]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
UDP: further performance improvements on tx
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *      The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
38  */
39
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75
76 #include <vm/uma.h>
77
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106
107 #include <netipsec/ipsec_support.h>
108
109 #include <security/mac/mac_framework.h>
110
111 static struct callout   ipport_tick_callout;
112
113 /*
114  * These configure the range of local port addresses assigned to
115  * "unspecified" outgoing connections/packets/whatever.
116  */
117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
123
124 /*
125  * Reserved ports accessible only to root. There are significant
126  * security considerations that must be accounted for when changing these,
127  * but the security benefits can be great. Please be careful.
128  */
129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
130 VNET_DEFINE(int, ipport_reservedlow);
131
132 /* Variables dealing with random ephemeral port allocation. */
133 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
134 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
135 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
136 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
137 VNET_DEFINE(int, ipport_tcpallocs);
138 static VNET_DEFINE(int, ipport_tcplastcount);
139
140 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
141
142 static void     in_pcbremlists(struct inpcb *inp);
143 #ifdef INET
144 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
145                             struct in_addr faddr, u_int fport_arg,
146                             struct in_addr laddr, u_int lport_arg,
147                             int lookupflags, struct ifnet *ifp);
148
149 #define RANGECHK(var, min, max) \
150         if ((var) < (min)) { (var) = (min); } \
151         else if ((var) > (max)) { (var) = (max); }
152
153 static int
154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
155 {
156         int error;
157
158         error = sysctl_handle_int(oidp, arg1, arg2, req);
159         if (error == 0) {
160                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
161                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
162                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
163                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
164                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
165                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
166         }
167         return (error);
168 }
169
170 #undef RANGECHK
171
172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
173     "IP Ports");
174
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
176         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177         &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
179         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180         &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
182         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183         &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
185         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186         &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189         &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192         &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
194         CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
195         &VNET_NAME(ipport_reservedhigh), 0, "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
197         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
199         CTLFLAG_VNET | CTLFLAG_RW,
200         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
202         CTLFLAG_VNET | CTLFLAG_RW,
203         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
204         "allocations before switching to a sequental one");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
206         CTLFLAG_VNET | CTLFLAG_RW,
207         &VNET_NAME(ipport_randomtime), 0,
208         "Minimum time to keep sequental port "
209         "allocation before switching to a random one");
210 #endif /* INET */
211
212 /*
213  * in_pcb.c: manage the Protocol Control Blocks.
214  *
215  * NOTE: It is assumed that most of these functions will be called with
216  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
217  * functions often modify hash chains or addresses in pcbs.
218  */
219
220 /*
221  * Different protocols initialize their inpcbs differently - giving
222  * different name to the lock.  But they all are disposed the same.
223  */
224 static void
225 inpcb_fini(void *mem, int size)
226 {
227         struct inpcb *inp = mem;
228
229         INP_LOCK_DESTROY(inp);
230 }
231
232 /*
233  * Initialize an inpcbinfo -- we should be able to reduce the number of
234  * arguments in time.
235  */
236 void
237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
238     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
239     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
240 {
241
242         INP_INFO_LOCK_INIT(pcbinfo, name);
243         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
244         INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
245 #ifdef VIMAGE
246         pcbinfo->ipi_vnet = curvnet;
247 #endif
248         pcbinfo->ipi_listhead = listhead;
249         LIST_INIT(pcbinfo->ipi_listhead);
250         pcbinfo->ipi_count = 0;
251         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
252             &pcbinfo->ipi_hashmask);
253         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
254             &pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
257 #endif
258         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
259             NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
260         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
261         uma_zone_set_warning(pcbinfo->ipi_zone,
262             "kern.ipc.maxsockets limit reached");
263 }
264
265 /*
266  * Destroy an inpcbinfo.
267  */
268 void
269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
270 {
271
272         KASSERT(pcbinfo->ipi_count == 0,
273             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
274
275         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
276         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
277             pcbinfo->ipi_porthashmask);
278 #ifdef PCBGROUP
279         in_pcbgroup_destroy(pcbinfo);
280 #endif
281         uma_zdestroy(pcbinfo->ipi_zone);
282         INP_LIST_LOCK_DESTROY(pcbinfo);
283         INP_HASH_LOCK_DESTROY(pcbinfo);
284         INP_INFO_LOCK_DESTROY(pcbinfo);
285 }
286
287 /*
288  * Allocate a PCB and associate it with the socket.
289  * On success return with the PCB locked.
290  */
291 int
292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
293 {
294         struct inpcb *inp;
295         int error;
296
297 #ifdef INVARIANTS
298         if (pcbinfo == &V_tcbinfo) {
299                 INP_INFO_RLOCK_ASSERT(pcbinfo);
300         } else {
301                 INP_INFO_WLOCK_ASSERT(pcbinfo);
302         }
303 #endif
304
305         error = 0;
306         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
307         if (inp == NULL)
308                 return (ENOBUFS);
309         bzero(&inp->inp_start_zero, inp_zero_size);
310         inp->inp_pcbinfo = pcbinfo;
311         inp->inp_socket = so;
312         inp->inp_cred = crhold(so->so_cred);
313         inp->inp_inc.inc_fibnum = so->so_fibnum;
314 #ifdef MAC
315         error = mac_inpcb_init(inp, M_NOWAIT);
316         if (error != 0)
317                 goto out;
318         mac_inpcb_create(so, inp);
319 #endif
320 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
321         error = ipsec_init_pcbpolicy(inp);
322         if (error != 0) {
323 #ifdef MAC
324                 mac_inpcb_destroy(inp);
325 #endif
326                 goto out;
327         }
328 #endif /*IPSEC*/
329 #ifdef INET6
330         if (INP_SOCKAF(so) == AF_INET6) {
331                 inp->inp_vflag |= INP_IPV6PROTO;
332                 if (V_ip6_v6only)
333                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
334         }
335 #endif
336         INP_WLOCK(inp);
337         INP_LIST_WLOCK(pcbinfo);
338         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
339         pcbinfo->ipi_count++;
340         so->so_pcb = (caddr_t)inp;
341 #ifdef INET6
342         if (V_ip6_auto_flowlabel)
343                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
344 #endif
345         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
346         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
347
348         /*
349          * Routes in inpcb's can cache L2 as well; they are guaranteed
350          * to be cleaned up.
351          */
352         inp->inp_route.ro_flags = RT_LLE_CACHE;
353         INP_LIST_WUNLOCK(pcbinfo);
354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
355 out:
356         if (error != 0) {
357                 crfree(inp->inp_cred);
358                 uma_zfree(pcbinfo->ipi_zone, inp);
359         }
360 #endif
361         return (error);
362 }
363
364 #ifdef INET
365 int
366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
367 {
368         int anonport, error;
369
370         INP_WLOCK_ASSERT(inp);
371         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
372
373         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
374                 return (EINVAL);
375         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
376         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
377             &inp->inp_lport, cred);
378         if (error)
379                 return (error);
380         if (in_pcbinshash(inp) != 0) {
381                 inp->inp_laddr.s_addr = INADDR_ANY;
382                 inp->inp_lport = 0;
383                 return (EAGAIN);
384         }
385         if (anonport)
386                 inp->inp_flags |= INP_ANONPORT;
387         return (0);
388 }
389 #endif
390
391 /*
392  * Select a local port (number) to use.
393  */
394 #if defined(INET) || defined(INET6)
395 int
396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
397     struct ucred *cred, int lookupflags)
398 {
399         struct inpcbinfo *pcbinfo;
400         struct inpcb *tmpinp;
401         unsigned short *lastport;
402         int count, dorandom, error;
403         u_short aux, first, last, lport;
404 #ifdef INET
405         struct in_addr laddr;
406 #endif
407
408         pcbinfo = inp->inp_pcbinfo;
409
410         /*
411          * Because no actual state changes occur here, a global write lock on
412          * the pcbinfo isn't required.
413          */
414         INP_LOCK_ASSERT(inp);
415         INP_HASH_LOCK_ASSERT(pcbinfo);
416
417         if (inp->inp_flags & INP_HIGHPORT) {
418                 first = V_ipport_hifirstauto;   /* sysctl */
419                 last  = V_ipport_hilastauto;
420                 lastport = &pcbinfo->ipi_lasthi;
421         } else if (inp->inp_flags & INP_LOWPORT) {
422                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
423                 if (error)
424                         return (error);
425                 first = V_ipport_lowfirstauto;  /* 1023 */
426                 last  = V_ipport_lowlastauto;   /* 600 */
427                 lastport = &pcbinfo->ipi_lastlow;
428         } else {
429                 first = V_ipport_firstauto;     /* sysctl */
430                 last  = V_ipport_lastauto;
431                 lastport = &pcbinfo->ipi_lastport;
432         }
433         /*
434          * For UDP(-Lite), use random port allocation as long as the user
435          * allows it.  For TCP (and as of yet unknown) connections,
436          * use random port allocation only if the user allows it AND
437          * ipport_tick() allows it.
438          */
439         if (V_ipport_randomized &&
440                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
441                 pcbinfo == &V_ulitecbinfo))
442                 dorandom = 1;
443         else
444                 dorandom = 0;
445         /*
446          * It makes no sense to do random port allocation if
447          * we have the only port available.
448          */
449         if (first == last)
450                 dorandom = 0;
451         /* Make sure to not include UDP(-Lite) packets in the count. */
452         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
453                 V_ipport_tcpallocs++;
454         /*
455          * Instead of having two loops further down counting up or down
456          * make sure that first is always <= last and go with only one
457          * code path implementing all logic.
458          */
459         if (first > last) {
460                 aux = first;
461                 first = last;
462                 last = aux;
463         }
464
465 #ifdef INET
466         /* Make the compiler happy. */
467         laddr.s_addr = 0;
468         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
469                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
470                     __func__, inp));
471                 laddr = *laddrp;
472         }
473 #endif
474         tmpinp = NULL;  /* Make compiler happy. */
475         lport = *lportp;
476
477         if (dorandom)
478                 *lastport = first + (arc4random() % (last - first));
479
480         count = last - first;
481
482         do {
483                 if (count-- < 0)        /* completely used? */
484                         return (EADDRNOTAVAIL);
485                 ++*lastport;
486                 if (*lastport < first || *lastport > last)
487                         *lastport = first;
488                 lport = htons(*lastport);
489
490 #ifdef INET6
491                 if ((inp->inp_vflag & INP_IPV6) != 0)
492                         tmpinp = in6_pcblookup_local(pcbinfo,
493                             &inp->in6p_laddr, lport, lookupflags, cred);
494 #endif
495 #if defined(INET) && defined(INET6)
496                 else
497 #endif
498 #ifdef INET
499                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
500                             lport, lookupflags, cred);
501 #endif
502         } while (tmpinp != NULL);
503
504 #ifdef INET
505         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
506                 laddrp->s_addr = laddr.s_addr;
507 #endif
508         *lportp = lport;
509
510         return (0);
511 }
512
513 /*
514  * Return cached socket options.
515  */
516 short
517 inp_so_options(const struct inpcb *inp)
518 {
519    short so_options;
520
521    so_options = 0;
522
523    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
524            so_options |= SO_REUSEPORT;
525    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
526            so_options |= SO_REUSEADDR;
527    return (so_options);
528 }
529 #endif /* INET || INET6 */
530
531 /*
532  * Check if a new BINDMULTI socket is allowed to be created.
533  *
534  * ni points to the new inp.
535  * oi points to the exisitng inp.
536  *
537  * This checks whether the existing inp also has BINDMULTI and
538  * whether the credentials match.
539  */
540 int
541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
542 {
543         /* Check permissions match */
544         if ((ni->inp_flags2 & INP_BINDMULTI) &&
545             (ni->inp_cred->cr_uid !=
546             oi->inp_cred->cr_uid))
547                 return (0);
548
549         /* Check the existing inp has BINDMULTI set */
550         if ((ni->inp_flags2 & INP_BINDMULTI) &&
551             ((oi->inp_flags2 & INP_BINDMULTI) == 0))
552                 return (0);
553
554         /*
555          * We're okay - either INP_BINDMULTI isn't set on ni, or
556          * it is and it matches the checks.
557          */
558         return (1);
559 }
560
561 #ifdef INET
562 /*
563  * Set up a bind operation on a PCB, performing port allocation
564  * as required, but do not actually modify the PCB. Callers can
565  * either complete the bind by setting inp_laddr/inp_lport and
566  * calling in_pcbinshash(), or they can just use the resulting
567  * port and address to authorise the sending of a once-off packet.
568  *
569  * On error, the values of *laddrp and *lportp are not changed.
570  */
571 int
572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
573     u_short *lportp, struct ucred *cred)
574 {
575         struct socket *so = inp->inp_socket;
576         struct sockaddr_in *sin;
577         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
578         struct in_addr laddr;
579         u_short lport = 0;
580         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
581         int error;
582
583         /*
584          * No state changes, so read locks are sufficient here.
585          */
586         INP_LOCK_ASSERT(inp);
587         INP_HASH_LOCK_ASSERT(pcbinfo);
588
589         if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
590                 return (EADDRNOTAVAIL);
591         laddr.s_addr = *laddrp;
592         if (nam != NULL && laddr.s_addr != INADDR_ANY)
593                 return (EINVAL);
594         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
595                 lookupflags = INPLOOKUP_WILDCARD;
596         if (nam == NULL) {
597                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
598                         return (error);
599         } else {
600                 sin = (struct sockaddr_in *)nam;
601                 if (nam->sa_len != sizeof (*sin))
602                         return (EINVAL);
603 #ifdef notdef
604                 /*
605                  * We should check the family, but old programs
606                  * incorrectly fail to initialize it.
607                  */
608                 if (sin->sin_family != AF_INET)
609                         return (EAFNOSUPPORT);
610 #endif
611                 error = prison_local_ip4(cred, &sin->sin_addr);
612                 if (error)
613                         return (error);
614                 if (sin->sin_port != *lportp) {
615                         /* Don't allow the port to change. */
616                         if (*lportp != 0)
617                                 return (EINVAL);
618                         lport = sin->sin_port;
619                 }
620                 /* NB: lport is left as 0 if the port isn't being changed. */
621                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
622                         /*
623                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
624                          * allow complete duplication of binding if
625                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
626                          * and a multicast address is bound on both
627                          * new and duplicated sockets.
628                          */
629                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
630                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
631                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
632                         sin->sin_port = 0;              /* yech... */
633                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
634                         /*
635                          * Is the address a local IP address? 
636                          * If INP_BINDANY is set, then the socket may be bound
637                          * to any endpoint address, local or not.
638                          */
639                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
640                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
641                                 return (EADDRNOTAVAIL);
642                 }
643                 laddr = sin->sin_addr;
644                 if (lport) {
645                         struct inpcb *t;
646                         struct tcptw *tw;
647
648                         /* GROSS */
649                         if (ntohs(lport) <= V_ipport_reservedhigh &&
650                             ntohs(lport) >= V_ipport_reservedlow &&
651                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
652                             0))
653                                 return (EACCES);
654                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
655                             priv_check_cred(inp->inp_cred,
656                             PRIV_NETINET_REUSEPORT, 0) != 0) {
657                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
658                                     lport, INPLOOKUP_WILDCARD, cred);
659         /*
660          * XXX
661          * This entire block sorely needs a rewrite.
662          */
663                                 if (t &&
664                                     ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
665                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
666                                     (so->so_type != SOCK_STREAM ||
667                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
668                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
669                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
670                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
671                                     (inp->inp_cred->cr_uid !=
672                                      t->inp_cred->cr_uid))
673                                         return (EADDRINUSE);
674
675                                 /*
676                                  * If the socket is a BINDMULTI socket, then
677                                  * the credentials need to match and the
678                                  * original socket also has to have been bound
679                                  * with BINDMULTI.
680                                  */
681                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
682                                         return (EADDRINUSE);
683                         }
684                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
685                             lport, lookupflags, cred);
686                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
687                                 /*
688                                  * XXXRW: If an incpb has had its timewait
689                                  * state recycled, we treat the address as
690                                  * being in use (for now).  This is better
691                                  * than a panic, but not desirable.
692                                  */
693                                 tw = intotw(t);
694                                 if (tw == NULL ||
695                                     (reuseport & tw->tw_so_options) == 0)
696                                         return (EADDRINUSE);
697                         } else if (t &&
698                             ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
699                             (reuseport & inp_so_options(t)) == 0) {
700 #ifdef INET6
701                                 if (ntohl(sin->sin_addr.s_addr) !=
702                                     INADDR_ANY ||
703                                     ntohl(t->inp_laddr.s_addr) !=
704                                     INADDR_ANY ||
705                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
706                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
707 #endif
708                                 return (EADDRINUSE);
709                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
710                                         return (EADDRINUSE);
711                         }
712                 }
713         }
714         if (*lportp != 0)
715                 lport = *lportp;
716         if (lport == 0) {
717                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
718                 if (error != 0)
719                         return (error);
720
721         }
722         *laddrp = laddr.s_addr;
723         *lportp = lport;
724         return (0);
725 }
726
727 /*
728  * Connect from a socket to a specified address.
729  * Both address and port must be specified in argument sin.
730  * If don't have a local address for this socket yet,
731  * then pick one.
732  */
733 int
734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
735     struct ucred *cred, struct mbuf *m)
736 {
737         u_short lport, fport;
738         in_addr_t laddr, faddr;
739         int anonport, error;
740
741         INP_WLOCK_ASSERT(inp);
742         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
743
744         lport = inp->inp_lport;
745         laddr = inp->inp_laddr.s_addr;
746         anonport = (lport == 0);
747         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
748             NULL, cred);
749         if (error)
750                 return (error);
751
752         /* Do the initial binding of the local address if required. */
753         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
754                 inp->inp_lport = lport;
755                 inp->inp_laddr.s_addr = laddr;
756                 if (in_pcbinshash(inp) != 0) {
757                         inp->inp_laddr.s_addr = INADDR_ANY;
758                         inp->inp_lport = 0;
759                         return (EAGAIN);
760                 }
761         }
762
763         /* Commit the remaining changes. */
764         inp->inp_lport = lport;
765         inp->inp_laddr.s_addr = laddr;
766         inp->inp_faddr.s_addr = faddr;
767         inp->inp_fport = fport;
768         in_pcbrehash_mbuf(inp, m);
769
770         if (anonport)
771                 inp->inp_flags |= INP_ANONPORT;
772         return (0);
773 }
774
775 int
776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
777 {
778
779         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
780 }
781
782 /*
783  * Do proper source address selection on an unbound socket in case
784  * of connect. Take jails into account as well.
785  */
786 int
787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
788     struct ucred *cred)
789 {
790         struct ifaddr *ifa;
791         struct sockaddr *sa;
792         struct sockaddr_in *sin;
793         struct route sro;
794         int error;
795
796         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
797         /*
798          * Bypass source address selection and use the primary jail IP
799          * if requested.
800          */
801         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
802                 return (0);
803
804         error = 0;
805         bzero(&sro, sizeof(sro));
806
807         sin = (struct sockaddr_in *)&sro.ro_dst;
808         sin->sin_family = AF_INET;
809         sin->sin_len = sizeof(struct sockaddr_in);
810         sin->sin_addr.s_addr = faddr->s_addr;
811
812         /*
813          * If route is known our src addr is taken from the i/f,
814          * else punt.
815          *
816          * Find out route to destination.
817          */
818         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
819                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
820
821         /*
822          * If we found a route, use the address corresponding to
823          * the outgoing interface.
824          * 
825          * Otherwise assume faddr is reachable on a directly connected
826          * network and try to find a corresponding interface to take
827          * the source address from.
828          */
829         NET_EPOCH_ENTER();
830         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
831                 struct in_ifaddr *ia;
832                 struct ifnet *ifp;
833
834                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
835                                         inp->inp_socket->so_fibnum));
836                 if (ia == NULL) {
837                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
838                                                 inp->inp_socket->so_fibnum));
839
840                 }
841                 if (ia == NULL) {
842                         printf("ifa_ifwithnet failed\n");
843                         error = ENETUNREACH;
844                         goto done;
845                 }
846
847                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
848                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
849                         goto done;
850                 }
851
852                 ifp = ia->ia_ifp;
853                 ia = NULL;
854                 IF_ADDR_RLOCK(ifp);
855                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
856
857                         sa = ifa->ifa_addr;
858                         if (sa->sa_family != AF_INET)
859                                 continue;
860                         sin = (struct sockaddr_in *)sa;
861                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
862                                 ia = (struct in_ifaddr *)ifa;
863                                 break;
864                         }
865                 }
866                 if (ia != NULL) {
867                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
868                         IF_ADDR_RUNLOCK(ifp);
869                         goto done;
870                 }
871                 IF_ADDR_RUNLOCK(ifp);
872
873                 /* 3. As a last resort return the 'default' jail address. */
874                 error = prison_get_ip4(cred, laddr);
875                 goto done;
876         }
877
878         /*
879          * If the outgoing interface on the route found is not
880          * a loopback interface, use the address from that interface.
881          * In case of jails do those three steps:
882          * 1. check if the interface address belongs to the jail. If so use it.
883          * 2. check if we have any address on the outgoing interface
884          *    belonging to this jail. If so use it.
885          * 3. as a last resort return the 'default' jail address.
886          */
887         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
888                 struct in_ifaddr *ia;
889                 struct ifnet *ifp;
890
891                 /* If not jailed, use the default returned. */
892                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
893                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
894                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
895                         goto done;
896                 }
897
898                 /* Jailed. */
899                 /* 1. Check if the iface address belongs to the jail. */
900                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
901                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
902                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
903                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
904                         goto done;
905                 }
906
907                 /*
908                  * 2. Check if we have any address on the outgoing interface
909                  *    belonging to this jail.
910                  */
911                 ia = NULL;
912                 ifp = sro.ro_rt->rt_ifp;
913                 IF_ADDR_RLOCK(ifp);
914                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
915                         sa = ifa->ifa_addr;
916                         if (sa->sa_family != AF_INET)
917                                 continue;
918                         sin = (struct sockaddr_in *)sa;
919                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
920                                 ia = (struct in_ifaddr *)ifa;
921                                 break;
922                         }
923                 }
924                 if (ia != NULL) {
925                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
926                         IF_ADDR_RUNLOCK(ifp);
927                         goto done;
928                 }
929                 IF_ADDR_RUNLOCK(ifp);
930
931                 /* 3. As a last resort return the 'default' jail address. */
932                 error = prison_get_ip4(cred, laddr);
933                 goto done;
934         }
935
936         /*
937          * The outgoing interface is marked with 'loopback net', so a route
938          * to ourselves is here.
939          * Try to find the interface of the destination address and then
940          * take the address from there. That interface is not necessarily
941          * a loopback interface.
942          * In case of jails, check that it is an address of the jail
943          * and if we cannot find, fall back to the 'default' jail address.
944          */
945         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
946                 struct sockaddr_in sain;
947                 struct in_ifaddr *ia;
948
949                 bzero(&sain, sizeof(struct sockaddr_in));
950                 sain.sin_family = AF_INET;
951                 sain.sin_len = sizeof(struct sockaddr_in);
952                 sain.sin_addr.s_addr = faddr->s_addr;
953
954                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
955                                         inp->inp_socket->so_fibnum));
956                 if (ia == NULL)
957                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
958                                                 inp->inp_socket->so_fibnum));
959                 if (ia == NULL)
960                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
961
962                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
963                         if (ia == NULL) {
964                                 error = ENETUNREACH;
965                                 goto done;
966                         }
967                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
968                         goto done;
969                 }
970
971                 /* Jailed. */
972                 if (ia != NULL) {
973                         struct ifnet *ifp;
974
975                         ifp = ia->ia_ifp;
976                         ia = NULL;
977                         IF_ADDR_RLOCK(ifp);
978                         CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
979
980                                 sa = ifa->ifa_addr;
981                                 if (sa->sa_family != AF_INET)
982                                         continue;
983                                 sin = (struct sockaddr_in *)sa;
984                                 if (prison_check_ip4(cred,
985                                     &sin->sin_addr) == 0) {
986                                         ia = (struct in_ifaddr *)ifa;
987                                         break;
988                                 }
989                         }
990                         if (ia != NULL) {
991                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
992                                 IF_ADDR_RUNLOCK(ifp);
993                                 goto done;
994                         }
995                         IF_ADDR_RUNLOCK(ifp);
996                 }
997
998                 /* 3. As a last resort return the 'default' jail address. */
999                 error = prison_get_ip4(cred, laddr);
1000                 goto done;
1001         }
1002
1003 done:
1004         NET_EPOCH_EXIT();
1005         if (sro.ro_rt != NULL)
1006                 RTFREE(sro.ro_rt);
1007         return (error);
1008 }
1009
1010 /*
1011  * Set up for a connect from a socket to the specified address.
1012  * On entry, *laddrp and *lportp should contain the current local
1013  * address and port for the PCB; these are updated to the values
1014  * that should be placed in inp_laddr and inp_lport to complete
1015  * the connect.
1016  *
1017  * On success, *faddrp and *fportp will be set to the remote address
1018  * and port. These are not updated in the error case.
1019  *
1020  * If the operation fails because the connection already exists,
1021  * *oinpp will be set to the PCB of that connection so that the
1022  * caller can decide to override it. In all other cases, *oinpp
1023  * is set to NULL.
1024  */
1025 int
1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1027     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1028     struct inpcb **oinpp, struct ucred *cred)
1029 {
1030         struct rm_priotracker in_ifa_tracker;
1031         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1032         struct in_ifaddr *ia;
1033         struct inpcb *oinp;
1034         struct in_addr laddr, faddr;
1035         u_short lport, fport;
1036         int error;
1037
1038         /*
1039          * Because a global state change doesn't actually occur here, a read
1040          * lock is sufficient.
1041          */
1042         INP_LOCK_ASSERT(inp);
1043         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1044
1045         if (oinpp != NULL)
1046                 *oinpp = NULL;
1047         if (nam->sa_len != sizeof (*sin))
1048                 return (EINVAL);
1049         if (sin->sin_family != AF_INET)
1050                 return (EAFNOSUPPORT);
1051         if (sin->sin_port == 0)
1052                 return (EADDRNOTAVAIL);
1053         laddr.s_addr = *laddrp;
1054         lport = *lportp;
1055         faddr = sin->sin_addr;
1056         fport = sin->sin_port;
1057
1058         if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1059                 /*
1060                  * If the destination address is INADDR_ANY,
1061                  * use the primary local address.
1062                  * If the supplied address is INADDR_BROADCAST,
1063                  * and the primary interface supports broadcast,
1064                  * choose the broadcast address for that interface.
1065                  */
1066                 if (faddr.s_addr == INADDR_ANY) {
1067                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1068                         faddr =
1069                             IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1070                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1071                         if (cred != NULL &&
1072                             (error = prison_get_ip4(cred, &faddr)) != 0)
1073                                 return (error);
1074                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1075                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1076                         if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1077                             IFF_BROADCAST)
1078                                 faddr = satosin(&CK_STAILQ_FIRST(
1079                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1080                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1081                 }
1082         }
1083         if (laddr.s_addr == INADDR_ANY) {
1084                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1085                 /*
1086                  * If the destination address is multicast and an outgoing
1087                  * interface has been set as a multicast option, prefer the
1088                  * address of that interface as our source address.
1089                  */
1090                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1091                     inp->inp_moptions != NULL) {
1092                         struct ip_moptions *imo;
1093                         struct ifnet *ifp;
1094
1095                         imo = inp->inp_moptions;
1096                         if (imo->imo_multicast_ifp != NULL) {
1097                                 ifp = imo->imo_multicast_ifp;
1098                                 IN_IFADDR_RLOCK(&in_ifa_tracker);
1099                                 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1100                                         if ((ia->ia_ifp == ifp) &&
1101                                             (cred == NULL ||
1102                                             prison_check_ip4(cred,
1103                                             &ia->ia_addr.sin_addr) == 0))
1104                                                 break;
1105                                 }
1106                                 if (ia == NULL)
1107                                         error = EADDRNOTAVAIL;
1108                                 else {
1109                                         laddr = ia->ia_addr.sin_addr;
1110                                         error = 0;
1111                                 }
1112                                 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1113                         }
1114                 }
1115                 if (error)
1116                         return (error);
1117         }
1118         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1119             laddr, lport, 0, NULL);
1120         if (oinp != NULL) {
1121                 if (oinpp != NULL)
1122                         *oinpp = oinp;
1123                 return (EADDRINUSE);
1124         }
1125         if (lport == 0) {
1126                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1127                     cred);
1128                 if (error)
1129                         return (error);
1130         }
1131         *laddrp = laddr.s_addr;
1132         *lportp = lport;
1133         *faddrp = faddr.s_addr;
1134         *fportp = fport;
1135         return (0);
1136 }
1137
1138 void
1139 in_pcbdisconnect(struct inpcb *inp)
1140 {
1141
1142         INP_WLOCK_ASSERT(inp);
1143         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1144
1145         inp->inp_faddr.s_addr = INADDR_ANY;
1146         inp->inp_fport = 0;
1147         in_pcbrehash(inp);
1148 }
1149 #endif /* INET */
1150
1151 /*
1152  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1153  * For most protocols, this will be invoked immediately prior to calling
1154  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1155  * socket, in which case in_pcbfree() is deferred.
1156  */
1157 void
1158 in_pcbdetach(struct inpcb *inp)
1159 {
1160
1161         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1162
1163 #ifdef RATELIMIT
1164         if (inp->inp_snd_tag != NULL)
1165                 in_pcbdetach_txrtlmt(inp);
1166 #endif
1167         inp->inp_socket->so_pcb = NULL;
1168         inp->inp_socket = NULL;
1169 }
1170
1171 /*
1172  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1173  * stability of an inpcb pointer despite the inpcb lock being released.  This
1174  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1175  * but where the inpcb lock may already held, or when acquiring a reference
1176  * via a pcbgroup.
1177  *
1178  * in_pcbref() should be used only to provide brief memory stability, and
1179  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1180  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1181  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1182  * lock and rele are the *only* safe operations that may be performed on the
1183  * inpcb.
1184  *
1185  * While the inpcb will not be freed, releasing the inpcb lock means that the
1186  * connection's state may change, so the caller should be careful to
1187  * revalidate any cached state on reacquiring the lock.  Drop the reference
1188  * using in_pcbrele().
1189  */
1190 void
1191 in_pcbref(struct inpcb *inp)
1192 {
1193
1194         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1195
1196         refcount_acquire(&inp->inp_refcount);
1197 }
1198
1199 /*
1200  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1201  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1202  * return a flag indicating whether or not the inpcb remains valid.  If it is
1203  * valid, we return with the inpcb lock held.
1204  *
1205  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1206  * reference on an inpcb.  Historically more work was done here (actually, in
1207  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1208  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1209  * about memory stability (and continued use of the write lock).
1210  */
1211 int
1212 in_pcbrele_rlocked(struct inpcb *inp)
1213 {
1214         struct inpcbinfo *pcbinfo;
1215
1216         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1217
1218         INP_RLOCK_ASSERT(inp);
1219
1220         if (refcount_release(&inp->inp_refcount) == 0) {
1221                 /*
1222                  * If the inpcb has been freed, let the caller know, even if
1223                  * this isn't the last reference.
1224                  */
1225                 if (inp->inp_flags2 & INP_FREED) {
1226                         INP_RUNLOCK(inp);
1227                         return (1);
1228                 }
1229                 return (0);
1230         }
1231         
1232         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1233 #ifdef TCPHPTS
1234         if (inp->inp_in_hpts || inp->inp_in_input) {
1235                 struct tcp_hpts_entry *hpts;
1236                 /*
1237                  * We should not be on the hpts at 
1238                  * this point in any form. we must
1239                  * get the lock to be sure.
1240                  */
1241                 hpts = tcp_hpts_lock(inp);
1242                 if (inp->inp_in_hpts)
1243                         panic("Hpts:%p inp:%p at free still on hpts",
1244                               hpts, inp);
1245                 mtx_unlock(&hpts->p_mtx);
1246                 hpts = tcp_input_lock(inp);
1247                 if (inp->inp_in_input) 
1248                         panic("Hpts:%p inp:%p at free still on input hpts",
1249                               hpts, inp);
1250                 mtx_unlock(&hpts->p_mtx);
1251         }
1252 #endif
1253         INP_RUNLOCK(inp);
1254         pcbinfo = inp->inp_pcbinfo;
1255         uma_zfree(pcbinfo->ipi_zone, inp);
1256         return (1);
1257 }
1258
1259 int
1260 in_pcbrele_wlocked(struct inpcb *inp)
1261 {
1262         struct inpcbinfo *pcbinfo;
1263
1264         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1265
1266         INP_WLOCK_ASSERT(inp);
1267
1268         if (refcount_release(&inp->inp_refcount) == 0) {
1269                 /*
1270                  * If the inpcb has been freed, let the caller know, even if
1271                  * this isn't the last reference.
1272                  */
1273                 if (inp->inp_flags2 & INP_FREED) {
1274                         INP_WUNLOCK(inp);
1275                         return (1);
1276                 }
1277                 return (0);
1278         }
1279
1280         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1281 #ifdef TCPHPTS
1282         if (inp->inp_in_hpts || inp->inp_in_input) {
1283                 struct tcp_hpts_entry *hpts;
1284                 /*
1285                  * We should not be on the hpts at 
1286                  * this point in any form. we must
1287                  * get the lock to be sure.
1288                  */
1289                 hpts = tcp_hpts_lock(inp);
1290                 if (inp->inp_in_hpts)
1291                         panic("Hpts:%p inp:%p at free still on hpts",
1292                               hpts, inp);
1293                 mtx_unlock(&hpts->p_mtx);
1294                 hpts = tcp_input_lock(inp);
1295                 if (inp->inp_in_input) 
1296                         panic("Hpts:%p inp:%p at free still on input hpts",
1297                               hpts, inp);
1298                 mtx_unlock(&hpts->p_mtx);
1299         }
1300 #endif
1301         INP_WUNLOCK(inp);
1302         pcbinfo = inp->inp_pcbinfo;
1303         uma_zfree(pcbinfo->ipi_zone, inp);
1304         return (1);
1305 }
1306
1307 /*
1308  * Temporary wrapper.
1309  */
1310 int
1311 in_pcbrele(struct inpcb *inp)
1312 {
1313
1314         return (in_pcbrele_wlocked(inp));
1315 }
1316
1317 void
1318 in_pcblist_rele_rlocked(epoch_context_t ctx)
1319 {
1320         struct in_pcblist *il;
1321         struct inpcb *inp;
1322         struct inpcbinfo *pcbinfo;
1323         int i, n;
1324
1325         il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1326         pcbinfo = il->il_pcbinfo;
1327         n = il->il_count;
1328         INP_INFO_WLOCK(pcbinfo);
1329         for (i = 0; i < n; i++) {
1330                 inp = il->il_inp_list[i];
1331                 INP_RLOCK(inp);
1332                 if (!in_pcbrele_rlocked(inp))
1333                         INP_RUNLOCK(inp);
1334         }
1335         INP_INFO_WUNLOCK(pcbinfo);
1336         free(il, M_TEMP);
1337 }
1338
1339 /*
1340  * Unconditionally schedule an inpcb to be freed by decrementing its
1341  * reference count, which should occur only after the inpcb has been detached
1342  * from its socket.  If another thread holds a temporary reference (acquired
1343  * using in_pcbref()) then the free is deferred until that reference is
1344  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1345  * work, including removal from global lists, is done in this context, where
1346  * the pcbinfo lock is held.
1347  */
1348 void
1349 in_pcbfree(struct inpcb *inp)
1350 {
1351         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1352
1353 #ifdef INET6
1354         struct ip6_moptions *im6o = NULL;
1355 #endif
1356 #ifdef INET
1357         struct ip_moptions *imo = NULL;
1358 #endif
1359         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1360
1361         KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1362             ("%s: called twice for pcb %p", __func__, inp));
1363         if (inp->inp_flags2 & INP_FREED) {
1364                 INP_WUNLOCK(inp);
1365                 return;
1366         }
1367
1368 #ifdef INVARIANTS
1369         if (pcbinfo == &V_tcbinfo) {
1370                 INP_INFO_LOCK_ASSERT(pcbinfo);
1371         } else {
1372                 INP_INFO_WLOCK_ASSERT(pcbinfo);
1373         }
1374 #endif
1375         INP_WLOCK_ASSERT(inp);
1376
1377 #ifdef INET
1378         imo = inp->inp_moptions;
1379         inp->inp_moptions = NULL;
1380 #endif
1381         /* XXXRW: Do as much as possible here. */
1382 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1383         if (inp->inp_sp != NULL)
1384                 ipsec_delete_pcbpolicy(inp);
1385 #endif
1386         INP_LIST_WLOCK(pcbinfo);
1387         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1388         in_pcbremlists(inp);
1389         INP_LIST_WUNLOCK(pcbinfo);
1390 #ifdef INET6
1391         if (inp->inp_vflag & INP_IPV6PROTO) {
1392                 ip6_freepcbopts(inp->in6p_outputopts);
1393                 im6o = inp->in6p_moptions;
1394                 inp->in6p_moptions = NULL;
1395         }
1396 #endif
1397         if (inp->inp_options)
1398                 (void)m_free(inp->inp_options);
1399         RO_INVALIDATE_CACHE(&inp->inp_route);
1400
1401         inp->inp_vflag = 0;
1402         inp->inp_flags2 |= INP_FREED;
1403         crfree(inp->inp_cred);
1404 #ifdef MAC
1405         mac_inpcb_destroy(inp);
1406 #endif
1407 #ifdef INET6
1408         ip6_freemoptions(im6o);
1409 #endif
1410 #ifdef INET
1411         inp_freemoptions(imo);
1412 #endif
1413         if (!in_pcbrele_wlocked(inp))
1414                 INP_WUNLOCK(inp);
1415 }
1416
1417 /*
1418  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1419  * port reservation, and preventing it from being returned by inpcb lookups.
1420  *
1421  * It is used by TCP to mark an inpcb as unused and avoid future packet
1422  * delivery or event notification when a socket remains open but TCP has
1423  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1424  * or a RST on the wire, and allows the port binding to be reused while still
1425  * maintaining the invariant that so_pcb always points to a valid inpcb until
1426  * in_pcbdetach().
1427  *
1428  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1429  * in_pcbnotifyall() and in_pcbpurgeif0()?
1430  */
1431 void
1432 in_pcbdrop(struct inpcb *inp)
1433 {
1434
1435         INP_WLOCK_ASSERT(inp);
1436
1437         /*
1438          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1439          * the hash lock...?
1440          */
1441         inp->inp_flags |= INP_DROPPED;
1442         if (inp->inp_flags & INP_INHASHLIST) {
1443                 struct inpcbport *phd = inp->inp_phd;
1444
1445                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1446                 LIST_REMOVE(inp, inp_hash);
1447                 LIST_REMOVE(inp, inp_portlist);
1448                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1449                         LIST_REMOVE(phd, phd_hash);
1450                         free(phd, M_PCB);
1451                 }
1452                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1453                 inp->inp_flags &= ~INP_INHASHLIST;
1454 #ifdef PCBGROUP
1455                 in_pcbgroup_remove(inp);
1456 #endif
1457         }
1458 }
1459
1460 #ifdef INET
1461 /*
1462  * Common routines to return the socket addresses associated with inpcbs.
1463  */
1464 struct sockaddr *
1465 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1466 {
1467         struct sockaddr_in *sin;
1468
1469         sin = malloc(sizeof *sin, M_SONAME,
1470                 M_WAITOK | M_ZERO);
1471         sin->sin_family = AF_INET;
1472         sin->sin_len = sizeof(*sin);
1473         sin->sin_addr = *addr_p;
1474         sin->sin_port = port;
1475
1476         return (struct sockaddr *)sin;
1477 }
1478
1479 int
1480 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1481 {
1482         struct inpcb *inp;
1483         struct in_addr addr;
1484         in_port_t port;
1485
1486         inp = sotoinpcb(so);
1487         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1488
1489         INP_RLOCK(inp);
1490         port = inp->inp_lport;
1491         addr = inp->inp_laddr;
1492         INP_RUNLOCK(inp);
1493
1494         *nam = in_sockaddr(port, &addr);
1495         return 0;
1496 }
1497
1498 int
1499 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1500 {
1501         struct inpcb *inp;
1502         struct in_addr addr;
1503         in_port_t port;
1504
1505         inp = sotoinpcb(so);
1506         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1507
1508         INP_RLOCK(inp);
1509         port = inp->inp_fport;
1510         addr = inp->inp_faddr;
1511         INP_RUNLOCK(inp);
1512
1513         *nam = in_sockaddr(port, &addr);
1514         return 0;
1515 }
1516
1517 void
1518 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1519     struct inpcb *(*notify)(struct inpcb *, int))
1520 {
1521         struct inpcb *inp, *inp_temp;
1522
1523         INP_INFO_WLOCK(pcbinfo);
1524         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1525                 INP_WLOCK(inp);
1526 #ifdef INET6
1527                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1528                         INP_WUNLOCK(inp);
1529                         continue;
1530                 }
1531 #endif
1532                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1533                     inp->inp_socket == NULL) {
1534                         INP_WUNLOCK(inp);
1535                         continue;
1536                 }
1537                 if ((*notify)(inp, errno))
1538                         INP_WUNLOCK(inp);
1539         }
1540         INP_INFO_WUNLOCK(pcbinfo);
1541 }
1542
1543 void
1544 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1545 {
1546         struct inpcb *inp;
1547         struct ip_moptions *imo;
1548         int i, gap;
1549
1550         INP_INFO_WLOCK(pcbinfo);
1551         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1552                 INP_WLOCK(inp);
1553                 imo = inp->inp_moptions;
1554                 if ((inp->inp_vflag & INP_IPV4) &&
1555                     imo != NULL) {
1556                         /*
1557                          * Unselect the outgoing interface if it is being
1558                          * detached.
1559                          */
1560                         if (imo->imo_multicast_ifp == ifp)
1561                                 imo->imo_multicast_ifp = NULL;
1562
1563                         /*
1564                          * Drop multicast group membership if we joined
1565                          * through the interface being detached.
1566                          *
1567                          * XXX This can all be deferred to an epoch_call
1568                          */
1569                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1570                             i++) {
1571                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1572                                         IN_MULTI_LOCK_ASSERT();
1573                                         in_leavegroup_locked(imo->imo_membership[i], NULL);
1574                                         gap++;
1575                                 } else if (gap != 0)
1576                                         imo->imo_membership[i - gap] =
1577                                             imo->imo_membership[i];
1578                         }
1579                         imo->imo_num_memberships -= gap;
1580                 }
1581                 INP_WUNLOCK(inp);
1582         }
1583         INP_INFO_WUNLOCK(pcbinfo);
1584 }
1585
1586 /*
1587  * Lookup a PCB based on the local address and port.  Caller must hold the
1588  * hash lock.  No inpcb locks or references are acquired.
1589  */
1590 #define INP_LOOKUP_MAPPED_PCB_COST      3
1591 struct inpcb *
1592 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1593     u_short lport, int lookupflags, struct ucred *cred)
1594 {
1595         struct inpcb *inp;
1596 #ifdef INET6
1597         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1598 #else
1599         int matchwild = 3;
1600 #endif
1601         int wildcard;
1602
1603         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1604             ("%s: invalid lookup flags %d", __func__, lookupflags));
1605
1606         INP_HASH_LOCK_ASSERT(pcbinfo);
1607
1608         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1609                 struct inpcbhead *head;
1610                 /*
1611                  * Look for an unconnected (wildcard foreign addr) PCB that
1612                  * matches the local address and port we're looking for.
1613                  */
1614                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1615                     0, pcbinfo->ipi_hashmask)];
1616                 LIST_FOREACH(inp, head, inp_hash) {
1617 #ifdef INET6
1618                         /* XXX inp locking */
1619                         if ((inp->inp_vflag & INP_IPV4) == 0)
1620                                 continue;
1621 #endif
1622                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1623                             inp->inp_laddr.s_addr == laddr.s_addr &&
1624                             inp->inp_lport == lport) {
1625                                 /*
1626                                  * Found?
1627                                  */
1628                                 if (cred == NULL ||
1629                                     prison_equal_ip4(cred->cr_prison,
1630                                         inp->inp_cred->cr_prison))
1631                                         return (inp);
1632                         }
1633                 }
1634                 /*
1635                  * Not found.
1636                  */
1637                 return (NULL);
1638         } else {
1639                 struct inpcbporthead *porthash;
1640                 struct inpcbport *phd;
1641                 struct inpcb *match = NULL;
1642                 /*
1643                  * Best fit PCB lookup.
1644                  *
1645                  * First see if this local port is in use by looking on the
1646                  * port hash list.
1647                  */
1648                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1649                     pcbinfo->ipi_porthashmask)];
1650                 LIST_FOREACH(phd, porthash, phd_hash) {
1651                         if (phd->phd_port == lport)
1652                                 break;
1653                 }
1654                 if (phd != NULL) {
1655                         /*
1656                          * Port is in use by one or more PCBs. Look for best
1657                          * fit.
1658                          */
1659                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1660                                 wildcard = 0;
1661                                 if (cred != NULL &&
1662                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1663                                         cred->cr_prison))
1664                                         continue;
1665 #ifdef INET6
1666                                 /* XXX inp locking */
1667                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1668                                         continue;
1669                                 /*
1670                                  * We never select the PCB that has
1671                                  * INP_IPV6 flag and is bound to :: if
1672                                  * we have another PCB which is bound
1673                                  * to 0.0.0.0.  If a PCB has the
1674                                  * INP_IPV6 flag, then we set its cost
1675                                  * higher than IPv4 only PCBs.
1676                                  *
1677                                  * Note that the case only happens
1678                                  * when a socket is bound to ::, under
1679                                  * the condition that the use of the
1680                                  * mapped address is allowed.
1681                                  */
1682                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1683                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1684 #endif
1685                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1686                                         wildcard++;
1687                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1688                                         if (laddr.s_addr == INADDR_ANY)
1689                                                 wildcard++;
1690                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1691                                                 continue;
1692                                 } else {
1693                                         if (laddr.s_addr != INADDR_ANY)
1694                                                 wildcard++;
1695                                 }
1696                                 if (wildcard < matchwild) {
1697                                         match = inp;
1698                                         matchwild = wildcard;
1699                                         if (matchwild == 0)
1700                                                 break;
1701                                 }
1702                         }
1703                 }
1704                 return (match);
1705         }
1706 }
1707 #undef INP_LOOKUP_MAPPED_PCB_COST
1708
1709 #ifdef PCBGROUP
1710 /*
1711  * Lookup PCB in hash list, using pcbgroup tables.
1712  */
1713 static struct inpcb *
1714 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1715     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1716     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1717 {
1718         struct inpcbhead *head;
1719         struct inpcb *inp, *tmpinp;
1720         u_short fport = fport_arg, lport = lport_arg;
1721         bool locked;
1722
1723         /*
1724          * First look for an exact match.
1725          */
1726         tmpinp = NULL;
1727         INP_GROUP_LOCK(pcbgroup);
1728         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1729             pcbgroup->ipg_hashmask)];
1730         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1731 #ifdef INET6
1732                 /* XXX inp locking */
1733                 if ((inp->inp_vflag & INP_IPV4) == 0)
1734                         continue;
1735 #endif
1736                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1737                     inp->inp_laddr.s_addr == laddr.s_addr &&
1738                     inp->inp_fport == fport &&
1739                     inp->inp_lport == lport) {
1740                         /*
1741                          * XXX We should be able to directly return
1742                          * the inp here, without any checks.
1743                          * Well unless both bound with SO_REUSEPORT?
1744                          */
1745                         if (prison_flag(inp->inp_cred, PR_IP4))
1746                                 goto found;
1747                         if (tmpinp == NULL)
1748                                 tmpinp = inp;
1749                 }
1750         }
1751         if (tmpinp != NULL) {
1752                 inp = tmpinp;
1753                 goto found;
1754         }
1755
1756 #ifdef  RSS
1757         /*
1758          * For incoming connections, we may wish to do a wildcard
1759          * match for an RSS-local socket.
1760          */
1761         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1762                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1763 #ifdef INET6
1764                 struct inpcb *local_wild_mapped = NULL;
1765 #endif
1766                 struct inpcb *jail_wild = NULL;
1767                 struct inpcbhead *head;
1768                 int injail;
1769
1770                 /*
1771                  * Order of socket selection - we always prefer jails.
1772                  *      1. jailed, non-wild.
1773                  *      2. jailed, wild.
1774                  *      3. non-jailed, non-wild.
1775                  *      4. non-jailed, wild.
1776                  */
1777
1778                 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1779                     lport, 0, pcbgroup->ipg_hashmask)];
1780                 LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1781 #ifdef INET6
1782                         /* XXX inp locking */
1783                         if ((inp->inp_vflag & INP_IPV4) == 0)
1784                                 continue;
1785 #endif
1786                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1787                             inp->inp_lport != lport)
1788                                 continue;
1789
1790                         injail = prison_flag(inp->inp_cred, PR_IP4);
1791                         if (injail) {
1792                                 if (prison_check_ip4(inp->inp_cred,
1793                                     &laddr) != 0)
1794                                         continue;
1795                         } else {
1796                                 if (local_exact != NULL)
1797                                         continue;
1798                         }
1799
1800                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1801                                 if (injail)
1802                                         goto found;
1803                                 else
1804                                         local_exact = inp;
1805                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1806 #ifdef INET6
1807                                 /* XXX inp locking, NULL check */
1808                                 if (inp->inp_vflag & INP_IPV6PROTO)
1809                                         local_wild_mapped = inp;
1810                                 else
1811 #endif
1812                                         if (injail)
1813                                                 jail_wild = inp;
1814                                         else
1815                                                 local_wild = inp;
1816                         }
1817                 } /* LIST_FOREACH */
1818
1819                 inp = jail_wild;
1820                 if (inp == NULL)
1821                         inp = local_exact;
1822                 if (inp == NULL)
1823                         inp = local_wild;
1824 #ifdef INET6
1825                 if (inp == NULL)
1826                         inp = local_wild_mapped;
1827 #endif
1828                 if (inp != NULL)
1829                         goto found;
1830         }
1831 #endif
1832
1833         /*
1834          * Then look for a wildcard match, if requested.
1835          */
1836         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1837                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1838 #ifdef INET6
1839                 struct inpcb *local_wild_mapped = NULL;
1840 #endif
1841                 struct inpcb *jail_wild = NULL;
1842                 struct inpcbhead *head;
1843                 int injail;
1844
1845                 /*
1846                  * Order of socket selection - we always prefer jails.
1847                  *      1. jailed, non-wild.
1848                  *      2. jailed, wild.
1849                  *      3. non-jailed, non-wild.
1850                  *      4. non-jailed, wild.
1851                  */
1852                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1853                     0, pcbinfo->ipi_wildmask)];
1854                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1855 #ifdef INET6
1856                         /* XXX inp locking */
1857                         if ((inp->inp_vflag & INP_IPV4) == 0)
1858                                 continue;
1859 #endif
1860                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1861                             inp->inp_lport != lport)
1862                                 continue;
1863
1864                         injail = prison_flag(inp->inp_cred, PR_IP4);
1865                         if (injail) {
1866                                 if (prison_check_ip4(inp->inp_cred,
1867                                     &laddr) != 0)
1868                                         continue;
1869                         } else {
1870                                 if (local_exact != NULL)
1871                                         continue;
1872                         }
1873
1874                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1875                                 if (injail)
1876                                         goto found;
1877                                 else
1878                                         local_exact = inp;
1879                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1880 #ifdef INET6
1881                                 /* XXX inp locking, NULL check */
1882                                 if (inp->inp_vflag & INP_IPV6PROTO)
1883                                         local_wild_mapped = inp;
1884                                 else
1885 #endif
1886                                         if (injail)
1887                                                 jail_wild = inp;
1888                                         else
1889                                                 local_wild = inp;
1890                         }
1891                 } /* LIST_FOREACH */
1892                 inp = jail_wild;
1893                 if (inp == NULL)
1894                         inp = local_exact;
1895                 if (inp == NULL)
1896                         inp = local_wild;
1897 #ifdef INET6
1898                 if (inp == NULL)
1899                         inp = local_wild_mapped;
1900 #endif
1901                 if (inp != NULL)
1902                         goto found;
1903         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1904         INP_GROUP_UNLOCK(pcbgroup);
1905         return (NULL);
1906
1907 found:
1908         if (lookupflags & INPLOOKUP_WLOCKPCB)
1909                 locked = INP_TRY_WLOCK(inp);
1910         else if (lookupflags & INPLOOKUP_RLOCKPCB)
1911                 locked = INP_TRY_RLOCK(inp);
1912         else
1913                 panic("%s: locking bug", __func__);
1914         if (!locked)
1915                 in_pcbref(inp);
1916         INP_GROUP_UNLOCK(pcbgroup);
1917         if (!locked) {
1918                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1919                         INP_WLOCK(inp);
1920                         if (in_pcbrele_wlocked(inp))
1921                                 return (NULL);
1922                 } else {
1923                         INP_RLOCK(inp);
1924                         if (in_pcbrele_rlocked(inp))
1925                                 return (NULL);
1926                 }
1927         }
1928 #ifdef INVARIANTS
1929         if (lookupflags & INPLOOKUP_WLOCKPCB)
1930                 INP_WLOCK_ASSERT(inp);
1931         else
1932                 INP_RLOCK_ASSERT(inp);
1933 #endif
1934         return (inp);
1935 }
1936 #endif /* PCBGROUP */
1937
1938 /*
1939  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1940  * that the caller has locked the hash list, and will not perform any further
1941  * locking or reference operations on either the hash list or the connection.
1942  */
1943 static struct inpcb *
1944 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1945     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1946     struct ifnet *ifp)
1947 {
1948         struct inpcbhead *head;
1949         struct inpcb *inp, *tmpinp;
1950         u_short fport = fport_arg, lport = lport_arg;
1951
1952         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1953             ("%s: invalid lookup flags %d", __func__, lookupflags));
1954
1955         INP_HASH_LOCK_ASSERT(pcbinfo);
1956
1957         /*
1958          * First look for an exact match.
1959          */
1960         tmpinp = NULL;
1961         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1962             pcbinfo->ipi_hashmask)];
1963         LIST_FOREACH(inp, head, inp_hash) {
1964 #ifdef INET6
1965                 /* XXX inp locking */
1966                 if ((inp->inp_vflag & INP_IPV4) == 0)
1967                         continue;
1968 #endif
1969                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1970                     inp->inp_laddr.s_addr == laddr.s_addr &&
1971                     inp->inp_fport == fport &&
1972                     inp->inp_lport == lport) {
1973                         /*
1974                          * XXX We should be able to directly return
1975                          * the inp here, without any checks.
1976                          * Well unless both bound with SO_REUSEPORT?
1977                          */
1978                         if (prison_flag(inp->inp_cred, PR_IP4))
1979                                 return (inp);
1980                         if (tmpinp == NULL)
1981                                 tmpinp = inp;
1982                 }
1983         }
1984         if (tmpinp != NULL)
1985                 return (tmpinp);
1986
1987         /*
1988          * Then look for a wildcard match, if requested.
1989          */
1990         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1991                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1992 #ifdef INET6
1993                 struct inpcb *local_wild_mapped = NULL;
1994 #endif
1995                 struct inpcb *jail_wild = NULL;
1996                 int injail;
1997
1998                 /*
1999                  * Order of socket selection - we always prefer jails.
2000                  *      1. jailed, non-wild.
2001                  *      2. jailed, wild.
2002                  *      3. non-jailed, non-wild.
2003                  *      4. non-jailed, wild.
2004                  */
2005
2006                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2007                     0, pcbinfo->ipi_hashmask)];
2008                 LIST_FOREACH(inp, head, inp_hash) {
2009 #ifdef INET6
2010                         /* XXX inp locking */
2011                         if ((inp->inp_vflag & INP_IPV4) == 0)
2012                                 continue;
2013 #endif
2014                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
2015                             inp->inp_lport != lport)
2016                                 continue;
2017
2018                         injail = prison_flag(inp->inp_cred, PR_IP4);
2019                         if (injail) {
2020                                 if (prison_check_ip4(inp->inp_cred,
2021                                     &laddr) != 0)
2022                                         continue;
2023                         } else {
2024                                 if (local_exact != NULL)
2025                                         continue;
2026                         }
2027
2028                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
2029                                 if (injail)
2030                                         return (inp);
2031                                 else
2032                                         local_exact = inp;
2033                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2034 #ifdef INET6
2035                                 /* XXX inp locking, NULL check */
2036                                 if (inp->inp_vflag & INP_IPV6PROTO)
2037                                         local_wild_mapped = inp;
2038                                 else
2039 #endif
2040                                         if (injail)
2041                                                 jail_wild = inp;
2042                                         else
2043                                                 local_wild = inp;
2044                         }
2045                 } /* LIST_FOREACH */
2046                 if (jail_wild != NULL)
2047                         return (jail_wild);
2048                 if (local_exact != NULL)
2049                         return (local_exact);
2050                 if (local_wild != NULL)
2051                         return (local_wild);
2052 #ifdef INET6
2053                 if (local_wild_mapped != NULL)
2054                         return (local_wild_mapped);
2055 #endif
2056         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2057
2058         return (NULL);
2059 }
2060
2061 /*
2062  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2063  * hash list lock, and will return the inpcb locked (i.e., requires
2064  * INPLOOKUP_LOCKPCB).
2065  */
2066 static struct inpcb *
2067 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2068     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2069     struct ifnet *ifp)
2070 {
2071         struct inpcb *inp;
2072         bool locked;
2073
2074         INP_HASH_RLOCK(pcbinfo);
2075         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2076             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2077         if (inp != NULL) {
2078                 if (lookupflags & INPLOOKUP_WLOCKPCB)
2079                         locked = INP_TRY_WLOCK(inp);
2080                 else if (lookupflags & INPLOOKUP_RLOCKPCB)
2081                         locked = INP_TRY_RLOCK(inp);
2082                 else
2083                         panic("%s: locking bug", __func__);
2084                 if (!locked)
2085                         in_pcbref(inp);
2086                 INP_HASH_RUNLOCK(pcbinfo);
2087                 if (!locked) {
2088                         if (lookupflags & INPLOOKUP_WLOCKPCB) {
2089                                 INP_WLOCK(inp);
2090                                 if (in_pcbrele_wlocked(inp))
2091                                         return (NULL);
2092                         } else {
2093                                 INP_RLOCK(inp);
2094                                 if (in_pcbrele_rlocked(inp))
2095                                         return (NULL);
2096                         }
2097                 }
2098 #ifdef INVARIANTS
2099                 if (lookupflags & INPLOOKUP_WLOCKPCB)
2100                         INP_WLOCK_ASSERT(inp);
2101                 else
2102                         INP_RLOCK_ASSERT(inp);
2103 #endif
2104         } else
2105                 INP_HASH_RUNLOCK(pcbinfo);
2106         return (inp);
2107 }
2108
2109 /*
2110  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2111  * from which a pre-calculated hash value may be extracted.
2112  *
2113  * Possibly more of this logic should be in in_pcbgroup.c.
2114  */
2115 struct inpcb *
2116 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2117     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2118 {
2119 #if defined(PCBGROUP) && !defined(RSS)
2120         struct inpcbgroup *pcbgroup;
2121 #endif
2122
2123         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2124             ("%s: invalid lookup flags %d", __func__, lookupflags));
2125         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2126             ("%s: LOCKPCB not set", __func__));
2127
2128         /*
2129          * When not using RSS, use connection groups in preference to the
2130          * reservation table when looking up 4-tuples.  When using RSS, just
2131          * use the reservation table, due to the cost of the Toeplitz hash
2132          * in software.
2133          *
2134          * XXXRW: This policy belongs in the pcbgroup code, as in principle
2135          * we could be doing RSS with a non-Toeplitz hash that is affordable
2136          * in software.
2137          */
2138 #if defined(PCBGROUP) && !defined(RSS)
2139         if (in_pcbgroup_enabled(pcbinfo)) {
2140                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2141                     fport);
2142                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2143                     laddr, lport, lookupflags, ifp));
2144         }
2145 #endif
2146         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2147             lookupflags, ifp));
2148 }
2149
2150 struct inpcb *
2151 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2152     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2153     struct ifnet *ifp, struct mbuf *m)
2154 {
2155 #ifdef PCBGROUP
2156         struct inpcbgroup *pcbgroup;
2157 #endif
2158
2159         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2160             ("%s: invalid lookup flags %d", __func__, lookupflags));
2161         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2162             ("%s: LOCKPCB not set", __func__));
2163
2164 #ifdef PCBGROUP
2165         /*
2166          * If we can use a hardware-generated hash to look up the connection
2167          * group, use that connection group to find the inpcb.  Otherwise
2168          * fall back on a software hash -- or the reservation table if we're
2169          * using RSS.
2170          *
2171          * XXXRW: As above, that policy belongs in the pcbgroup code.
2172          */
2173         if (in_pcbgroup_enabled(pcbinfo) &&
2174             !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2175                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2176                     m->m_pkthdr.flowid);
2177                 if (pcbgroup != NULL)
2178                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2179                             fport, laddr, lport, lookupflags, ifp));
2180 #ifndef RSS
2181                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2182                     fport);
2183                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2184                     laddr, lport, lookupflags, ifp));
2185 #endif
2186         }
2187 #endif
2188         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2189             lookupflags, ifp));
2190 }
2191 #endif /* INET */
2192
2193 /*
2194  * Insert PCB onto various hash lists.
2195  */
2196 static int
2197 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2198 {
2199         struct inpcbhead *pcbhash;
2200         struct inpcbporthead *pcbporthash;
2201         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2202         struct inpcbport *phd;
2203         u_int32_t hashkey_faddr;
2204
2205         INP_WLOCK_ASSERT(inp);
2206         INP_HASH_WLOCK_ASSERT(pcbinfo);
2207
2208         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2209             ("in_pcbinshash: INP_INHASHLIST"));
2210
2211 #ifdef INET6
2212         if (inp->inp_vflag & INP_IPV6)
2213                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2214         else
2215 #endif
2216         hashkey_faddr = inp->inp_faddr.s_addr;
2217
2218         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2219                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2220
2221         pcbporthash = &pcbinfo->ipi_porthashbase[
2222             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2223
2224         /*
2225          * Go through port list and look for a head for this lport.
2226          */
2227         LIST_FOREACH(phd, pcbporthash, phd_hash) {
2228                 if (phd->phd_port == inp->inp_lport)
2229                         break;
2230         }
2231         /*
2232          * If none exists, malloc one and tack it on.
2233          */
2234         if (phd == NULL) {
2235                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2236                 if (phd == NULL) {
2237                         return (ENOBUFS); /* XXX */
2238                 }
2239                 phd->phd_port = inp->inp_lport;
2240                 LIST_INIT(&phd->phd_pcblist);
2241                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2242         }
2243         inp->inp_phd = phd;
2244         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2245         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2246         inp->inp_flags |= INP_INHASHLIST;
2247 #ifdef PCBGROUP
2248         if (do_pcbgroup_update)
2249                 in_pcbgroup_update(inp);
2250 #endif
2251         return (0);
2252 }
2253
2254 /*
2255  * For now, there are two public interfaces to insert an inpcb into the hash
2256  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2257  * is used only in the TCP syncache, where in_pcbinshash is called before the
2258  * full 4-tuple is set for the inpcb, and we don't want to install in the
2259  * pcbgroup until later.
2260  *
2261  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2262  * connection groups, and partially initialised inpcbs should not be exposed
2263  * to either reservation hash tables or pcbgroups.
2264  */
2265 int
2266 in_pcbinshash(struct inpcb *inp)
2267 {
2268
2269         return (in_pcbinshash_internal(inp, 1));
2270 }
2271
2272 int
2273 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2274 {
2275
2276         return (in_pcbinshash_internal(inp, 0));
2277 }
2278
2279 /*
2280  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2281  * changed. NOTE: This does not handle the case of the lport changing (the
2282  * hashed port list would have to be updated as well), so the lport must
2283  * not change after in_pcbinshash() has been called.
2284  */
2285 void
2286 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2287 {
2288         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2289         struct inpcbhead *head;
2290         u_int32_t hashkey_faddr;
2291
2292         INP_WLOCK_ASSERT(inp);
2293         INP_HASH_WLOCK_ASSERT(pcbinfo);
2294
2295         KASSERT(inp->inp_flags & INP_INHASHLIST,
2296             ("in_pcbrehash: !INP_INHASHLIST"));
2297
2298 #ifdef INET6
2299         if (inp->inp_vflag & INP_IPV6)
2300                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2301         else
2302 #endif
2303         hashkey_faddr = inp->inp_faddr.s_addr;
2304
2305         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2306                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2307
2308         LIST_REMOVE(inp, inp_hash);
2309         LIST_INSERT_HEAD(head, inp, inp_hash);
2310
2311 #ifdef PCBGROUP
2312         if (m != NULL)
2313                 in_pcbgroup_update_mbuf(inp, m);
2314         else
2315                 in_pcbgroup_update(inp);
2316 #endif
2317 }
2318
2319 void
2320 in_pcbrehash(struct inpcb *inp)
2321 {
2322
2323         in_pcbrehash_mbuf(inp, NULL);
2324 }
2325
2326 /*
2327  * Remove PCB from various lists.
2328  */
2329 static void
2330 in_pcbremlists(struct inpcb *inp)
2331 {
2332         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2333
2334 #ifdef INVARIANTS
2335         if (pcbinfo == &V_tcbinfo) {
2336                 INP_INFO_RLOCK_ASSERT(pcbinfo);
2337         } else {
2338                 INP_INFO_WLOCK_ASSERT(pcbinfo);
2339         }
2340 #endif
2341
2342         INP_WLOCK_ASSERT(inp);
2343         INP_LIST_WLOCK_ASSERT(pcbinfo);
2344
2345         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2346         if (inp->inp_flags & INP_INHASHLIST) {
2347                 struct inpcbport *phd = inp->inp_phd;
2348
2349                 INP_HASH_WLOCK(pcbinfo);
2350                 LIST_REMOVE(inp, inp_hash);
2351                 LIST_REMOVE(inp, inp_portlist);
2352                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2353                         LIST_REMOVE(phd, phd_hash);
2354                         free(phd, M_PCB);
2355                 }
2356                 INP_HASH_WUNLOCK(pcbinfo);
2357                 inp->inp_flags &= ~INP_INHASHLIST;
2358         }
2359         LIST_REMOVE(inp, inp_list);
2360         pcbinfo->ipi_count--;
2361 #ifdef PCBGROUP
2362         in_pcbgroup_remove(inp);
2363 #endif
2364 }
2365
2366 /*
2367  * Check for alternatives when higher level complains
2368  * about service problems.  For now, invalidate cached
2369  * routing information.  If the route was created dynamically
2370  * (by a redirect), time to try a default gateway again.
2371  */
2372 void
2373 in_losing(struct inpcb *inp)
2374 {
2375
2376         RO_INVALIDATE_CACHE(&inp->inp_route);
2377         return;
2378 }
2379
2380 /*
2381  * A set label operation has occurred at the socket layer, propagate the
2382  * label change into the in_pcb for the socket.
2383  */
2384 void
2385 in_pcbsosetlabel(struct socket *so)
2386 {
2387 #ifdef MAC
2388         struct inpcb *inp;
2389
2390         inp = sotoinpcb(so);
2391         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2392
2393         INP_WLOCK(inp);
2394         SOCK_LOCK(so);
2395         mac_inpcb_sosetlabel(so, inp);
2396         SOCK_UNLOCK(so);
2397         INP_WUNLOCK(inp);
2398 #endif
2399 }
2400
2401 /*
2402  * ipport_tick runs once per second, determining if random port allocation
2403  * should be continued.  If more than ipport_randomcps ports have been
2404  * allocated in the last second, then we return to sequential port
2405  * allocation. We return to random allocation only once we drop below
2406  * ipport_randomcps for at least ipport_randomtime seconds.
2407  */
2408 static void
2409 ipport_tick(void *xtp)
2410 {
2411         VNET_ITERATOR_DECL(vnet_iter);
2412
2413         VNET_LIST_RLOCK_NOSLEEP();
2414         VNET_FOREACH(vnet_iter) {
2415                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2416                 if (V_ipport_tcpallocs <=
2417                     V_ipport_tcplastcount + V_ipport_randomcps) {
2418                         if (V_ipport_stoprandom > 0)
2419                                 V_ipport_stoprandom--;
2420                 } else
2421                         V_ipport_stoprandom = V_ipport_randomtime;
2422                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2423                 CURVNET_RESTORE();
2424         }
2425         VNET_LIST_RUNLOCK_NOSLEEP();
2426         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2427 }
2428
2429 static void
2430 ip_fini(void *xtp)
2431 {
2432
2433         callout_stop(&ipport_tick_callout);
2434 }
2435
2436 /* 
2437  * The ipport_callout should start running at about the time we attach the
2438  * inet or inet6 domains.
2439  */
2440 static void
2441 ipport_tick_init(const void *unused __unused)
2442 {
2443
2444         /* Start ipport_tick. */
2445         callout_init(&ipport_tick_callout, 1);
2446         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2447         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2448                 SHUTDOWN_PRI_DEFAULT);
2449 }
2450 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2451     ipport_tick_init, NULL);
2452
2453 void
2454 inp_wlock(struct inpcb *inp)
2455 {
2456
2457         INP_WLOCK(inp);
2458 }
2459
2460 void
2461 inp_wunlock(struct inpcb *inp)
2462 {
2463
2464         INP_WUNLOCK(inp);
2465 }
2466
2467 void
2468 inp_rlock(struct inpcb *inp)
2469 {
2470
2471         INP_RLOCK(inp);
2472 }
2473
2474 void
2475 inp_runlock(struct inpcb *inp)
2476 {
2477
2478         INP_RUNLOCK(inp);
2479 }
2480
2481 #ifdef INVARIANT_SUPPORT
2482 void
2483 inp_lock_assert(struct inpcb *inp)
2484 {
2485
2486         INP_WLOCK_ASSERT(inp);
2487 }
2488
2489 void
2490 inp_unlock_assert(struct inpcb *inp)
2491 {
2492
2493         INP_UNLOCK_ASSERT(inp);
2494 }
2495 #endif
2496
2497 void
2498 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2499 {
2500         struct inpcb *inp;
2501
2502         INP_INFO_WLOCK(&V_tcbinfo);
2503         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2504                 INP_WLOCK(inp);
2505                 func(inp, arg);
2506                 INP_WUNLOCK(inp);
2507         }
2508         INP_INFO_WUNLOCK(&V_tcbinfo);
2509 }
2510
2511 struct socket *
2512 inp_inpcbtosocket(struct inpcb *inp)
2513 {
2514
2515         INP_WLOCK_ASSERT(inp);
2516         return (inp->inp_socket);
2517 }
2518
2519 struct tcpcb *
2520 inp_inpcbtotcpcb(struct inpcb *inp)
2521 {
2522
2523         INP_WLOCK_ASSERT(inp);
2524         return ((struct tcpcb *)inp->inp_ppcb);
2525 }
2526
2527 int
2528 inp_ip_tos_get(const struct inpcb *inp)
2529 {
2530
2531         return (inp->inp_ip_tos);
2532 }
2533
2534 void
2535 inp_ip_tos_set(struct inpcb *inp, int val)
2536 {
2537
2538         inp->inp_ip_tos = val;
2539 }
2540
2541 void
2542 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2543     uint32_t *faddr, uint16_t *fp)
2544 {
2545
2546         INP_LOCK_ASSERT(inp);
2547         *laddr = inp->inp_laddr.s_addr;
2548         *faddr = inp->inp_faddr.s_addr;
2549         *lp = inp->inp_lport;
2550         *fp = inp->inp_fport;
2551 }
2552
2553 struct inpcb *
2554 so_sotoinpcb(struct socket *so)
2555 {
2556
2557         return (sotoinpcb(so));
2558 }
2559
2560 struct tcpcb *
2561 so_sototcpcb(struct socket *so)
2562 {
2563
2564         return (sototcpcb(so));
2565 }
2566
2567 /*
2568  * Create an external-format (``xinpcb'') structure using the information in
2569  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2570  * reduce the spew of irrelevant information over this interface, to isolate
2571  * user code from changes in the kernel structure, and potentially to provide
2572  * information-hiding if we decide that some of this information should be
2573  * hidden from users.
2574  */
2575 void
2576 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2577 {
2578
2579         xi->xi_len = sizeof(struct xinpcb);
2580         if (inp->inp_socket)
2581                 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2582         else
2583                 bzero(&xi->xi_socket, sizeof(struct xsocket));
2584         bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2585         xi->inp_gencnt = inp->inp_gencnt;
2586         xi->inp_ppcb = inp->inp_ppcb;
2587         xi->inp_flow = inp->inp_flow;
2588         xi->inp_flowid = inp->inp_flowid;
2589         xi->inp_flowtype = inp->inp_flowtype;
2590         xi->inp_flags = inp->inp_flags;
2591         xi->inp_flags2 = inp->inp_flags2;
2592         xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2593         xi->in6p_cksum = inp->in6p_cksum;
2594         xi->in6p_hops = inp->in6p_hops;
2595         xi->inp_ip_tos = inp->inp_ip_tos;
2596         xi->inp_vflag = inp->inp_vflag;
2597         xi->inp_ip_ttl = inp->inp_ip_ttl;
2598         xi->inp_ip_p = inp->inp_ip_p;
2599         xi->inp_ip_minttl = inp->inp_ip_minttl;
2600 }
2601
2602 #ifdef DDB
2603 static void
2604 db_print_indent(int indent)
2605 {
2606         int i;
2607
2608         for (i = 0; i < indent; i++)
2609                 db_printf(" ");
2610 }
2611
2612 static void
2613 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2614 {
2615         char faddr_str[48], laddr_str[48];
2616
2617         db_print_indent(indent);
2618         db_printf("%s at %p\n", name, inc);
2619
2620         indent += 2;
2621
2622 #ifdef INET6
2623         if (inc->inc_flags & INC_ISIPV6) {
2624                 /* IPv6. */
2625                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2626                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2627         } else
2628 #endif
2629         {
2630                 /* IPv4. */
2631                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2632                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2633         }
2634         db_print_indent(indent);
2635         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2636             ntohs(inc->inc_lport));
2637         db_print_indent(indent);
2638         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2639             ntohs(inc->inc_fport));
2640 }
2641
2642 static void
2643 db_print_inpflags(int inp_flags)
2644 {
2645         int comma;
2646
2647         comma = 0;
2648         if (inp_flags & INP_RECVOPTS) {
2649                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2650                 comma = 1;
2651         }
2652         if (inp_flags & INP_RECVRETOPTS) {
2653                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2654                 comma = 1;
2655         }
2656         if (inp_flags & INP_RECVDSTADDR) {
2657                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2658                 comma = 1;
2659         }
2660         if (inp_flags & INP_ORIGDSTADDR) {
2661                 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2662                 comma = 1;
2663         }
2664         if (inp_flags & INP_HDRINCL) {
2665                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2666                 comma = 1;
2667         }
2668         if (inp_flags & INP_HIGHPORT) {
2669                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2670                 comma = 1;
2671         }
2672         if (inp_flags & INP_LOWPORT) {
2673                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2674                 comma = 1;
2675         }
2676         if (inp_flags & INP_ANONPORT) {
2677                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2678                 comma = 1;
2679         }
2680         if (inp_flags & INP_RECVIF) {
2681                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2682                 comma = 1;
2683         }
2684         if (inp_flags & INP_MTUDISC) {
2685                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2686                 comma = 1;
2687         }
2688         if (inp_flags & INP_RECVTTL) {
2689                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2690                 comma = 1;
2691         }
2692         if (inp_flags & INP_DONTFRAG) {
2693                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2694                 comma = 1;
2695         }
2696         if (inp_flags & INP_RECVTOS) {
2697                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2698                 comma = 1;
2699         }
2700         if (inp_flags & IN6P_IPV6_V6ONLY) {
2701                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2702                 comma = 1;
2703         }
2704         if (inp_flags & IN6P_PKTINFO) {
2705                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2706                 comma = 1;
2707         }
2708         if (inp_flags & IN6P_HOPLIMIT) {
2709                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2710                 comma = 1;
2711         }
2712         if (inp_flags & IN6P_HOPOPTS) {
2713                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2714                 comma = 1;
2715         }
2716         if (inp_flags & IN6P_DSTOPTS) {
2717                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2718                 comma = 1;
2719         }
2720         if (inp_flags & IN6P_RTHDR) {
2721                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2722                 comma = 1;
2723         }
2724         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2725                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2726                 comma = 1;
2727         }
2728         if (inp_flags & IN6P_TCLASS) {
2729                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2730                 comma = 1;
2731         }
2732         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2733                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2734                 comma = 1;
2735         }
2736         if (inp_flags & INP_TIMEWAIT) {
2737                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2738                 comma  = 1;
2739         }
2740         if (inp_flags & INP_ONESBCAST) {
2741                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2742                 comma  = 1;
2743         }
2744         if (inp_flags & INP_DROPPED) {
2745                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2746                 comma  = 1;
2747         }
2748         if (inp_flags & INP_SOCKREF) {
2749                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2750                 comma  = 1;
2751         }
2752         if (inp_flags & IN6P_RFC2292) {
2753                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2754                 comma = 1;
2755         }
2756         if (inp_flags & IN6P_MTU) {
2757                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2758                 comma = 1;
2759         }
2760 }
2761
2762 static void
2763 db_print_inpvflag(u_char inp_vflag)
2764 {
2765         int comma;
2766
2767         comma = 0;
2768         if (inp_vflag & INP_IPV4) {
2769                 db_printf("%sINP_IPV4", comma ? ", " : "");
2770                 comma  = 1;
2771         }
2772         if (inp_vflag & INP_IPV6) {
2773                 db_printf("%sINP_IPV6", comma ? ", " : "");
2774                 comma  = 1;
2775         }
2776         if (inp_vflag & INP_IPV6PROTO) {
2777                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2778                 comma  = 1;
2779         }
2780 }
2781
2782 static void
2783 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2784 {
2785
2786         db_print_indent(indent);
2787         db_printf("%s at %p\n", name, inp);
2788
2789         indent += 2;
2790
2791         db_print_indent(indent);
2792         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2793
2794         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2795
2796         db_print_indent(indent);
2797         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2798             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2799
2800         db_print_indent(indent);
2801         db_printf("inp_label: %p   inp_flags: 0x%x (",
2802            inp->inp_label, inp->inp_flags);
2803         db_print_inpflags(inp->inp_flags);
2804         db_printf(")\n");
2805
2806         db_print_indent(indent);
2807         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2808             inp->inp_vflag);
2809         db_print_inpvflag(inp->inp_vflag);
2810         db_printf(")\n");
2811
2812         db_print_indent(indent);
2813         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2814             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2815
2816         db_print_indent(indent);
2817 #ifdef INET6
2818         if (inp->inp_vflag & INP_IPV6) {
2819                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2820                     "in6p_moptions: %p\n", inp->in6p_options,
2821                     inp->in6p_outputopts, inp->in6p_moptions);
2822                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2823                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2824                     inp->in6p_hops);
2825         } else
2826 #endif
2827         {
2828                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2829                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2830                     inp->inp_options, inp->inp_moptions);
2831         }
2832
2833         db_print_indent(indent);
2834         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2835             (uintmax_t)inp->inp_gencnt);
2836 }
2837
2838 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2839 {
2840         struct inpcb *inp;
2841
2842         if (!have_addr) {
2843                 db_printf("usage: show inpcb <addr>\n");
2844                 return;
2845         }
2846         inp = (struct inpcb *)addr;
2847
2848         db_print_inpcb(inp, "inpcb", 0);
2849 }
2850 #endif /* DDB */
2851
2852 #ifdef RATELIMIT
2853 /*
2854  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2855  * if any.
2856  */
2857 int
2858 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2859 {
2860         union if_snd_tag_modify_params params = {
2861                 .rate_limit.max_rate = max_pacing_rate,
2862         };
2863         struct m_snd_tag *mst;
2864         struct ifnet *ifp;
2865         int error;
2866
2867         mst = inp->inp_snd_tag;
2868         if (mst == NULL)
2869                 return (EINVAL);
2870
2871         ifp = mst->ifp;
2872         if (ifp == NULL)
2873                 return (EINVAL);
2874
2875         if (ifp->if_snd_tag_modify == NULL) {
2876                 error = EOPNOTSUPP;
2877         } else {
2878                 error = ifp->if_snd_tag_modify(mst, &params);
2879         }
2880         return (error);
2881 }
2882
2883 /*
2884  * Query existing TX rate limit based on the existing
2885  * "inp->inp_snd_tag", if any.
2886  */
2887 int
2888 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2889 {
2890         union if_snd_tag_query_params params = { };
2891         struct m_snd_tag *mst;
2892         struct ifnet *ifp;
2893         int error;
2894
2895         mst = inp->inp_snd_tag;
2896         if (mst == NULL)
2897                 return (EINVAL);
2898
2899         ifp = mst->ifp;
2900         if (ifp == NULL)
2901                 return (EINVAL);
2902
2903         if (ifp->if_snd_tag_query == NULL) {
2904                 error = EOPNOTSUPP;
2905         } else {
2906                 error = ifp->if_snd_tag_query(mst, &params);
2907                 if (error == 0 &&  p_max_pacing_rate != NULL)
2908                         *p_max_pacing_rate = params.rate_limit.max_rate;
2909         }
2910         return (error);
2911 }
2912
2913 /*
2914  * Query existing TX queue level based on the existing
2915  * "inp->inp_snd_tag", if any.
2916  */
2917 int
2918 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2919 {
2920         union if_snd_tag_query_params params = { };
2921         struct m_snd_tag *mst;
2922         struct ifnet *ifp;
2923         int error;
2924
2925         mst = inp->inp_snd_tag;
2926         if (mst == NULL)
2927                 return (EINVAL);
2928
2929         ifp = mst->ifp;
2930         if (ifp == NULL)
2931                 return (EINVAL);
2932
2933         if (ifp->if_snd_tag_query == NULL)
2934                 return (EOPNOTSUPP);
2935
2936         error = ifp->if_snd_tag_query(mst, &params);
2937         if (error == 0 &&  p_txqueue_level != NULL)
2938                 *p_txqueue_level = params.rate_limit.queue_level;
2939         return (error);
2940 }
2941
2942 /*
2943  * Allocate a new TX rate limit send tag from the network interface
2944  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2945  */
2946 int
2947 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2948     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2949 {
2950         union if_snd_tag_alloc_params params = {
2951                 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2952                     IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2953                 .rate_limit.hdr.flowid = flowid,
2954                 .rate_limit.hdr.flowtype = flowtype,
2955                 .rate_limit.max_rate = max_pacing_rate,
2956         };
2957         int error;
2958
2959         INP_WLOCK_ASSERT(inp);
2960
2961         if (inp->inp_snd_tag != NULL)
2962                 return (EINVAL);
2963
2964         if (ifp->if_snd_tag_alloc == NULL) {
2965                 error = EOPNOTSUPP;
2966         } else {
2967                 error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2968
2969                 /*
2970                  * At success increment the refcount on
2971                  * the send tag's network interface:
2972                  */
2973                 if (error == 0)
2974                         if_ref(inp->inp_snd_tag->ifp);
2975         }
2976         return (error);
2977 }
2978
2979 /*
2980  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2981  * if any:
2982  */
2983 void
2984 in_pcbdetach_txrtlmt(struct inpcb *inp)
2985 {
2986         struct m_snd_tag *mst;
2987         struct ifnet *ifp;
2988
2989         INP_WLOCK_ASSERT(inp);
2990
2991         mst = inp->inp_snd_tag;
2992         inp->inp_snd_tag = NULL;
2993
2994         if (mst == NULL)
2995                 return;
2996
2997         ifp = mst->ifp;
2998         if (ifp == NULL)
2999                 return;
3000
3001         /*
3002          * If the device was detached while we still had reference(s)
3003          * on the ifp, we assume if_snd_tag_free() was replaced with
3004          * stubs.
3005          */
3006         ifp->if_snd_tag_free(mst);
3007
3008         /* release reference count on network interface */
3009         if_rele(ifp);
3010 }
3011
3012 /*
3013  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3014  * is set in the fast path and will attach/detach/modify the TX rate
3015  * limit send tag based on the socket's so_max_pacing_rate value.
3016  */
3017 void
3018 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3019 {
3020         struct socket *socket;
3021         uint32_t max_pacing_rate;
3022         bool did_upgrade;
3023         int error;
3024
3025         if (inp == NULL)
3026                 return;
3027
3028         socket = inp->inp_socket;
3029         if (socket == NULL)
3030                 return;
3031
3032         if (!INP_WLOCKED(inp)) {
3033                 /*
3034                  * NOTE: If the write locking fails, we need to bail
3035                  * out and use the non-ratelimited ring for the
3036                  * transmit until there is a new chance to get the
3037                  * write lock.
3038                  */
3039                 if (!INP_TRY_UPGRADE(inp))
3040                         return;
3041                 did_upgrade = 1;
3042         } else {
3043                 did_upgrade = 0;
3044         }
3045
3046         /*
3047          * NOTE: The so_max_pacing_rate value is read unlocked,
3048          * because atomic updates are not required since the variable
3049          * is checked at every mbuf we send. It is assumed that the
3050          * variable read itself will be atomic.
3051          */
3052         max_pacing_rate = socket->so_max_pacing_rate;
3053
3054         /*
3055          * NOTE: When attaching to a network interface a reference is
3056          * made to ensure the network interface doesn't go away until
3057          * all ratelimit connections are gone. The network interface
3058          * pointers compared below represent valid network interfaces,
3059          * except when comparing towards NULL.
3060          */
3061         if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3062                 error = 0;
3063         } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3064                 if (inp->inp_snd_tag != NULL)
3065                         in_pcbdetach_txrtlmt(inp);
3066                 error = 0;
3067         } else if (inp->inp_snd_tag == NULL) {
3068                 /*
3069                  * In order to utilize packet pacing with RSS, we need
3070                  * to wait until there is a valid RSS hash before we
3071                  * can proceed:
3072                  */
3073                 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3074                         error = EAGAIN;
3075                 } else {
3076                         error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3077                             mb->m_pkthdr.flowid, max_pacing_rate);
3078                 }
3079         } else {
3080                 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3081         }
3082         if (error == 0 || error == EOPNOTSUPP)
3083                 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3084         if (did_upgrade)
3085                 INP_DOWNGRADE(inp);
3086 }
3087
3088 /*
3089  * Track route changes for TX rate limiting.
3090  */
3091 void
3092 in_pcboutput_eagain(struct inpcb *inp)
3093 {
3094         struct socket *socket;
3095         bool did_upgrade;
3096
3097         if (inp == NULL)
3098                 return;
3099
3100         socket = inp->inp_socket;
3101         if (socket == NULL)
3102                 return;
3103
3104         if (inp->inp_snd_tag == NULL)
3105                 return;
3106
3107         if (!INP_WLOCKED(inp)) {
3108                 /*
3109                  * NOTE: If the write locking fails, we need to bail
3110                  * out and use the non-ratelimited ring for the
3111                  * transmit until there is a new chance to get the
3112                  * write lock.
3113                  */
3114                 if (!INP_TRY_UPGRADE(inp))
3115                         return;
3116                 did_upgrade = 1;
3117         } else {
3118                 did_upgrade = 0;
3119         }
3120
3121         /* detach rate limiting */
3122         in_pcbdetach_txrtlmt(inp);
3123
3124         /* make sure new mbuf send tag allocation is made */
3125         inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3126
3127         if (did_upgrade)
3128                 INP_DOWNGRADE(inp);
3129 }
3130 #endif /* RATELIMIT */