inp[i] = grp->il_inp[i + 1];
285         grp->il_inpcnt--;
286
287         if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
288             grp->il_inpcnt <= (grp->il_inpsiz / 4)) {
289                 /* Shrink this group. */
290                 struct inpcblbgroup *new_grp =
291                         in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
292                 if (new_grp)
293                         *grpp = new_grp;
294         }
295         return;
296 }
297
298 /*
299  * Add PCB to load balance group for SO_REUSEPORT_LB option.
300  */
301 static int
302 in_pcbinslbgrouphash(struct inpcb *inp)
303 {
304         struct inpcbinfo *pcbinfo;
305         struct inpcblbgrouphead *hdr;
306         struct inpcblbgroup *grp;
307         uint16_t hashmask, lport;
308         uint32_t group_index;
309         struct ucred *cred;
310         static int limit_logged = 0;
311
312         pcbinfo = inp->inp_pcbinfo;
313
314         INP_WLOCK_ASSERT(inp);
315         INP_HASH_WLOCK_ASSERT(pcbinfo);
316
317         if (pcbinfo->ipi_lbgrouphashbase == NULL)
318                 return (0);
319
320         hashmask = pcbinfo->ipi_lbgrouphashmask;
321         lport = inp->inp_lport;
322         group_index = INP_PCBLBGROUP_PORTHASH(lport, hashmask);
323         hdr = &pcbinfo->ipi_lbgrouphashbase[group_index];
324
325         /*
326          * Don't allow jailed socket to join local group.
327          */
328         if (inp->inp_socket != NULL)
329                 cred = inp->inp_socket->so_cred;
330         else
331                 cred = NULL;
332         if (cred != NULL && jailed(cred))
333                 return (0);
334
335 #ifdef INET6
336         /*
337          * Don't allow IPv4 mapped INET6 wild socket.
338          */
339         if ((inp->inp_vflag & INP_IPV4) &&
340             inp->inp_laddr.s_addr == INADDR_ANY &&
341             INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
342                 return (0);
343         }
344 #endif
345
346         hdr = &pcbinfo->ipi_lbgrouphashbase[
347             INP_PCBLBGROUP_PORTHASH(inp->inp_lport,
348                 pcbinfo->ipi_lbgrouphashmask)];
349         LIST_FOREACH(grp, hdr, il_list) {
350                 if (grp->il_vflag == inp->inp_vflag &&
351                     grp->il_lport == inp->inp_lport &&
352                     memcmp(&grp->il_dependladdr,
353                         &inp->inp_inc.inc_ie.ie_dependladdr,
354                         sizeof(grp->il_dependladdr)) == 0) {
355                         break;
356                 }
357         }
358         if (grp == NULL) {
359                 /* Create new load balance group. */
360                 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
361                     inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
362                     INPCBLBGROUP_SIZMIN);
363                 if (!grp)
364                         return (ENOBUFS);
365         } else if (grp->il_inpcnt == grp->il_inpsiz) {
366                 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
367                         if (!limit_logged) {
368                                 limit_logged = 1;
369                                 printf("lb group port %d, limit reached\n",
370                                     ntohs(grp->il_lport));
371                         }
372                         return (0);
373                 }
374
375                 /* Expand this local group. */
376                 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
377                 if (!grp)
378                         return (ENOBUFS);
379         }
380
381         KASSERT(grp->il_inpcnt < grp->il_inpsiz,
382                         ("invalid local group size %d and count %d",
383                          grp->il_inpsiz, grp->il_inpcnt));
384
385         grp->il_inp[grp->il_inpcnt] = inp;
386         grp->il_inpcnt++;
387         return (0);
388 }
389
390 /*
391  * Remove PCB from load balance group.
392  */
393 static void
394 in_pcbremlbgrouphash(struct inpcb *inp)
395 {
396         struct inpcbinfo *pcbinfo;
397         struct inpcblbgrouphead *hdr;
398         struct inpcblbgroup *grp;
399         int i;
400
401         pcbinfo = inp->inp_pcbinfo;
402
403         INP_WLOCK_ASSERT(inp);
404         INP_HASH_WLOCK_ASSERT(pcbinfo);
405
406         if (pcbinfo->ipi_lbgrouphashbase == NULL)
407                 return;
408
409         hdr = &pcbinfo->ipi_lbgrouphashbase[
410             INP_PCBLBGROUP_PORTHASH(inp->inp_lport,
411                 pcbinfo->ipi_lbgrouphashmask)];
412
413         LIST_FOREACH(grp, hdr, il_list) {
414                 for (i = 0; i < grp->il_inpcnt; ++i) {
415                         if (grp->il_inp[i] != inp)
416                                 continue;
417
418                         if (grp->il_inpcnt == 1) {
419                                 /* We are the last, free this local group. */
420                                 in_pcblbgroup_free(grp);
421                         } else {
422                                 /* Pull up inpcbs, shrink group if possible. */
423                                 in_pcblbgroup_reorder(hdr, &grp, i);
424                         }
425                         return;
426                 }
427         }
428 }
429
430 /*
431  * Different protocols initialize their inpcbs differently - giving
432  * different name to the lock.  But they all are disposed the same.
433  */
434 static void
435 inpcb_fini(void *mem, int size)
436 {
437         struct inpcb *inp = mem;
438
439         INP_LOCK_DESTROY(inp);
440 }
441
442 /*
443  * Initialize an inpcbinfo -- we should be able to reduce the number of
444  * arguments in time.
445  */
446 void
447 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
448     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
449     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
450 {
451
452         INP_INFO_LOCK_INIT(pcbinfo, name);
453         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
454         INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
455 #ifdef VIMAGE
456         pcbinfo->ipi_vnet = curvnet;
457 #endif
458         pcbinfo->ipi_listhead = listhead;
459         CK_LIST_INIT(pcbinfo->ipi_listhead);
460         pcbinfo->ipi_count = 0;
461         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
462             &pcbinfo->ipi_hashmask);
463         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
464             &pcbinfo->ipi_porthashmask);
465         pcbinfo->ipi_lbgrouphashbase = hashinit(hash_nelements, M_PCB,
466             &pcbinfo->ipi_lbgrouphashmask);
467 #ifdef PCBGROUP
468         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
469 #endif
470         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
471             NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
472         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
473         uma_zone_set_warning(pcbinfo->ipi_zone,
474             "kern.ipc.maxsockets limit reached");
475 }
476
477 /*
478  * Destroy an inpcbinfo.
479  */
480 void
481 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
482 {
483
484         KASSERT(pcbinfo->ipi_count == 0,
485             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
486
487         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
488         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
489             pcbinfo->ipi_porthashmask);
490         hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
491             pcbinfo->ipi_lbgrouphashmask);
492 #ifdef PCBGROUP
493         in_pcbgroup_destroy(pcbinfo);
494 #endif
495         uma_zdestroy(pcbinfo->ipi_zone);
496         INP_LIST_LOCK_DESTROY(pcbinfo);
497         INP_HASH_LOCK_DESTROY(pcbinfo);
498         INP_INFO_LOCK_DESTROY(pcbinfo);
499 }
500
501 /*
502  * Allocate a PCB and associate it with the socket.
503  * On success return with the PCB locked.
504  */
505 int
506 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
507 {
508         struct inpcb *inp;
509         int error;
510
511 #ifdef INVARIANTS
512         if (pcbinfo == &V_tcbinfo) {
513                 INP_INFO_RLOCK_ASSERT(pcbinfo);
514         } else {
515                 INP_INFO_WLOCK_ASSERT(pcbinfo);
516         }
517 #endif
518
519         error = 0;
520         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
521         if (inp == NULL)
522                 return (ENOBUFS);
523         bzero(&inp->inp_start_zero, inp_zero_size);
524         inp->inp_pcbinfo = pcbinfo;
525         inp->inp_socket = so;
526         inp->inp_cred = crhold(so->so_cred);
527         inp->inp_inc.inc_fibnum = so->so_fibnum;
528 #ifdef MAC
529         error = mac_inpcb_init(inp, M_NOWAIT);
530         if (error != 0)
531                 goto out;
532         mac_inpcb_create(so, inp);
533 #endif
534 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
535         error = ipsec_init_pcbpolicy(inp);
536         if (error != 0) {
537 #ifdef MAC
538                 mac_inpcb_destroy(inp);
539 #endif
540                 goto out;
541         }
542 #endif /*IPSEC*/
543 #ifdef INET6
544         if (INP_SOCKAF(so) == AF_INET6) {
545                 inp->inp_vflag |= INP_IPV6PROTO;
546                 if (V_ip6_v6only)
547                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
548         }
549 #endif
550         INP_WLOCK(inp);
551         INP_LIST_WLOCK(pcbinfo);
552         CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
553         pcbinfo->ipi_count++;
554         so->so_pcb = (caddr_t)inp;
555 #ifdef INET6
556         if (V_ip6_auto_flowlabel)
557                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
558 #endif
559         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
560         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
561
562         /*
563          * Routes in inpcb's can cache L2 as well; they are guaranteed
564          * to be cleaned up.
565          */
566         inp->inp_route.ro_flags = RT_LLE_CACHE;
567         INP_LIST_WUNLOCK(pcbinfo);
568 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
569 out:
570         if (error != 0) {
571                 crfree(inp->inp_cred);
572                 uma_zfree(pcbinfo->ipi_zone, inp);
573         }
574 #endif
575         return (error);
576 }
577
578 #ifdef INET
579 int
580 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
581 {
582         int anonport, error;
583
584         INP_WLOCK_ASSERT(inp);
585         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
586
587         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
588                 return (EINVAL);
589         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
590         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
591             &inp->inp_lport, cred);
592         if (error)
593                 return (error);
594         if (in_pcbinshash(inp) != 0) {
595                 inp->inp_laddr.s_addr = INADDR_ANY;
596                 inp->inp_lport = 0;
597                 return (EAGAIN);
598         }
599         if (anonport)
600                 inp->inp_flags |= INP_ANONPORT;
601         return (0);
602 }
603 #endif
604
605 /*
606  * Select a local port (number) to use.
607  */
608 #if defined(INET) || defined(INET6)
609 int
610 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
611     struct ucred *cred, int lookupflags)
612 {
613         struct inpcbinfo *pcbinfo;
614         struct inpcb *tmpinp;
615         unsigned short *lastport;
616         int count, dorandom, error;
617         u_short aux, first, last, lport;
618 #ifdef INET
619         struct in_addr laddr;
620 #endif
621
622         pcbinfo = inp->inp_pcbinfo;
623
624         /*
625          * Because no actual state changes occur here, a global write lock on
626          * the pcbinfo isn't required.
627          */
628         INP_LOCK_ASSERT(inp);
629         INP_HASH_LOCK_ASSERT(pcbinfo);
630
631         if (inp->inp_flags & INP_HIGHPORT) {
632                 first = V_ipport_hifirstauto;   /* sysctl */
633                 last  = V_ipport_hilastauto;
634                 lastport = &pcbinfo->ipi_lasthi;
635         } else if (inp->inp_flags & INP_LOWPORT) {
636                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
637                 if (error)
638                         return (error);
639                 first = V_ipport_lowfirstauto;  /* 1023 */
640                 last  = V_ipport_lowlastauto;   /* 600 */
641                 lastport = &pcbinfo->ipi_lastlow;
642         } else {
643                 first = V_ipport_firstauto;     /* sysctl */
644                 last  = V_ipport_lastauto;
645                 lastport = &pcbinfo->ipi_lastport;
646         }
647         /*
648          * For UDP(-Lite), use random port allocation as long as the user
649          * allows it.  For TCP (and as of yet unknown) connections,
650          * use random port allocation only if the user allows it AND
651          * ipport_tick() allows it.
652          */
653         if (V_ipport_randomized &&
654                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
655                 pcbinfo == &V_ulitecbinfo))
656                 dorandom = 1;
657         else
658                 dorandom = 0;
659         /*
660          * It makes no sense to do random port allocation if
661          * we have the only port available.
662          */
663         if (first == last)
664                 dorandom = 0;
665         /* Make sure to not include UDP(-Lite) packets in the count. */
666         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
667                 V_ipport_tcpallocs++;
668         /*
669          * Instead of having two loops further down counting up or down
670          * make sure that first is always <= last and go with only one
671          * code path implementing all logic.
672          */
673         if (first > last) {
674                 aux = first;
675                 first = last;
676                 last = aux;
677         }
678
679 #ifdef INET
680         /* Make the compiler happy. */
681         laddr.s_addr = 0;
682         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
683                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
684                     __func__, inp));
685                 laddr = *laddrp;
686         }
687 #endif
688         tmpinp = NULL;  /* Make compiler happy. */
689         lport = *lportp;
690
691         if (dorandom)
692                 *lastport = first + (arc4random() % (last - first));
693
694         count = last - first;
695
696         do {
697                 if (count-- < 0)        /* completely used? */
698                         return (EADDRNOTAVAIL);
699                 ++*lastport;
700                 if (*lastport < first || *lastport > last)
701                         *lastport = first;
702                 lport = htons(*lastport);
703
704 #ifdef INET6
705                 if ((inp->inp_vflag & INP_IPV6) != 0)
706                         tmpinp = in6_pcblookup_local(pcbinfo,
707                             &inp->in6p_laddr, lport, lookupflags, cred);
708 #endif
709 #if defined(INET) && defined(INET6)
710                 else
711 #endif
712 #ifdef INET
713                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
714                             lport, lookupflags, cred);
715 #endif
716         } while (tmpinp != NULL);
717
718 #ifdef INET
719         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
720                 laddrp->s_addr = laddr.s_addr;
721 #endif
722         *lportp = lport;
723
724         return (0);
725 }
726
727 /*
728  * Return cached socket options.
729  */
730 int
731 inp_so_options(const struct inpcb *inp)
732 {
733         int so_options;
734
735         so_options = 0;
736
737         if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
738                 so_options |= SO_REUSEPORT_LB;
739         if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
740                 so_options |= SO_REUSEPORT;
741         if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
742                 so_options |= SO_REUSEADDR;
743         return (so_options);
744 }
745 #endif /* INET || INET6 */
746
747 /*
748  * Check if a new BINDMULTI socket is allowed to be created.
749  *
750  * ni points to the new inp.
751  * oi points to the exisitng inp.
752  *
753  * This checks whether the existing inp also has BINDMULTI and
754  * whether the credentials match.
755  */
756 int
757 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
758 {
759         /* Check permissions match */
760         if ((ni->inp_flags2 & INP_BINDMULTI) &&
761             (ni->inp_cred->cr_uid !=
762             oi->inp_cred->cr_uid))
763                 return (0);
764
765         /* Check the existing inp has BINDMULTI set */
766         if ((ni->inp_flags2 & INP_BINDMULTI) &&
767             ((oi->inp_flags2 & INP_BINDMULTI) == 0))
768                 return (0);
769
770         /*
771          * We're okay - either INP_BINDMULTI isn't set on ni, or
772          * it is and it matches the checks.
773          */
774         return (1);
775 }
776
777 #ifdef INET
778 /*
779  * Set up a bind operation on a PCB, performing port allocation
780  * as required, but do not actually modify the PCB. Callers can
781  * either complete the bind by setting inp_laddr/inp_lport and
782  * calling in_pcbinshash(), or they can just use the resulting
783  * port and address to authorise the sending of a once-off packet.
784  *
785  * On error, the values of *laddrp and *lportp are not changed.
786  */
787 int
788 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
789     u_short *lportp, struct ucred *cred)
790 {
791         struct socket *so = inp->inp_socket;
792         struct sockaddr_in *sin;
793         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
794         struct in_addr laddr;
795         u_short lport = 0;
796         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
797         int error;
798
799         /*
800          * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
801          * so that we don't have to add to the (already messy) code below.
802          */
803         int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
804
805         /*
806          * No state changes, so read locks are sufficient here.
807          */
808         INP_LOCK_ASSERT(inp);
809         INP_HASH_LOCK_ASSERT(pcbinfo);
810
811         if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
812                 return (EADDRNOTAVAIL);
813         laddr.s_addr = *laddrp;
814         if (nam != NULL && laddr.s_addr != INADDR_ANY)
815                 return (EINVAL);
816         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
817                 lookupflags = INPLOOKUP_WILDCARD;
818         if (nam == NULL) {
819                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
820                         return (error);
821         } else {
822                 sin = (struct sockaddr_in *)nam;
823                 if (nam->sa_len != sizeof (*sin))
824                         return (EINVAL);
825 #ifdef notdef
826                 /*
827                  * We should check the family, but old programs
828                  * incorrectly fail to initialize it.
829                  */
830                 if (sin->sin_family != AF_INET)
831                         return (EAFNOSUPPORT);
832 #endif
833                 error = prison_local_ip4(cred, &sin->sin_addr);
834                 if (error)
835                         return (error);
836                 if (sin->sin_port != *lportp) {
837                         /* Don't allow the port to change. */
838                         if (*lportp != 0)
839                                 return (EINVAL);
840                         lport = sin->sin_port;
841                 }
842                 /* NB: lport is left as 0 if the port isn't being changed. */
843                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
844                         /*
845                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
846                          * allow complete duplication of binding if
847                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
848                          * and a multicast address is bound on both
849                          * new and duplicated sockets.
850                          */
851                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
852                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
853                         /*
854                          * XXX: How to deal with SO_REUSEPORT_LB here?
855                          * Treat same as SO_REUSEPORT for now.
856                          */
857                         if ((so->so_options &
858                             (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
859                                 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
860                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
861                         sin->sin_port = 0;              /* yech... */
862                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
863                         /*
864                          * Is the address a local IP address?
865                          * If INP_BINDANY is set, then the socket may be bound
866                          * to any endpoint address, local or not.
867                          */
868                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
869                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
870                                 return (EADDRNOTAVAIL);
871                 }
872                 laddr = sin->sin_addr;
873                 if (lport) {
874                         struct inpcb *t;
875                         struct tcptw *tw;
876
877                         /* GROSS */
878                         if (ntohs(lport) <= V_ipport_reservedhigh &&
879                             ntohs(lport) >= V_ipport_reservedlow &&
880                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
881                             0))
882                                 return (EACCES);
883                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
884                             priv_check_cred(inp->inp_cred,
885                             PRIV_NETINET_REUSEPORT, 0) != 0) {
886                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
887                                     lport, INPLOOKUP_WILDCARD, cred);
888         /*
889          * XXX
890          * This entire block sorely needs a rewrite.
891          */
892                                 if (t &&
893                                     ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
894                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
895                                     (so->so_type != SOCK_STREAM ||
896                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
897                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
898                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
899                                      (t->inp_flags2 & INP_REUSEPORT) ||
900                                      (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
901                                     (inp->inp_cred->cr_uid !=
902                                      t->inp_cred->cr_uid))
903                                         return (EADDRINUSE);
904
905                                 /*
906                                  * If the socket is a BINDMULTI socket, then
907                                  * the credentials need to match and the
908                                  * original socket also has to have been bound
909                                  * with BINDMULTI.
910                                  */
911                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
912                                         return (EADDRINUSE);
913                         }
914                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
915                             lport, lookupflags, cred);
916                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
917                                 /*
918                                  * XXXRW: If an incpb has had its timewait
919                                  * state recycled, we treat the address as
920                                  * being in use (for now).  This is better
921                                  * than a panic, but not desirable.
922                                  */
923                                 tw = intotw(t);
924                                 if (tw == NULL ||
925                                     ((reuseport & tw->tw_so_options) == 0 &&
926                                         (reuseport_lb &
927                                             tw->tw_so_options) == 0)) {
928                                         return (EADDRINUSE);
929                                 }
930                         } else if (t &&
931                                    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
932                                    (reuseport & inp_so_options(t)) == 0 &&
933                                    (reuseport_lb & inp_so_options(t)) == 0) {
934 #ifdef INET6
935                                 if (ntohl(sin->sin_addr.s_addr) !=
936                                     INADDR_ANY ||
937                                     ntohl(t->inp_laddr.s_addr) !=
938                                     INADDR_ANY ||
939                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
940                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
941 #endif
942                                                 return (EADDRINUSE);
943                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
944                                         return (EADDRINUSE);
945                         }
946                 }
947         }
948         if (*lportp != 0)
949                 lport = *lportp;
950         if (lport == 0) {
951                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
952                 if (error != 0)
953                         return (error);
954
955         }
956         *laddrp = laddr.s_addr;
957         *lportp = lport;
958         return (0);
959 }
960
961 /*
962  * Connect from a socket to a specified address.
963  * Both address and port must be specified in argument sin.
964  * If don't have a local address for this socket yet,
965  * then pick one.
966  */
967 int
968 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
969     struct ucred *cred, struct mbuf *m)
970 {
971         u_short lport, fport;
972         in_addr_t laddr, faddr;
973         int anonport, error;
974
975         INP_WLOCK_ASSERT(inp);
976         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
977
978         lport = inp->inp_lport;
979         laddr = inp->inp_laddr.s_addr;
980         anonport = (lport == 0);
981         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
982             NULL, cred);
983         if (error)
984                 return (error);
985
986         /* Do the initial binding of the local address if required. */
987         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
988                 inp->inp_lport = lport;
989                 inp->inp_laddr.s_addr = laddr;
990                 if (in_pcbinshash(inp) != 0) {
991                         inp->inp_laddr.s_addr = INADDR_ANY;
992                         inp->inp_lport = 0;
993                         return (EAGAIN);
994                 }
995         }
996
997         /* Commit the remaining changes. */
998         inp->inp_lport = lport;
999         inp->inp_laddr.s_addr = laddr;
1000         inp->inp_faddr.s_addr = faddr;
1001         inp->inp_fport = fport;
1002         in_pcbrehash_mbuf(inp, m);
1003
1004         if (anonport)
1005                 inp->inp_flags |= INP_ANONPORT;
1006         return (0);
1007 }
1008
1009 int
1010 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1011 {
1012
1013         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
1014 }
1015
1016 /*
1017  * Do proper source address selection on an unbound socket in case
1018  * of connect. Take jails into account as well.
1019  */
1020 int
1021 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1022     struct ucred *cred)
1023 {
1024         struct ifaddr *ifa;
1025         struct sockaddr *sa;
1026         struct sockaddr_in *sin;
1027         struct route sro;
1028         int error;
1029
1030         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1031         /*
1032          * Bypass source address selection and use the primary jail IP
1033          * if requested.
1034          */
1035         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1036                 return (0);
1037
1038         error = 0;
1039         bzero(&sro, sizeof(sro));
1040
1041         sin = (struct sockaddr_in *)&sro.ro_dst;
1042         sin->sin_family = AF_INET;
1043         sin->sin_len = sizeof(struct sockaddr_in);
1044         sin->sin_addr.s_addr = faddr->s_addr;
1045
1046         /*
1047          * If route is known our src addr is taken from the i/f,
1048          * else punt.
1049          *
1050          * Find out route to destination.
1051          */
1052         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1053                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1054
1055         /*
1056          * If we found a route, use the address corresponding to
1057          * the outgoing interface.
1058          * 
1059          * Otherwise assume faddr is reachable on a directly connected
1060          * network and try to find a corresponding interface to take
1061          * the source address from.
1062          */
1063         NET_EPOCH_ENTER();
1064         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1065                 struct in_ifaddr *ia;
1066                 struct ifnet *ifp;
1067
1068                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1069                                         inp->inp_socket->so_fibnum));
1070                 if (ia == NULL) {
1071                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1072                                                 inp->inp_socket->so_fibnum));
1073
1074                 }
1075                 if (ia == NULL) {
1076                         error = ENETUNREACH;
1077                         goto done;
1078                 }
1079
1080                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1081                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1082                         goto done;
1083                 }
1084
1085                 ifp = ia->ia_ifp;
1086                 ia = NULL;
1087                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1088
1089                         sa = ifa->ifa_addr;
1090                         if (sa->sa_family != AF_INET)
1091                                 continue;
1092                         sin = (struct sockaddr_in *)sa;
1093                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1094                                 ia = (struct in_ifaddr *)ifa;
1095                                 break;
1096                         }
1097                 }
1098                 if (ia != NULL) {
1099                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1100                         goto done;
1101                 }
1102
1103                 /* 3. As a last resort return the 'default' jail address. */
1104                 error = prison_get_ip4(cred, laddr);
1105                 goto done;
1106         }
1107
1108         /*
1109          * If the outgoing interface on the route found is not
1110          * a loopback interface, use the address from that interface.
1111          * In case of jails do those three steps:
1112          * 1. check if the interface address belongs to the jail. If so use it.
1113          * 2. check if we have any address on the outgoing interface
1114          *    belonging to this jail. If so use it.
1115          * 3. as a last resort return the 'default' jail address.
1116          */
1117         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1118                 struct in_ifaddr *ia;
1119                 struct ifnet *ifp;
1120
1121                 /* If not jailed, use the default returned. */
1122                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1123                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1124                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1125                         goto done;
1126                 }
1127
1128                 /* Jailed. */
1129                 /* 1. Check if the iface address belongs to the jail. */
1130                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1131                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1132                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1133                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1134                         goto done;
1135                 }
1136
1137                 /*
1138                  * 2. Check if we have any address on the outgoing interface
1139                  *    belonging to this jail.
1140                  */
1141                 ia = NULL;
1142                 ifp = sro.ro_rt->rt_ifp;
1143                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1144                         sa = ifa->ifa_addr;
1145                         if (sa->sa_family != AF_INET)
1146                                 continue;
1147                         sin = (struct sockaddr_in *)sa;
1148                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1149                                 ia = (struct in_ifaddr *)ifa;
1150                                 break;
1151                         }
1152                 }
1153                 if (ia != NULL) {
1154                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1155                         goto done;
1156                 }
1157
1158                 /* 3. As a last resort return the 'default' jail address. */
1159                 error = prison_get_ip4(cred, laddr);
1160                 goto done;
1161         }
1162
1163         /*
1164          * The outgoing interface is marked with 'loopback net', so a route
1165          * to ourselves is here.
1166          * Try to find the interface of the destination address and then
1167          * take the address from there. That interface is not necessarily
1168          * a loopback interface.
1169          * In case of jails, check that it is an address of the jail
1170          * and if we cannot find, fall back to the 'default' jail address.
1171          */
1172         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1173                 struct sockaddr_in sain;
1174                 struct in_ifaddr *ia;
1175
1176                 bzero(&sain, sizeof(struct sockaddr_in));
1177                 sain.sin_family = AF_INET;
1178                 sain.sin_len = sizeof(struct sockaddr_in);
1179                 sain.sin_addr.s_addr = faddr->s_addr;
1180
1181                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1182                                         inp->inp_socket->so_fibnum));
1183                 if (ia == NULL)
1184                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1185                                                 inp->inp_socket->so_fibnum));
1186                 if (ia == NULL)
1187                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1188
1189                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1190                         if (ia == NULL) {
1191                                 error = ENETUNREACH;
1192                                 goto done;
1193                         }
1194                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1195                         goto done;
1196                 }
1197
1198                 /* Jailed. */
1199                 if (ia != NULL) {
1200                         struct ifnet *ifp;
1201
1202                         ifp = ia->ia_ifp;
1203                         ia = NULL;
1204                         CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1205                                 sa = ifa->ifa_addr;
1206                                 if (sa->sa_family != AF_INET)
1207                                         continue;
1208                                 sin = (struct sockaddr_in *)sa;
1209                                 if (prison_check_ip4(cred,
1210                                     &sin->sin_addr) == 0) {
1211                                         ia = (struct in_ifaddr *)ifa;
1212                                         break;
1213                                 }
1214                         }
1215                         if (ia != NULL) {
1216                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1217                                 goto done;
1218                         }
1219                 }
1220
1221                 /* 3. As a last resort return the 'default' jail address. */
1222                 error = prison_get_ip4(cred, laddr);
1223                 goto done;
1224         }
1225
1226 done:
1227         NET_EPOCH_EXIT();
1228         if (sro.ro_rt != NULL)
1229                 RTFREE(sro.ro_rt);
1230         return (error);
1231 }
1232
1233 /*
1234  * Set up for a connect from a socket to the specified address.
1235  * On entry, *laddrp and *lportp should contain the current local
1236  * address and port for the PCB; these are updated to the values
1237  * that should be placed in inp_laddr and inp_lport to complete
1238  * the connect.
1239  *
1240  * On success, *faddrp and *fportp will be set to the remote address
1241  * and port. These are not updated in the error case.
1242  *
1243  * If the operation fails because the connection already exists,
1244  * *oinpp will be set to the PCB of that connection so that the
1245  * caller can decide to override it. In all other cases, *oinpp
1246  * is set to NULL.
1247  */
1248 int
1249 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1250     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1251     struct inpcb **oinpp, struct ucred *cred)
1252 {
1253         struct rm_priotracker in_ifa_tracker;
1254         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1255         struct in_ifaddr *ia;
1256         struct inpcb *oinp;
1257         struct in_addr laddr, faddr;
1258         u_short lport, fport;
1259         int error;
1260
1261         /*
1262          * Because a global state change doesn't actually occur here, a read
1263          * lock is sufficient.
1264          */
1265         INP_LOCK_ASSERT(inp);
1266         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1267
1268         if (oinpp != NULL)
1269                 *oinpp = NULL;
1270         if (nam->sa_len != sizeof (*sin))
1271                 return (EINVAL);
1272         if (sin->sin_family != AF_INET)
1273                 return (EAFNOSUPPORT);
1274         if (sin->sin_port == 0)
1275                 return (EADDRNOTAVAIL);
1276         laddr.s_addr = *laddrp;
1277         lport = *lportp;
1278         faddr = sin->sin_addr;
1279         fport = sin->sin_port;
1280
1281         if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1282                 /*
1283                  * If the destination address is INADDR_ANY,
1284                  * use the primary local address.
1285                  * If the supplied address is INADDR_BROADCAST,
1286                  * and the primary interface supports broadcast,
1287                  * choose the broadcast address for that interface.
1288                  */
1289                 if (faddr.s_addr == INADDR_ANY) {
1290                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1291                         faddr =
1292                             IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1293                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1294                         if (cred != NULL &&
1295                             (error = prison_get_ip4(cred, &faddr)) != 0)
1296                                 return (error);
1297                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1298                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1299                         if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1300                             IFF_BROADCAST)
1301                                 faddr = satosin(&CK_STAILQ_FIRST(
1302                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1303                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1304                 }
1305         }
1306         if (laddr.s_addr == INADDR_ANY) {
1307                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1308                 /*
1309                  * If the destination address is multicast and an outgoing
1310                  * interface has been set as a multicast option, prefer the
1311                  * address of that interface as our source address.
1312                  */
1313                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1314                     inp->inp_moptions != NULL) {
1315                         struct ip_moptions *imo;
1316                         struct ifnet *ifp;
1317
1318                         imo = inp->inp_moptions;
1319                         if (imo->imo_multicast_ifp != NULL) {
1320                                 ifp = imo->imo_multicast_ifp;
1321                                 IN_IFADDR_RLOCK(&in_ifa_tracker);
1322                                 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1323                                         if ((ia->ia_ifp == ifp) &&
1324                                             (cred == NULL ||
1325                                             prison_check_ip4(cred,
1326                                             &ia->ia_addr.sin_addr) == 0))
1327                                                 break;
1328                                 }
1329                                 if (ia == NULL)
1330                                         error = EADDRNOTAVAIL;
1331                                 else {
1332                                         laddr = ia->ia_addr.sin_addr;
1333                                         error = 0;
1334                                 }
1335                                 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1336                         }
1337                 }
1338                 if (error)
1339                         return (error);
1340         }
1341         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1342             laddr, lport, 0, NULL);
1343         if (oinp != NULL) {
1344                 if (oinpp != NULL)
1345                         *oinpp = oinp;
1346                 return (EADDRINUSE);
1347         }
1348         if (lport == 0) {
1349                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1350                     cred);
1351                 if (error)
1352                         return (error);
1353         }
1354         *laddrp = laddr.s_addr;
1355         *lportp = lport;
1356         *faddrp = faddr.s_addr;
1357         *fportp = fport;
1358         return (0);
1359 }
1360
1361 void
1362 in_pcbdisconnect(struct inpcb *inp)
1363 {
1364
1365         INP_WLOCK_ASSERT(inp);
1366         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1367
1368         inp->inp_faddr.s_addr = INADDR_ANY;
1369         inp->inp_fport = 0;
1370         in_pcbrehash(inp);
1371 }
1372 #endif /* INET */
1373
1374 /*
1375  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1376  * For most protocols, this will be invoked immediately prior to calling
1377  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1378  * socket, in which case in_pcbfree() is deferred.
1379  */
1380 void
1381 in_pcbdetach(struct inpcb *inp)
1382 {
1383
1384         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1385
1386 #ifdef RATELIMIT
1387         if (inp->inp_snd_tag != NULL)
1388                 in_pcbdetach_txrtlmt(inp);
1389 #endif
1390         inp->inp_socket->so_pcb = NULL;
1391         inp->inp_socket = NULL;
1392 }
1393
1394 /*
1395  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1396  * stability of an inpcb pointer despite the inpcb lock being released.  This
1397  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1398  * but where the inpcb lock may already held, or when acquiring a reference
1399  * via a pcbgroup.
1400  *
1401  * in_pcbref() should be used only to provide brief memory stability, and
1402  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1403  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1404  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1405  * lock and rele are the *only* safe operations that may be performed on the
1406  * inpcb.
1407  *
1408  * While the inpcb will not be freed, releasing the inpcb lock means that the
1409  * connection's state may change, so the caller should be careful to
1410  * revalidate any cached state on reacquiring the lock.  Drop the reference
1411  * using in_pcbrele().
1412  */
1413 void
1414 in_pcbref(struct inpcb *inp)
1415 {
1416
1417         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1418
1419         refcount_acquire(&inp->inp_refcount);
1420 }
1421
1422 /*
1423  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1424  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1425  * return a flag indicating whether or not the inpcb remains valid.  If it is
1426  * valid, we return with the inpcb lock held.
1427  *
1428  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1429  * reference on an inpcb.  Historically more work was done here (actually, in
1430  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1431  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1432  * about memory stability (and continued use of the write lock).
1433  */
1434 int
1435 in_pcbrele_rlocked(struct inpcb *inp)
1436 {
1437         struct inpcbinfo *pcbinfo;
1438
1439         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1440
1441         INP_RLOCK_ASSERT(inp);
1442
1443         if (refcount_release(&inp->inp_refcount) == 0) {
1444                 /*
1445                  * If the inpcb has been freed, let the caller know, even if
1446                  * this isn't the last reference.
1447                  */
1448                 if (inp->inp_flags2 & INP_FREED) {
1449                         INP_RUNLOCK(inp);
1450                         return (1);
1451                 }
1452                 return (0);
1453         }
1454         
1455         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1456 #ifdef TCPHPTS
1457         if (inp->inp_in_hpts || inp->inp_in_input) {
1458                 struct tcp_hpts_entry *hpts;
1459                 /*
1460                  * We should not be on the hpts at 
1461                  * this point in any form. we must
1462                  * get the lock to be sure.
1463                  */
1464                 hpts = tcp_hpts_lock(inp);
1465                 if (inp->inp_in_hpts)
1466                         panic("Hpts:%p inp:%p at free still on hpts",
1467                               hpts, inp);
1468                 mtx_unlock(&hpts->p_mtx);
1469                 hpts = tcp_input_lock(inp);
1470                 if (inp->inp_in_input) 
1471                         panic("Hpts:%p inp:%p at free still on input hpts",
1472                               hpts, inp);
1473                 mtx_unlock(&hpts->p_mtx);
1474         }
1475 #endif
1476         INP_RUNLOCK(inp);
1477         pcbinfo = inp->inp_pcbinfo;
1478         uma_zfree(pcbinfo->ipi_zone, inp);
1479         return (1);
1480 }
1481
1482 int
1483 in_pcbrele_wlocked(struct inpcb *inp)
1484 {
1485         struct inpcbinfo *pcbinfo;
1486
1487         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1488
1489         INP_WLOCK_ASSERT(inp);
1490
1491         if (refcount_release(&inp->inp_refcount) == 0) {
1492                 /*
1493                  * If the inpcb has been freed, let the caller know, even if
1494                  * this isn't the last reference.
1495                  */
1496                 if (inp->inp_flags2 & INP_FREED) {
1497                         INP_WUNLOCK(inp);
1498                         return (1);
1499                 }
1500                 return (0);
1501         }
1502
1503         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1504 #ifdef TCPHPTS
1505         if (inp->inp_in_hpts || inp->inp_in_input) {
1506                 struct tcp_hpts_entry *hpts;
1507                 /*
1508                  * We should not be on the hpts at 
1509                  * this point in any form. we must
1510                  * get the lock to be sure.
1511                  */
1512                 hpts = tcp_hpts_lock(inp);
1513                 if (inp->inp_in_hpts)
1514                         panic("Hpts:%p inp:%p at free still on hpts",
1515                               hpts, inp);
1516                 mtx_unlock(&hpts->p_mtx);
1517                 hpts = tcp_input_lock(inp);
1518                 if (inp->inp_in_input) 
1519                         panic("Hpts:%p inp:%p at free still on input hpts",
1520                               hpts, inp);
1521                 mtx_unlock(&hpts->p_mtx);
1522         }
1523 #endif
1524         INP_WUNLOCK(inp);
1525         pcbinfo = inp->inp_pcbinfo;
1526         uma_zfree(pcbinfo->ipi_zone, inp);
1527         return (1);
1528 }
1529
1530 /*
1531  * Temporary wrapper.
1532  */
1533 int
1534 in_pcbrele(struct inpcb *inp)
1535 {
1536
1537         return (in_pcbrele_wlocked(inp));
1538 }
1539
1540 void
1541 in_pcblist_rele_rlocked(epoch_context_t ctx)
1542 {
1543         struct in_pcblist *il;
1544         struct inpcb *inp;
1545         struct inpcbinfo *pcbinfo;
1546         int i, n;
1547
1548         il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1549         pcbinfo = il->il_pcbinfo;
1550         n = il->il_count;
1551         INP_INFO_WLOCK(pcbinfo);
1552         for (i = 0; i < n; i++) {
1553                 inp = il->il_inp_list[i];
1554                 INP_RLOCK(inp);
1555                 if (!in_pcbrele_rlocked(inp))
1556                         INP_RUNLOCK(inp);
1557         }
1558         INP_INFO_WUNLOCK(pcbinfo);
1559         free(il, M_TEMP);
1560 }
1561
1562 static void
1563 inpcbport_free(epoch_context_t ctx)
1564 {
1565         struct inpcbport *phd;
1566
1567         phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1568         free(phd, M_PCB);
1569 }
1570
1571 static void
1572 in_pcbfree_deferred(epoch_context_t ctx)
1573 {
1574         struct inpcb *inp;
1575         int released __unused;
1576
1577         inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1578
1579         INP_WLOCK(inp);
1580 #ifdef INET
1581         inp_freemoptions(inp->inp_moptions);
1582         inp->inp_moptions = NULL;
1583 #endif
1584         /* XXXRW: Do as much as possible here. */
1585 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1586         if (inp->inp_sp != NULL)
1587                 ipsec_delete_pcbpolicy(inp);
1588 #endif
1589 #ifdef INET6
1590         if (inp->inp_vflag & INP_IPV6PROTO) {
1591                 ip6_freepcbopts(inp->in6p_outputopts);
1592                 ip6_freemoptions(inp->in6p_moptions);
1593                 inp->in6p_moptions = NULL;
1594         }
1595 #endif
1596         if (inp->inp_options)
1597                 (void)m_free(inp->inp_options);
1598         inp->inp_vflag = 0;
1599         crfree(inp->inp_cred);
1600 #ifdef MAC
1601         mac_inpcb_destroy(inp);
1602 #endif
1603         released = in_pcbrele_wlocked(inp);
1604         MPASS(released);
1605 }
1606
1607 /*
1608  * Unconditionally schedule an inpcb to be freed by decrementing its
1609  * reference count, which should occur only after the inpcb has been detached
1610  * from its socket.  If another thread holds a temporary reference (acquired
1611  * using in_pcbref()) then the free is deferred until that reference is
1612  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1613  * work, including removal from global lists, is done in this context, where
1614  * the pcbinfo lock is held.
1615  */
1616 void
1617 in_pcbfree(struct inpcb *inp)
1618 {
1619         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1620
1621         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1622         KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1623             ("%s: called twice for pcb %p", __func__, inp));
1624         if (inp->inp_flags2 & INP_FREED) {
1625                 INP_WUNLOCK(inp);
1626                 return;
1627         }
1628
1629 #ifdef INVARIANTS
1630         if (pcbinfo == &V_tcbinfo) {
1631                 INP_INFO_LOCK_ASSERT(pcbinfo);
1632         } else {
1633                 INP_INFO_WLOCK_ASSERT(pcbinfo);
1634         }
1635 #endif
1636         INP_WLOCK_ASSERT(inp);
1637         INP_LIST_WLOCK(pcbinfo);
1638         in_pcbremlists(inp);
1639         INP_LIST_WUNLOCK(pcbinfo);
1640         RO_INVALIDATE_CACHE(&inp->inp_route);
1641         /* mark as destruction in progress */
1642         inp->inp_flags2 |= INP_FREED;
1643         INP_WUNLOCK(inp);
1644         epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred);
1645 }
1646
1647 /*
1648  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1649  * port reservation, and preventing it from being returned by inpcb lookups.
1650  *
1651  * It is used by TCP to mark an inpcb as unused and avoid future packet
1652  * delivery or event notification when a socket remains open but TCP has
1653  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1654  * or a RST on the wire, and allows the port binding to be reused while still
1655  * maintaining the invariant that so_pcb always points to a valid inpcb until
1656  * in_pcbdetach().
1657  *
1658  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1659  * in_pcbnotifyall() and in_pcbpurgeif0()?
1660  */
1661 void
1662 in_pcbdrop(struct inpcb *inp)
1663 {
1664
1665         INP_WLOCK_ASSERT(inp);
1666 #ifdef INVARIANTS
1667         if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1668                 MPASS(inp->inp_refcount > 1);
1669 #endif
1670
1671         /*
1672          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1673          * the hash lock...?
1674          */
1675         inp->inp_flags |= INP_DROPPED;
1676         if (inp->inp_flags & INP_INHASHLIST) {
1677                 struct inpcbport *phd = inp->inp_phd;
1678
1679                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1680                 in_pcbremlbgrouphash(inp);
1681                 CK_LIST_REMOVE(inp, inp_hash);
1682                 CK_LIST_REMOVE(inp, inp_portlist);
1683                 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1684                         CK_LIST_REMOVE(phd, phd_hash);
1685                         epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
1686                 }
1687                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1688                 inp->inp_flags &= ~INP_INHASHLIST;
1689 #ifdef PCBGROUP
1690                 in_pcbgroup_remove(inp);
1691 #endif
1692         }
1693 }
1694
1695 #ifdef INET
1696 /*
1697  * Common routines to return the socket addresses associated with inpcbs.
1698  */
1699 struct sockaddr *
1700 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1701 {
1702         struct sockaddr_in *sin;
1703
1704         sin = malloc(sizeof *sin, M_SONAME,
1705                 M_WAITOK | M_ZERO);
1706         sin->sin_family = AF_INET;
1707         sin->sin_len = sizeof(*sin);
1708         sin->sin_addr = *addr_p;
1709         sin->sin_port = port;
1710
1711         return (struct sockaddr *)sin;
1712 }
1713
1714 int
1715 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1716 {
1717         struct inpcb *inp;
1718         struct in_addr addr;
1719         in_port_t port;
1720
1721         inp = sotoinpcb(so);
1722         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1723
1724         INP_RLOCK(inp);
1725         port = inp->inp_lport;
1726         addr = inp->inp_laddr;
1727         INP_RUNLOCK(inp);
1728
1729         *nam = in_sockaddr(port, &addr);
1730         return 0;
1731 }
1732
1733 int
1734 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1735 {
1736         struct inpcb *inp;
1737         struct in_addr addr;
1738         in_port_t port;
1739
1740         inp = sotoinpcb(so);
1741         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1742
1743         INP_RLOCK(inp);
1744         port = inp->inp_fport;
1745         addr = inp->inp_faddr;
1746         INP_RUNLOCK(inp);
1747
1748         *nam = in_sockaddr(port, &addr);
1749         return 0;
1750 }
1751
1752 void
1753 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1754     struct inpcb *(*notify)(struct inpcb *, int))
1755 {
1756         struct inpcb *inp, *inp_temp;
1757
1758         INP_INFO_WLOCK(pcbinfo);
1759         CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1760                 INP_WLOCK(inp);
1761 #ifdef INET6
1762                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1763                         INP_WUNLOCK(inp);
1764                         continue;
1765                 }
1766 #endif
1767                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1768                     inp->inp_socket == NULL) {
1769                         INP_WUNLOCK(inp);
1770                         continue;
1771                 }
1772                 if ((*notify)(inp, errno))
1773                         INP_WUNLOCK(inp);
1774         }
1775         INP_INFO_WUNLOCK(pcbinfo);
1776 }
1777
1778 void
1779 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1780 {
1781         struct inpcb *inp;
1782         struct ip_moptions *imo;
1783         int i, gap;
1784
1785         INP_INFO_WLOCK(pcbinfo);
1786         CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1787                 INP_WLOCK(inp);
1788                 imo = inp->inp_moptions;
1789                 if ((inp->inp_vflag & INP_IPV4) &&
1790                     imo != NULL) {
1791                         /*
1792                          * Unselect the outgoing interface if it is being
1793                          * detached.
1794                          */
1795                         if (imo->imo_multicast_ifp == ifp)
1796                                 imo->imo_multicast_ifp = NULL;
1797
1798                         /*
1799                          * Drop multicast group membership if we joined
1800                          * through the interface being detached.
1801                          *
1802                          * XXX This can all be deferred to an epoch_call
1803                          */
1804                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1805                             i++) {
1806                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1807                                         IN_MULTI_LOCK_ASSERT();
1808                                         in_leavegroup_locked(imo->imo_membership[i], NULL);
1809                                         gap++;
1810                                 } else if (gap != 0)
1811                                         imo->imo_membership[i - gap] =
1812                                             imo->imo_membership[i];
1813                         }
1814                         imo->imo_num_memberships -= gap;
1815                 }
1816                 INP_WUNLOCK(inp);
1817         }
1818         INP_INFO_WUNLOCK(pcbinfo);
1819 }
1820
1821 /*
1822  * Lookup a PCB based on the local address and port.  Caller must hold the
1823  * hash lock.  No inpcb locks or references are acquired.
1824  */
1825 #define INP_LOOKUP_MAPPED_PCB_COST      3
1826 struct inpcb *
1827 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1828     u_short lport, int lookupflags, struct ucred *cred)
1829 {
1830         struct inpcb *inp;
1831 #ifdef INET6
1832         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1833 #else
1834         int matchwild = 3;
1835 #endif
1836         int wildcard;
1837
1838         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1839             ("%s: invalid lookup flags %d", __func__, lookupflags));
1840
1841         INP_HASH_LOCK_ASSERT(pcbinfo);
1842
1843         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1844                 struct inpcbhead *head;
1845                 /*
1846                  * Look for an unconnected (wildcard foreign addr) PCB that
1847                  * matches the local address and port we're looking for.
1848                  */
1849                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1850                     0, pcbinfo->ipi_hashmask)];
1851                 CK_LIST_FOREACH(inp, head, inp_hash) {
1852 #ifdef INET6
1853                         /* XXX inp locking */
1854                         if ((inp->inp_vflag & INP_IPV4) == 0)
1855                                 continue;
1856 #endif
1857                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1858                             inp->inp_laddr.s_addr == laddr.s_addr &&
1859                             inp->inp_lport == lport) {
1860                                 /*
1861                                  * Found?
1862                                  */
1863                                 if (cred == NULL ||
1864                                     prison_equal_ip4(cred->cr_prison,
1865                                         inp->inp_cred->cr_prison))
1866                                         return (inp);
1867                         }
1868                 }
1869                 /*
1870                  * Not found.
1871                  */
1872                 return (NULL);
1873         } else {
1874                 struct inpcbporthead *porthash;
1875                 struct inpcbport *phd;
1876                 struct inpcb *match = NULL;
1877                 /*
1878                  * Best fit PCB lookup.
1879                  *
1880                  * First see if this local port is in use by looking on the
1881                  * port hash list.
1882                  */
1883                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1884                     pcbinfo->ipi_porthashmask)];
1885                 CK_LIST_FOREACH(phd, porthash, phd_hash) {
1886                         if (phd->phd_port == lport)
1887                                 break;
1888                 }
1889                 if (phd != NULL) {
1890                         /*
1891                          * Port is in use by one or more PCBs. Look for best
1892                          * fit.
1893                          */
1894                         CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1895                                 wildcard = 0;
1896                                 if (cred != NULL &&
1897                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1898                                         cred->cr_prison))
1899                                         continue;
1900 #ifdef INET6
1901                                 /* XXX inp locking */
1902                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1903                                         continue;
1904                                 /*
1905                                  * We never select the PCB that has
1906                                  * INP_IPV6 flag and is bound to :: if
1907                                  * we have another PCB which is bound
1908                                  * to 0.0.0.0.  If a PCB has the
1909                                  * INP_IPV6 flag, then we set its cost
1910                                  * higher than IPv4 only PCBs.
1911                                  *
1912                                  * Note that the case only happens
1913                                  * when a socket is bound to ::, under
1914                                  * the condition that the use of the
1915                                  * mapped address is allowed.
1916                                  */
1917                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1918                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1919 #endif
1920                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1921                                         wildcard++;
1922                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1923                                         if (laddr.s_addr == INADDR_ANY)
1924                                                 wildcard++;
1925                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1926                                                 continue;
1927                                 } else {
1928                                         if (laddr.s_addr != INADDR_ANY)
1929                                                 wildcard++;
1930                                 }
1931                                 if (wildcard < matchwild) {
1932                                         match = inp;
1933                                         matchwild = wildcard;
1934                                         if (matchwild == 0)
1935                                                 break;
1936                                 }
1937                         }
1938                 }
1939                 return (match);
1940         }
1941 }
1942 #undef INP_LOOKUP_MAPPED_PCB_COST
1943
1944 static struct inpcb *
1945 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1946   const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1947   uint16_t fport, int lookupflags)
1948 {
1949         struct inpcb *local_wild = NULL;
1950         const struct inpcblbgrouphead *hdr;
1951         struct inpcblbgroup *grp;
1952         struct inpcblbgroup *grp_local_wild;
1953
1954         INP_HASH_LOCK_ASSERT(pcbinfo);
1955
1956         hdr = &pcbinfo->ipi_lbgrouphashbase[
1957                   INP_PCBLBGROUP_PORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
1958
1959         /*
1960          * Order of socket selection:
1961          * 1. non-wild.
1962          * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1963          *
1964          * NOTE:
1965          * - Load balanced group does not contain jailed sockets
1966          * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1967          */
1968         LIST_FOREACH(grp, hdr, il_list) {
1969 #ifdef INET6
1970                 if (!(grp->il_vflag & INP_IPV4))
1971                         continue;
1972 #endif
1973
1974                 if (grp->il_lport == lport) {
1975
1976                         uint32_t idx = 0;
1977                         int pkt_hash = INP_PCBLBGROUP_PKTHASH(faddr->s_addr,
1978                             lport, fport);
1979
1980                         idx = pkt_hash % grp->il_inpcnt;
1981
1982                         if (grp->il_laddr.s_addr == laddr->s_addr) {
1983                                 return (grp->il_inp[idx]);
1984                         } else {
1985                                 if (grp->il_laddr.s_addr == INADDR_ANY &&
1986                                         (lookupflags & INPLOOKUP_WILDCARD)) {
1987                                         local_wild = grp->il_inp[idx];
1988                                         grp_local_wild = grp;
1989                                 }
1990                         }
1991                 }
1992         }
1993         if (local_wild != NULL) {
1994                 return (local_wild);
1995         }
1996         return (NULL);
1997 }
1998
1999 #ifdef PCBGROUP
2000 /*
2001  * Lookup PCB in hash list, using pcbgroup tables.
2002  */
2003 static struct inpcb *
2004 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2005     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2006     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2007 {
2008         struct inpcbhead *head;
2009         struct inpcb *inp, *tmpinp;
2010         u_short fport = fport_arg, lport = lport_arg;
2011         bool locked;
2012
2013         /*
2014          * First look for an exact match.
2015          */
2016         tmpinp = NULL;
2017         INP_GROUP_LOCK(pcbgroup);
2018         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2019             pcbgroup->ipg_hashmask)];
2020         CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2021 #ifdef INET6
2022                 /* XXX inp locking */
2023                 if ((inp->inp_vflag & INP_IPV4) == 0)
2024                         continue;
2025 #endif
2026                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2027                     inp->inp_laddr.s_addr == laddr.s_addr &&
2028                     inp->inp_fport == fport &&
2029                     inp->inp_lport == lport) {
2030                         /*
2031                          * XXX We should be able to directly return
2032                          * the inp here, without any checks.
2033                          * Well unless both bound with SO_REUSEPORT?
2034                          */
2035                         if (prison_flag(inp->inp_cred, PR_IP4))
2036                                 goto found;
2037                         if (tmpinp == NULL)
2038                                 tmpinp = inp;
2039                 }
2040         }
2041         if (tmpinp != NULL) {
2042                 inp = tmpinp;
2043                 goto found;
2044         }
2045
2046 #ifdef  RSS
2047         /*
2048          * For incoming connections, we may wish to do a wildcard
2049          * match for an RSS-local socket.
2050          */
2051         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2052                 struct inpcb *local_wild = NULL, *local_exact = NULL;
2053 #ifdef INET6
2054                 struct inpcb *local_wild_mapped = NULL;
2055 #endif
2056                 struct inpcb *jail_wild = NULL;
2057                 struct inpcbhead *head;
2058                 int injail;
2059
2060                 /*
2061                  * Order of socket selection - we always prefer jails.
2062                  *      1. jailed, non-wild.
2063                  *      2. jailed, wild.
2064                  *      3. non-jailed, non-wild.
2065                  *      4. non-jailed, wild.
2066                  */
2067
2068                 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2069                     lport, 0, pcbgroup->ipg_hashmask)];
2070                 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2071 #ifdef INET6
2072                         /* XXX inp locking */
2073                         if ((inp->inp_vflag & INP_IPV4) == 0)
2074                                 continue;
2075 #endif
2076                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
2077                             inp->inp_lport != lport)
2078                                 continue;
2079
2080                         injail = prison_flag(inp->inp_cred, PR_IP4);
2081                         if (injail) {
2082                                 if (prison_check_ip4(inp->inp_cred,
2083                                     &laddr) != 0)
2084                                         continue;
2085                         } else {
2086                                 if (local_exact != NULL)
2087                                         continue;
2088                         }
2089
2090                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
2091                                 if (injail)
2092                                         goto found;
2093                                 else
2094                                         local_exact = inp;
2095                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2096 #ifdef INET6
2097                                 /* XXX inp locking, NULL check */
2098                                 if (inp->inp_vflag & INP_IPV6PROTO)
2099                                         local_wild_mapped = inp;
2100                                 else
2101 #endif
2102                                         if (injail)
2103                                                 jail_wild = inp;
2104                                         else
2105                                                 local_wild = inp;
2106                         }
2107                 } /* LIST_FOREACH */
2108
2109                 inp = jail_wild;
2110                 if (inp == NULL)
2111                         inp = local_exact;
2112                 if (inp == NULL)
2113                         inp = local_wild;
2114 #ifdef INET6
2115                 if (inp == NULL)
2116                         inp = local_wild_mapped;
2117 #endif
2118                 if (inp != NULL)
2119                         goto found;
2120         }
2121 #endif
2122
2123         /*
2124          * Then look for a wildcard match, if requested.
2125          */
2126         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2127                 struct inpcb *local_wild = NULL, *local_exact = NULL;
2128 #ifdef INET6
2129                 struct inpcb *local_wild_mapped = NULL;
2130 #endif
2131                 struct inpcb *jail_wild = NULL;
2132                 struct inpcbhead *head;
2133                 int injail;
2134
2135                 /*
2136                  * Order of socket selection - we always prefer jails.
2137                  *      1. jailed, non-wild.
2138                  *      2. jailed, wild.
2139                  *      3. non-jailed, non-wild.
2140                  *      4. non-jailed, wild.
2141                  */
2142                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2143                     0, pcbinfo->ipi_wildmask)];
2144                 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2145 #ifdef INET6
2146                         /* XXX inp locking */
2147                         if ((inp->inp_vflag & INP_IPV4) == 0)
2148                                 continue;
2149 #endif
2150                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
2151                             inp->inp_lport != lport)
2152                                 continue;
2153
2154                         injail = prison_flag(inp->inp_cred, PR_IP4);
2155                         if (injail) {
2156                                 if (prison_check_ip4(inp->inp_cred,
2157                                     &laddr) != 0)
2158                                         continue;
2159                         } else {
2160                                 if (local_exact != NULL)
2161                                         continue;
2162                         }
2163
2164                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
2165                                 if (injail)
2166                                         goto found;
2167                                 else
2168                                         local_exact = inp;
2169                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2170 #ifdef INET6
2171                                 /* XXX inp locking, NULL check */
2172                                 if (inp->inp_vflag & INP_IPV6PROTO)
2173                                         local_wild_mapped = inp;
2174                                 else
2175 #endif
2176                                         if (injail)
2177                                                 jail_wild = inp;
2178                                         else
2179                                                 local_wild = inp;
2180                         }
2181                 } /* LIST_FOREACH */
2182                 inp = jail_wild;
2183                 if (inp == NULL)
2184                         inp = local_exact;
2185                 if (inp == NULL)
2186                         inp = local_wild;
2187 #ifdef INET6
2188                 if (inp == NULL)
2189                         inp = local_wild_mapped;
2190 #endif
2191                 if (inp != NULL)
2192                         goto found;
2193         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
2194         INP_GROUP_UNLOCK(pcbgroup);
2195         return (NULL);
2196
2197 found:
2198         if (lookupflags & INPLOOKUP_WLOCKPCB)
2199                 locked = INP_TRY_WLOCK(inp);
2200         else if (lookupflags & INPLOOKUP_RLOCKPCB)
2201                 locked = INP_TRY_RLOCK(inp);
2202         else
2203                 panic("%s: locking bug", __func__);
2204         if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2205                 if (lookupflags & INPLOOKUP_WLOCKPCB)
2206                         INP_WUNLOCK(inp);
2207                 else
2208                         INP_RUNLOCK(inp);
2209                 return (NULL);
2210         } else if (!locked)
2211                 in_pcbref(inp);
2212         INP_GROUP_UNLOCK(pcbgroup);
2213         if (!locked) {
2214                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
2215                         INP_WLOCK(inp);
2216                         if (in_pcbrele_wlocked(inp))
2217                                 return (NULL);
2218                 } else {
2219                         INP_RLOCK(inp);
2220                         if (in_pcbrele_rlocked(inp))
2221                                 return (NULL);
2222                 }
2223         }
2224 #ifdef INVARIANTS
2225         if (lookupflags & INPLOOKUP_WLOCKPCB)
2226                 INP_WLOCK_ASSERT(inp);
2227         else
2228                 INP_RLOCK_ASSERT(inp);
2229 #endif
2230         return (inp);
2231 }
2232 #endif /* PCBGROUP */
2233
2234 /*
2235  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2236  * that the caller has locked the hash list, and will not perform any further
2237  * locking or reference operations on either the hash list or the connection.
2238  */
2239 static struct inpcb *
2240 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2241     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2242     struct ifnet *ifp)
2243 {
2244         struct inpcbhead *head;
2245         struct inpcb *inp, *tmpinp;
2246         u_short fport = fport_arg, lport = lport_arg;
2247
2248 #ifdef INVARIANTS
2249         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2250             ("%s: invalid lookup flags %d", __func__, lookupflags));
2251         if (!mtx_owned(&pcbinfo->ipi_hash_lock))
2252                 MPASS(in_epoch_verbose(net_epoch_preempt, 1));
2253 #endif
2254         /*
2255          * First look for an exact match.
2256          */
2257         tmpinp = NULL;
2258         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2259             pcbinfo->ipi_hashmask)];
2260         CK_LIST_FOREACH(inp, head, inp_hash) {
2261 #ifdef INET6
2262                 /* XXX inp locking */
2263                 if ((inp->inp_vflag & INP_IPV4) == 0)
2264                         continue;
2265 #endif
2266                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2267                     inp->inp_laddr.s_addr == laddr.s_addr &&
2268                     inp->inp_fport == fport &&
2269                     inp->inp_lport == lport) {
2270                         /*
2271                          * XXX We should be able to directly return
2272                          * the inp here, without any checks.
2273                          * Well unless both bound with SO_REUSEPORT?
2274                          */
2275                         if (prison_flag(inp->inp_cred, PR_IP4))
2276                                 return (inp);
2277                         if (tmpinp == NULL)
2278                                 tmpinp = inp;
2279                 }
2280         }
2281         if (tmpinp != NULL)
2282                 return (tmpinp);
2283
2284         /*
2285          * Then look in lb group (for wildcard match).
2286          */
2287         if (pcbinfo->ipi_lbgrouphashbase != NULL &&
2288                 (lookupflags & INPLOOKUP_WILDCARD)) {
2289                 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2290                     fport, lookupflags);
2291                 if (inp != NULL) {
2292                         return (inp);
2293                 }
2294         }
2295
2296         /*
2297          * Then look for a wildcard match, if requested.
2298          */
2299         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2300                 struct inpcb *local_wild = NULL, *local_exact = NULL;
2301 #ifdef INET6
2302                 struct inpcb *local_wild_mapped = NULL;
2303 #endif
2304                 struct inpcb *jail_wild = NULL;
2305                 int injail;
2306
2307                 /*
2308                  * Order of socket selection - we always prefer jails.
2309                  *      1. jailed, non-wild.
2310                  *      2. jailed, wild.
2311                  *      3. non-jailed, non-wild.
2312                  *      4. non-jailed, wild.
2313                  */
2314
2315                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2316                     0, pcbinfo->ipi_hashmask)];
2317                 CK_LIST_FOREACH(inp, head, inp_hash) {
2318 #ifdef INET6
2319                         /* XXX inp locking */
2320                         if ((inp->inp_vflag & INP_IPV4) == 0)
2321                                 continue;
2322 #endif
2323                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
2324                             inp->inp_lport != lport)
2325                                 continue;
2326
2327                         injail = prison_flag(inp->inp_cred, PR_IP4);
2328                         if (injail) {
2329                                 if (prison_check_ip4(inp->inp_cred,
2330                                     &laddr) != 0)
2331                                         continue;
2332                         } else {
2333                                 if (local_exact != NULL)
2334                                         continue;
2335                         }
2336
2337                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
2338                                 if (injail)
2339                                         return (inp);
2340                                 else
2341                                         local_exact = inp;
2342                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2343 #ifdef INET6
2344                                 /* XXX inp locking, NULL check */
2345                                 if (inp->inp_vflag & INP_IPV6PROTO)
2346                                         local_wild_mapped = inp;
2347                                 else
2348 #endif
2349                                         if (injail)
2350                                                 jail_wild = inp;
2351                                         else
2352                                                 local_wild = inp;
2353                         }
2354                 } /* LIST_FOREACH */
2355                 if (jail_wild != NULL)
2356                         return (jail_wild);
2357                 if (local_exact != NULL)
2358                         return (local_exact);
2359                 if (local_wild != NULL)
2360                         return (local_wild);
2361 #ifdef INET6
2362                 if (local_wild_mapped != NULL)
2363                         return (local_wild_mapped);
2364 #endif
2365         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2366
2367         return (NULL);
2368 }
2369
2370 /*
2371  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2372  * hash list lock, and will return the inpcb locked (i.e., requires
2373  * INPLOOKUP_LOCKPCB).
2374  */
2375 static struct inpcb *
2376 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2377     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2378     struct ifnet *ifp)
2379 {
2380         struct inpcb *inp;
2381
2382         INP_HASH_RLOCK(pcbinfo);
2383         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2384             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2385         if (inp != NULL) {
2386                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
2387                         INP_WLOCK(inp);
2388                         if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2389                                 INP_WUNLOCK(inp);
2390                                 inp = NULL;
2391                         }
2392                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2393                         INP_RLOCK(inp);
2394                         if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2395                                 INP_RUNLOCK(inp);
2396                                 inp = NULL;
2397                         }
2398                 } else
2399                         panic("%s: locking bug", __func__);
2400 #ifdef INVARIANTS
2401                 if (inp != NULL) {
2402                         if (lookupflags & INPLOOKUP_WLOCKPCB)
2403                                 INP_WLOCK_ASSERT(inp);
2404                         else
2405                                 INP_RLOCK_ASSERT(inp);
2406                 }
2407 #endif
2408         }
2409         INP_HASH_RUNLOCK(pcbinfo);
2410         return (inp);
2411 }
2412
2413 /*
2414  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2415  * from which a pre-calculated hash value may be extracted.
2416  *
2417  * Possibly more of this logic should be in in_pcbgroup.c.
2418  */
2419 struct inpcb *
2420 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2421     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2422 {
2423 #if defined(PCBGROUP) && !defined(RSS)
2424         struct inpcbgroup *pcbgroup;
2425 #endif
2426
2427         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2428             ("%s: invalid lookup flags %d", __func__, lookupflags));
2429         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2430             ("%s: LOCKPCB not set", __func__));
2431
2432         /*
2433          * When not using RSS, use connection groups in preference to the
2434          * reservation table when looking up 4-tuples.  When using RSS, just
2435          * use the reservation table, due to the cost of the Toeplitz hash
2436          * in software.
2437          *
2438          * XXXRW: This policy belongs in the pcbgroup code, as in principle
2439          * we could be doing RSS with a non-Toeplitz hash that is affordable
2440          * in software.
2441          */
2442 #if defined(PCBGROUP) && !defined(RSS)
2443         if (in_pcbgroup_enabled(pcbinfo)) {
2444                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2445                     fport);
2446                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2447                     laddr, lport, lookupflags, ifp));
2448         }
2449 #endif
2450         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2451             lookupflags, ifp));
2452 }
2453
2454 struct inpcb *
2455 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2456     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2457     struct ifnet *ifp, struct mbuf *m)
2458 {
2459 #ifdef PCBGROUP
2460         struct inpcbgroup *pcbgroup;
2461 #endif
2462
2463         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2464             ("%s: invalid lookup flags %d", __func__, lookupflags));
2465         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2466             ("%s: LOCKPCB not set", __func__));
2467
2468 #ifdef PCBGROUP
2469         /*
2470          * If we can use a hardware-generated hash to look up the connection
2471          * group, use that connection group to find the inpcb.  Otherwise
2472          * fall back on a software hash -- or the reservation table if we're
2473          * using RSS.
2474          *
2475          * XXXRW: As above, that policy belongs in the pcbgroup code.
2476          */
2477         if (in_pcbgroup_enabled(pcbinfo) &&
2478             !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2479                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2480                     m->m_pkthdr.flowid);
2481                 if (pcbgroup != NULL)
2482                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2483                             fport, laddr, lport, lookupflags, ifp));
2484 #ifndef RSS
2485                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2486                     fport);
2487                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2488                     laddr, lport, lookupflags, ifp));
2489 #endif
2490         }
2491 #endif
2492         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2493             lookupflags, ifp));
2494 }
2495 #endif /* INET */
2496
2497 /*
2498  * Insert PCB onto various hash lists.
2499  */
2500 static int
2501 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2502 {
2503         struct inpcbhead *pcbhash;
2504         struct inpcbporthead *pcbporthash;
2505         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2506         struct inpcbport *phd;
2507         u_int32_t hashkey_faddr;
2508         int so_options;
2509
2510         INP_WLOCK_ASSERT(inp);
2511         INP_HASH_WLOCK_ASSERT(pcbinfo);
2512
2513         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2514             ("in_pcbinshash: INP_INHASHLIST"));
2515
2516 #ifdef INET6
2517         if (inp->inp_vflag & INP_IPV6)
2518                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2519         else
2520 #endif
2521         hashkey_faddr = inp->inp_faddr.s_addr;
2522
2523         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2524                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2525
2526         pcbporthash = &pcbinfo->ipi_porthashbase[
2527             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2528
2529         /*
2530          * Add entry to load balance group.
2531          * Only do this if SO_REUSEPORT_LB is set.
2532          */
2533         so_options = inp_so_options(inp);
2534         if (so_options & SO_REUSEPORT_LB) {
2535                 int ret = in_pcbinslbgrouphash(inp);
2536                 if (ret) {
2537                         /* pcb lb group malloc fail (ret=ENOBUFS). */
2538                         return (ret);
2539                 }
2540         }
2541
2542         /*
2543          * Go through port list and look for a head for this lport.
2544          */
2545         CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2546                 if (phd->phd_port == inp->inp_lport)
2547                         break;
2548         }
2549         /*
2550          * If none exists, malloc one and tack it on.
2551          */
2552         if (phd == NULL) {
2553                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2554                 if (phd == NULL) {
2555                         return (ENOBUFS); /* XXX */
2556                 }
2557                 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2558                 phd->phd_port = inp->inp_lport;
2559                 CK_LIST_INIT(&phd->phd_pcblist);
2560                 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2561         }
2562         inp->inp_phd = phd;
2563         CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2564         CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2565         inp->inp_flags |= INP_INHASHLIST;
2566 #ifdef PCBGROUP
2567         if (do_pcbgroup_update)
2568                 in_pcbgroup_update(inp);
2569 #endif
2570         return (0);
2571 }
2572
2573 /*
2574  * For now, there are two public interfaces to insert an inpcb into the hash
2575  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2576  * is used only in the TCP syncache, where in_pcbinshash is called before the
2577  * full 4-tuple is set for the inpcb, and we don't want to install in the
2578  * pcbgroup until later.
2579  *
2580  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2581  * connection groups, and partially initialised inpcbs should not be exposed
2582  * to either reservation hash tables or pcbgroups.
2583  */
2584 int
2585 in_pcbinshash(struct inpcb *inp)
2586 {
2587
2588         return (in_pcbinshash_internal(inp, 1));
2589 }
2590
2591 int
2592 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2593 {
2594
2595         return (in_pcbinshash_internal(inp, 0));
2596 }
2597
2598 /*
2599  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2600  * changed. NOTE: This does not handle the case of the lport changing (the
2601  * hashed port list would have to be updated as well), so the lport must
2602  * not change after in_pcbinshash() has been called.
2603  */
2604 void
2605 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2606 {
2607         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2608         struct inpcbhead *head;
2609         u_int32_t hashkey_faddr;
2610
2611         INP_WLOCK_ASSERT(inp);
2612         INP_HASH_WLOCK_ASSERT(pcbinfo);
2613
2614         KASSERT(inp->inp_flags & INP_INHASHLIST,
2615             ("in_pcbrehash: !INP_INHASHLIST"));
2616
2617 #ifdef INET6
2618         if (inp->inp_vflag & INP_IPV6)
2619                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2620         else
2621 #endif
2622         hashkey_faddr = inp->inp_faddr.s_addr;
2623
2624         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2625                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2626
2627         CK_LIST_REMOVE(inp, inp_hash);
2628         CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2629
2630 #ifdef PCBGROUP
2631         if (m != NULL)
2632                 in_pcbgroup_update_mbuf(inp, m);
2633         else
2634                 in_pcbgroup_update(inp);
2635 #endif
2636 }
2637
2638 void
2639 in_pcbrehash(struct inpcb *inp)
2640 {
2641
2642         in_pcbrehash_mbuf(inp, NULL);
2643 }
2644
2645 /*
2646  * Remove PCB from various lists.
2647  */
2648 static void
2649 in_pcbremlists(struct inpcb *inp)
2650 {
2651         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2652
2653 #ifdef INVARIANTS
2654         if (pcbinfo == &V_tcbinfo) {
2655                 INP_INFO_RLOCK_ASSERT(pcbinfo);
2656         } else {
2657                 INP_INFO_WLOCK_ASSERT(pcbinfo);
2658         }
2659 #endif
2660
2661         INP_WLOCK_ASSERT(inp);
2662         INP_LIST_WLOCK_ASSERT(pcbinfo);
2663
2664         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2665         if (inp->inp_flags & INP_INHASHLIST) {
2666                 struct inpcbport *phd = inp->inp_phd;
2667
2668                 INP_HASH_WLOCK(pcbinfo);
2669
2670                 /* XXX: Only do if SO_REUSEPORT_LB set? */
2671                 in_pcbremlbgrouphash(inp);
2672
2673                 CK_LIST_REMOVE(inp, inp_hash);
2674                 CK_LIST_REMOVE(inp, inp_portlist);
2675                 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2676                         CK_LIST_REMOVE(phd, phd_hash);
2677                         epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
2678                 }
2679                 INP_HASH_WUNLOCK(pcbinfo);
2680                 inp->inp_flags &= ~INP_INHASHLIST;
2681         }
2682         CK_LIST_REMOVE(inp, inp_list);
2683         pcbinfo->ipi_count--;
2684 #ifdef PCBGROUP
2685         in_pcbgroup_remove(inp);
2686 #endif
2687 }
2688
2689 /*
2690  * Check for alternatives when higher level complains
2691  * about service problems.  For now, invalidate cached
2692  * routing information.  If the route was created dynamically
2693  * (by a redirect), time to try a default gateway again.
2694  */
2695 void
2696 in_losing(struct inpcb *inp)
2697 {
2698
2699         RO_INVALIDATE_CACHE(&inp->inp_route);
2700         return;
2701 }
2702
2703 /*
2704  * A set label operation has occurred at the socket layer, propagate the
2705  * label change into the in_pcb for the socket.
2706  */
2707 void
2708 in_pcbsosetlabel(struct socket *so)
2709 {
2710 #ifdef MAC
2711         struct inpcb *inp;
2712
2713         inp = sotoinpcb(so);
2714         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2715
2716         INP_WLOCK(inp);
2717         SOCK_LOCK(so);
2718         mac_inpcb_sosetlabel(so, inp);
2719         SOCK_UNLOCK(so);
2720         INP_WUNLOCK(inp);
2721 #endif
2722 }
2723
2724 /*
2725  * ipport_tick runs once per second, determining if random port allocation
2726  * should be continued.  If more than ipport_randomcps ports have been
2727  * allocated in the last second, then we return to sequential port
2728  * allocation. We return to random allocation only once we drop below
2729  * ipport_randomcps for at least ipport_randomtime seconds.
2730  */
2731 static void
2732 ipport_tick(void *xtp)
2733 {
2734         VNET_ITERATOR_DECL(vnet_iter);
2735
2736         VNET_LIST_RLOCK_NOSLEEP();
2737         VNET_FOREACH(vnet_iter) {
2738                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2739                 if (V_ipport_tcpallocs <=
2740                     V_ipport_tcplastcount + V_ipport_randomcps) {
2741                         if (V_ipport_stoprandom > 0)
2742                                 V_ipport_stoprandom--;
2743                 } else
2744                         V_ipport_stoprandom = V_ipport_randomtime;
2745                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2746                 CURVNET_RESTORE();
2747         }
2748         VNET_LIST_RUNLOCK_NOSLEEP();
2749         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2750 }
2751
2752 static void
2753 ip_fini(void *xtp)
2754 {
2755
2756         callout_stop(&ipport_tick_callout);
2757 }
2758
2759 /* 
2760  * The ipport_callout should start running at about the time we attach the
2761  * inet or inet6 domains.
2762  */
2763 static void
2764 ipport_tick_init(const void *unused __unused)
2765 {
2766
2767         /* Start ipport_tick. */
2768         callout_init(&ipport_tick_callout, 1);
2769         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2770         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2771                 SHUTDOWN_PRI_DEFAULT);
2772 }
2773 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2774     ipport_tick_init, NULL);
2775
2776 void
2777 inp_wlock(struct inpcb *inp)
2778 {
2779
2780         INP_WLOCK(inp);
2781 }
2782
2783 void
2784 inp_wunlock(struct inpcb *inp)
2785 {
2786
2787         INP_WUNLOCK(inp);
2788 }
2789
2790 void
2791 inp_rlock(struct inpcb *inp)
2792 {
2793
2794         INP_RLOCK(inp);
2795 }
2796
2797 void
2798 inp_runlock(struct inpcb *inp)
2799 {
2800
2801         INP_RUNLOCK(inp);
2802 }
2803
2804 #ifdef INVARIANT_SUPPORT
2805 void
2806 inp_lock_assert(struct inpcb *inp)
2807 {
2808
2809         INP_WLOCK_ASSERT(inp);
2810 }
2811
2812 void
2813 inp_unlock_assert(struct inpcb *inp)
2814 {
2815
2816         INP_UNLOCK_ASSERT(inp);
2817 }
2818 #endif
2819
2820 void
2821 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2822 {
2823         struct inpcb *inp;
2824
2825         INP_INFO_WLOCK(&V_tcbinfo);
2826         CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2827                 INP_WLOCK(inp);
2828                 func(inp, arg);
2829                 INP_WUNLOCK(inp);
2830         }
2831         INP_INFO_WUNLOCK(&V_tcbinfo);
2832 }
2833
2834 struct socket *
2835 inp_inpcbtosocket(struct inpcb *inp)
2836 {
2837
2838         INP_WLOCK_ASSERT(inp);
2839         return (inp->inp_socket);
2840 }
2841
2842 struct tcpcb *
2843 inp_inpcbtotcpcb(struct inpcb *inp)
2844 {
2845
2846         INP_WLOCK_ASSERT(inp);
2847         return ((struct tcpcb *)inp->inp_ppcb);
2848 }
2849
2850 int
2851 inp_ip_tos_get(const struct inpcb *inp)
2852 {
2853
2854         return (inp->inp_ip_tos);
2855 }
2856
2857 void
2858 inp_ip_tos_set(struct inpcb *inp, int val)
2859 {
2860
2861         inp->inp_ip_tos = val;
2862 }
2863
2864 void
2865 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2866     uint32_t *faddr, uint16_t *fp)
2867 {
2868
2869         INP_LOCK_ASSERT(inp);
2870         *laddr = inp->inp_laddr.s_addr;
2871         *faddr = inp->inp_faddr.s_addr;
2872         *lp = inp->inp_lport;
2873         *fp = inp->inp_fport;
2874 }
2875
2876 struct inpcb *
2877 so_sotoinpcb(struct socket *so)
2878 {
2879
2880         return (sotoinpcb(so));
2881 }
2882
2883 struct tcpcb *
2884 so_sototcpcb(struct socket *so)
2885 {
2886
2887         return (sototcpcb(so));
2888 }
2889
2890 /*
2891  * Create an external-format (``xinpcb'') structure using the information in
2892  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2893  * reduce the spew of irrelevant information over this interface, to isolate
2894  * user code from changes in the kernel structure, and potentially to provide
2895  * information-hiding if we decide that some of this information should be
2896  * hidden from users.
2897  */
2898 void
2899 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2900 {
2901
2902         xi->xi_len = sizeof(struct xinpcb);
2903         if (inp->inp_socket)
2904                 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2905         else
2906                 bzero(&xi->xi_socket, sizeof(struct xsocket));
2907         bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2908         xi->inp_gencnt = inp->inp_gencnt;
2909         xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2910         xi->inp_flow = inp->inp_flow;
2911         xi->inp_flowid = inp->inp_flowid;
2912         xi->inp_flowtype = inp->inp_flowtype;
2913         xi->inp_flags = inp->inp_flags;
2914         xi->inp_flags2 = inp->inp_flags2;
2915         xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2916         xi->in6p_cksum = inp->in6p_cksum;
2917         xi->in6p_hops = inp->in6p_hops;
2918         xi->inp_ip_tos = inp->inp_ip_tos;
2919         xi->inp_vflag = inp->inp_vflag;
2920         xi->inp_ip_ttl = inp->inp_ip_ttl;
2921         xi->inp_ip_p = inp->inp_ip_p;
2922         xi->inp_ip_minttl = inp->inp_ip_minttl;
2923 }
2924
2925 #ifdef DDB
2926 static void
2927 db_print_indent(int indent)
2928 {
2929         int i;
2930
2931         for (i = 0; i < indent; i++)
2932                 db_printf(" ");
2933 }
2934
2935 static void
2936 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2937 {
2938         char faddr_str[48], laddr_str[48];
2939
2940         db_print_indent(indent);
2941         db_printf("%s at %p\n", name, inc);
2942
2943         indent += 2;
2944
2945 #ifdef INET6
2946         if (inc->inc_flags & INC_ISIPV6) {
2947                 /* IPv6. */
2948                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2949                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2950         } else
2951 #endif
2952         {
2953                 /* IPv4. */
2954                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2955                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2956         }
2957         db_print_indent(indent);
2958         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2959             ntohs(inc->inc_lport));
2960         db_print_indent(indent);
2961         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2962             ntohs(inc->inc_fport));
2963 }
2964
2965 static void
2966 db_print_inpflags(int inp_flags)
2967 {
2968         int comma;
2969
2970         comma = 0;
2971         if (inp_flags & INP_RECVOPTS) {
2972                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2973                 comma = 1;
2974         }
2975         if (inp_flags & INP_RECVRETOPTS) {
2976                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2977                 comma = 1;
2978         }
2979         if (inp_flags & INP_RECVDSTADDR) {
2980                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2981                 comma = 1;
2982         }
2983         if (inp_flags & INP_ORIGDSTADDR) {
2984                 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2985                 comma = 1;
2986         }
2987         if (inp_flags & INP_HDRINCL) {
2988                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2989                 comma = 1;
2990         }
2991         if (inp_flags & INP_HIGHPORT) {
2992                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2993                 comma = 1;
2994         }
2995         if (inp_flags & INP_LOWPORT) {
2996                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2997                 comma = 1;
2998         }
2999         if (inp_flags & INP_ANONPORT) {
3000                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
3001                 comma = 1;
3002         }
3003         if (inp_flags & INP_RECVIF) {
3004                 db_printf("%sINP_RECVIF", comma ? ", " : "");
3005                 comma = 1;
3006         }
3007         if (inp_flags & INP_MTUDISC) {
3008                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
3009                 comma = 1;
3010         }
3011         if (inp_flags & INP_RECVTTL) {
3012                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
3013                 comma = 1;
3014         }
3015         if (inp_flags & INP_DONTFRAG) {
3016                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3017                 comma = 1;
3018         }
3019         if (inp_flags & INP_RECVTOS) {
3020                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
3021                 comma = 1;
3022         }
3023         if (inp_flags & IN6P_IPV6_V6ONLY) {
3024                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3025                 comma = 1;
3026         }
3027         if (inp_flags & IN6P_PKTINFO) {
3028                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3029                 comma = 1;
3030         }
3031         if (inp_flags & IN6P_HOPLIMIT) {
3032                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3033                 comma = 1;
3034         }
3035         if (inp_flags & IN6P_HOPOPTS) {
3036                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3037                 comma = 1;
3038         }
3039         if (inp_flags & IN6P_DSTOPTS) {
3040                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3041                 comma = 1;
3042         }
3043         if (inp_flags & IN6P_RTHDR) {
3044                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3045                 comma = 1;
3046         }
3047         if (inp_flags & IN6P_RTHDRDSTOPTS) {
3048                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3049                 comma = 1;
3050         }
3051         if (inp_flags & IN6P_TCLASS) {
3052                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3053                 comma = 1;
3054         }
3055         if (inp_flags & IN6P_AUTOFLOWLABEL) {
3056                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3057                 comma = 1;
3058         }
3059         if (inp_flags & INP_TIMEWAIT) {
3060                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3061                 comma  = 1;
3062         }
3063         if (inp_flags & INP_ONESBCAST) {
3064                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3065                 comma  = 1;
3066         }
3067         if (inp_flags & INP_DROPPED) {
3068                 db_printf("%sINP_DROPPED", comma ? ", " : "");
3069                 comma  = 1;
3070         }
3071         if (inp_flags & INP_SOCKREF) {
3072                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
3073                 comma  = 1;
3074         }
3075         if (inp_flags & IN6P_RFC2292) {
3076                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3077                 comma = 1;
3078         }
3079         if (inp_flags & IN6P_MTU) {
3080                 db_printf("IN6P_MTU%s", comma ? ", " : "");
3081                 comma = 1;
3082         }
3083 }
3084
3085 static void
3086 db_print_inpvflag(u_char inp_vflag)
3087 {
3088         int comma;
3089
3090         comma = 0;
3091         if (inp_vflag & INP_IPV4) {
3092                 db_printf("%sINP_IPV4", comma ? ", " : "");
3093                 comma  = 1;
3094         }
3095         if (inp_vflag & INP_IPV6) {
3096                 db_printf("%sINP_IPV6", comma ? ", " : "");
3097                 comma  = 1;
3098         }
3099         if (inp_vflag & INP_IPV6PROTO) {
3100                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3101                 comma  = 1;
3102         }
3103 }
3104
3105 static void
3106 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3107 {
3108
3109         db_print_indent(indent);
3110         db_printf("%s at %p\n", name, inp);
3111
3112         indent += 2;
3113
3114         db_print_indent(indent);
3115         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3116
3117         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3118
3119         db_print_indent(indent);
3120         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3121             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3122
3123         db_print_indent(indent);
3124         db_printf("inp_label: %p   inp_flags: 0x%x (",
3125            inp->inp_label, inp->inp_flags);
3126         db_print_inpflags(inp->inp_flags);
3127         db_printf(")\n");
3128
3129         db_print_indent(indent);
3130         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3131             inp->inp_vflag);
3132         db_print_inpvflag(inp->inp_vflag);
3133         db_printf(")\n");
3134
3135         db_print_indent(indent);
3136         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3137             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3138
3139         db_print_indent(indent);
3140 #ifdef INET6
3141         if (inp->inp_vflag & INP_IPV6) {
3142                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
3143                     "in6p_moptions: %p\n", inp->in6p_options,
3144                     inp->in6p_outputopts, inp->in6p_moptions);
3145                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3146                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3147                     inp->in6p_hops);
3148         } else
3149 #endif
3150         {
3151                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3152                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3153                     inp->inp_options, inp->inp_moptions);
3154         }
3155
3156         db_print_indent(indent);
3157         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3158             (uintmax_t)inp->inp_gencnt);
3159 }
3160
3161 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3162 {
3163         struct inpcb *inp;
3164
3165         if (!have_addr) {
3166                 db_printf("usage: show inpcb <addr>\n");
3167                 return;
3168         }
3169         inp = (struct inpcb *)addr;
3170
3171         db_print_inpcb(inp, "inpcb", 0);
3172 }
3173 #endif /* DDB */
3174
3175 #ifdef RATELIMIT
3176 /*
3177  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3178  * if any.
3179  */
3180 int
3181 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3182 {
3183         union if_snd_tag_modify_params params = {
3184                 .rate_limit.max_rate = max_pacing_rate,
3185         };
3186         struct m_snd_tag *mst;
3187         struct ifnet *ifp;
3188         int error;
3189
3190         mst = inp->inp_snd_tag;
3191         if (mst == NULL)
3192                 return (EINVAL);
3193
3194         ifp = mst->ifp;
3195         if (ifp == NULL)
3196                 return (EINVAL);
3197
3198         if (ifp->if_snd_tag_modify == NULL) {
3199                 error = EOPNOTSUPP;
3200         } else {
3201                 error = ifp->if_snd_tag_modify(mst, &params);
3202         }
3203         return (error);
3204 }
3205
3206 /*
3207  * Query existing TX rate limit based on the existing
3208  * "inp->inp_snd_tag", if any.
3209  */
3210 int
3211 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3212 {
3213         union if_snd_tag_query_params params = { };
3214         struct m_snd_tag *mst;
3215         struct ifnet *ifp;
3216         int error;
3217
3218         mst = inp->inp_snd_tag;
3219         if (mst == NULL)
3220                 return (EINVAL);
3221
3222         ifp = mst->ifp;
3223         if (ifp == NULL)
3224                 return (EINVAL);
3225
3226         if (ifp->if_snd_tag_query == NULL) {
3227                 error = EOPNOTSUPP;
3228         } else {
3229                 error = ifp->if_snd_tag_query(mst, &params);
3230                 if (error == 0 &&  p_max_pacing_rate != NULL)
3231                         *p_max_pacing_rate = params.rate_limit.max_rate;
3232         }
3233         return (error);
3234 }
3235
3236 /*
3237  * Query existing TX queue level based on the existing
3238  * "inp->inp_snd_tag", if any.
3239  */
3240 int
3241 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3242 {
3243         union if_snd_tag_query_params params = { };
3244         struct m_snd_tag *mst;
3245         struct ifnet *ifp;
3246         int error;
3247
3248         mst = inp->inp_snd_tag;
3249         if (mst == NULL)
3250                 return (EINVAL);
3251
3252         ifp = mst->ifp;
3253         if (ifp == NULL)
3254                 return (EINVAL);
3255
3256         if (ifp->if_snd_tag_query == NULL)
3257                 return (EOPNOTSUPP);
3258
3259         error = ifp->if_snd_tag_query(mst, &params);
3260         if (error == 0 &&  p_txqueue_level != NULL)
3261                 *p_txqueue_level = params.rate_limit.queue_level;
3262         return (error);
3263 }
3264
3265 /*
3266  * Allocate a new TX rate limit send tag from the network interface
3267  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3268  */
3269 int
3270 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3271     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
3272 {
3273         union if_snd_tag_alloc_params params = {
3274                 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3275                     IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3276                 .rate_limit.hdr.flowid = flowid,
3277                 .rate_limit.hdr.flowtype = flowtype,
3278                 .rate_limit.max_rate = max_pacing_rate,
3279         };
3280         int error;
3281
3282         INP_WLOCK_ASSERT(inp);
3283
3284         if (inp->inp_snd_tag != NULL)
3285                 return (EINVAL);
3286
3287         if (ifp->if_snd_tag_alloc == NULL) {
3288                 error = EOPNOTSUPP;
3289         } else {
3290                 error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3291
3292                 /*
3293                  * At success increment the refcount on
3294                  * the send tag's network interface:
3295                  */
3296                 if (error == 0)
3297                         if_ref(inp->inp_snd_tag->ifp);
3298         }
3299         return (error);
3300 }
3301
3302 /*
3303  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3304  * if any:
3305  */
3306 void
3307 in_pcbdetach_txrtlmt(struct inpcb *inp)
3308 {
3309         struct m_snd_tag *mst;
3310         struct ifnet *ifp;
3311
3312         INP_WLOCK_ASSERT(inp);
3313
3314         mst = inp->inp_snd_tag;
3315         inp->inp_snd_tag = NULL;
3316
3317         if (mst == NULL)
3318                 return;
3319
3320         ifp = mst->ifp;
3321         if (ifp == NULL)
3322                 return;
3323
3324         /*
3325          * If the device was detached while we still had reference(s)
3326          * on the ifp, we assume if_snd_tag_free() was replaced with
3327          * stubs.
3328          */
3329         ifp->if_snd_tag_free(mst);
3330
3331         /* release reference count on network interface */
3332         if_rele(ifp);
3333 }
3334
3335 /*
3336  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3337  * is set in the fast path and will attach/detach/modify the TX rate
3338  * limit send tag based on the socket's so_max_pacing_rate value.
3339  */
3340 void
3341 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3342 {
3343         struct socket *socket;
3344         uint32_t max_pacing_rate;
3345         bool did_upgrade;
3346         int error;
3347
3348         if (inp == NULL)
3349                 return;
3350
3351         socket = inp->inp_socket;
3352         if (socket == NULL)
3353                 return;
3354
3355         if (!INP_WLOCKED(inp)) {
3356                 /*
3357                  * NOTE: If the write locking fails, we need to bail
3358                  * out and use the non-ratelimited ring for the
3359                  * transmit until there is a new chance to get the
3360                  * write lock.
3361                  */
3362                 if (!INP_TRY_UPGRADE(inp))
3363                         return;
3364                 did_upgrade = 1;
3365         } else {
3366                 did_upgrade = 0;
3367         }
3368
3369         /*
3370          * NOTE: The so_max_pacing_rate value is read unlocked,
3371          * because atomic updates are not required since the variable
3372          * is checked at every mbuf we send. It is assumed that the
3373          * variable read itself will be atomic.
3374          */
3375         max_pacing_rate = socket->so_max_pacing_rate;
3376
3377         /*
3378          * NOTE: When attaching to a network interface a reference is
3379          * made to ensure the network interface doesn't go away until
3380          * all ratelimit connections are gone. The network interface
3381          * pointers compared below represent valid network interfaces,
3382          * except when comparing towards NULL.
3383          */
3384         if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3385                 error = 0;
3386         } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3387                 if (inp->inp_snd_tag != NULL)
3388                         in_pcbdetach_txrtlmt(inp);
3389                 error = 0;
3390         } else if (inp->inp_snd_tag == NULL) {
3391                 /*
3392                  * In order to utilize packet pacing with RSS, we need
3393                  * to wait until there is a valid RSS hash before we
3394                  * can proceed:
3395                  */
3396                 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3397                         error = EAGAIN;
3398                 } else {
3399                         error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3400                             mb->m_pkthdr.flowid, max_pacing_rate);
3401                 }
3402         } else {
3403                 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3404         }
3405         if (error == 0 || error == EOPNOTSUPP)
3406                 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3407         if (did_upgrade)
3408                 INP_DOWNGRADE(inp);
3409 }
3410
3411 /*
3412  * Track route changes for TX rate limiting.
3413  */
3414 void
3415 in_pcboutput_eagain(struct inpcb *inp)
3416 {
3417         struct socket *socket;
3418         bool did_upgrade;
3419
3420         if (inp == NULL)
3421                 return;
3422
3423         socket = inp->inp_socket;
3424         if (socket == NULL)
3425                 return;
3426
3427         if (inp->inp_snd_tag == NULL)
3428                 return;
3429
3430         if (!INP_WLOCKED(inp)) {
3431                 /*
3432                  * NOTE: If the write locking fails, we need to bail
3433                  * out and use the non-ratelimited ring for the
3434                  * transmit until there is a new chance to get the
3435                  * write lock.
3436                  */
3437                 if (!INP_TRY_UPGRADE(inp))
3438                         return;
3439                 did_upgrade = 1;
3440         } else {
3441                 did_upgrade = 0;
3442         }
3443
3444         /* detach rate limiting */
3445         in_pcbdetach_txrtlmt(inp);
3446
3447         /* make sure new mbuf send tag allocation is made */
3448         inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3449
3450         if (did_upgrade)
3451                 INP_DOWNGRADE(inp);
3452 }
3453 #endif /* RATELIMIT */