]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
Upgrade Unbound to 1.6.4. More to follow.
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *      The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
38  */
39
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75
76 #include <vm/uma.h>
77
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106
107 #include <netipsec/ipsec_support.h>
108
109 #include <security/mac/mac_framework.h>
110
111 static struct callout   ipport_tick_callout;
112
113 /*
114  * These configure the range of local port addresses assigned to
115  * "unspecified" outgoing connections/packets/whatever.
116  */
117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
123
124 /*
125  * Reserved ports accessible only to root. There are significant
126  * security considerations that must be accounted for when changing these,
127  * but the security benefits can be great. Please be careful.
128  */
129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
130 VNET_DEFINE(int, ipport_reservedlow);
131
132 /* Variables dealing with random ephemeral port allocation. */
133 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
134 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
135 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
136 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
137 VNET_DEFINE(int, ipport_tcpallocs);
138 static VNET_DEFINE(int, ipport_tcplastcount);
139
140 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
141
142 static void     in_pcbremlists(struct inpcb *inp);
143 #ifdef INET
144 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
145                             struct in_addr faddr, u_int fport_arg,
146                             struct in_addr laddr, u_int lport_arg,
147                             int lookupflags, struct ifnet *ifp);
148
149 #define RANGECHK(var, min, max) \
150         if ((var) < (min)) { (var) = (min); } \
151         else if ((var) > (max)) { (var) = (max); }
152
153 static int
154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
155 {
156         int error;
157
158         error = sysctl_handle_int(oidp, arg1, arg2, req);
159         if (error == 0) {
160                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
161                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
162                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
163                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
164                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
165                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
166         }
167         return (error);
168 }
169
170 #undef RANGECHK
171
172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
173     "IP Ports");
174
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
176         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177         &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
179         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180         &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
182         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183         &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
185         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186         &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189         &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192         &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
194         CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
195         &VNET_NAME(ipport_reservedhigh), 0, "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
197         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
199         CTLFLAG_VNET | CTLFLAG_RW,
200         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
202         CTLFLAG_VNET | CTLFLAG_RW,
203         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
204         "allocations before switching to a sequental one");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
206         CTLFLAG_VNET | CTLFLAG_RW,
207         &VNET_NAME(ipport_randomtime), 0,
208         "Minimum time to keep sequental port "
209         "allocation before switching to a random one");
210 #endif /* INET */
211
212 /*
213  * in_pcb.c: manage the Protocol Control Blocks.
214  *
215  * NOTE: It is assumed that most of these functions will be called with
216  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
217  * functions often modify hash chains or addresses in pcbs.
218  */
219
220 /*
221  * Different protocols initialize their inpcbs differently - giving
222  * different name to the lock.  But they all are disposed the same.
223  */
224 static void
225 inpcb_fini(void *mem, int size)
226 {
227         struct inpcb *inp = mem;
228
229         INP_LOCK_DESTROY(inp);
230 }
231
232 /*
233  * Initialize an inpcbinfo -- we should be able to reduce the number of
234  * arguments in time.
235  */
236 void
237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
238     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
239     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
240 {
241
242         INP_INFO_LOCK_INIT(pcbinfo, name);
243         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
244         INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
245 #ifdef VIMAGE
246         pcbinfo->ipi_vnet = curvnet;
247 #endif
248         pcbinfo->ipi_listhead = listhead;
249         LIST_INIT(pcbinfo->ipi_listhead);
250         pcbinfo->ipi_count = 0;
251         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
252             &pcbinfo->ipi_hashmask);
253         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
254             &pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
257 #endif
258         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
259             NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
260         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
261         uma_zone_set_warning(pcbinfo->ipi_zone,
262             "kern.ipc.maxsockets limit reached");
263 }
264
265 /*
266  * Destroy an inpcbinfo.
267  */
268 void
269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
270 {
271
272         KASSERT(pcbinfo->ipi_count == 0,
273             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
274
275         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
276         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
277             pcbinfo->ipi_porthashmask);
278 #ifdef PCBGROUP
279         in_pcbgroup_destroy(pcbinfo);
280 #endif
281         uma_zdestroy(pcbinfo->ipi_zone);
282         INP_LIST_LOCK_DESTROY(pcbinfo);
283         INP_HASH_LOCK_DESTROY(pcbinfo);
284         INP_INFO_LOCK_DESTROY(pcbinfo);
285 }
286
287 /*
288  * Allocate a PCB and associate it with the socket.
289  * On success return with the PCB locked.
290  */
291 int
292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
293 {
294         struct inpcb *inp;
295         int error;
296
297 #ifdef INVARIANTS
298         if (pcbinfo == &V_tcbinfo) {
299                 INP_INFO_RLOCK_ASSERT(pcbinfo);
300         } else {
301                 INP_INFO_WLOCK_ASSERT(pcbinfo);
302         }
303 #endif
304
305         error = 0;
306         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
307         if (inp == NULL)
308                 return (ENOBUFS);
309         bzero(&inp->inp_start_zero, inp_zero_size);
310         inp->inp_pcbinfo = pcbinfo;
311         inp->inp_socket = so;
312         inp->inp_cred = crhold(so->so_cred);
313         inp->inp_inc.inc_fibnum = so->so_fibnum;
314 #ifdef MAC
315         error = mac_inpcb_init(inp, M_NOWAIT);
316         if (error != 0)
317                 goto out;
318         mac_inpcb_create(so, inp);
319 #endif
320 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
321         error = ipsec_init_pcbpolicy(inp);
322         if (error != 0) {
323 #ifdef MAC
324                 mac_inpcb_destroy(inp);
325 #endif
326                 goto out;
327         }
328 #endif /*IPSEC*/
329 #ifdef INET6
330         if (INP_SOCKAF(so) == AF_INET6) {
331                 inp->inp_vflag |= INP_IPV6PROTO;
332                 if (V_ip6_v6only)
333                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
334         }
335 #endif
336         INP_WLOCK(inp);
337         INP_LIST_WLOCK(pcbinfo);
338         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
339         pcbinfo->ipi_count++;
340         so->so_pcb = (caddr_t)inp;
341 #ifdef INET6
342         if (V_ip6_auto_flowlabel)
343                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
344 #endif
345         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
346         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
347
348         /*
349          * Routes in inpcb's can cache L2 as well; they are guaranteed
350          * to be cleaned up.
351          */
352         inp->inp_route.ro_flags = RT_LLE_CACHE;
353         INP_LIST_WUNLOCK(pcbinfo);
354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
355 out:
356         if (error != 0) {
357                 crfree(inp->inp_cred);
358                 uma_zfree(pcbinfo->ipi_zone, inp);
359         }
360 #endif
361         return (error);
362 }
363
364 #ifdef INET
365 int
366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
367 {
368         int anonport, error;
369
370         INP_WLOCK_ASSERT(inp);
371         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
372
373         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
374                 return (EINVAL);
375         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
376         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
377             &inp->inp_lport, cred);
378         if (error)
379                 return (error);
380         if (in_pcbinshash(inp) != 0) {
381                 inp->inp_laddr.s_addr = INADDR_ANY;
382                 inp->inp_lport = 0;
383                 return (EAGAIN);
384         }
385         if (anonport)
386                 inp->inp_flags |= INP_ANONPORT;
387         return (0);
388 }
389 #endif
390
391 /*
392  * Select a local port (number) to use.
393  */
394 #if defined(INET) || defined(INET6)
395 int
396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
397     struct ucred *cred, int lookupflags)
398 {
399         struct inpcbinfo *pcbinfo;
400         struct inpcb *tmpinp;
401         unsigned short *lastport;
402         int count, dorandom, error;
403         u_short aux, first, last, lport;
404 #ifdef INET
405         struct in_addr laddr;
406 #endif
407
408         pcbinfo = inp->inp_pcbinfo;
409
410         /*
411          * Because no actual state changes occur here, a global write lock on
412          * the pcbinfo isn't required.
413          */
414         INP_LOCK_ASSERT(inp);
415         INP_HASH_LOCK_ASSERT(pcbinfo);
416
417         if (inp->inp_flags & INP_HIGHPORT) {
418                 first = V_ipport_hifirstauto;   /* sysctl */
419                 last  = V_ipport_hilastauto;
420                 lastport = &pcbinfo->ipi_lasthi;
421         } else if (inp->inp_flags & INP_LOWPORT) {
422                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
423                 if (error)
424                         return (error);
425                 first = V_ipport_lowfirstauto;  /* 1023 */
426                 last  = V_ipport_lowlastauto;   /* 600 */
427                 lastport = &pcbinfo->ipi_lastlow;
428         } else {
429                 first = V_ipport_firstauto;     /* sysctl */
430                 last  = V_ipport_lastauto;
431                 lastport = &pcbinfo->ipi_lastport;
432         }
433         /*
434          * For UDP(-Lite), use random port allocation as long as the user
435          * allows it.  For TCP (and as of yet unknown) connections,
436          * use random port allocation only if the user allows it AND
437          * ipport_tick() allows it.
438          */
439         if (V_ipport_randomized &&
440                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
441                 pcbinfo == &V_ulitecbinfo))
442                 dorandom = 1;
443         else
444                 dorandom = 0;
445         /*
446          * It makes no sense to do random port allocation if
447          * we have the only port available.
448          */
449         if (first == last)
450                 dorandom = 0;
451         /* Make sure to not include UDP(-Lite) packets in the count. */
452         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
453                 V_ipport_tcpallocs++;
454         /*
455          * Instead of having two loops further down counting up or down
456          * make sure that first is always <= last and go with only one
457          * code path implementing all logic.
458          */
459         if (first > last) {
460                 aux = first;
461                 first = last;
462                 last = aux;
463         }
464
465 #ifdef INET
466         /* Make the compiler happy. */
467         laddr.s_addr = 0;
468         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
469                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
470                     __func__, inp));
471                 laddr = *laddrp;
472         }
473 #endif
474         tmpinp = NULL;  /* Make compiler happy. */
475         lport = *lportp;
476
477         if (dorandom)
478                 *lastport = first + (arc4random() % (last - first));
479
480         count = last - first;
481
482         do {
483                 if (count-- < 0)        /* completely used? */
484                         return (EADDRNOTAVAIL);
485                 ++*lastport;
486                 if (*lastport < first || *lastport > last)
487                         *lastport = first;
488                 lport = htons(*lastport);
489
490 #ifdef INET6
491                 if ((inp->inp_vflag & INP_IPV6) != 0)
492                         tmpinp = in6_pcblookup_local(pcbinfo,
493                             &inp->in6p_laddr, lport, lookupflags, cred);
494 #endif
495 #if defined(INET) && defined(INET6)
496                 else
497 #endif
498 #ifdef INET
499                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
500                             lport, lookupflags, cred);
501 #endif
502         } while (tmpinp != NULL);
503
504 #ifdef INET
505         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
506                 laddrp->s_addr = laddr.s_addr;
507 #endif
508         *lportp = lport;
509
510         return (0);
511 }
512
513 /*
514  * Return cached socket options.
515  */
516 short
517 inp_so_options(const struct inpcb *inp)
518 {
519    short so_options;
520
521    so_options = 0;
522
523    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
524            so_options |= SO_REUSEPORT;
525    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
526            so_options |= SO_REUSEADDR;
527    return (so_options);
528 }
529 #endif /* INET || INET6 */
530
531 /*
532  * Check if a new BINDMULTI socket is allowed to be created.
533  *
534  * ni points to the new inp.
535  * oi points to the exisitng inp.
536  *
537  * This checks whether the existing inp also has BINDMULTI and
538  * whether the credentials match.
539  */
540 int
541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
542 {
543         /* Check permissions match */
544         if ((ni->inp_flags2 & INP_BINDMULTI) &&
545             (ni->inp_cred->cr_uid !=
546             oi->inp_cred->cr_uid))
547                 return (0);
548
549         /* Check the existing inp has BINDMULTI set */
550         if ((ni->inp_flags2 & INP_BINDMULTI) &&
551             ((oi->inp_flags2 & INP_BINDMULTI) == 0))
552                 return (0);
553
554         /*
555          * We're okay - either INP_BINDMULTI isn't set on ni, or
556          * it is and it matches the checks.
557          */
558         return (1);
559 }
560
561 #ifdef INET
562 /*
563  * Set up a bind operation on a PCB, performing port allocation
564  * as required, but do not actually modify the PCB. Callers can
565  * either complete the bind by setting inp_laddr/inp_lport and
566  * calling in_pcbinshash(), or they can just use the resulting
567  * port and address to authorise the sending of a once-off packet.
568  *
569  * On error, the values of *laddrp and *lportp are not changed.
570  */
571 int
572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
573     u_short *lportp, struct ucred *cred)
574 {
575         struct socket *so = inp->inp_socket;
576         struct sockaddr_in *sin;
577         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
578         struct in_addr laddr;
579         u_short lport = 0;
580         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
581         int error;
582
583         /*
584          * No state changes, so read locks are sufficient here.
585          */
586         INP_LOCK_ASSERT(inp);
587         INP_HASH_LOCK_ASSERT(pcbinfo);
588
589         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
590                 return (EADDRNOTAVAIL);
591         laddr.s_addr = *laddrp;
592         if (nam != NULL && laddr.s_addr != INADDR_ANY)
593                 return (EINVAL);
594         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
595                 lookupflags = INPLOOKUP_WILDCARD;
596         if (nam == NULL) {
597                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
598                         return (error);
599         } else {
600                 sin = (struct sockaddr_in *)nam;
601                 if (nam->sa_len != sizeof (*sin))
602                         return (EINVAL);
603 #ifdef notdef
604                 /*
605                  * We should check the family, but old programs
606                  * incorrectly fail to initialize it.
607                  */
608                 if (sin->sin_family != AF_INET)
609                         return (EAFNOSUPPORT);
610 #endif
611                 error = prison_local_ip4(cred, &sin->sin_addr);
612                 if (error)
613                         return (error);
614                 if (sin->sin_port != *lportp) {
615                         /* Don't allow the port to change. */
616                         if (*lportp != 0)
617                                 return (EINVAL);
618                         lport = sin->sin_port;
619                 }
620                 /* NB: lport is left as 0 if the port isn't being changed. */
621                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
622                         /*
623                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
624                          * allow complete duplication of binding if
625                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
626                          * and a multicast address is bound on both
627                          * new and duplicated sockets.
628                          */
629                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
630                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
631                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
632                         sin->sin_port = 0;              /* yech... */
633                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
634                         /*
635                          * Is the address a local IP address? 
636                          * If INP_BINDANY is set, then the socket may be bound
637                          * to any endpoint address, local or not.
638                          */
639                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
640                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
641                                 return (EADDRNOTAVAIL);
642                 }
643                 laddr = sin->sin_addr;
644                 if (lport) {
645                         struct inpcb *t;
646                         struct tcptw *tw;
647
648                         /* GROSS */
649                         if (ntohs(lport) <= V_ipport_reservedhigh &&
650                             ntohs(lport) >= V_ipport_reservedlow &&
651                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
652                             0))
653                                 return (EACCES);
654                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
655                             priv_check_cred(inp->inp_cred,
656                             PRIV_NETINET_REUSEPORT, 0) != 0) {
657                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
658                                     lport, INPLOOKUP_WILDCARD, cred);
659         /*
660          * XXX
661          * This entire block sorely needs a rewrite.
662          */
663                                 if (t &&
664                                     ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
665                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
666                                     (so->so_type != SOCK_STREAM ||
667                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
668                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
669                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
670                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
671                                     (inp->inp_cred->cr_uid !=
672                                      t->inp_cred->cr_uid))
673                                         return (EADDRINUSE);
674
675                                 /*
676                                  * If the socket is a BINDMULTI socket, then
677                                  * the credentials need to match and the
678                                  * original socket also has to have been bound
679                                  * with BINDMULTI.
680                                  */
681                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
682                                         return (EADDRINUSE);
683                         }
684                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
685                             lport, lookupflags, cred);
686                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
687                                 /*
688                                  * XXXRW: If an incpb has had its timewait
689                                  * state recycled, we treat the address as
690                                  * being in use (for now).  This is better
691                                  * than a panic, but not desirable.
692                                  */
693                                 tw = intotw(t);
694                                 if (tw == NULL ||
695                                     (reuseport & tw->tw_so_options) == 0)
696                                         return (EADDRINUSE);
697                         } else if (t &&
698                             ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
699                             (reuseport & inp_so_options(t)) == 0) {
700 #ifdef INET6
701                                 if (ntohl(sin->sin_addr.s_addr) !=
702                                     INADDR_ANY ||
703                                     ntohl(t->inp_laddr.s_addr) !=
704                                     INADDR_ANY ||
705                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
706                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
707 #endif
708                                 return (EADDRINUSE);
709                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
710                                         return (EADDRINUSE);
711                         }
712                 }
713         }
714         if (*lportp != 0)
715                 lport = *lportp;
716         if (lport == 0) {
717                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
718                 if (error != 0)
719                         return (error);
720
721         }
722         *laddrp = laddr.s_addr;
723         *lportp = lport;
724         return (0);
725 }
726
727 /*
728  * Connect from a socket to a specified address.
729  * Both address and port must be specified in argument sin.
730  * If don't have a local address for this socket yet,
731  * then pick one.
732  */
733 int
734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
735     struct ucred *cred, struct mbuf *m)
736 {
737         u_short lport, fport;
738         in_addr_t laddr, faddr;
739         int anonport, error;
740
741         INP_WLOCK_ASSERT(inp);
742         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
743
744         lport = inp->inp_lport;
745         laddr = inp->inp_laddr.s_addr;
746         anonport = (lport == 0);
747         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
748             NULL, cred);
749         if (error)
750                 return (error);
751
752         /* Do the initial binding of the local address if required. */
753         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
754                 inp->inp_lport = lport;
755                 inp->inp_laddr.s_addr = laddr;
756                 if (in_pcbinshash(inp) != 0) {
757                         inp->inp_laddr.s_addr = INADDR_ANY;
758                         inp->inp_lport = 0;
759                         return (EAGAIN);
760                 }
761         }
762
763         /* Commit the remaining changes. */
764         inp->inp_lport = lport;
765         inp->inp_laddr.s_addr = laddr;
766         inp->inp_faddr.s_addr = faddr;
767         inp->inp_fport = fport;
768         in_pcbrehash_mbuf(inp, m);
769
770         if (anonport)
771                 inp->inp_flags |= INP_ANONPORT;
772         return (0);
773 }
774
775 int
776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
777 {
778
779         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
780 }
781
782 /*
783  * Do proper source address selection on an unbound socket in case
784  * of connect. Take jails into account as well.
785  */
786 int
787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
788     struct ucred *cred)
789 {
790         struct ifaddr *ifa;
791         struct sockaddr *sa;
792         struct sockaddr_in *sin;
793         struct route sro;
794         int error;
795
796         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
797
798         /*
799          * Bypass source address selection and use the primary jail IP
800          * if requested.
801          */
802         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
803                 return (0);
804
805         error = 0;
806         bzero(&sro, sizeof(sro));
807
808         sin = (struct sockaddr_in *)&sro.ro_dst;
809         sin->sin_family = AF_INET;
810         sin->sin_len = sizeof(struct sockaddr_in);
811         sin->sin_addr.s_addr = faddr->s_addr;
812
813         /*
814          * If route is known our src addr is taken from the i/f,
815          * else punt.
816          *
817          * Find out route to destination.
818          */
819         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
820                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
821
822         /*
823          * If we found a route, use the address corresponding to
824          * the outgoing interface.
825          * 
826          * Otherwise assume faddr is reachable on a directly connected
827          * network and try to find a corresponding interface to take
828          * the source address from.
829          */
830         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
831                 struct in_ifaddr *ia;
832                 struct ifnet *ifp;
833
834                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
835                                         inp->inp_socket->so_fibnum));
836                 if (ia == NULL)
837                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
838                                                 inp->inp_socket->so_fibnum));
839                 if (ia == NULL) {
840                         error = ENETUNREACH;
841                         goto done;
842                 }
843
844                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
845                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
846                         ifa_free(&ia->ia_ifa);
847                         goto done;
848                 }
849
850                 ifp = ia->ia_ifp;
851                 ifa_free(&ia->ia_ifa);
852                 ia = NULL;
853                 IF_ADDR_RLOCK(ifp);
854                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
855
856                         sa = ifa->ifa_addr;
857                         if (sa->sa_family != AF_INET)
858                                 continue;
859                         sin = (struct sockaddr_in *)sa;
860                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
861                                 ia = (struct in_ifaddr *)ifa;
862                                 break;
863                         }
864                 }
865                 if (ia != NULL) {
866                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
867                         IF_ADDR_RUNLOCK(ifp);
868                         goto done;
869                 }
870                 IF_ADDR_RUNLOCK(ifp);
871
872                 /* 3. As a last resort return the 'default' jail address. */
873                 error = prison_get_ip4(cred, laddr);
874                 goto done;
875         }
876
877         /*
878          * If the outgoing interface on the route found is not
879          * a loopback interface, use the address from that interface.
880          * In case of jails do those three steps:
881          * 1. check if the interface address belongs to the jail. If so use it.
882          * 2. check if we have any address on the outgoing interface
883          *    belonging to this jail. If so use it.
884          * 3. as a last resort return the 'default' jail address.
885          */
886         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
887                 struct in_ifaddr *ia;
888                 struct ifnet *ifp;
889
890                 /* If not jailed, use the default returned. */
891                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
892                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
893                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
894                         goto done;
895                 }
896
897                 /* Jailed. */
898                 /* 1. Check if the iface address belongs to the jail. */
899                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
900                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
901                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
902                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
903                         goto done;
904                 }
905
906                 /*
907                  * 2. Check if we have any address on the outgoing interface
908                  *    belonging to this jail.
909                  */
910                 ia = NULL;
911                 ifp = sro.ro_rt->rt_ifp;
912                 IF_ADDR_RLOCK(ifp);
913                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
914                         sa = ifa->ifa_addr;
915                         if (sa->sa_family != AF_INET)
916                                 continue;
917                         sin = (struct sockaddr_in *)sa;
918                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
919                                 ia = (struct in_ifaddr *)ifa;
920                                 break;
921                         }
922                 }
923                 if (ia != NULL) {
924                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
925                         IF_ADDR_RUNLOCK(ifp);
926                         goto done;
927                 }
928                 IF_ADDR_RUNLOCK(ifp);
929
930                 /* 3. As a last resort return the 'default' jail address. */
931                 error = prison_get_ip4(cred, laddr);
932                 goto done;
933         }
934
935         /*
936          * The outgoing interface is marked with 'loopback net', so a route
937          * to ourselves is here.
938          * Try to find the interface of the destination address and then
939          * take the address from there. That interface is not necessarily
940          * a loopback interface.
941          * In case of jails, check that it is an address of the jail
942          * and if we cannot find, fall back to the 'default' jail address.
943          */
944         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
945                 struct sockaddr_in sain;
946                 struct in_ifaddr *ia;
947
948                 bzero(&sain, sizeof(struct sockaddr_in));
949                 sain.sin_family = AF_INET;
950                 sain.sin_len = sizeof(struct sockaddr_in);
951                 sain.sin_addr.s_addr = faddr->s_addr;
952
953                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
954                                         inp->inp_socket->so_fibnum));
955                 if (ia == NULL)
956                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
957                                                 inp->inp_socket->so_fibnum));
958                 if (ia == NULL)
959                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
960
961                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
962                         if (ia == NULL) {
963                                 error = ENETUNREACH;
964                                 goto done;
965                         }
966                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
967                         ifa_free(&ia->ia_ifa);
968                         goto done;
969                 }
970
971                 /* Jailed. */
972                 if (ia != NULL) {
973                         struct ifnet *ifp;
974
975                         ifp = ia->ia_ifp;
976                         ifa_free(&ia->ia_ifa);
977                         ia = NULL;
978                         IF_ADDR_RLOCK(ifp);
979                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
980
981                                 sa = ifa->ifa_addr;
982                                 if (sa->sa_family != AF_INET)
983                                         continue;
984                                 sin = (struct sockaddr_in *)sa;
985                                 if (prison_check_ip4(cred,
986                                     &sin->sin_addr) == 0) {
987                                         ia = (struct in_ifaddr *)ifa;
988                                         break;
989                                 }
990                         }
991                         if (ia != NULL) {
992                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
993                                 IF_ADDR_RUNLOCK(ifp);
994                                 goto done;
995                         }
996                         IF_ADDR_RUNLOCK(ifp);
997                 }
998
999                 /* 3. As a last resort return the 'default' jail address. */
1000                 error = prison_get_ip4(cred, laddr);
1001                 goto done;
1002         }
1003
1004 done:
1005         if (sro.ro_rt != NULL)
1006                 RTFREE(sro.ro_rt);
1007         return (error);
1008 }
1009
1010 /*
1011  * Set up for a connect from a socket to the specified address.
1012  * On entry, *laddrp and *lportp should contain the current local
1013  * address and port for the PCB; these are updated to the values
1014  * that should be placed in inp_laddr and inp_lport to complete
1015  * the connect.
1016  *
1017  * On success, *faddrp and *fportp will be set to the remote address
1018  * and port. These are not updated in the error case.
1019  *
1020  * If the operation fails because the connection already exists,
1021  * *oinpp will be set to the PCB of that connection so that the
1022  * caller can decide to override it. In all other cases, *oinpp
1023  * is set to NULL.
1024  */
1025 int
1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1027     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1028     struct inpcb **oinpp, struct ucred *cred)
1029 {
1030         struct rm_priotracker in_ifa_tracker;
1031         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1032         struct in_ifaddr *ia;
1033         struct inpcb *oinp;
1034         struct in_addr laddr, faddr;
1035         u_short lport, fport;
1036         int error;
1037
1038         /*
1039          * Because a global state change doesn't actually occur here, a read
1040          * lock is sufficient.
1041          */
1042         INP_LOCK_ASSERT(inp);
1043         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1044
1045         if (oinpp != NULL)
1046                 *oinpp = NULL;
1047         if (nam->sa_len != sizeof (*sin))
1048                 return (EINVAL);
1049         if (sin->sin_family != AF_INET)
1050                 return (EAFNOSUPPORT);
1051         if (sin->sin_port == 0)
1052                 return (EADDRNOTAVAIL);
1053         laddr.s_addr = *laddrp;
1054         lport = *lportp;
1055         faddr = sin->sin_addr;
1056         fport = sin->sin_port;
1057
1058         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1059                 /*
1060                  * If the destination address is INADDR_ANY,
1061                  * use the primary local address.
1062                  * If the supplied address is INADDR_BROADCAST,
1063                  * and the primary interface supports broadcast,
1064                  * choose the broadcast address for that interface.
1065                  */
1066                 if (faddr.s_addr == INADDR_ANY) {
1067                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1068                         faddr =
1069                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1070                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1071                         if (cred != NULL &&
1072                             (error = prison_get_ip4(cred, &faddr)) != 0)
1073                                 return (error);
1074                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1075                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1076                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1077                             IFF_BROADCAST)
1078                                 faddr = satosin(&TAILQ_FIRST(
1079                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1080                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1081                 }
1082         }
1083         if (laddr.s_addr == INADDR_ANY) {
1084                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1085                 /*
1086                  * If the destination address is multicast and an outgoing
1087                  * interface has been set as a multicast option, prefer the
1088                  * address of that interface as our source address.
1089                  */
1090                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1091                     inp->inp_moptions != NULL) {
1092                         struct ip_moptions *imo;
1093                         struct ifnet *ifp;
1094
1095                         imo = inp->inp_moptions;
1096                         if (imo->imo_multicast_ifp != NULL) {
1097                                 ifp = imo->imo_multicast_ifp;
1098                                 IN_IFADDR_RLOCK(&in_ifa_tracker);
1099                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1100                                         if ((ia->ia_ifp == ifp) &&
1101                                             (cred == NULL ||
1102                                             prison_check_ip4(cred,
1103                                             &ia->ia_addr.sin_addr) == 0))
1104                                                 break;
1105                                 }
1106                                 if (ia == NULL)
1107                                         error = EADDRNOTAVAIL;
1108                                 else {
1109                                         laddr = ia->ia_addr.sin_addr;
1110                                         error = 0;
1111                                 }
1112                                 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1113                         }
1114                 }
1115                 if (error)
1116                         return (error);
1117         }
1118         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1119             laddr, lport, 0, NULL);
1120         if (oinp != NULL) {
1121                 if (oinpp != NULL)
1122                         *oinpp = oinp;
1123                 return (EADDRINUSE);
1124         }
1125         if (lport == 0) {
1126                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1127                     cred);
1128                 if (error)
1129                         return (error);
1130         }
1131         *laddrp = laddr.s_addr;
1132         *lportp = lport;
1133         *faddrp = faddr.s_addr;
1134         *fportp = fport;
1135         return (0);
1136 }
1137
1138 void
1139 in_pcbdisconnect(struct inpcb *inp)
1140 {
1141
1142         INP_WLOCK_ASSERT(inp);
1143         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1144
1145         inp->inp_faddr.s_addr = INADDR_ANY;
1146         inp->inp_fport = 0;
1147         in_pcbrehash(inp);
1148 }
1149 #endif /* INET */
1150
1151 /*
1152  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1153  * For most protocols, this will be invoked immediately prior to calling
1154  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1155  * socket, in which case in_pcbfree() is deferred.
1156  */
1157 void
1158 in_pcbdetach(struct inpcb *inp)
1159 {
1160
1161         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1162
1163 #ifdef RATELIMIT
1164         if (inp->inp_snd_tag != NULL)
1165                 in_pcbdetach_txrtlmt(inp);
1166 #endif
1167         inp->inp_socket->so_pcb = NULL;
1168         inp->inp_socket = NULL;
1169 }
1170
1171 /*
1172  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1173  * stability of an inpcb pointer despite the inpcb lock being released.  This
1174  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1175  * but where the inpcb lock may already held, or when acquiring a reference
1176  * via a pcbgroup.
1177  *
1178  * in_pcbref() should be used only to provide brief memory stability, and
1179  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1180  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1181  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1182  * lock and rele are the *only* safe operations that may be performed on the
1183  * inpcb.
1184  *
1185  * While the inpcb will not be freed, releasing the inpcb lock means that the
1186  * connection's state may change, so the caller should be careful to
1187  * revalidate any cached state on reacquiring the lock.  Drop the reference
1188  * using in_pcbrele().
1189  */
1190 void
1191 in_pcbref(struct inpcb *inp)
1192 {
1193
1194         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1195
1196         refcount_acquire(&inp->inp_refcount);
1197 }
1198
1199 /*
1200  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1201  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1202  * return a flag indicating whether or not the inpcb remains valid.  If it is
1203  * valid, we return with the inpcb lock held.
1204  *
1205  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1206  * reference on an inpcb.  Historically more work was done here (actually, in
1207  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1208  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1209  * about memory stability (and continued use of the write lock).
1210  */
1211 int
1212 in_pcbrele_rlocked(struct inpcb *inp)
1213 {
1214         struct inpcbinfo *pcbinfo;
1215
1216         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1217
1218         INP_RLOCK_ASSERT(inp);
1219
1220         if (refcount_release(&inp->inp_refcount) == 0) {
1221                 /*
1222                  * If the inpcb has been freed, let the caller know, even if
1223                  * this isn't the last reference.
1224                  */
1225                 if (inp->inp_flags2 & INP_FREED) {
1226                         INP_RUNLOCK(inp);
1227                         return (1);
1228                 }
1229                 return (0);
1230         }
1231         
1232         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1233 #ifdef TCPHPTS
1234         if (inp->inp_in_hpts || inp->inp_in_input) {
1235                 struct tcp_hpts_entry *hpts;
1236                 /*
1237                  * We should not be on the hpts at 
1238                  * this point in any form. we must
1239                  * get the lock to be sure.
1240                  */
1241                 hpts = tcp_hpts_lock(inp);
1242                 if (inp->inp_in_hpts)
1243                         panic("Hpts:%p inp:%p at free still on hpts",
1244                               hpts, inp);
1245                 mtx_unlock(&hpts->p_mtx);
1246                 hpts = tcp_input_lock(inp);
1247                 if (inp->inp_in_input) 
1248                         panic("Hpts:%p inp:%p at free still on input hpts",
1249                               hpts, inp);
1250                 mtx_unlock(&hpts->p_mtx);
1251         }
1252 #endif
1253         INP_RUNLOCK(inp);
1254         pcbinfo = inp->inp_pcbinfo;
1255         uma_zfree(pcbinfo->ipi_zone, inp);
1256         return (1);
1257 }
1258
1259 int
1260 in_pcbrele_wlocked(struct inpcb *inp)
1261 {
1262         struct inpcbinfo *pcbinfo;
1263
1264         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1265
1266         INP_WLOCK_ASSERT(inp);
1267
1268         if (refcount_release(&inp->inp_refcount) == 0) {
1269                 /*
1270                  * If the inpcb has been freed, let the caller know, even if
1271                  * this isn't the last reference.
1272                  */
1273                 if (inp->inp_flags2 & INP_FREED) {
1274                         INP_WUNLOCK(inp);
1275                         return (1);
1276                 }
1277                 return (0);
1278         }
1279
1280         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1281 #ifdef TCPHPTS
1282         if (inp->inp_in_hpts || inp->inp_in_input) {
1283                 struct tcp_hpts_entry *hpts;
1284                 /*
1285                  * We should not be on the hpts at 
1286                  * this point in any form. we must
1287                  * get the lock to be sure.
1288                  */
1289                 hpts = tcp_hpts_lock(inp);
1290                 if (inp->inp_in_hpts)
1291                         panic("Hpts:%p inp:%p at free still on hpts",
1292                               hpts, inp);
1293                 mtx_unlock(&hpts->p_mtx);
1294                 hpts = tcp_input_lock(inp);
1295                 if (inp->inp_in_input) 
1296                         panic("Hpts:%p inp:%p at free still on input hpts",
1297                               hpts, inp);
1298                 mtx_unlock(&hpts->p_mtx);
1299         }
1300 #endif
1301         INP_WUNLOCK(inp);
1302         pcbinfo = inp->inp_pcbinfo;
1303         uma_zfree(pcbinfo->ipi_zone, inp);
1304         return (1);
1305 }
1306
1307 /*
1308  * Temporary wrapper.
1309  */
1310 int
1311 in_pcbrele(struct inpcb *inp)
1312 {
1313
1314         return (in_pcbrele_wlocked(inp));
1315 }
1316
1317 /*
1318  * Unconditionally schedule an inpcb to be freed by decrementing its
1319  * reference count, which should occur only after the inpcb has been detached
1320  * from its socket.  If another thread holds a temporary reference (acquired
1321  * using in_pcbref()) then the free is deferred until that reference is
1322  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1323  * work, including removal from global lists, is done in this context, where
1324  * the pcbinfo lock is held.
1325  */
1326 void
1327 in_pcbfree(struct inpcb *inp)
1328 {
1329         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1330
1331 #ifdef INET6
1332         struct ip6_moptions *im6o = NULL;
1333 #endif
1334 #ifdef INET
1335         struct ip_moptions *imo = NULL;
1336 #endif
1337         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1338
1339         KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1340             ("%s: called twice for pcb %p", __func__, inp));
1341         if (inp->inp_flags2 & INP_FREED) {
1342                 INP_WUNLOCK(inp);
1343                 return;
1344         }
1345
1346 #ifdef INVARIANTS
1347         if (pcbinfo == &V_tcbinfo) {
1348                 INP_INFO_LOCK_ASSERT(pcbinfo);
1349         } else {
1350                 INP_INFO_WLOCK_ASSERT(pcbinfo);
1351         }
1352 #endif
1353         INP_WLOCK_ASSERT(inp);
1354
1355 #ifdef INET
1356         imo = inp->inp_moptions;
1357         inp->inp_moptions = NULL;
1358 #endif
1359         /* XXXRW: Do as much as possible here. */
1360 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1361         if (inp->inp_sp != NULL)
1362                 ipsec_delete_pcbpolicy(inp);
1363 #endif
1364         INP_LIST_WLOCK(pcbinfo);
1365         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1366         in_pcbremlists(inp);
1367         INP_LIST_WUNLOCK(pcbinfo);
1368 #ifdef INET6
1369         if (inp->inp_vflag & INP_IPV6PROTO) {
1370                 ip6_freepcbopts(inp->in6p_outputopts);
1371                 im6o = inp->in6p_moptions;
1372                 inp->in6p_moptions = NULL;
1373         }
1374 #endif
1375         if (inp->inp_options)
1376                 (void)m_free(inp->inp_options);
1377         RO_INVALIDATE_CACHE(&inp->inp_route);
1378
1379         inp->inp_vflag = 0;
1380         inp->inp_flags2 |= INP_FREED;
1381         crfree(inp->inp_cred);
1382 #ifdef MAC
1383         mac_inpcb_destroy(inp);
1384 #endif
1385         if (!in_pcbrele_wlocked(inp))
1386                 INP_WUNLOCK(inp);
1387 #if defined(INET) && defined(INET6)
1388         if (imo == NULL && im6o == NULL)
1389                 return;
1390 #endif
1391 #ifdef INET6
1392         ip6_freemoptions(im6o, pcbinfo);
1393 #endif
1394 #ifdef INET
1395         inp_freemoptions(imo, pcbinfo);
1396 #endif
1397 }
1398
1399 /*
1400  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1401  * port reservation, and preventing it from being returned by inpcb lookups.
1402  *
1403  * It is used by TCP to mark an inpcb as unused and avoid future packet
1404  * delivery or event notification when a socket remains open but TCP has
1405  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1406  * or a RST on the wire, and allows the port binding to be reused while still
1407  * maintaining the invariant that so_pcb always points to a valid inpcb until
1408  * in_pcbdetach().
1409  *
1410  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1411  * in_pcbnotifyall() and in_pcbpurgeif0()?
1412  */
1413 void
1414 in_pcbdrop(struct inpcb *inp)
1415 {
1416
1417         INP_WLOCK_ASSERT(inp);
1418
1419         /*
1420          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1421          * the hash lock...?
1422          */
1423         inp->inp_flags |= INP_DROPPED;
1424         if (inp->inp_flags & INP_INHASHLIST) {
1425                 struct inpcbport *phd = inp->inp_phd;
1426
1427                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1428                 LIST_REMOVE(inp, inp_hash);
1429                 LIST_REMOVE(inp, inp_portlist);
1430                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1431                         LIST_REMOVE(phd, phd_hash);
1432                         free(phd, M_PCB);
1433                 }
1434                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1435                 inp->inp_flags &= ~INP_INHASHLIST;
1436 #ifdef PCBGROUP
1437                 in_pcbgroup_remove(inp);
1438 #endif
1439         }
1440 }
1441
1442 #ifdef INET
1443 /*
1444  * Common routines to return the socket addresses associated with inpcbs.
1445  */
1446 struct sockaddr *
1447 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1448 {
1449         struct sockaddr_in *sin;
1450
1451         sin = malloc(sizeof *sin, M_SONAME,
1452                 M_WAITOK | M_ZERO);
1453         sin->sin_family = AF_INET;
1454         sin->sin_len = sizeof(*sin);
1455         sin->sin_addr = *addr_p;
1456         sin->sin_port = port;
1457
1458         return (struct sockaddr *)sin;
1459 }
1460
1461 int
1462 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1463 {
1464         struct inpcb *inp;
1465         struct in_addr addr;
1466         in_port_t port;
1467
1468         inp = sotoinpcb(so);
1469         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1470
1471         INP_RLOCK(inp);
1472         port = inp->inp_lport;
1473         addr = inp->inp_laddr;
1474         INP_RUNLOCK(inp);
1475
1476         *nam = in_sockaddr(port, &addr);
1477         return 0;
1478 }
1479
1480 int
1481 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1482 {
1483         struct inpcb *inp;
1484         struct in_addr addr;
1485         in_port_t port;
1486
1487         inp = sotoinpcb(so);
1488         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1489
1490         INP_RLOCK(inp);
1491         port = inp->inp_fport;
1492         addr = inp->inp_faddr;
1493         INP_RUNLOCK(inp);
1494
1495         *nam = in_sockaddr(port, &addr);
1496         return 0;
1497 }
1498
1499 void
1500 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1501     struct inpcb *(*notify)(struct inpcb *, int))
1502 {
1503         struct inpcb *inp, *inp_temp;
1504
1505         INP_INFO_WLOCK(pcbinfo);
1506         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1507                 INP_WLOCK(inp);
1508 #ifdef INET6
1509                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1510                         INP_WUNLOCK(inp);
1511                         continue;
1512                 }
1513 #endif
1514                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1515                     inp->inp_socket == NULL) {
1516                         INP_WUNLOCK(inp);
1517                         continue;
1518                 }
1519                 if ((*notify)(inp, errno))
1520                         INP_WUNLOCK(inp);
1521         }
1522         INP_INFO_WUNLOCK(pcbinfo);
1523 }
1524
1525 void
1526 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1527 {
1528         struct inpcb *inp;
1529         struct ip_moptions *imo;
1530         int i, gap;
1531
1532         INP_INFO_WLOCK(pcbinfo);
1533         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1534                 INP_WLOCK(inp);
1535                 imo = inp->inp_moptions;
1536                 if ((inp->inp_vflag & INP_IPV4) &&
1537                     imo != NULL) {
1538                         /*
1539                          * Unselect the outgoing interface if it is being
1540                          * detached.
1541                          */
1542                         if (imo->imo_multicast_ifp == ifp)
1543                                 imo->imo_multicast_ifp = NULL;
1544
1545                         /*
1546                          * Drop multicast group membership if we joined
1547                          * through the interface being detached.
1548                          */
1549                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1550                             i++) {
1551                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1552                                         IN_MULTI_LOCK_ASSERT();
1553                                         in_leavegroup_locked(imo->imo_membership[i], NULL);
1554                                         gap++;
1555                                 } else if (gap != 0)
1556                                         imo->imo_membership[i - gap] =
1557                                             imo->imo_membership[i];
1558                         }
1559                         imo->imo_num_memberships -= gap;
1560                 }
1561                 INP_WUNLOCK(inp);
1562         }
1563         INP_INFO_WUNLOCK(pcbinfo);
1564 }
1565
1566 /*
1567  * Lookup a PCB based on the local address and port.  Caller must hold the
1568  * hash lock.  No inpcb locks or references are acquired.
1569  */
1570 #define INP_LOOKUP_MAPPED_PCB_COST      3
1571 struct inpcb *
1572 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1573     u_short lport, int lookupflags, struct ucred *cred)
1574 {
1575         struct inpcb *inp;
1576 #ifdef INET6
1577         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1578 #else
1579         int matchwild = 3;
1580 #endif
1581         int wildcard;
1582
1583         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1584             ("%s: invalid lookup flags %d", __func__, lookupflags));
1585
1586         INP_HASH_LOCK_ASSERT(pcbinfo);
1587
1588         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1589                 struct inpcbhead *head;
1590                 /*
1591                  * Look for an unconnected (wildcard foreign addr) PCB that
1592                  * matches the local address and port we're looking for.
1593                  */
1594                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1595                     0, pcbinfo->ipi_hashmask)];
1596                 LIST_FOREACH(inp, head, inp_hash) {
1597 #ifdef INET6
1598                         /* XXX inp locking */
1599                         if ((inp->inp_vflag & INP_IPV4) == 0)
1600                                 continue;
1601 #endif
1602                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1603                             inp->inp_laddr.s_addr == laddr.s_addr &&
1604                             inp->inp_lport == lport) {
1605                                 /*
1606                                  * Found?
1607                                  */
1608                                 if (cred == NULL ||
1609                                     prison_equal_ip4(cred->cr_prison,
1610                                         inp->inp_cred->cr_prison))
1611                                         return (inp);
1612                         }
1613                 }
1614                 /*
1615                  * Not found.
1616                  */
1617                 return (NULL);
1618         } else {
1619                 struct inpcbporthead *porthash;
1620                 struct inpcbport *phd;
1621                 struct inpcb *match = NULL;
1622                 /*
1623                  * Best fit PCB lookup.
1624                  *
1625                  * First see if this local port is in use by looking on the
1626                  * port hash list.
1627                  */
1628                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1629                     pcbinfo->ipi_porthashmask)];
1630                 LIST_FOREACH(phd, porthash, phd_hash) {
1631                         if (phd->phd_port == lport)
1632                                 break;
1633                 }
1634                 if (phd != NULL) {
1635                         /*
1636                          * Port is in use by one or more PCBs. Look for best
1637                          * fit.
1638                          */
1639                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1640                                 wildcard = 0;
1641                                 if (cred != NULL &&
1642                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1643                                         cred->cr_prison))
1644                                         continue;
1645 #ifdef INET6
1646                                 /* XXX inp locking */
1647                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1648                                         continue;
1649                                 /*
1650                                  * We never select the PCB that has
1651                                  * INP_IPV6 flag and is bound to :: if
1652                                  * we have another PCB which is bound
1653                                  * to 0.0.0.0.  If a PCB has the
1654                                  * INP_IPV6 flag, then we set its cost
1655                                  * higher than IPv4 only PCBs.
1656                                  *
1657                                  * Note that the case only happens
1658                                  * when a socket is bound to ::, under
1659                                  * the condition that the use of the
1660                                  * mapped address is allowed.
1661                                  */
1662                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1663                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1664 #endif
1665                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1666                                         wildcard++;
1667                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1668                                         if (laddr.s_addr == INADDR_ANY)
1669                                                 wildcard++;
1670                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1671                                                 continue;
1672                                 } else {
1673                                         if (laddr.s_addr != INADDR_ANY)
1674                                                 wildcard++;
1675                                 }
1676                                 if (wildcard < matchwild) {
1677                                         match = inp;
1678                                         matchwild = wildcard;
1679                                         if (matchwild == 0)
1680                                                 break;
1681                                 }
1682                         }
1683                 }
1684                 return (match);
1685         }
1686 }
1687 #undef INP_LOOKUP_MAPPED_PCB_COST
1688
1689 #ifdef PCBGROUP
1690 /*
1691  * Lookup PCB in hash list, using pcbgroup tables.
1692  */
1693 static struct inpcb *
1694 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1695     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1696     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1697 {
1698         struct inpcbhead *head;
1699         struct inpcb *inp, *tmpinp;
1700         u_short fport = fport_arg, lport = lport_arg;
1701         bool locked;
1702
1703         /*
1704          * First look for an exact match.
1705          */
1706         tmpinp = NULL;
1707         INP_GROUP_LOCK(pcbgroup);
1708         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1709             pcbgroup->ipg_hashmask)];
1710         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1711 #ifdef INET6
1712                 /* XXX inp locking */
1713                 if ((inp->inp_vflag & INP_IPV4) == 0)
1714                         continue;
1715 #endif
1716                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1717                     inp->inp_laddr.s_addr == laddr.s_addr &&
1718                     inp->inp_fport == fport &&
1719                     inp->inp_lport == lport) {
1720                         /*
1721                          * XXX We should be able to directly return
1722                          * the inp here, without any checks.
1723                          * Well unless both bound with SO_REUSEPORT?
1724                          */
1725                         if (prison_flag(inp->inp_cred, PR_IP4))
1726                                 goto found;
1727                         if (tmpinp == NULL)
1728                                 tmpinp = inp;
1729                 }
1730         }
1731         if (tmpinp != NULL) {
1732                 inp = tmpinp;
1733                 goto found;
1734         }
1735
1736 #ifdef  RSS
1737         /*
1738          * For incoming connections, we may wish to do a wildcard
1739          * match for an RSS-local socket.
1740          */
1741         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1742                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1743 #ifdef INET6
1744                 struct inpcb *local_wild_mapped = NULL;
1745 #endif
1746                 struct inpcb *jail_wild = NULL;
1747                 struct inpcbhead *head;
1748                 int injail;
1749
1750                 /*
1751                  * Order of socket selection - we always prefer jails.
1752                  *      1. jailed, non-wild.
1753                  *      2. jailed, wild.
1754                  *      3. non-jailed, non-wild.
1755                  *      4. non-jailed, wild.
1756                  */
1757
1758                 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1759                     lport, 0, pcbgroup->ipg_hashmask)];
1760                 LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1761 #ifdef INET6
1762                         /* XXX inp locking */
1763                         if ((inp->inp_vflag & INP_IPV4) == 0)
1764                                 continue;
1765 #endif
1766                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1767                             inp->inp_lport != lport)
1768                                 continue;
1769
1770                         injail = prison_flag(inp->inp_cred, PR_IP4);
1771                         if (injail) {
1772                                 if (prison_check_ip4(inp->inp_cred,
1773                                     &laddr) != 0)
1774                                         continue;
1775                         } else {
1776                                 if (local_exact != NULL)
1777                                         continue;
1778                         }
1779
1780                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1781                                 if (injail)
1782                                         goto found;
1783                                 else
1784                                         local_exact = inp;
1785                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1786 #ifdef INET6
1787                                 /* XXX inp locking, NULL check */
1788                                 if (inp->inp_vflag & INP_IPV6PROTO)
1789                                         local_wild_mapped = inp;
1790                                 else
1791 #endif
1792                                         if (injail)
1793                                                 jail_wild = inp;
1794                                         else
1795                                                 local_wild = inp;
1796                         }
1797                 } /* LIST_FOREACH */
1798
1799                 inp = jail_wild;
1800                 if (inp == NULL)
1801                         inp = local_exact;
1802                 if (inp == NULL)
1803                         inp = local_wild;
1804 #ifdef INET6
1805                 if (inp == NULL)
1806                         inp = local_wild_mapped;
1807 #endif
1808                 if (inp != NULL)
1809                         goto found;
1810         }
1811 #endif
1812
1813         /*
1814          * Then look for a wildcard match, if requested.
1815          */
1816         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1817                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1818 #ifdef INET6
1819                 struct inpcb *local_wild_mapped = NULL;
1820 #endif
1821                 struct inpcb *jail_wild = NULL;
1822                 struct inpcbhead *head;
1823                 int injail;
1824
1825                 /*
1826                  * Order of socket selection - we always prefer jails.
1827                  *      1. jailed, non-wild.
1828                  *      2. jailed, wild.
1829                  *      3. non-jailed, non-wild.
1830                  *      4. non-jailed, wild.
1831                  */
1832                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1833                     0, pcbinfo->ipi_wildmask)];
1834                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1835 #ifdef INET6
1836                         /* XXX inp locking */
1837                         if ((inp->inp_vflag & INP_IPV4) == 0)
1838                                 continue;
1839 #endif
1840                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1841                             inp->inp_lport != lport)
1842                                 continue;
1843
1844                         injail = prison_flag(inp->inp_cred, PR_IP4);
1845                         if (injail) {
1846                                 if (prison_check_ip4(inp->inp_cred,
1847                                     &laddr) != 0)
1848                                         continue;
1849                         } else {
1850                                 if (local_exact != NULL)
1851                                         continue;
1852                         }
1853
1854                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1855                                 if (injail)
1856                                         goto found;
1857                                 else
1858                                         local_exact = inp;
1859                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1860 #ifdef INET6
1861                                 /* XXX inp locking, NULL check */
1862                                 if (inp->inp_vflag & INP_IPV6PROTO)
1863                                         local_wild_mapped = inp;
1864                                 else
1865 #endif
1866                                         if (injail)
1867                                                 jail_wild = inp;
1868                                         else
1869                                                 local_wild = inp;
1870                         }
1871                 } /* LIST_FOREACH */
1872                 inp = jail_wild;
1873                 if (inp == NULL)
1874                         inp = local_exact;
1875                 if (inp == NULL)
1876                         inp = local_wild;
1877 #ifdef INET6
1878                 if (inp == NULL)
1879                         inp = local_wild_mapped;
1880 #endif
1881                 if (inp != NULL)
1882                         goto found;
1883         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1884         INP_GROUP_UNLOCK(pcbgroup);
1885         return (NULL);
1886
1887 found:
1888         if (lookupflags & INPLOOKUP_WLOCKPCB)
1889                 locked = INP_TRY_WLOCK(inp);
1890         else if (lookupflags & INPLOOKUP_RLOCKPCB)
1891                 locked = INP_TRY_RLOCK(inp);
1892         else
1893                 panic("%s: locking bug", __func__);
1894         if (!locked)
1895                 in_pcbref(inp);
1896         INP_GROUP_UNLOCK(pcbgroup);
1897         if (!locked) {
1898                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1899                         INP_WLOCK(inp);
1900                         if (in_pcbrele_wlocked(inp))
1901                                 return (NULL);
1902                 } else {
1903                         INP_RLOCK(inp);
1904                         if (in_pcbrele_rlocked(inp))
1905                                 return (NULL);
1906                 }
1907         }
1908 #ifdef INVARIANTS
1909         if (lookupflags & INPLOOKUP_WLOCKPCB)
1910                 INP_WLOCK_ASSERT(inp);
1911         else
1912                 INP_RLOCK_ASSERT(inp);
1913 #endif
1914         return (inp);
1915 }
1916 #endif /* PCBGROUP */
1917
1918 /*
1919  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1920  * that the caller has locked the hash list, and will not perform any further
1921  * locking or reference operations on either the hash list or the connection.
1922  */
1923 static struct inpcb *
1924 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1925     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1926     struct ifnet *ifp)
1927 {
1928         struct inpcbhead *head;
1929         struct inpcb *inp, *tmpinp;
1930         u_short fport = fport_arg, lport = lport_arg;
1931
1932         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1933             ("%s: invalid lookup flags %d", __func__, lookupflags));
1934
1935         INP_HASH_LOCK_ASSERT(pcbinfo);
1936
1937         /*
1938          * First look for an exact match.
1939          */
1940         tmpinp = NULL;
1941         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1942             pcbinfo->ipi_hashmask)];
1943         LIST_FOREACH(inp, head, inp_hash) {
1944 #ifdef INET6
1945                 /* XXX inp locking */
1946                 if ((inp->inp_vflag & INP_IPV4) == 0)
1947                         continue;
1948 #endif
1949                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1950                     inp->inp_laddr.s_addr == laddr.s_addr &&
1951                     inp->inp_fport == fport &&
1952                     inp->inp_lport == lport) {
1953                         /*
1954                          * XXX We should be able to directly return
1955                          * the inp here, without any checks.
1956                          * Well unless both bound with SO_REUSEPORT?
1957                          */
1958                         if (prison_flag(inp->inp_cred, PR_IP4))
1959                                 return (inp);
1960                         if (tmpinp == NULL)
1961                                 tmpinp = inp;
1962                 }
1963         }
1964         if (tmpinp != NULL)
1965                 return (tmpinp);
1966
1967         /*
1968          * Then look for a wildcard match, if requested.
1969          */
1970         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1971                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1972 #ifdef INET6
1973                 struct inpcb *local_wild_mapped = NULL;
1974 #endif
1975                 struct inpcb *jail_wild = NULL;
1976                 int injail;
1977
1978                 /*
1979                  * Order of socket selection - we always prefer jails.
1980                  *      1. jailed, non-wild.
1981                  *      2. jailed, wild.
1982                  *      3. non-jailed, non-wild.
1983                  *      4. non-jailed, wild.
1984                  */
1985
1986                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1987                     0, pcbinfo->ipi_hashmask)];
1988                 LIST_FOREACH(inp, head, inp_hash) {
1989 #ifdef INET6
1990                         /* XXX inp locking */
1991                         if ((inp->inp_vflag & INP_IPV4) == 0)
1992                                 continue;
1993 #endif
1994                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1995                             inp->inp_lport != lport)
1996                                 continue;
1997
1998                         injail = prison_flag(inp->inp_cred, PR_IP4);
1999                         if (injail) {
2000                                 if (prison_check_ip4(inp->inp_cred,
2001                                     &laddr) != 0)
2002                                         continue;
2003                         } else {
2004                                 if (local_exact != NULL)
2005                                         continue;
2006                         }
2007
2008                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
2009                                 if (injail)
2010                                         return (inp);
2011                                 else
2012                                         local_exact = inp;
2013                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2014 #ifdef INET6
2015                                 /* XXX inp locking, NULL check */
2016                                 if (inp->inp_vflag & INP_IPV6PROTO)
2017                                         local_wild_mapped = inp;
2018                                 else
2019 #endif
2020                                         if (injail)
2021                                                 jail_wild = inp;
2022                                         else
2023                                                 local_wild = inp;
2024                         }
2025                 } /* LIST_FOREACH */
2026                 if (jail_wild != NULL)
2027                         return (jail_wild);
2028                 if (local_exact != NULL)
2029                         return (local_exact);
2030                 if (local_wild != NULL)
2031                         return (local_wild);
2032 #ifdef INET6
2033                 if (local_wild_mapped != NULL)
2034                         return (local_wild_mapped);
2035 #endif
2036         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2037
2038         return (NULL);
2039 }
2040
2041 /*
2042  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2043  * hash list lock, and will return the inpcb locked (i.e., requires
2044  * INPLOOKUP_LOCKPCB).
2045  */
2046 static struct inpcb *
2047 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2048     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2049     struct ifnet *ifp)
2050 {
2051         struct inpcb *inp;
2052         bool locked;
2053
2054         INP_HASH_RLOCK(pcbinfo);
2055         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2056             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2057         if (inp != NULL) {
2058                 if (lookupflags & INPLOOKUP_WLOCKPCB)
2059                         locked = INP_TRY_WLOCK(inp);
2060                 else if (lookupflags & INPLOOKUP_RLOCKPCB)
2061                         locked = INP_TRY_RLOCK(inp);
2062                 else
2063                         panic("%s: locking bug", __func__);
2064                 if (!locked)
2065                         in_pcbref(inp);
2066                 INP_HASH_RUNLOCK(pcbinfo);
2067                 if (!locked) {
2068                         if (lookupflags & INPLOOKUP_WLOCKPCB) {
2069                                 INP_WLOCK(inp);
2070                                 if (in_pcbrele_wlocked(inp))
2071                                         return (NULL);
2072                         } else {
2073                                 INP_RLOCK(inp);
2074                                 if (in_pcbrele_rlocked(inp))
2075                                         return (NULL);
2076                         }
2077                 }
2078 #ifdef INVARIANTS
2079                 if (lookupflags & INPLOOKUP_WLOCKPCB)
2080                         INP_WLOCK_ASSERT(inp);
2081                 else
2082                         INP_RLOCK_ASSERT(inp);
2083 #endif
2084         } else
2085                 INP_HASH_RUNLOCK(pcbinfo);
2086         return (inp);
2087 }
2088
2089 /*
2090  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2091  * from which a pre-calculated hash value may be extracted.
2092  *
2093  * Possibly more of this logic should be in in_pcbgroup.c.
2094  */
2095 struct inpcb *
2096 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2097     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2098 {
2099 #if defined(PCBGROUP) && !defined(RSS)
2100         struct inpcbgroup *pcbgroup;
2101 #endif
2102
2103         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2104             ("%s: invalid lookup flags %d", __func__, lookupflags));
2105         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2106             ("%s: LOCKPCB not set", __func__));
2107
2108         /*
2109          * When not using RSS, use connection groups in preference to the
2110          * reservation table when looking up 4-tuples.  When using RSS, just
2111          * use the reservation table, due to the cost of the Toeplitz hash
2112          * in software.
2113          *
2114          * XXXRW: This policy belongs in the pcbgroup code, as in principle
2115          * we could be doing RSS with a non-Toeplitz hash that is affordable
2116          * in software.
2117          */
2118 #if defined(PCBGROUP) && !defined(RSS)
2119         if (in_pcbgroup_enabled(pcbinfo)) {
2120                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2121                     fport);
2122                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2123                     laddr, lport, lookupflags, ifp));
2124         }
2125 #endif
2126         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2127             lookupflags, ifp));
2128 }
2129
2130 struct inpcb *
2131 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2132     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2133     struct ifnet *ifp, struct mbuf *m)
2134 {
2135 #ifdef PCBGROUP
2136         struct inpcbgroup *pcbgroup;
2137 #endif
2138
2139         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2140             ("%s: invalid lookup flags %d", __func__, lookupflags));
2141         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2142             ("%s: LOCKPCB not set", __func__));
2143
2144 #ifdef PCBGROUP
2145         /*
2146          * If we can use a hardware-generated hash to look up the connection
2147          * group, use that connection group to find the inpcb.  Otherwise
2148          * fall back on a software hash -- or the reservation table if we're
2149          * using RSS.
2150          *
2151          * XXXRW: As above, that policy belongs in the pcbgroup code.
2152          */
2153         if (in_pcbgroup_enabled(pcbinfo) &&
2154             !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2155                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2156                     m->m_pkthdr.flowid);
2157                 if (pcbgroup != NULL)
2158                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2159                             fport, laddr, lport, lookupflags, ifp));
2160 #ifndef RSS
2161                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2162                     fport);
2163                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2164                     laddr, lport, lookupflags, ifp));
2165 #endif
2166         }
2167 #endif
2168         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2169             lookupflags, ifp));
2170 }
2171 #endif /* INET */
2172
2173 /*
2174  * Insert PCB onto various hash lists.
2175  */
2176 static int
2177 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2178 {
2179         struct inpcbhead *pcbhash;
2180         struct inpcbporthead *pcbporthash;
2181         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2182         struct inpcbport *phd;
2183         u_int32_t hashkey_faddr;
2184
2185         INP_WLOCK_ASSERT(inp);
2186         INP_HASH_WLOCK_ASSERT(pcbinfo);
2187
2188         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2189             ("in_pcbinshash: INP_INHASHLIST"));
2190
2191 #ifdef INET6
2192         if (inp->inp_vflag & INP_IPV6)
2193                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2194         else
2195 #endif
2196         hashkey_faddr = inp->inp_faddr.s_addr;
2197
2198         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2199                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2200
2201         pcbporthash = &pcbinfo->ipi_porthashbase[
2202             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2203
2204         /*
2205          * Go through port list and look for a head for this lport.
2206          */
2207         LIST_FOREACH(phd, pcbporthash, phd_hash) {
2208                 if (phd->phd_port == inp->inp_lport)
2209                         break;
2210         }
2211         /*
2212          * If none exists, malloc one and tack it on.
2213          */
2214         if (phd == NULL) {
2215                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2216                 if (phd == NULL) {
2217                         return (ENOBUFS); /* XXX */
2218                 }
2219                 phd->phd_port = inp->inp_lport;
2220                 LIST_INIT(&phd->phd_pcblist);
2221                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2222         }
2223         inp->inp_phd = phd;
2224         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2225         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2226         inp->inp_flags |= INP_INHASHLIST;
2227 #ifdef PCBGROUP
2228         if (do_pcbgroup_update)
2229                 in_pcbgroup_update(inp);
2230 #endif
2231         return (0);
2232 }
2233
2234 /*
2235  * For now, there are two public interfaces to insert an inpcb into the hash
2236  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2237  * is used only in the TCP syncache, where in_pcbinshash is called before the
2238  * full 4-tuple is set for the inpcb, and we don't want to install in the
2239  * pcbgroup until later.
2240  *
2241  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2242  * connection groups, and partially initialised inpcbs should not be exposed
2243  * to either reservation hash tables or pcbgroups.
2244  */
2245 int
2246 in_pcbinshash(struct inpcb *inp)
2247 {
2248
2249         return (in_pcbinshash_internal(inp, 1));
2250 }
2251
2252 int
2253 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2254 {
2255
2256         return (in_pcbinshash_internal(inp, 0));
2257 }
2258
2259 /*
2260  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2261  * changed. NOTE: This does not handle the case of the lport changing (the
2262  * hashed port list would have to be updated as well), so the lport must
2263  * not change after in_pcbinshash() has been called.
2264  */
2265 void
2266 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2267 {
2268         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2269         struct inpcbhead *head;
2270         u_int32_t hashkey_faddr;
2271
2272         INP_WLOCK_ASSERT(inp);
2273         INP_HASH_WLOCK_ASSERT(pcbinfo);
2274
2275         KASSERT(inp->inp_flags & INP_INHASHLIST,
2276             ("in_pcbrehash: !INP_INHASHLIST"));
2277
2278 #ifdef INET6
2279         if (inp->inp_vflag & INP_IPV6)
2280                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2281         else
2282 #endif
2283         hashkey_faddr = inp->inp_faddr.s_addr;
2284
2285         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2286                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2287
2288         LIST_REMOVE(inp, inp_hash);
2289         LIST_INSERT_HEAD(head, inp, inp_hash);
2290
2291 #ifdef PCBGROUP
2292         if (m != NULL)
2293                 in_pcbgroup_update_mbuf(inp, m);
2294         else
2295                 in_pcbgroup_update(inp);
2296 #endif
2297 }
2298
2299 void
2300 in_pcbrehash(struct inpcb *inp)
2301 {
2302
2303         in_pcbrehash_mbuf(inp, NULL);
2304 }
2305
2306 /*
2307  * Remove PCB from various lists.
2308  */
2309 static void
2310 in_pcbremlists(struct inpcb *inp)
2311 {
2312         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2313
2314 #ifdef INVARIANTS
2315         if (pcbinfo == &V_tcbinfo) {
2316                 INP_INFO_RLOCK_ASSERT(pcbinfo);
2317         } else {
2318                 INP_INFO_WLOCK_ASSERT(pcbinfo);
2319         }
2320 #endif
2321
2322         INP_WLOCK_ASSERT(inp);
2323         INP_LIST_WLOCK_ASSERT(pcbinfo);
2324
2325         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2326         if (inp->inp_flags & INP_INHASHLIST) {
2327                 struct inpcbport *phd = inp->inp_phd;
2328
2329                 INP_HASH_WLOCK(pcbinfo);
2330                 LIST_REMOVE(inp, inp_hash);
2331                 LIST_REMOVE(inp, inp_portlist);
2332                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2333                         LIST_REMOVE(phd, phd_hash);
2334                         free(phd, M_PCB);
2335                 }
2336                 INP_HASH_WUNLOCK(pcbinfo);
2337                 inp->inp_flags &= ~INP_INHASHLIST;
2338         }
2339         LIST_REMOVE(inp, inp_list);
2340         pcbinfo->ipi_count--;
2341 #ifdef PCBGROUP
2342         in_pcbgroup_remove(inp);
2343 #endif
2344 }
2345
2346 /*
2347  * Check for alternatives when higher level complains
2348  * about service problems.  For now, invalidate cached
2349  * routing information.  If the route was created dynamically
2350  * (by a redirect), time to try a default gateway again.
2351  */
2352 void
2353 in_losing(struct inpcb *inp)
2354 {
2355
2356         RO_INVALIDATE_CACHE(&inp->inp_route);
2357         return;
2358 }
2359
2360 /*
2361  * A set label operation has occurred at the socket layer, propagate the
2362  * label change into the in_pcb for the socket.
2363  */
2364 void
2365 in_pcbsosetlabel(struct socket *so)
2366 {
2367 #ifdef MAC
2368         struct inpcb *inp;
2369
2370         inp = sotoinpcb(so);
2371         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2372
2373         INP_WLOCK(inp);
2374         SOCK_LOCK(so);
2375         mac_inpcb_sosetlabel(so, inp);
2376         SOCK_UNLOCK(so);
2377         INP_WUNLOCK(inp);
2378 #endif
2379 }
2380
2381 /*
2382  * ipport_tick runs once per second, determining if random port allocation
2383  * should be continued.  If more than ipport_randomcps ports have been
2384  * allocated in the last second, then we return to sequential port
2385  * allocation. We return to random allocation only once we drop below
2386  * ipport_randomcps for at least ipport_randomtime seconds.
2387  */
2388 static void
2389 ipport_tick(void *xtp)
2390 {
2391         VNET_ITERATOR_DECL(vnet_iter);
2392
2393         VNET_LIST_RLOCK_NOSLEEP();
2394         VNET_FOREACH(vnet_iter) {
2395                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2396                 if (V_ipport_tcpallocs <=
2397                     V_ipport_tcplastcount + V_ipport_randomcps) {
2398                         if (V_ipport_stoprandom > 0)
2399                                 V_ipport_stoprandom--;
2400                 } else
2401                         V_ipport_stoprandom = V_ipport_randomtime;
2402                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2403                 CURVNET_RESTORE();
2404         }
2405         VNET_LIST_RUNLOCK_NOSLEEP();
2406         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2407 }
2408
2409 static void
2410 ip_fini(void *xtp)
2411 {
2412
2413         callout_stop(&ipport_tick_callout);
2414 }
2415
2416 /* 
2417  * The ipport_callout should start running at about the time we attach the
2418  * inet or inet6 domains.
2419  */
2420 static void
2421 ipport_tick_init(const void *unused __unused)
2422 {
2423
2424         /* Start ipport_tick. */
2425         callout_init(&ipport_tick_callout, 1);
2426         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2427         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2428                 SHUTDOWN_PRI_DEFAULT);
2429 }
2430 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2431     ipport_tick_init, NULL);
2432
2433 void
2434 inp_wlock(struct inpcb *inp)
2435 {
2436
2437         INP_WLOCK(inp);
2438 }
2439
2440 void
2441 inp_wunlock(struct inpcb *inp)
2442 {
2443
2444         INP_WUNLOCK(inp);
2445 }
2446
2447 void
2448 inp_rlock(struct inpcb *inp)
2449 {
2450
2451         INP_RLOCK(inp);
2452 }
2453
2454 void
2455 inp_runlock(struct inpcb *inp)
2456 {
2457
2458         INP_RUNLOCK(inp);
2459 }
2460
2461 #ifdef INVARIANT_SUPPORT
2462 void
2463 inp_lock_assert(struct inpcb *inp)
2464 {
2465
2466         INP_WLOCK_ASSERT(inp);
2467 }
2468
2469 void
2470 inp_unlock_assert(struct inpcb *inp)
2471 {
2472
2473         INP_UNLOCK_ASSERT(inp);
2474 }
2475 #endif
2476
2477 void
2478 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2479 {
2480         struct inpcb *inp;
2481
2482         INP_INFO_WLOCK(&V_tcbinfo);
2483         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2484                 INP_WLOCK(inp);
2485                 func(inp, arg);
2486                 INP_WUNLOCK(inp);
2487         }
2488         INP_INFO_WUNLOCK(&V_tcbinfo);
2489 }
2490
2491 struct socket *
2492 inp_inpcbtosocket(struct inpcb *inp)
2493 {
2494
2495         INP_WLOCK_ASSERT(inp);
2496         return (inp->inp_socket);
2497 }
2498
2499 struct tcpcb *
2500 inp_inpcbtotcpcb(struct inpcb *inp)
2501 {
2502
2503         INP_WLOCK_ASSERT(inp);
2504         return ((struct tcpcb *)inp->inp_ppcb);
2505 }
2506
2507 int
2508 inp_ip_tos_get(const struct inpcb *inp)
2509 {
2510
2511         return (inp->inp_ip_tos);
2512 }
2513
2514 void
2515 inp_ip_tos_set(struct inpcb *inp, int val)
2516 {
2517
2518         inp->inp_ip_tos = val;
2519 }
2520
2521 void
2522 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2523     uint32_t *faddr, uint16_t *fp)
2524 {
2525
2526         INP_LOCK_ASSERT(inp);
2527         *laddr = inp->inp_laddr.s_addr;
2528         *faddr = inp->inp_faddr.s_addr;
2529         *lp = inp->inp_lport;
2530         *fp = inp->inp_fport;
2531 }
2532
2533 struct inpcb *
2534 so_sotoinpcb(struct socket *so)
2535 {
2536
2537         return (sotoinpcb(so));
2538 }
2539
2540 struct tcpcb *
2541 so_sototcpcb(struct socket *so)
2542 {
2543
2544         return (sototcpcb(so));
2545 }
2546
2547 /*
2548  * Create an external-format (``xinpcb'') structure using the information in
2549  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2550  * reduce the spew of irrelevant information over this interface, to isolate
2551  * user code from changes in the kernel structure, and potentially to provide
2552  * information-hiding if we decide that some of this information should be
2553  * hidden from users.
2554  */
2555 void
2556 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2557 {
2558
2559         xi->xi_len = sizeof(struct xinpcb);
2560         if (inp->inp_socket)
2561                 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2562         else
2563                 bzero(&xi->xi_socket, sizeof(struct xsocket));
2564         bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2565         xi->inp_gencnt = inp->inp_gencnt;
2566         xi->inp_ppcb = inp->inp_ppcb;
2567         xi->inp_flow = inp->inp_flow;
2568         xi->inp_flowid = inp->inp_flowid;
2569         xi->inp_flowtype = inp->inp_flowtype;
2570         xi->inp_flags = inp->inp_flags;
2571         xi->inp_flags2 = inp->inp_flags2;
2572         xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2573         xi->in6p_cksum = inp->in6p_cksum;
2574         xi->in6p_hops = inp->in6p_hops;
2575         xi->inp_ip_tos = inp->inp_ip_tos;
2576         xi->inp_vflag = inp->inp_vflag;
2577         xi->inp_ip_ttl = inp->inp_ip_ttl;
2578         xi->inp_ip_p = inp->inp_ip_p;
2579         xi->inp_ip_minttl = inp->inp_ip_minttl;
2580 }
2581
2582 #ifdef DDB
2583 static void
2584 db_print_indent(int indent)
2585 {
2586         int i;
2587
2588         for (i = 0; i < indent; i++)
2589                 db_printf(" ");
2590 }
2591
2592 static void
2593 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2594 {
2595         char faddr_str[48], laddr_str[48];
2596
2597         db_print_indent(indent);
2598         db_printf("%s at %p\n", name, inc);
2599
2600         indent += 2;
2601
2602 #ifdef INET6
2603         if (inc->inc_flags & INC_ISIPV6) {
2604                 /* IPv6. */
2605                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2606                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2607         } else
2608 #endif
2609         {
2610                 /* IPv4. */
2611                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2612                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2613         }
2614         db_print_indent(indent);
2615         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2616             ntohs(inc->inc_lport));
2617         db_print_indent(indent);
2618         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2619             ntohs(inc->inc_fport));
2620 }
2621
2622 static void
2623 db_print_inpflags(int inp_flags)
2624 {
2625         int comma;
2626
2627         comma = 0;
2628         if (inp_flags & INP_RECVOPTS) {
2629                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2630                 comma = 1;
2631         }
2632         if (inp_flags & INP_RECVRETOPTS) {
2633                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2634                 comma = 1;
2635         }
2636         if (inp_flags & INP_RECVDSTADDR) {
2637                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2638                 comma = 1;
2639         }
2640         if (inp_flags & INP_ORIGDSTADDR) {
2641                 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2642                 comma = 1;
2643         }
2644         if (inp_flags & INP_HDRINCL) {
2645                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2646                 comma = 1;
2647         }
2648         if (inp_flags & INP_HIGHPORT) {
2649                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2650                 comma = 1;
2651         }
2652         if (inp_flags & INP_LOWPORT) {
2653                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2654                 comma = 1;
2655         }
2656         if (inp_flags & INP_ANONPORT) {
2657                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2658                 comma = 1;
2659         }
2660         if (inp_flags & INP_RECVIF) {
2661                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2662                 comma = 1;
2663         }
2664         if (inp_flags & INP_MTUDISC) {
2665                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2666                 comma = 1;
2667         }
2668         if (inp_flags & INP_RECVTTL) {
2669                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2670                 comma = 1;
2671         }
2672         if (inp_flags & INP_DONTFRAG) {
2673                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2674                 comma = 1;
2675         }
2676         if (inp_flags & INP_RECVTOS) {
2677                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2678                 comma = 1;
2679         }
2680         if (inp_flags & IN6P_IPV6_V6ONLY) {
2681                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2682                 comma = 1;
2683         }
2684         if (inp_flags & IN6P_PKTINFO) {
2685                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2686                 comma = 1;
2687         }
2688         if (inp_flags & IN6P_HOPLIMIT) {
2689                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2690                 comma = 1;
2691         }
2692         if (inp_flags & IN6P_HOPOPTS) {
2693                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2694                 comma = 1;
2695         }
2696         if (inp_flags & IN6P_DSTOPTS) {
2697                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2698                 comma = 1;
2699         }
2700         if (inp_flags & IN6P_RTHDR) {
2701                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2702                 comma = 1;
2703         }
2704         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2705                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2706                 comma = 1;
2707         }
2708         if (inp_flags & IN6P_TCLASS) {
2709                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2710                 comma = 1;
2711         }
2712         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2713                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2714                 comma = 1;
2715         }
2716         if (inp_flags & INP_TIMEWAIT) {
2717                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2718                 comma  = 1;
2719         }
2720         if (inp_flags & INP_ONESBCAST) {
2721                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2722                 comma  = 1;
2723         }
2724         if (inp_flags & INP_DROPPED) {
2725                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2726                 comma  = 1;
2727         }
2728         if (inp_flags & INP_SOCKREF) {
2729                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2730                 comma  = 1;
2731         }
2732         if (inp_flags & IN6P_RFC2292) {
2733                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2734                 comma = 1;
2735         }
2736         if (inp_flags & IN6P_MTU) {
2737                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2738                 comma = 1;
2739         }
2740 }
2741
2742 static void
2743 db_print_inpvflag(u_char inp_vflag)
2744 {
2745         int comma;
2746
2747         comma = 0;
2748         if (inp_vflag & INP_IPV4) {
2749                 db_printf("%sINP_IPV4", comma ? ", " : "");
2750                 comma  = 1;
2751         }
2752         if (inp_vflag & INP_IPV6) {
2753                 db_printf("%sINP_IPV6", comma ? ", " : "");
2754                 comma  = 1;
2755         }
2756         if (inp_vflag & INP_IPV6PROTO) {
2757                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2758                 comma  = 1;
2759         }
2760 }
2761
2762 static void
2763 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2764 {
2765
2766         db_print_indent(indent);
2767         db_printf("%s at %p\n", name, inp);
2768
2769         indent += 2;
2770
2771         db_print_indent(indent);
2772         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2773
2774         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2775
2776         db_print_indent(indent);
2777         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2778             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2779
2780         db_print_indent(indent);
2781         db_printf("inp_label: %p   inp_flags: 0x%x (",
2782            inp->inp_label, inp->inp_flags);
2783         db_print_inpflags(inp->inp_flags);
2784         db_printf(")\n");
2785
2786         db_print_indent(indent);
2787         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2788             inp->inp_vflag);
2789         db_print_inpvflag(inp->inp_vflag);
2790         db_printf(")\n");
2791
2792         db_print_indent(indent);
2793         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2794             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2795
2796         db_print_indent(indent);
2797 #ifdef INET6
2798         if (inp->inp_vflag & INP_IPV6) {
2799                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2800                     "in6p_moptions: %p\n", inp->in6p_options,
2801                     inp->in6p_outputopts, inp->in6p_moptions);
2802                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2803                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2804                     inp->in6p_hops);
2805         } else
2806 #endif
2807         {
2808                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2809                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2810                     inp->inp_options, inp->inp_moptions);
2811         }
2812
2813         db_print_indent(indent);
2814         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2815             (uintmax_t)inp->inp_gencnt);
2816 }
2817
2818 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2819 {
2820         struct inpcb *inp;
2821
2822         if (!have_addr) {
2823                 db_printf("usage: show inpcb <addr>\n");
2824                 return;
2825         }
2826         inp = (struct inpcb *)addr;
2827
2828         db_print_inpcb(inp, "inpcb", 0);
2829 }
2830 #endif /* DDB */
2831
2832 #ifdef RATELIMIT
2833 /*
2834  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2835  * if any.
2836  */
2837 int
2838 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2839 {
2840         union if_snd_tag_modify_params params = {
2841                 .rate_limit.max_rate = max_pacing_rate,
2842         };
2843         struct m_snd_tag *mst;
2844         struct ifnet *ifp;
2845         int error;
2846
2847         mst = inp->inp_snd_tag;
2848         if (mst == NULL)
2849                 return (EINVAL);
2850
2851         ifp = mst->ifp;
2852         if (ifp == NULL)
2853                 return (EINVAL);
2854
2855         if (ifp->if_snd_tag_modify == NULL) {
2856                 error = EOPNOTSUPP;
2857         } else {
2858                 error = ifp->if_snd_tag_modify(mst, &params);
2859         }
2860         return (error);
2861 }
2862
2863 /*
2864  * Query existing TX rate limit based on the existing
2865  * "inp->inp_snd_tag", if any.
2866  */
2867 int
2868 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2869 {
2870         union if_snd_tag_query_params params = { };
2871         struct m_snd_tag *mst;
2872         struct ifnet *ifp;
2873         int error;
2874
2875         mst = inp->inp_snd_tag;
2876         if (mst == NULL)
2877                 return (EINVAL);
2878
2879         ifp = mst->ifp;
2880         if (ifp == NULL)
2881                 return (EINVAL);
2882
2883         if (ifp->if_snd_tag_query == NULL) {
2884                 error = EOPNOTSUPP;
2885         } else {
2886                 error = ifp->if_snd_tag_query(mst, &params);
2887                 if (error == 0 &&  p_max_pacing_rate != NULL)
2888                         *p_max_pacing_rate = params.rate_limit.max_rate;
2889         }
2890         return (error);
2891 }
2892
2893 /*
2894  * Query existing TX queue level based on the existing
2895  * "inp->inp_snd_tag", if any.
2896  */
2897 int
2898 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2899 {
2900         union if_snd_tag_query_params params = { };
2901         struct m_snd_tag *mst;
2902         struct ifnet *ifp;
2903         int error;
2904
2905         mst = inp->inp_snd_tag;
2906         if (mst == NULL)
2907                 return (EINVAL);
2908
2909         ifp = mst->ifp;
2910         if (ifp == NULL)
2911                 return (EINVAL);
2912
2913         if (ifp->if_snd_tag_query == NULL)
2914                 return (EOPNOTSUPP);
2915
2916         error = ifp->if_snd_tag_query(mst, &params);
2917         if (error == 0 &&  p_txqueue_level != NULL)
2918                 *p_txqueue_level = params.rate_limit.queue_level;
2919         return (error);
2920 }
2921
2922 /*
2923  * Allocate a new TX rate limit send tag from the network interface
2924  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2925  */
2926 int
2927 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2928     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2929 {
2930         union if_snd_tag_alloc_params params = {
2931                 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2932                     IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2933                 .rate_limit.hdr.flowid = flowid,
2934                 .rate_limit.hdr.flowtype = flowtype,
2935                 .rate_limit.max_rate = max_pacing_rate,
2936         };
2937         int error;
2938
2939         INP_WLOCK_ASSERT(inp);
2940
2941         if (inp->inp_snd_tag != NULL)
2942                 return (EINVAL);
2943
2944         if (ifp->if_snd_tag_alloc == NULL) {
2945                 error = EOPNOTSUPP;
2946         } else {
2947                 error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2948
2949                 /*
2950                  * At success increment the refcount on
2951                  * the send tag's network interface:
2952                  */
2953                 if (error == 0)
2954                         if_ref(inp->inp_snd_tag->ifp);
2955         }
2956         return (error);
2957 }
2958
2959 /*
2960  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2961  * if any:
2962  */
2963 void
2964 in_pcbdetach_txrtlmt(struct inpcb *inp)
2965 {
2966         struct m_snd_tag *mst;
2967         struct ifnet *ifp;
2968
2969         INP_WLOCK_ASSERT(inp);
2970
2971         mst = inp->inp_snd_tag;
2972         inp->inp_snd_tag = NULL;
2973
2974         if (mst == NULL)
2975                 return;
2976
2977         ifp = mst->ifp;
2978         if (ifp == NULL)
2979                 return;
2980
2981         /*
2982          * If the device was detached while we still had reference(s)
2983          * on the ifp, we assume if_snd_tag_free() was replaced with
2984          * stubs.
2985          */
2986         ifp->if_snd_tag_free(mst);
2987
2988         /* release reference count on network interface */
2989         if_rele(ifp);
2990 }
2991
2992 /*
2993  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
2994  * is set in the fast path and will attach/detach/modify the TX rate
2995  * limit send tag based on the socket's so_max_pacing_rate value.
2996  */
2997 void
2998 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
2999 {
3000         struct socket *socket;
3001         uint32_t max_pacing_rate;
3002         bool did_upgrade;
3003         int error;
3004
3005         if (inp == NULL)
3006                 return;
3007
3008         socket = inp->inp_socket;
3009         if (socket == NULL)
3010                 return;
3011
3012         if (!INP_WLOCKED(inp)) {
3013                 /*
3014                  * NOTE: If the write locking fails, we need to bail
3015                  * out and use the non-ratelimited ring for the
3016                  * transmit until there is a new chance to get the
3017                  * write lock.
3018                  */
3019                 if (!INP_TRY_UPGRADE(inp))
3020                         return;
3021                 did_upgrade = 1;
3022         } else {
3023                 did_upgrade = 0;
3024         }
3025
3026         /*
3027          * NOTE: The so_max_pacing_rate value is read unlocked,
3028          * because atomic updates are not required since the variable
3029          * is checked at every mbuf we send. It is assumed that the
3030          * variable read itself will be atomic.
3031          */
3032         max_pacing_rate = socket->so_max_pacing_rate;
3033
3034         /*
3035          * NOTE: When attaching to a network interface a reference is
3036          * made to ensure the network interface doesn't go away until
3037          * all ratelimit connections are gone. The network interface
3038          * pointers compared below represent valid network interfaces,
3039          * except when comparing towards NULL.
3040          */
3041         if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3042                 error = 0;
3043         } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3044                 if (inp->inp_snd_tag != NULL)
3045                         in_pcbdetach_txrtlmt(inp);
3046                 error = 0;
3047         } else if (inp->inp_snd_tag == NULL) {
3048                 /*
3049                  * In order to utilize packet pacing with RSS, we need
3050                  * to wait until there is a valid RSS hash before we
3051                  * can proceed:
3052                  */
3053                 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3054                         error = EAGAIN;
3055                 } else {
3056                         error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3057                             mb->m_pkthdr.flowid, max_pacing_rate);
3058                 }
3059         } else {
3060                 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3061         }
3062         if (error == 0 || error == EOPNOTSUPP)
3063                 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3064         if (did_upgrade)
3065                 INP_DOWNGRADE(inp);
3066 }
3067
3068 /*
3069  * Track route changes for TX rate limiting.
3070  */
3071 void
3072 in_pcboutput_eagain(struct inpcb *inp)
3073 {
3074         struct socket *socket;
3075         bool did_upgrade;
3076
3077         if (inp == NULL)
3078                 return;
3079
3080         socket = inp->inp_socket;
3081         if (socket == NULL)
3082                 return;
3083
3084         if (inp->inp_snd_tag == NULL)
3085                 return;
3086
3087         if (!INP_WLOCKED(inp)) {
3088                 /*
3089                  * NOTE: If the write locking fails, we need to bail
3090                  * out and use the non-ratelimited ring for the
3091                  * transmit until there is a new chance to get the
3092                  * write lock.
3093                  */
3094                 if (!INP_TRY_UPGRADE(inp))
3095                         return;
3096                 did_upgrade = 1;
3097         } else {
3098                 did_upgrade = 0;
3099         }
3100
3101         /* detach rate limiting */
3102         in_pcbdetach_txrtlmt(inp);
3103
3104         /* make sure new mbuf send tag allocation is made */
3105         inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3106
3107         if (did_upgrade)
3108                 INP_DOWNGRADE(inp);
3109 }
3110 #endif /* RATELIMIT */