]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
Update bindings to latest vendor branch representing 3.17-rc2 level of
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
36  */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 #include "opt_rss.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/callout.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/refcount.h>
60 #include <sys/jail.h>
61 #include <sys/kernel.h>
62 #include <sys/sysctl.h>
63
64 #ifdef DDB
65 #include <ddb/ddb.h>
66 #endif
67
68 #include <vm/uma.h>
69
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_types.h>
73 #include <net/route.h>
74 #include <net/vnet.h>
75
76 #if defined(INET) || defined(INET6)
77 #include <netinet/in.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_rss.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/udp.h>
83 #include <netinet/udp_var.h>
84 #endif
85 #ifdef INET
86 #include <netinet/in_var.h>
87 #endif
88 #ifdef INET6
89 #include <netinet/ip6.h>
90 #include <netinet6/in6_pcb.h>
91 #include <netinet6/in6_var.h>
92 #include <netinet6/ip6_var.h>
93 #endif /* INET6 */
94
95
96 #ifdef IPSEC
97 #include <netipsec/ipsec.h>
98 #include <netipsec/key.h>
99 #endif /* IPSEC */
100
101 #include <security/mac/mac_framework.h>
102
103 static struct callout   ipport_tick_callout;
104
105 /*
106  * These configure the range of local port addresses assigned to
107  * "unspecified" outgoing connections/packets/whatever.
108  */
109 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
110 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
111 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
112 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
113 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
114 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
115
116 /*
117  * Reserved ports accessible only to root. There are significant
118  * security considerations that must be accounted for when changing these,
119  * but the security benefits can be great. Please be careful.
120  */
121 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
122 VNET_DEFINE(int, ipport_reservedlow);
123
124 /* Variables dealing with random ephemeral port allocation. */
125 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
126 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
127 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
128 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
129 VNET_DEFINE(int, ipport_tcpallocs);
130 static VNET_DEFINE(int, ipport_tcplastcount);
131
132 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
133
134 static void     in_pcbremlists(struct inpcb *inp);
135 #ifdef INET
136 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
137                             struct in_addr faddr, u_int fport_arg,
138                             struct in_addr laddr, u_int lport_arg,
139                             int lookupflags, struct ifnet *ifp);
140
141 #define RANGECHK(var, min, max) \
142         if ((var) < (min)) { (var) = (min); } \
143         else if ((var) > (max)) { (var) = (max); }
144
145 static int
146 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
147 {
148         int error;
149
150         error = sysctl_handle_int(oidp, arg1, arg2, req);
151         if (error == 0) {
152                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
153                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
154                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
155                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
156                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
157                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
158         }
159         return (error);
160 }
161
162 #undef RANGECHK
163
164 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
165     "IP Ports");
166
167 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
168         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
169         &sysctl_net_ipport_check, "I", "");
170 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
171         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
172         &sysctl_net_ipport_check, "I", "");
173 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
174         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
175         &sysctl_net_ipport_check, "I", "");
176 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
177         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
178         &sysctl_net_ipport_check, "I", "");
179 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
180         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
181         &sysctl_net_ipport_check, "I", "");
182 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
183         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
184         &sysctl_net_ipport_check, "I", "");
185 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
186         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
187 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
188         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
189 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
190         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
191 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
192         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
193         "allocations before switching to a sequental one");
194 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
195         &VNET_NAME(ipport_randomtime), 0,
196         "Minimum time to keep sequental port "
197         "allocation before switching to a random one");
198 #endif /* INET */
199
200 /*
201  * in_pcb.c: manage the Protocol Control Blocks.
202  *
203  * NOTE: It is assumed that most of these functions will be called with
204  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
205  * functions often modify hash chains or addresses in pcbs.
206  */
207
208 /*
209  * Initialize an inpcbinfo -- we should be able to reduce the number of
210  * arguments in time.
211  */
212 void
213 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
214     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
215     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
216     uint32_t inpcbzone_flags, u_int hashfields)
217 {
218
219         INP_INFO_LOCK_INIT(pcbinfo, name);
220         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
221 #ifdef VIMAGE
222         pcbinfo->ipi_vnet = curvnet;
223 #endif
224         pcbinfo->ipi_listhead = listhead;
225         LIST_INIT(pcbinfo->ipi_listhead);
226         pcbinfo->ipi_count = 0;
227         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
228             &pcbinfo->ipi_hashmask);
229         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
230             &pcbinfo->ipi_porthashmask);
231 #ifdef PCBGROUP
232         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
233 #endif
234         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
235             NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
236             inpcbzone_flags);
237         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
238         uma_zone_set_warning(pcbinfo->ipi_zone,
239             "kern.ipc.maxsockets limit reached");
240 }
241
242 /*
243  * Destroy an inpcbinfo.
244  */
245 void
246 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
247 {
248
249         KASSERT(pcbinfo->ipi_count == 0,
250             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
251
252         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
253         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
254             pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256         in_pcbgroup_destroy(pcbinfo);
257 #endif
258         uma_zdestroy(pcbinfo->ipi_zone);
259         INP_HASH_LOCK_DESTROY(pcbinfo);
260         INP_INFO_LOCK_DESTROY(pcbinfo);
261 }
262
263 /*
264  * Allocate a PCB and associate it with the socket.
265  * On success return with the PCB locked.
266  */
267 int
268 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
269 {
270         struct inpcb *inp;
271         int error;
272
273         INP_INFO_WLOCK_ASSERT(pcbinfo);
274         error = 0;
275         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
276         if (inp == NULL)
277                 return (ENOBUFS);
278         bzero(inp, inp_zero_size);
279         inp->inp_pcbinfo = pcbinfo;
280         inp->inp_socket = so;
281         inp->inp_cred = crhold(so->so_cred);
282         inp->inp_inc.inc_fibnum = so->so_fibnum;
283 #ifdef MAC
284         error = mac_inpcb_init(inp, M_NOWAIT);
285         if (error != 0)
286                 goto out;
287         mac_inpcb_create(so, inp);
288 #endif
289 #ifdef IPSEC
290         error = ipsec_init_policy(so, &inp->inp_sp);
291         if (error != 0) {
292 #ifdef MAC
293                 mac_inpcb_destroy(inp);
294 #endif
295                 goto out;
296         }
297 #endif /*IPSEC*/
298 #ifdef INET6
299         if (INP_SOCKAF(so) == AF_INET6) {
300                 inp->inp_vflag |= INP_IPV6PROTO;
301                 if (V_ip6_v6only)
302                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
303         }
304 #endif
305         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
306         pcbinfo->ipi_count++;
307         so->so_pcb = (caddr_t)inp;
308 #ifdef INET6
309         if (V_ip6_auto_flowlabel)
310                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
311 #endif
312         INP_WLOCK(inp);
313         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
314         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
315 #if defined(IPSEC) || defined(MAC)
316 out:
317         if (error != 0) {
318                 crfree(inp->inp_cred);
319                 uma_zfree(pcbinfo->ipi_zone, inp);
320         }
321 #endif
322         return (error);
323 }
324
325 #ifdef INET
326 int
327 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
328 {
329         int anonport, error;
330
331         INP_WLOCK_ASSERT(inp);
332         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
333
334         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
335                 return (EINVAL);
336         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
337         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
338             &inp->inp_lport, cred);
339         if (error)
340                 return (error);
341         if (in_pcbinshash(inp) != 0) {
342                 inp->inp_laddr.s_addr = INADDR_ANY;
343                 inp->inp_lport = 0;
344                 return (EAGAIN);
345         }
346         if (anonport)
347                 inp->inp_flags |= INP_ANONPORT;
348         return (0);
349 }
350 #endif
351
352 /*
353  * Select a local port (number) to use.
354  */
355 #if defined(INET) || defined(INET6)
356 int
357 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
358     struct ucred *cred, int lookupflags)
359 {
360         struct inpcbinfo *pcbinfo;
361         struct inpcb *tmpinp;
362         unsigned short *lastport;
363         int count, dorandom, error;
364         u_short aux, first, last, lport;
365 #ifdef INET
366         struct in_addr laddr;
367 #endif
368
369         pcbinfo = inp->inp_pcbinfo;
370
371         /*
372          * Because no actual state changes occur here, a global write lock on
373          * the pcbinfo isn't required.
374          */
375         INP_LOCK_ASSERT(inp);
376         INP_HASH_LOCK_ASSERT(pcbinfo);
377
378         if (inp->inp_flags & INP_HIGHPORT) {
379                 first = V_ipport_hifirstauto;   /* sysctl */
380                 last  = V_ipport_hilastauto;
381                 lastport = &pcbinfo->ipi_lasthi;
382         } else if (inp->inp_flags & INP_LOWPORT) {
383                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
384                 if (error)
385                         return (error);
386                 first = V_ipport_lowfirstauto;  /* 1023 */
387                 last  = V_ipport_lowlastauto;   /* 600 */
388                 lastport = &pcbinfo->ipi_lastlow;
389         } else {
390                 first = V_ipport_firstauto;     /* sysctl */
391                 last  = V_ipport_lastauto;
392                 lastport = &pcbinfo->ipi_lastport;
393         }
394         /*
395          * For UDP(-Lite), use random port allocation as long as the user
396          * allows it.  For TCP (and as of yet unknown) connections,
397          * use random port allocation only if the user allows it AND
398          * ipport_tick() allows it.
399          */
400         if (V_ipport_randomized &&
401                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
402                 pcbinfo == &V_ulitecbinfo))
403                 dorandom = 1;
404         else
405                 dorandom = 0;
406         /*
407          * It makes no sense to do random port allocation if
408          * we have the only port available.
409          */
410         if (first == last)
411                 dorandom = 0;
412         /* Make sure to not include UDP(-Lite) packets in the count. */
413         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
414                 V_ipport_tcpallocs++;
415         /*
416          * Instead of having two loops further down counting up or down
417          * make sure that first is always <= last and go with only one
418          * code path implementing all logic.
419          */
420         if (first > last) {
421                 aux = first;
422                 first = last;
423                 last = aux;
424         }
425
426 #ifdef INET
427         /* Make the compiler happy. */
428         laddr.s_addr = 0;
429         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
430                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
431                     __func__, inp));
432                 laddr = *laddrp;
433         }
434 #endif
435         tmpinp = NULL;  /* Make compiler happy. */
436         lport = *lportp;
437
438         if (dorandom)
439                 *lastport = first + (arc4random() % (last - first));
440
441         count = last - first;
442
443         do {
444                 if (count-- < 0)        /* completely used? */
445                         return (EADDRNOTAVAIL);
446                 ++*lastport;
447                 if (*lastport < first || *lastport > last)
448                         *lastport = first;
449                 lport = htons(*lastport);
450
451 #ifdef INET6
452                 if ((inp->inp_vflag & INP_IPV6) != 0)
453                         tmpinp = in6_pcblookup_local(pcbinfo,
454                             &inp->in6p_laddr, lport, lookupflags, cred);
455 #endif
456 #if defined(INET) && defined(INET6)
457                 else
458 #endif
459 #ifdef INET
460                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
461                             lport, lookupflags, cred);
462 #endif
463         } while (tmpinp != NULL);
464
465 #ifdef INET
466         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
467                 laddrp->s_addr = laddr.s_addr;
468 #endif
469         *lportp = lport;
470
471         return (0);
472 }
473
474 /*
475  * Return cached socket options.
476  */
477 short
478 inp_so_options(const struct inpcb *inp)
479 {
480    short so_options;
481
482    so_options = 0;
483
484    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
485            so_options |= SO_REUSEPORT;
486    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
487            so_options |= SO_REUSEADDR;
488    return (so_options);
489 }
490 #endif /* INET || INET6 */
491
492 /*
493  * Check if a new BINDMULTI socket is allowed to be created.
494  *
495  * ni points to the new inp.
496  * oi points to the exisitng inp.
497  *
498  * This checks whether the existing inp also has BINDMULTI and
499  * whether the credentials match.
500  */
501 int
502 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
503 {
504         /* Check permissions match */
505         if ((ni->inp_flags2 & INP_BINDMULTI) &&
506             (ni->inp_cred->cr_uid !=
507             oi->inp_cred->cr_uid))
508                 return (0);
509
510         /* Check the existing inp has BINDMULTI set */
511         if ((ni->inp_flags2 & INP_BINDMULTI) &&
512             ((oi->inp_flags2 & INP_BINDMULTI) == 0))
513                 return (0);
514
515         /*
516          * We're okay - either INP_BINDMULTI isn't set on ni, or
517          * it is and it matches the checks.
518          */
519         return (1);
520 }
521
522 #ifdef INET
523 /*
524  * Set up a bind operation on a PCB, performing port allocation
525  * as required, but do not actually modify the PCB. Callers can
526  * either complete the bind by setting inp_laddr/inp_lport and
527  * calling in_pcbinshash(), or they can just use the resulting
528  * port and address to authorise the sending of a once-off packet.
529  *
530  * On error, the values of *laddrp and *lportp are not changed.
531  */
532 int
533 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
534     u_short *lportp, struct ucred *cred)
535 {
536         struct socket *so = inp->inp_socket;
537         struct sockaddr_in *sin;
538         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
539         struct in_addr laddr;
540         u_short lport = 0;
541         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
542         int error;
543
544         /*
545          * No state changes, so read locks are sufficient here.
546          */
547         INP_LOCK_ASSERT(inp);
548         INP_HASH_LOCK_ASSERT(pcbinfo);
549
550         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
551                 return (EADDRNOTAVAIL);
552         laddr.s_addr = *laddrp;
553         if (nam != NULL && laddr.s_addr != INADDR_ANY)
554                 return (EINVAL);
555         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
556                 lookupflags = INPLOOKUP_WILDCARD;
557         if (nam == NULL) {
558                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
559                         return (error);
560         } else {
561                 sin = (struct sockaddr_in *)nam;
562                 if (nam->sa_len != sizeof (*sin))
563                         return (EINVAL);
564 #ifdef notdef
565                 /*
566                  * We should check the family, but old programs
567                  * incorrectly fail to initialize it.
568                  */
569                 if (sin->sin_family != AF_INET)
570                         return (EAFNOSUPPORT);
571 #endif
572                 error = prison_local_ip4(cred, &sin->sin_addr);
573                 if (error)
574                         return (error);
575                 if (sin->sin_port != *lportp) {
576                         /* Don't allow the port to change. */
577                         if (*lportp != 0)
578                                 return (EINVAL);
579                         lport = sin->sin_port;
580                 }
581                 /* NB: lport is left as 0 if the port isn't being changed. */
582                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
583                         /*
584                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
585                          * allow complete duplication of binding if
586                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
587                          * and a multicast address is bound on both
588                          * new and duplicated sockets.
589                          */
590                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
591                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
592                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
593                         sin->sin_port = 0;              /* yech... */
594                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
595                         /*
596                          * Is the address a local IP address? 
597                          * If INP_BINDANY is set, then the socket may be bound
598                          * to any endpoint address, local or not.
599                          */
600                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
601                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
602                                 return (EADDRNOTAVAIL);
603                 }
604                 laddr = sin->sin_addr;
605                 if (lport) {
606                         struct inpcb *t;
607                         struct tcptw *tw;
608
609                         /* GROSS */
610                         if (ntohs(lport) <= V_ipport_reservedhigh &&
611                             ntohs(lport) >= V_ipport_reservedlow &&
612                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
613                             0))
614                                 return (EACCES);
615                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
616                             priv_check_cred(inp->inp_cred,
617                             PRIV_NETINET_REUSEPORT, 0) != 0) {
618                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
619                                     lport, INPLOOKUP_WILDCARD, cred);
620         /*
621          * XXX
622          * This entire block sorely needs a rewrite.
623          */
624                                 if (t &&
625                                     ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
626                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
627                                     (so->so_type != SOCK_STREAM ||
628                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
629                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
630                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
631                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
632                                     (inp->inp_cred->cr_uid !=
633                                      t->inp_cred->cr_uid))
634                                         return (EADDRINUSE);
635
636                                 /*
637                                  * If the socket is a BINDMULTI socket, then
638                                  * the credentials need to match and the
639                                  * original socket also has to have been bound
640                                  * with BINDMULTI.
641                                  */
642                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
643                                         return (EADDRINUSE);
644                         }
645                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
646                             lport, lookupflags, cred);
647                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
648                                 /*
649                                  * XXXRW: If an incpb has had its timewait
650                                  * state recycled, we treat the address as
651                                  * being in use (for now).  This is better
652                                  * than a panic, but not desirable.
653                                  */
654                                 tw = intotw(t);
655                                 if (tw == NULL ||
656                                     (reuseport & tw->tw_so_options) == 0)
657                                         return (EADDRINUSE);
658                         } else if (t &&
659                             ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
660                             (reuseport & inp_so_options(t)) == 0) {
661 #ifdef INET6
662                                 if (ntohl(sin->sin_addr.s_addr) !=
663                                     INADDR_ANY ||
664                                     ntohl(t->inp_laddr.s_addr) !=
665                                     INADDR_ANY ||
666                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
667                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
668 #endif
669                                 return (EADDRINUSE);
670                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
671                                         return (EADDRINUSE);
672                         }
673                 }
674         }
675         if (*lportp != 0)
676                 lport = *lportp;
677         if (lport == 0) {
678                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
679                 if (error != 0)
680                         return (error);
681
682         }
683         *laddrp = laddr.s_addr;
684         *lportp = lport;
685         return (0);
686 }
687
688 /*
689  * Connect from a socket to a specified address.
690  * Both address and port must be specified in argument sin.
691  * If don't have a local address for this socket yet,
692  * then pick one.
693  */
694 int
695 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
696     struct ucred *cred, struct mbuf *m)
697 {
698         u_short lport, fport;
699         in_addr_t laddr, faddr;
700         int anonport, error;
701
702         INP_WLOCK_ASSERT(inp);
703         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
704
705         lport = inp->inp_lport;
706         laddr = inp->inp_laddr.s_addr;
707         anonport = (lport == 0);
708         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
709             NULL, cred);
710         if (error)
711                 return (error);
712
713         /* Do the initial binding of the local address if required. */
714         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
715                 inp->inp_lport = lport;
716                 inp->inp_laddr.s_addr = laddr;
717                 if (in_pcbinshash(inp) != 0) {
718                         inp->inp_laddr.s_addr = INADDR_ANY;
719                         inp->inp_lport = 0;
720                         return (EAGAIN);
721                 }
722         }
723
724         /* Commit the remaining changes. */
725         inp->inp_lport = lport;
726         inp->inp_laddr.s_addr = laddr;
727         inp->inp_faddr.s_addr = faddr;
728         inp->inp_fport = fport;
729         in_pcbrehash_mbuf(inp, m);
730
731         if (anonport)
732                 inp->inp_flags |= INP_ANONPORT;
733         return (0);
734 }
735
736 int
737 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
738 {
739
740         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
741 }
742
743 /*
744  * Do proper source address selection on an unbound socket in case
745  * of connect. Take jails into account as well.
746  */
747 int
748 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
749     struct ucred *cred)
750 {
751         struct ifaddr *ifa;
752         struct sockaddr *sa;
753         struct sockaddr_in *sin;
754         struct route sro;
755         int error;
756
757         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
758
759         /*
760          * Bypass source address selection and use the primary jail IP
761          * if requested.
762          */
763         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
764                 return (0);
765
766         error = 0;
767         bzero(&sro, sizeof(sro));
768
769         sin = (struct sockaddr_in *)&sro.ro_dst;
770         sin->sin_family = AF_INET;
771         sin->sin_len = sizeof(struct sockaddr_in);
772         sin->sin_addr.s_addr = faddr->s_addr;
773
774         /*
775          * If route is known our src addr is taken from the i/f,
776          * else punt.
777          *
778          * Find out route to destination.
779          */
780         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
781                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
782
783         /*
784          * If we found a route, use the address corresponding to
785          * the outgoing interface.
786          * 
787          * Otherwise assume faddr is reachable on a directly connected
788          * network and try to find a corresponding interface to take
789          * the source address from.
790          */
791         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
792                 struct in_ifaddr *ia;
793                 struct ifnet *ifp;
794
795                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
796                 if (ia == NULL)
797                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
798                 if (ia == NULL) {
799                         error = ENETUNREACH;
800                         goto done;
801                 }
802
803                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
804                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
805                         ifa_free(&ia->ia_ifa);
806                         goto done;
807                 }
808
809                 ifp = ia->ia_ifp;
810                 ifa_free(&ia->ia_ifa);
811                 ia = NULL;
812                 IF_ADDR_RLOCK(ifp);
813                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
814
815                         sa = ifa->ifa_addr;
816                         if (sa->sa_family != AF_INET)
817                                 continue;
818                         sin = (struct sockaddr_in *)sa;
819                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
820                                 ia = (struct in_ifaddr *)ifa;
821                                 break;
822                         }
823                 }
824                 if (ia != NULL) {
825                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
826                         IF_ADDR_RUNLOCK(ifp);
827                         goto done;
828                 }
829                 IF_ADDR_RUNLOCK(ifp);
830
831                 /* 3. As a last resort return the 'default' jail address. */
832                 error = prison_get_ip4(cred, laddr);
833                 goto done;
834         }
835
836         /*
837          * If the outgoing interface on the route found is not
838          * a loopback interface, use the address from that interface.
839          * In case of jails do those three steps:
840          * 1. check if the interface address belongs to the jail. If so use it.
841          * 2. check if we have any address on the outgoing interface
842          *    belonging to this jail. If so use it.
843          * 3. as a last resort return the 'default' jail address.
844          */
845         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
846                 struct in_ifaddr *ia;
847                 struct ifnet *ifp;
848
849                 /* If not jailed, use the default returned. */
850                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
851                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
852                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
853                         goto done;
854                 }
855
856                 /* Jailed. */
857                 /* 1. Check if the iface address belongs to the jail. */
858                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
859                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
860                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
861                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
862                         goto done;
863                 }
864
865                 /*
866                  * 2. Check if we have any address on the outgoing interface
867                  *    belonging to this jail.
868                  */
869                 ia = NULL;
870                 ifp = sro.ro_rt->rt_ifp;
871                 IF_ADDR_RLOCK(ifp);
872                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
873                         sa = ifa->ifa_addr;
874                         if (sa->sa_family != AF_INET)
875                                 continue;
876                         sin = (struct sockaddr_in *)sa;
877                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
878                                 ia = (struct in_ifaddr *)ifa;
879                                 break;
880                         }
881                 }
882                 if (ia != NULL) {
883                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
884                         IF_ADDR_RUNLOCK(ifp);
885                         goto done;
886                 }
887                 IF_ADDR_RUNLOCK(ifp);
888
889                 /* 3. As a last resort return the 'default' jail address. */
890                 error = prison_get_ip4(cred, laddr);
891                 goto done;
892         }
893
894         /*
895          * The outgoing interface is marked with 'loopback net', so a route
896          * to ourselves is here.
897          * Try to find the interface of the destination address and then
898          * take the address from there. That interface is not necessarily
899          * a loopback interface.
900          * In case of jails, check that it is an address of the jail
901          * and if we cannot find, fall back to the 'default' jail address.
902          */
903         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
904                 struct sockaddr_in sain;
905                 struct in_ifaddr *ia;
906
907                 bzero(&sain, sizeof(struct sockaddr_in));
908                 sain.sin_family = AF_INET;
909                 sain.sin_len = sizeof(struct sockaddr_in);
910                 sain.sin_addr.s_addr = faddr->s_addr;
911
912                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
913                 if (ia == NULL)
914                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
915                 if (ia == NULL)
916                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
917
918                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
919                         if (ia == NULL) {
920                                 error = ENETUNREACH;
921                                 goto done;
922                         }
923                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
924                         ifa_free(&ia->ia_ifa);
925                         goto done;
926                 }
927
928                 /* Jailed. */
929                 if (ia != NULL) {
930                         struct ifnet *ifp;
931
932                         ifp = ia->ia_ifp;
933                         ifa_free(&ia->ia_ifa);
934                         ia = NULL;
935                         IF_ADDR_RLOCK(ifp);
936                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
937
938                                 sa = ifa->ifa_addr;
939                                 if (sa->sa_family != AF_INET)
940                                         continue;
941                                 sin = (struct sockaddr_in *)sa;
942                                 if (prison_check_ip4(cred,
943                                     &sin->sin_addr) == 0) {
944                                         ia = (struct in_ifaddr *)ifa;
945                                         break;
946                                 }
947                         }
948                         if (ia != NULL) {
949                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
950                                 IF_ADDR_RUNLOCK(ifp);
951                                 goto done;
952                         }
953                         IF_ADDR_RUNLOCK(ifp);
954                 }
955
956                 /* 3. As a last resort return the 'default' jail address. */
957                 error = prison_get_ip4(cred, laddr);
958                 goto done;
959         }
960
961 done:
962         if (sro.ro_rt != NULL)
963                 RTFREE(sro.ro_rt);
964         return (error);
965 }
966
967 /*
968  * Set up for a connect from a socket to the specified address.
969  * On entry, *laddrp and *lportp should contain the current local
970  * address and port for the PCB; these are updated to the values
971  * that should be placed in inp_laddr and inp_lport to complete
972  * the connect.
973  *
974  * On success, *faddrp and *fportp will be set to the remote address
975  * and port. These are not updated in the error case.
976  *
977  * If the operation fails because the connection already exists,
978  * *oinpp will be set to the PCB of that connection so that the
979  * caller can decide to override it. In all other cases, *oinpp
980  * is set to NULL.
981  */
982 int
983 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
984     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
985     struct inpcb **oinpp, struct ucred *cred)
986 {
987         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
988         struct in_ifaddr *ia;
989         struct inpcb *oinp;
990         struct in_addr laddr, faddr;
991         u_short lport, fport;
992         int error;
993
994         /*
995          * Because a global state change doesn't actually occur here, a read
996          * lock is sufficient.
997          */
998         INP_LOCK_ASSERT(inp);
999         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1000
1001         if (oinpp != NULL)
1002                 *oinpp = NULL;
1003         if (nam->sa_len != sizeof (*sin))
1004                 return (EINVAL);
1005         if (sin->sin_family != AF_INET)
1006                 return (EAFNOSUPPORT);
1007         if (sin->sin_port == 0)
1008                 return (EADDRNOTAVAIL);
1009         laddr.s_addr = *laddrp;
1010         lport = *lportp;
1011         faddr = sin->sin_addr;
1012         fport = sin->sin_port;
1013
1014         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1015                 /*
1016                  * If the destination address is INADDR_ANY,
1017                  * use the primary local address.
1018                  * If the supplied address is INADDR_BROADCAST,
1019                  * and the primary interface supports broadcast,
1020                  * choose the broadcast address for that interface.
1021                  */
1022                 if (faddr.s_addr == INADDR_ANY) {
1023                         IN_IFADDR_RLOCK();
1024                         faddr =
1025                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1026                         IN_IFADDR_RUNLOCK();
1027                         if (cred != NULL &&
1028                             (error = prison_get_ip4(cred, &faddr)) != 0)
1029                                 return (error);
1030                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1031                         IN_IFADDR_RLOCK();
1032                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1033                             IFF_BROADCAST)
1034                                 faddr = satosin(&TAILQ_FIRST(
1035                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1036                         IN_IFADDR_RUNLOCK();
1037                 }
1038         }
1039         if (laddr.s_addr == INADDR_ANY) {
1040                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1041                 /*
1042                  * If the destination address is multicast and an outgoing
1043                  * interface has been set as a multicast option, prefer the
1044                  * address of that interface as our source address.
1045                  */
1046                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1047                     inp->inp_moptions != NULL) {
1048                         struct ip_moptions *imo;
1049                         struct ifnet *ifp;
1050
1051                         imo = inp->inp_moptions;
1052                         if (imo->imo_multicast_ifp != NULL) {
1053                                 ifp = imo->imo_multicast_ifp;
1054                                 IN_IFADDR_RLOCK();
1055                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1056                                         if ((ia->ia_ifp == ifp) &&
1057                                             (cred == NULL ||
1058                                             prison_check_ip4(cred,
1059                                             &ia->ia_addr.sin_addr) == 0))
1060                                                 break;
1061                                 }
1062                                 if (ia == NULL)
1063                                         error = EADDRNOTAVAIL;
1064                                 else {
1065                                         laddr = ia->ia_addr.sin_addr;
1066                                         error = 0;
1067                                 }
1068                                 IN_IFADDR_RUNLOCK();
1069                         }
1070                 }
1071                 if (error)
1072                         return (error);
1073         }
1074         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1075             laddr, lport, 0, NULL);
1076         if (oinp != NULL) {
1077                 if (oinpp != NULL)
1078                         *oinpp = oinp;
1079                 return (EADDRINUSE);
1080         }
1081         if (lport == 0) {
1082                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1083                     cred);
1084                 if (error)
1085                         return (error);
1086         }
1087         *laddrp = laddr.s_addr;
1088         *lportp = lport;
1089         *faddrp = faddr.s_addr;
1090         *fportp = fport;
1091         return (0);
1092 }
1093
1094 void
1095 in_pcbdisconnect(struct inpcb *inp)
1096 {
1097
1098         INP_WLOCK_ASSERT(inp);
1099         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1100
1101         inp->inp_faddr.s_addr = INADDR_ANY;
1102         inp->inp_fport = 0;
1103         in_pcbrehash(inp);
1104 }
1105 #endif /* INET */
1106
1107 /*
1108  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1109  * For most protocols, this will be invoked immediately prior to calling
1110  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1111  * socket, in which case in_pcbfree() is deferred.
1112  */
1113 void
1114 in_pcbdetach(struct inpcb *inp)
1115 {
1116
1117         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1118
1119         inp->inp_socket->so_pcb = NULL;
1120         inp->inp_socket = NULL;
1121 }
1122
1123 /*
1124  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1125  * stability of an inpcb pointer despite the inpcb lock being released.  This
1126  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1127  * but where the inpcb lock may already held, or when acquiring a reference
1128  * via a pcbgroup.
1129  *
1130  * in_pcbref() should be used only to provide brief memory stability, and
1131  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1132  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1133  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1134  * lock and rele are the *only* safe operations that may be performed on the
1135  * inpcb.
1136  *
1137  * While the inpcb will not be freed, releasing the inpcb lock means that the
1138  * connection's state may change, so the caller should be careful to
1139  * revalidate any cached state on reacquiring the lock.  Drop the reference
1140  * using in_pcbrele().
1141  */
1142 void
1143 in_pcbref(struct inpcb *inp)
1144 {
1145
1146         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1147
1148         refcount_acquire(&inp->inp_refcount);
1149 }
1150
1151 /*
1152  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1153  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1154  * return a flag indicating whether or not the inpcb remains valid.  If it is
1155  * valid, we return with the inpcb lock held.
1156  *
1157  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1158  * reference on an inpcb.  Historically more work was done here (actually, in
1159  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1160  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1161  * about memory stability (and continued use of the write lock).
1162  */
1163 int
1164 in_pcbrele_rlocked(struct inpcb *inp)
1165 {
1166         struct inpcbinfo *pcbinfo;
1167
1168         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1169
1170         INP_RLOCK_ASSERT(inp);
1171
1172         if (refcount_release(&inp->inp_refcount) == 0) {
1173                 /*
1174                  * If the inpcb has been freed, let the caller know, even if
1175                  * this isn't the last reference.
1176                  */
1177                 if (inp->inp_flags2 & INP_FREED) {
1178                         INP_RUNLOCK(inp);
1179                         return (1);
1180                 }
1181                 return (0);
1182         }
1183
1184         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1185
1186         INP_RUNLOCK(inp);
1187         pcbinfo = inp->inp_pcbinfo;
1188         uma_zfree(pcbinfo->ipi_zone, inp);
1189         return (1);
1190 }
1191
1192 int
1193 in_pcbrele_wlocked(struct inpcb *inp)
1194 {
1195         struct inpcbinfo *pcbinfo;
1196
1197         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1198
1199         INP_WLOCK_ASSERT(inp);
1200
1201         if (refcount_release(&inp->inp_refcount) == 0)
1202                 return (0);
1203
1204         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1205
1206         INP_WUNLOCK(inp);
1207         pcbinfo = inp->inp_pcbinfo;
1208         uma_zfree(pcbinfo->ipi_zone, inp);
1209         return (1);
1210 }
1211
1212 /*
1213  * Temporary wrapper.
1214  */
1215 int
1216 in_pcbrele(struct inpcb *inp)
1217 {
1218
1219         return (in_pcbrele_wlocked(inp));
1220 }
1221
1222 /*
1223  * Unconditionally schedule an inpcb to be freed by decrementing its
1224  * reference count, which should occur only after the inpcb has been detached
1225  * from its socket.  If another thread holds a temporary reference (acquired
1226  * using in_pcbref()) then the free is deferred until that reference is
1227  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1228  * work, including removal from global lists, is done in this context, where
1229  * the pcbinfo lock is held.
1230  */
1231 void
1232 in_pcbfree(struct inpcb *inp)
1233 {
1234         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1235
1236         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1237
1238         INP_INFO_WLOCK_ASSERT(pcbinfo);
1239         INP_WLOCK_ASSERT(inp);
1240
1241         /* XXXRW: Do as much as possible here. */
1242 #ifdef IPSEC
1243         if (inp->inp_sp != NULL)
1244                 ipsec_delete_pcbpolicy(inp);
1245 #endif
1246         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1247         in_pcbremlists(inp);
1248 #ifdef INET6
1249         if (inp->inp_vflag & INP_IPV6PROTO) {
1250                 ip6_freepcbopts(inp->in6p_outputopts);
1251                 if (inp->in6p_moptions != NULL)
1252                         ip6_freemoptions(inp->in6p_moptions);
1253         }
1254 #endif
1255         if (inp->inp_options)
1256                 (void)m_free(inp->inp_options);
1257 #ifdef INET
1258         if (inp->inp_moptions != NULL)
1259                 inp_freemoptions(inp->inp_moptions);
1260 #endif
1261         inp->inp_vflag = 0;
1262         inp->inp_flags2 |= INP_FREED;
1263         crfree(inp->inp_cred);
1264 #ifdef MAC
1265         mac_inpcb_destroy(inp);
1266 #endif
1267         if (!in_pcbrele_wlocked(inp))
1268                 INP_WUNLOCK(inp);
1269 }
1270
1271 /*
1272  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1273  * port reservation, and preventing it from being returned by inpcb lookups.
1274  *
1275  * It is used by TCP to mark an inpcb as unused and avoid future packet
1276  * delivery or event notification when a socket remains open but TCP has
1277  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1278  * or a RST on the wire, and allows the port binding to be reused while still
1279  * maintaining the invariant that so_pcb always points to a valid inpcb until
1280  * in_pcbdetach().
1281  *
1282  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1283  * in_pcbnotifyall() and in_pcbpurgeif0()?
1284  */
1285 void
1286 in_pcbdrop(struct inpcb *inp)
1287 {
1288
1289         INP_WLOCK_ASSERT(inp);
1290
1291         /*
1292          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1293          * the hash lock...?
1294          */
1295         inp->inp_flags |= INP_DROPPED;
1296         if (inp->inp_flags & INP_INHASHLIST) {
1297                 struct inpcbport *phd = inp->inp_phd;
1298
1299                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1300                 LIST_REMOVE(inp, inp_hash);
1301                 LIST_REMOVE(inp, inp_portlist);
1302                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1303                         LIST_REMOVE(phd, phd_hash);
1304                         free(phd, M_PCB);
1305                 }
1306                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1307                 inp->inp_flags &= ~INP_INHASHLIST;
1308 #ifdef PCBGROUP
1309                 in_pcbgroup_remove(inp);
1310 #endif
1311         }
1312 }
1313
1314 #ifdef INET
1315 /*
1316  * Common routines to return the socket addresses associated with inpcbs.
1317  */
1318 struct sockaddr *
1319 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1320 {
1321         struct sockaddr_in *sin;
1322
1323         sin = malloc(sizeof *sin, M_SONAME,
1324                 M_WAITOK | M_ZERO);
1325         sin->sin_family = AF_INET;
1326         sin->sin_len = sizeof(*sin);
1327         sin->sin_addr = *addr_p;
1328         sin->sin_port = port;
1329
1330         return (struct sockaddr *)sin;
1331 }
1332
1333 int
1334 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1335 {
1336         struct inpcb *inp;
1337         struct in_addr addr;
1338         in_port_t port;
1339
1340         inp = sotoinpcb(so);
1341         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1342
1343         INP_RLOCK(inp);
1344         port = inp->inp_lport;
1345         addr = inp->inp_laddr;
1346         INP_RUNLOCK(inp);
1347
1348         *nam = in_sockaddr(port, &addr);
1349         return 0;
1350 }
1351
1352 int
1353 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1354 {
1355         struct inpcb *inp;
1356         struct in_addr addr;
1357         in_port_t port;
1358
1359         inp = sotoinpcb(so);
1360         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1361
1362         INP_RLOCK(inp);
1363         port = inp->inp_fport;
1364         addr = inp->inp_faddr;
1365         INP_RUNLOCK(inp);
1366
1367         *nam = in_sockaddr(port, &addr);
1368         return 0;
1369 }
1370
1371 void
1372 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1373     struct inpcb *(*notify)(struct inpcb *, int))
1374 {
1375         struct inpcb *inp, *inp_temp;
1376
1377         INP_INFO_WLOCK(pcbinfo);
1378         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1379                 INP_WLOCK(inp);
1380 #ifdef INET6
1381                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1382                         INP_WUNLOCK(inp);
1383                         continue;
1384                 }
1385 #endif
1386                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1387                     inp->inp_socket == NULL) {
1388                         INP_WUNLOCK(inp);
1389                         continue;
1390                 }
1391                 if ((*notify)(inp, errno))
1392                         INP_WUNLOCK(inp);
1393         }
1394         INP_INFO_WUNLOCK(pcbinfo);
1395 }
1396
1397 void
1398 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1399 {
1400         struct inpcb *inp;
1401         struct ip_moptions *imo;
1402         int i, gap;
1403
1404         INP_INFO_RLOCK(pcbinfo);
1405         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1406                 INP_WLOCK(inp);
1407                 imo = inp->inp_moptions;
1408                 if ((inp->inp_vflag & INP_IPV4) &&
1409                     imo != NULL) {
1410                         /*
1411                          * Unselect the outgoing interface if it is being
1412                          * detached.
1413                          */
1414                         if (imo->imo_multicast_ifp == ifp)
1415                                 imo->imo_multicast_ifp = NULL;
1416
1417                         /*
1418                          * Drop multicast group membership if we joined
1419                          * through the interface being detached.
1420                          */
1421                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1422                             i++) {
1423                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1424                                         in_delmulti(imo->imo_membership[i]);
1425                                         gap++;
1426                                 } else if (gap != 0)
1427                                         imo->imo_membership[i - gap] =
1428                                             imo->imo_membership[i];
1429                         }
1430                         imo->imo_num_memberships -= gap;
1431                 }
1432                 INP_WUNLOCK(inp);
1433         }
1434         INP_INFO_RUNLOCK(pcbinfo);
1435 }
1436
1437 /*
1438  * Lookup a PCB based on the local address and port.  Caller must hold the
1439  * hash lock.  No inpcb locks or references are acquired.
1440  */
1441 #define INP_LOOKUP_MAPPED_PCB_COST      3
1442 struct inpcb *
1443 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1444     u_short lport, int lookupflags, struct ucred *cred)
1445 {
1446         struct inpcb *inp;
1447 #ifdef INET6
1448         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1449 #else
1450         int matchwild = 3;
1451 #endif
1452         int wildcard;
1453
1454         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1455             ("%s: invalid lookup flags %d", __func__, lookupflags));
1456
1457         INP_HASH_LOCK_ASSERT(pcbinfo);
1458
1459         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1460                 struct inpcbhead *head;
1461                 /*
1462                  * Look for an unconnected (wildcard foreign addr) PCB that
1463                  * matches the local address and port we're looking for.
1464                  */
1465                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1466                     0, pcbinfo->ipi_hashmask)];
1467                 LIST_FOREACH(inp, head, inp_hash) {
1468 #ifdef INET6
1469                         /* XXX inp locking */
1470                         if ((inp->inp_vflag & INP_IPV4) == 0)
1471                                 continue;
1472 #endif
1473                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1474                             inp->inp_laddr.s_addr == laddr.s_addr &&
1475                             inp->inp_lport == lport) {
1476                                 /*
1477                                  * Found?
1478                                  */
1479                                 if (cred == NULL ||
1480                                     prison_equal_ip4(cred->cr_prison,
1481                                         inp->inp_cred->cr_prison))
1482                                         return (inp);
1483                         }
1484                 }
1485                 /*
1486                  * Not found.
1487                  */
1488                 return (NULL);
1489         } else {
1490                 struct inpcbporthead *porthash;
1491                 struct inpcbport *phd;
1492                 struct inpcb *match = NULL;
1493                 /*
1494                  * Best fit PCB lookup.
1495                  *
1496                  * First see if this local port is in use by looking on the
1497                  * port hash list.
1498                  */
1499                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1500                     pcbinfo->ipi_porthashmask)];
1501                 LIST_FOREACH(phd, porthash, phd_hash) {
1502                         if (phd->phd_port == lport)
1503                                 break;
1504                 }
1505                 if (phd != NULL) {
1506                         /*
1507                          * Port is in use by one or more PCBs. Look for best
1508                          * fit.
1509                          */
1510                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1511                                 wildcard = 0;
1512                                 if (cred != NULL &&
1513                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1514                                         cred->cr_prison))
1515                                         continue;
1516 #ifdef INET6
1517                                 /* XXX inp locking */
1518                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1519                                         continue;
1520                                 /*
1521                                  * We never select the PCB that has
1522                                  * INP_IPV6 flag and is bound to :: if
1523                                  * we have another PCB which is bound
1524                                  * to 0.0.0.0.  If a PCB has the
1525                                  * INP_IPV6 flag, then we set its cost
1526                                  * higher than IPv4 only PCBs.
1527                                  *
1528                                  * Note that the case only happens
1529                                  * when a socket is bound to ::, under
1530                                  * the condition that the use of the
1531                                  * mapped address is allowed.
1532                                  */
1533                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1534                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1535 #endif
1536                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1537                                         wildcard++;
1538                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1539                                         if (laddr.s_addr == INADDR_ANY)
1540                                                 wildcard++;
1541                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1542                                                 continue;
1543                                 } else {
1544                                         if (laddr.s_addr != INADDR_ANY)
1545                                                 wildcard++;
1546                                 }
1547                                 if (wildcard < matchwild) {
1548                                         match = inp;
1549                                         matchwild = wildcard;
1550                                         if (matchwild == 0)
1551                                                 break;
1552                                 }
1553                         }
1554                 }
1555                 return (match);
1556         }
1557 }
1558 #undef INP_LOOKUP_MAPPED_PCB_COST
1559
1560 #ifdef PCBGROUP
1561 /*
1562  * Lookup PCB in hash list, using pcbgroup tables.
1563  */
1564 static struct inpcb *
1565 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1566     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1567     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1568 {
1569         struct inpcbhead *head;
1570         struct inpcb *inp, *tmpinp;
1571         u_short fport = fport_arg, lport = lport_arg;
1572
1573         /*
1574          * First look for an exact match.
1575          */
1576         tmpinp = NULL;
1577         INP_GROUP_LOCK(pcbgroup);
1578         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1579             pcbgroup->ipg_hashmask)];
1580         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1581 #ifdef INET6
1582                 /* XXX inp locking */
1583                 if ((inp->inp_vflag & INP_IPV4) == 0)
1584                         continue;
1585 #endif
1586                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1587                     inp->inp_laddr.s_addr == laddr.s_addr &&
1588                     inp->inp_fport == fport &&
1589                     inp->inp_lport == lport) {
1590                         /*
1591                          * XXX We should be able to directly return
1592                          * the inp here, without any checks.
1593                          * Well unless both bound with SO_REUSEPORT?
1594                          */
1595                         if (prison_flag(inp->inp_cred, PR_IP4))
1596                                 goto found;
1597                         if (tmpinp == NULL)
1598                                 tmpinp = inp;
1599                 }
1600         }
1601         if (tmpinp != NULL) {
1602                 inp = tmpinp;
1603                 goto found;
1604         }
1605
1606 #ifdef  RSS
1607         /*
1608          * For incoming connections, we may wish to do a wildcard
1609          * match for an RSS-local socket.
1610          */
1611         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1612                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1613 #ifdef INET6
1614                 struct inpcb *local_wild_mapped = NULL;
1615 #endif
1616                 struct inpcb *jail_wild = NULL;
1617                 struct inpcbhead *head;
1618                 int injail;
1619
1620                 /*
1621                  * Order of socket selection - we always prefer jails.
1622                  *      1. jailed, non-wild.
1623                  *      2. jailed, wild.
1624                  *      3. non-jailed, non-wild.
1625                  *      4. non-jailed, wild.
1626                  */
1627
1628                 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1629                     lport, 0, pcbgroup->ipg_hashmask)];
1630                 LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1631 #ifdef INET6
1632                         /* XXX inp locking */
1633                         if ((inp->inp_vflag & INP_IPV4) == 0)
1634                                 continue;
1635 #endif
1636                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1637                             inp->inp_lport != lport)
1638                                 continue;
1639
1640                         /* XXX inp locking */
1641                         if (ifp && ifp->if_type == IFT_FAITH &&
1642                             (inp->inp_flags & INP_FAITH) == 0)
1643                                 continue;
1644
1645                         injail = prison_flag(inp->inp_cred, PR_IP4);
1646                         if (injail) {
1647                                 if (prison_check_ip4(inp->inp_cred,
1648                                     &laddr) != 0)
1649                                         continue;
1650                         } else {
1651                                 if (local_exact != NULL)
1652                                         continue;
1653                         }
1654
1655                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1656                                 if (injail)
1657                                         goto found;
1658                                 else
1659                                         local_exact = inp;
1660                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1661 #ifdef INET6
1662                                 /* XXX inp locking, NULL check */
1663                                 if (inp->inp_vflag & INP_IPV6PROTO)
1664                                         local_wild_mapped = inp;
1665                                 else
1666 #endif
1667                                         if (injail)
1668                                                 jail_wild = inp;
1669                                         else
1670                                                 local_wild = inp;
1671                         }
1672                 } /* LIST_FOREACH */
1673
1674                 inp = jail_wild;
1675                 if (inp == NULL)
1676                         inp = local_exact;
1677                 if (inp == NULL)
1678                         inp = local_wild;
1679 #ifdef INET6
1680                 if (inp == NULL)
1681                         inp = local_wild_mapped;
1682 #endif
1683                 if (inp != NULL)
1684                         goto found;
1685         }
1686 #endif
1687
1688         /*
1689          * Then look for a wildcard match, if requested.
1690          */
1691         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1692                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1693 #ifdef INET6
1694                 struct inpcb *local_wild_mapped = NULL;
1695 #endif
1696                 struct inpcb *jail_wild = NULL;
1697                 struct inpcbhead *head;
1698                 int injail;
1699
1700                 /*
1701                  * Order of socket selection - we always prefer jails.
1702                  *      1. jailed, non-wild.
1703                  *      2. jailed, wild.
1704                  *      3. non-jailed, non-wild.
1705                  *      4. non-jailed, wild.
1706                  */
1707                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1708                     0, pcbinfo->ipi_wildmask)];
1709                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1710 #ifdef INET6
1711                         /* XXX inp locking */
1712                         if ((inp->inp_vflag & INP_IPV4) == 0)
1713                                 continue;
1714 #endif
1715                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1716                             inp->inp_lport != lport)
1717                                 continue;
1718
1719                         /* XXX inp locking */
1720                         if (ifp && ifp->if_type == IFT_FAITH &&
1721                             (inp->inp_flags & INP_FAITH) == 0)
1722                                 continue;
1723
1724                         injail = prison_flag(inp->inp_cred, PR_IP4);
1725                         if (injail) {
1726                                 if (prison_check_ip4(inp->inp_cred,
1727                                     &laddr) != 0)
1728                                         continue;
1729                         } else {
1730                                 if (local_exact != NULL)
1731                                         continue;
1732                         }
1733
1734                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1735                                 if (injail)
1736                                         goto found;
1737                                 else
1738                                         local_exact = inp;
1739                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1740 #ifdef INET6
1741                                 /* XXX inp locking, NULL check */
1742                                 if (inp->inp_vflag & INP_IPV6PROTO)
1743                                         local_wild_mapped = inp;
1744                                 else
1745 #endif
1746                                         if (injail)
1747                                                 jail_wild = inp;
1748                                         else
1749                                                 local_wild = inp;
1750                         }
1751                 } /* LIST_FOREACH */
1752                 inp = jail_wild;
1753                 if (inp == NULL)
1754                         inp = local_exact;
1755                 if (inp == NULL)
1756                         inp = local_wild;
1757 #ifdef INET6
1758                 if (inp == NULL)
1759                         inp = local_wild_mapped;
1760 #endif
1761                 if (inp != NULL)
1762                         goto found;
1763         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1764         INP_GROUP_UNLOCK(pcbgroup);
1765         return (NULL);
1766
1767 found:
1768         in_pcbref(inp);
1769         INP_GROUP_UNLOCK(pcbgroup);
1770         if (lookupflags & INPLOOKUP_WLOCKPCB) {
1771                 INP_WLOCK(inp);
1772                 if (in_pcbrele_wlocked(inp))
1773                         return (NULL);
1774         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1775                 INP_RLOCK(inp);
1776                 if (in_pcbrele_rlocked(inp))
1777                         return (NULL);
1778         } else
1779                 panic("%s: locking bug", __func__);
1780         return (inp);
1781 }
1782 #endif /* PCBGROUP */
1783
1784 /*
1785  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1786  * that the caller has locked the hash list, and will not perform any further
1787  * locking or reference operations on either the hash list or the connection.
1788  */
1789 static struct inpcb *
1790 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1791     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1792     struct ifnet *ifp)
1793 {
1794         struct inpcbhead *head;
1795         struct inpcb *inp, *tmpinp;
1796         u_short fport = fport_arg, lport = lport_arg;
1797
1798         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1799             ("%s: invalid lookup flags %d", __func__, lookupflags));
1800
1801         INP_HASH_LOCK_ASSERT(pcbinfo);
1802
1803         /*
1804          * First look for an exact match.
1805          */
1806         tmpinp = NULL;
1807         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1808             pcbinfo->ipi_hashmask)];
1809         LIST_FOREACH(inp, head, inp_hash) {
1810 #ifdef INET6
1811                 /* XXX inp locking */
1812                 if ((inp->inp_vflag & INP_IPV4) == 0)
1813                         continue;
1814 #endif
1815                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1816                     inp->inp_laddr.s_addr == laddr.s_addr &&
1817                     inp->inp_fport == fport &&
1818                     inp->inp_lport == lport) {
1819                         /*
1820                          * XXX We should be able to directly return
1821                          * the inp here, without any checks.
1822                          * Well unless both bound with SO_REUSEPORT?
1823                          */
1824                         if (prison_flag(inp->inp_cred, PR_IP4))
1825                                 return (inp);
1826                         if (tmpinp == NULL)
1827                                 tmpinp = inp;
1828                 }
1829         }
1830         if (tmpinp != NULL)
1831                 return (tmpinp);
1832
1833         /*
1834          * Then look for a wildcard match, if requested.
1835          */
1836         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1837                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1838 #ifdef INET6
1839                 struct inpcb *local_wild_mapped = NULL;
1840 #endif
1841                 struct inpcb *jail_wild = NULL;
1842                 int injail;
1843
1844                 /*
1845                  * Order of socket selection - we always prefer jails.
1846                  *      1. jailed, non-wild.
1847                  *      2. jailed, wild.
1848                  *      3. non-jailed, non-wild.
1849                  *      4. non-jailed, wild.
1850                  */
1851
1852                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1853                     0, pcbinfo->ipi_hashmask)];
1854                 LIST_FOREACH(inp, head, inp_hash) {
1855 #ifdef INET6
1856                         /* XXX inp locking */
1857                         if ((inp->inp_vflag & INP_IPV4) == 0)
1858                                 continue;
1859 #endif
1860                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1861                             inp->inp_lport != lport)
1862                                 continue;
1863
1864                         /* XXX inp locking */
1865                         if (ifp && ifp->if_type == IFT_FAITH &&
1866                             (inp->inp_flags & INP_FAITH) == 0)
1867                                 continue;
1868
1869                         injail = prison_flag(inp->inp_cred, PR_IP4);
1870                         if (injail) {
1871                                 if (prison_check_ip4(inp->inp_cred,
1872                                     &laddr) != 0)
1873                                         continue;
1874                         } else {
1875                                 if (local_exact != NULL)
1876                                         continue;
1877                         }
1878
1879                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1880                                 if (injail)
1881                                         return (inp);
1882                                 else
1883                                         local_exact = inp;
1884                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1885 #ifdef INET6
1886                                 /* XXX inp locking, NULL check */
1887                                 if (inp->inp_vflag & INP_IPV6PROTO)
1888                                         local_wild_mapped = inp;
1889                                 else
1890 #endif
1891                                         if (injail)
1892                                                 jail_wild = inp;
1893                                         else
1894                                                 local_wild = inp;
1895                         }
1896                 } /* LIST_FOREACH */
1897                 if (jail_wild != NULL)
1898                         return (jail_wild);
1899                 if (local_exact != NULL)
1900                         return (local_exact);
1901                 if (local_wild != NULL)
1902                         return (local_wild);
1903 #ifdef INET6
1904                 if (local_wild_mapped != NULL)
1905                         return (local_wild_mapped);
1906 #endif
1907         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1908
1909         return (NULL);
1910 }
1911
1912 /*
1913  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1914  * hash list lock, and will return the inpcb locked (i.e., requires
1915  * INPLOOKUP_LOCKPCB).
1916  */
1917 static struct inpcb *
1918 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1919     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1920     struct ifnet *ifp)
1921 {
1922         struct inpcb *inp;
1923
1924         INP_HASH_RLOCK(pcbinfo);
1925         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1926             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1927         if (inp != NULL) {
1928                 in_pcbref(inp);
1929                 INP_HASH_RUNLOCK(pcbinfo);
1930                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1931                         INP_WLOCK(inp);
1932                         if (in_pcbrele_wlocked(inp))
1933                                 return (NULL);
1934                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1935                         INP_RLOCK(inp);
1936                         if (in_pcbrele_rlocked(inp))
1937                                 return (NULL);
1938                 } else
1939                         panic("%s: locking bug", __func__);
1940         } else
1941                 INP_HASH_RUNLOCK(pcbinfo);
1942         return (inp);
1943 }
1944
1945 /*
1946  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1947  * from which a pre-calculated hash value may be extracted.
1948  *
1949  * Possibly more of this logic should be in in_pcbgroup.c.
1950  */
1951 struct inpcb *
1952 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1953     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1954 {
1955 #if defined(PCBGROUP) && !defined(RSS)
1956         struct inpcbgroup *pcbgroup;
1957 #endif
1958
1959         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1960             ("%s: invalid lookup flags %d", __func__, lookupflags));
1961         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1962             ("%s: LOCKPCB not set", __func__));
1963
1964         /*
1965          * When not using RSS, use connection groups in preference to the
1966          * reservation table when looking up 4-tuples.  When using RSS, just
1967          * use the reservation table, due to the cost of the Toeplitz hash
1968          * in software.
1969          *
1970          * XXXRW: This policy belongs in the pcbgroup code, as in principle
1971          * we could be doing RSS with a non-Toeplitz hash that is affordable
1972          * in software.
1973          */
1974 #if defined(PCBGROUP) && !defined(RSS)
1975         if (in_pcbgroup_enabled(pcbinfo)) {
1976                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1977                     fport);
1978                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1979                     laddr, lport, lookupflags, ifp));
1980         }
1981 #endif
1982         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1983             lookupflags, ifp));
1984 }
1985
1986 struct inpcb *
1987 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1988     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1989     struct ifnet *ifp, struct mbuf *m)
1990 {
1991 #ifdef PCBGROUP
1992         struct inpcbgroup *pcbgroup;
1993 #endif
1994
1995         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1996             ("%s: invalid lookup flags %d", __func__, lookupflags));
1997         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1998             ("%s: LOCKPCB not set", __func__));
1999
2000 #ifdef PCBGROUP
2001         /*
2002          * If we can use a hardware-generated hash to look up the connection
2003          * group, use that connection group to find the inpcb.  Otherwise
2004          * fall back on a software hash -- or the reservation table if we're
2005          * using RSS.
2006          *
2007          * XXXRW: As above, that policy belongs in the pcbgroup code.
2008          */
2009         if (in_pcbgroup_enabled(pcbinfo) &&
2010             !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2011                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2012                     m->m_pkthdr.flowid);
2013                 if (pcbgroup != NULL)
2014                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2015                             fport, laddr, lport, lookupflags, ifp));
2016 #ifndef RSS
2017                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2018                     fport);
2019                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2020                     laddr, lport, lookupflags, ifp));
2021 #endif
2022         }
2023 #endif
2024         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2025             lookupflags, ifp));
2026 }
2027 #endif /* INET */
2028
2029 /*
2030  * Insert PCB onto various hash lists.
2031  */
2032 static int
2033 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2034 {
2035         struct inpcbhead *pcbhash;
2036         struct inpcbporthead *pcbporthash;
2037         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2038         struct inpcbport *phd;
2039         u_int32_t hashkey_faddr;
2040
2041         INP_WLOCK_ASSERT(inp);
2042         INP_HASH_WLOCK_ASSERT(pcbinfo);
2043
2044         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2045             ("in_pcbinshash: INP_INHASHLIST"));
2046
2047 #ifdef INET6
2048         if (inp->inp_vflag & INP_IPV6)
2049                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
2050         else
2051 #endif
2052         hashkey_faddr = inp->inp_faddr.s_addr;
2053
2054         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2055                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2056
2057         pcbporthash = &pcbinfo->ipi_porthashbase[
2058             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2059
2060         /*
2061          * Go through port list and look for a head for this lport.
2062          */
2063         LIST_FOREACH(phd, pcbporthash, phd_hash) {
2064                 if (phd->phd_port == inp->inp_lport)
2065                         break;
2066         }
2067         /*
2068          * If none exists, malloc one and tack it on.
2069          */
2070         if (phd == NULL) {
2071                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2072                 if (phd == NULL) {
2073                         return (ENOBUFS); /* XXX */
2074                 }
2075                 phd->phd_port = inp->inp_lport;
2076                 LIST_INIT(&phd->phd_pcblist);
2077                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2078         }
2079         inp->inp_phd = phd;
2080         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2081         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2082         inp->inp_flags |= INP_INHASHLIST;
2083 #ifdef PCBGROUP
2084         if (do_pcbgroup_update)
2085                 in_pcbgroup_update(inp);
2086 #endif
2087         return (0);
2088 }
2089
2090 /*
2091  * For now, there are two public interfaces to insert an inpcb into the hash
2092  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2093  * is used only in the TCP syncache, where in_pcbinshash is called before the
2094  * full 4-tuple is set for the inpcb, and we don't want to install in the
2095  * pcbgroup until later.
2096  *
2097  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2098  * connection groups, and partially initialised inpcbs should not be exposed
2099  * to either reservation hash tables or pcbgroups.
2100  */
2101 int
2102 in_pcbinshash(struct inpcb *inp)
2103 {
2104
2105         return (in_pcbinshash_internal(inp, 1));
2106 }
2107
2108 int
2109 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2110 {
2111
2112         return (in_pcbinshash_internal(inp, 0));
2113 }
2114
2115 /*
2116  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2117  * changed. NOTE: This does not handle the case of the lport changing (the
2118  * hashed port list would have to be updated as well), so the lport must
2119  * not change after in_pcbinshash() has been called.
2120  */
2121 void
2122 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2123 {
2124         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2125         struct inpcbhead *head;
2126         u_int32_t hashkey_faddr;
2127
2128         INP_WLOCK_ASSERT(inp);
2129         INP_HASH_WLOCK_ASSERT(pcbinfo);
2130
2131         KASSERT(inp->inp_flags & INP_INHASHLIST,
2132             ("in_pcbrehash: !INP_INHASHLIST"));
2133
2134 #ifdef INET6
2135         if (inp->inp_vflag & INP_IPV6)
2136                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
2137         else
2138 #endif
2139         hashkey_faddr = inp->inp_faddr.s_addr;
2140
2141         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2142                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2143
2144         LIST_REMOVE(inp, inp_hash);
2145         LIST_INSERT_HEAD(head, inp, inp_hash);
2146
2147 #ifdef PCBGROUP
2148         if (m != NULL)
2149                 in_pcbgroup_update_mbuf(inp, m);
2150         else
2151                 in_pcbgroup_update(inp);
2152 #endif
2153 }
2154
2155 void
2156 in_pcbrehash(struct inpcb *inp)
2157 {
2158
2159         in_pcbrehash_mbuf(inp, NULL);
2160 }
2161
2162 /*
2163  * Remove PCB from various lists.
2164  */
2165 static void
2166 in_pcbremlists(struct inpcb *inp)
2167 {
2168         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2169
2170         INP_INFO_WLOCK_ASSERT(pcbinfo);
2171         INP_WLOCK_ASSERT(inp);
2172
2173         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2174         if (inp->inp_flags & INP_INHASHLIST) {
2175                 struct inpcbport *phd = inp->inp_phd;
2176
2177                 INP_HASH_WLOCK(pcbinfo);
2178                 LIST_REMOVE(inp, inp_hash);
2179                 LIST_REMOVE(inp, inp_portlist);
2180                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2181                         LIST_REMOVE(phd, phd_hash);
2182                         free(phd, M_PCB);
2183                 }
2184                 INP_HASH_WUNLOCK(pcbinfo);
2185                 inp->inp_flags &= ~INP_INHASHLIST;
2186         }
2187         LIST_REMOVE(inp, inp_list);
2188         pcbinfo->ipi_count--;
2189 #ifdef PCBGROUP
2190         in_pcbgroup_remove(inp);
2191 #endif
2192 }
2193
2194 /*
2195  * A set label operation has occurred at the socket layer, propagate the
2196  * label change into the in_pcb for the socket.
2197  */
2198 void
2199 in_pcbsosetlabel(struct socket *so)
2200 {
2201 #ifdef MAC
2202         struct inpcb *inp;
2203
2204         inp = sotoinpcb(so);
2205         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2206
2207         INP_WLOCK(inp);
2208         SOCK_LOCK(so);
2209         mac_inpcb_sosetlabel(so, inp);
2210         SOCK_UNLOCK(so);
2211         INP_WUNLOCK(inp);
2212 #endif
2213 }
2214
2215 /*
2216  * ipport_tick runs once per second, determining if random port allocation
2217  * should be continued.  If more than ipport_randomcps ports have been
2218  * allocated in the last second, then we return to sequential port
2219  * allocation. We return to random allocation only once we drop below
2220  * ipport_randomcps for at least ipport_randomtime seconds.
2221  */
2222 static void
2223 ipport_tick(void *xtp)
2224 {
2225         VNET_ITERATOR_DECL(vnet_iter);
2226
2227         VNET_LIST_RLOCK_NOSLEEP();
2228         VNET_FOREACH(vnet_iter) {
2229                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2230                 if (V_ipport_tcpallocs <=
2231                     V_ipport_tcplastcount + V_ipport_randomcps) {
2232                         if (V_ipport_stoprandom > 0)
2233                                 V_ipport_stoprandom--;
2234                 } else
2235                         V_ipport_stoprandom = V_ipport_randomtime;
2236                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2237                 CURVNET_RESTORE();
2238         }
2239         VNET_LIST_RUNLOCK_NOSLEEP();
2240         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2241 }
2242
2243 static void
2244 ip_fini(void *xtp)
2245 {
2246
2247         callout_stop(&ipport_tick_callout);
2248 }
2249
2250 /* 
2251  * The ipport_callout should start running at about the time we attach the
2252  * inet or inet6 domains.
2253  */
2254 static void
2255 ipport_tick_init(const void *unused __unused)
2256 {
2257
2258         /* Start ipport_tick. */
2259         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2260         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2261         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2262                 SHUTDOWN_PRI_DEFAULT);
2263 }
2264 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2265     ipport_tick_init, NULL);
2266
2267 void
2268 inp_wlock(struct inpcb *inp)
2269 {
2270
2271         INP_WLOCK(inp);
2272 }
2273
2274 void
2275 inp_wunlock(struct inpcb *inp)
2276 {
2277
2278         INP_WUNLOCK(inp);
2279 }
2280
2281 void
2282 inp_rlock(struct inpcb *inp)
2283 {
2284
2285         INP_RLOCK(inp);
2286 }
2287
2288 void
2289 inp_runlock(struct inpcb *inp)
2290 {
2291
2292         INP_RUNLOCK(inp);
2293 }
2294
2295 #ifdef INVARIANTS
2296 void
2297 inp_lock_assert(struct inpcb *inp)
2298 {
2299
2300         INP_WLOCK_ASSERT(inp);
2301 }
2302
2303 void
2304 inp_unlock_assert(struct inpcb *inp)
2305 {
2306
2307         INP_UNLOCK_ASSERT(inp);
2308 }
2309 #endif
2310
2311 void
2312 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2313 {
2314         struct inpcb *inp;
2315
2316         INP_INFO_RLOCK(&V_tcbinfo);
2317         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2318                 INP_WLOCK(inp);
2319                 func(inp, arg);
2320                 INP_WUNLOCK(inp);
2321         }
2322         INP_INFO_RUNLOCK(&V_tcbinfo);
2323 }
2324
2325 struct socket *
2326 inp_inpcbtosocket(struct inpcb *inp)
2327 {
2328
2329         INP_WLOCK_ASSERT(inp);
2330         return (inp->inp_socket);
2331 }
2332
2333 struct tcpcb *
2334 inp_inpcbtotcpcb(struct inpcb *inp)
2335 {
2336
2337         INP_WLOCK_ASSERT(inp);
2338         return ((struct tcpcb *)inp->inp_ppcb);
2339 }
2340
2341 int
2342 inp_ip_tos_get(const struct inpcb *inp)
2343 {
2344
2345         return (inp->inp_ip_tos);
2346 }
2347
2348 void
2349 inp_ip_tos_set(struct inpcb *inp, int val)
2350 {
2351
2352         inp->inp_ip_tos = val;
2353 }
2354
2355 void
2356 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2357     uint32_t *faddr, uint16_t *fp)
2358 {
2359
2360         INP_LOCK_ASSERT(inp);
2361         *laddr = inp->inp_laddr.s_addr;
2362         *faddr = inp->inp_faddr.s_addr;
2363         *lp = inp->inp_lport;
2364         *fp = inp->inp_fport;
2365 }
2366
2367 struct inpcb *
2368 so_sotoinpcb(struct socket *so)
2369 {
2370
2371         return (sotoinpcb(so));
2372 }
2373
2374 struct tcpcb *
2375 so_sototcpcb(struct socket *so)
2376 {
2377
2378         return (sototcpcb(so));
2379 }
2380
2381 #ifdef DDB
2382 static void
2383 db_print_indent(int indent)
2384 {
2385         int i;
2386
2387         for (i = 0; i < indent; i++)
2388                 db_printf(" ");
2389 }
2390
2391 static void
2392 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2393 {
2394         char faddr_str[48], laddr_str[48];
2395
2396         db_print_indent(indent);
2397         db_printf("%s at %p\n", name, inc);
2398
2399         indent += 2;
2400
2401 #ifdef INET6
2402         if (inc->inc_flags & INC_ISIPV6) {
2403                 /* IPv6. */
2404                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2405                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2406         } else
2407 #endif
2408         {
2409                 /* IPv4. */
2410                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2411                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2412         }
2413         db_print_indent(indent);
2414         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2415             ntohs(inc->inc_lport));
2416         db_print_indent(indent);
2417         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2418             ntohs(inc->inc_fport));
2419 }
2420
2421 static void
2422 db_print_inpflags(int inp_flags)
2423 {
2424         int comma;
2425
2426         comma = 0;
2427         if (inp_flags & INP_RECVOPTS) {
2428                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2429                 comma = 1;
2430         }
2431         if (inp_flags & INP_RECVRETOPTS) {
2432                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2433                 comma = 1;
2434         }
2435         if (inp_flags & INP_RECVDSTADDR) {
2436                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2437                 comma = 1;
2438         }
2439         if (inp_flags & INP_HDRINCL) {
2440                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2441                 comma = 1;
2442         }
2443         if (inp_flags & INP_HIGHPORT) {
2444                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2445                 comma = 1;
2446         }
2447         if (inp_flags & INP_LOWPORT) {
2448                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2449                 comma = 1;
2450         }
2451         if (inp_flags & INP_ANONPORT) {
2452                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2453                 comma = 1;
2454         }
2455         if (inp_flags & INP_RECVIF) {
2456                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2457                 comma = 1;
2458         }
2459         if (inp_flags & INP_MTUDISC) {
2460                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2461                 comma = 1;
2462         }
2463         if (inp_flags & INP_FAITH) {
2464                 db_printf("%sINP_FAITH", comma ? ", " : "");
2465                 comma = 1;
2466         }
2467         if (inp_flags & INP_RECVTTL) {
2468                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2469                 comma = 1;
2470         }
2471         if (inp_flags & INP_DONTFRAG) {
2472                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2473                 comma = 1;
2474         }
2475         if (inp_flags & INP_RECVTOS) {
2476                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2477                 comma = 1;
2478         }
2479         if (inp_flags & IN6P_IPV6_V6ONLY) {
2480                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2481                 comma = 1;
2482         }
2483         if (inp_flags & IN6P_PKTINFO) {
2484                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2485                 comma = 1;
2486         }
2487         if (inp_flags & IN6P_HOPLIMIT) {
2488                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2489                 comma = 1;
2490         }
2491         if (inp_flags & IN6P_HOPOPTS) {
2492                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2493                 comma = 1;
2494         }
2495         if (inp_flags & IN6P_DSTOPTS) {
2496                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2497                 comma = 1;
2498         }
2499         if (inp_flags & IN6P_RTHDR) {
2500                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2501                 comma = 1;
2502         }
2503         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2504                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2505                 comma = 1;
2506         }
2507         if (inp_flags & IN6P_TCLASS) {
2508                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2509                 comma = 1;
2510         }
2511         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2512                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2513                 comma = 1;
2514         }
2515         if (inp_flags & INP_TIMEWAIT) {
2516                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2517                 comma  = 1;
2518         }
2519         if (inp_flags & INP_ONESBCAST) {
2520                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2521                 comma  = 1;
2522         }
2523         if (inp_flags & INP_DROPPED) {
2524                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2525                 comma  = 1;
2526         }
2527         if (inp_flags & INP_SOCKREF) {
2528                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2529                 comma  = 1;
2530         }
2531         if (inp_flags & IN6P_RFC2292) {
2532                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2533                 comma = 1;
2534         }
2535         if (inp_flags & IN6P_MTU) {
2536                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2537                 comma = 1;
2538         }
2539 }
2540
2541 static void
2542 db_print_inpvflag(u_char inp_vflag)
2543 {
2544         int comma;
2545
2546         comma = 0;
2547         if (inp_vflag & INP_IPV4) {
2548                 db_printf("%sINP_IPV4", comma ? ", " : "");
2549                 comma  = 1;
2550         }
2551         if (inp_vflag & INP_IPV6) {
2552                 db_printf("%sINP_IPV6", comma ? ", " : "");
2553                 comma  = 1;
2554         }
2555         if (inp_vflag & INP_IPV6PROTO) {
2556                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2557                 comma  = 1;
2558         }
2559 }
2560
2561 static void
2562 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2563 {
2564
2565         db_print_indent(indent);
2566         db_printf("%s at %p\n", name, inp);
2567
2568         indent += 2;
2569
2570         db_print_indent(indent);
2571         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2572
2573         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2574
2575         db_print_indent(indent);
2576         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2577             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2578
2579         db_print_indent(indent);
2580         db_printf("inp_label: %p   inp_flags: 0x%x (",
2581            inp->inp_label, inp->inp_flags);
2582         db_print_inpflags(inp->inp_flags);
2583         db_printf(")\n");
2584
2585         db_print_indent(indent);
2586         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2587             inp->inp_vflag);
2588         db_print_inpvflag(inp->inp_vflag);
2589         db_printf(")\n");
2590
2591         db_print_indent(indent);
2592         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2593             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2594
2595         db_print_indent(indent);
2596 #ifdef INET6
2597         if (inp->inp_vflag & INP_IPV6) {
2598                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2599                     "in6p_moptions: %p\n", inp->in6p_options,
2600                     inp->in6p_outputopts, inp->in6p_moptions);
2601                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2602                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2603                     inp->in6p_hops);
2604         } else
2605 #endif
2606         {
2607                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2608                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2609                     inp->inp_options, inp->inp_moptions);
2610         }
2611
2612         db_print_indent(indent);
2613         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2614             (uintmax_t)inp->inp_gencnt);
2615 }
2616
2617 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2618 {
2619         struct inpcb *inp;
2620
2621         if (!have_addr) {
2622                 db_printf("usage: show inpcb <addr>\n");
2623                 return;
2624         }
2625         inp = (struct inpcb *)addr;
2626
2627         db_print_inpcb(inp, "inpcb", 0);
2628 }
2629 #endif /* DDB */