]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/in_pcb.c
Merge ACPICA 20170728.
[FreeBSD/FreeBSD.git] / sys / netinet / in_pcb.c
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
36  */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_ratelimit.h"
46 #include "opt_pcbgroup.h"
47 #include "opt_rss.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/callout.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/rmlock.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #include <sys/refcount.h>
65 #include <sys/jail.h>
66 #include <sys/kernel.h>
67 #include <sys/sysctl.h>
68
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72
73 #include <vm/uma.h>
74
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_types.h>
78 #include <net/if_llatbl.h>
79 #include <net/route.h>
80 #include <net/rss_config.h>
81 #include <net/vnet.h>
82
83 #if defined(INET) || defined(INET6)
84 #include <netinet/in.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/tcp_var.h>
88 #include <netinet/udp.h>
89 #include <netinet/udp_var.h>
90 #endif
91 #ifdef INET
92 #include <netinet/in_var.h>
93 #endif
94 #ifdef INET6
95 #include <netinet/ip6.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/in6_var.h>
98 #include <netinet6/ip6_var.h>
99 #endif /* INET6 */
100
101 #include <netipsec/ipsec_support.h>
102
103 #include <security/mac/mac_framework.h>
104
105 static struct callout   ipport_tick_callout;
106
107 /*
108  * These configure the range of local port addresses assigned to
109  * "unspecified" outgoing connections/packets/whatever.
110  */
111 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
112 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
113 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
114 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
115 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
116 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
117
118 /*
119  * Reserved ports accessible only to root. There are significant
120  * security considerations that must be accounted for when changing these,
121  * but the security benefits can be great. Please be careful.
122  */
123 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
124 VNET_DEFINE(int, ipport_reservedlow);
125
126 /* Variables dealing with random ephemeral port allocation. */
127 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
128 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
129 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
130 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
131 VNET_DEFINE(int, ipport_tcpallocs);
132 static VNET_DEFINE(int, ipport_tcplastcount);
133
134 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
135
136 static void     in_pcbremlists(struct inpcb *inp);
137 #ifdef INET
138 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
139                             struct in_addr faddr, u_int fport_arg,
140                             struct in_addr laddr, u_int lport_arg,
141                             int lookupflags, struct ifnet *ifp);
142
143 #define RANGECHK(var, min, max) \
144         if ((var) < (min)) { (var) = (min); } \
145         else if ((var) > (max)) { (var) = (max); }
146
147 static int
148 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
149 {
150         int error;
151
152         error = sysctl_handle_int(oidp, arg1, arg2, req);
153         if (error == 0) {
154                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
155                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
156                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
157                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
158                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
159                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
160         }
161         return (error);
162 }
163
164 #undef RANGECHK
165
166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
167     "IP Ports");
168
169 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
170         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
171         &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
173         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
174         &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
176         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177         &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
179         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180         &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
182         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183         &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
185         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186         &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
188         CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
189         &VNET_NAME(ipport_reservedhigh), 0, "");
190 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
191         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
193         CTLFLAG_VNET | CTLFLAG_RW,
194         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
196         CTLFLAG_VNET | CTLFLAG_RW,
197         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
198         "allocations before switching to a sequental one");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
200         CTLFLAG_VNET | CTLFLAG_RW,
201         &VNET_NAME(ipport_randomtime), 0,
202         "Minimum time to keep sequental port "
203         "allocation before switching to a random one");
204 #endif /* INET */
205
206 /*
207  * in_pcb.c: manage the Protocol Control Blocks.
208  *
209  * NOTE: It is assumed that most of these functions will be called with
210  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
211  * functions often modify hash chains or addresses in pcbs.
212  */
213
214 /*
215  * Different protocols initialize their inpcbs differently - giving
216  * different name to the lock.  But they all are disposed the same.
217  */
218 static void
219 inpcb_fini(void *mem, int size)
220 {
221         struct inpcb *inp = mem;
222
223         INP_LOCK_DESTROY(inp);
224 }
225
226 /*
227  * Initialize an inpcbinfo -- we should be able to reduce the number of
228  * arguments in time.
229  */
230 void
231 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
232     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
233     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
234 {
235
236         INP_INFO_LOCK_INIT(pcbinfo, name);
237         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
238         INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
239 #ifdef VIMAGE
240         pcbinfo->ipi_vnet = curvnet;
241 #endif
242         pcbinfo->ipi_listhead = listhead;
243         LIST_INIT(pcbinfo->ipi_listhead);
244         pcbinfo->ipi_count = 0;
245         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
246             &pcbinfo->ipi_hashmask);
247         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
248             &pcbinfo->ipi_porthashmask);
249 #ifdef PCBGROUP
250         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
251 #endif
252         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
253             NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
254         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
255         uma_zone_set_warning(pcbinfo->ipi_zone,
256             "kern.ipc.maxsockets limit reached");
257 }
258
259 /*
260  * Destroy an inpcbinfo.
261  */
262 void
263 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
264 {
265
266         KASSERT(pcbinfo->ipi_count == 0,
267             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
268
269         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
270         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
271             pcbinfo->ipi_porthashmask);
272 #ifdef PCBGROUP
273         in_pcbgroup_destroy(pcbinfo);
274 #endif
275         uma_zdestroy(pcbinfo->ipi_zone);
276         INP_LIST_LOCK_DESTROY(pcbinfo);
277         INP_HASH_LOCK_DESTROY(pcbinfo);
278         INP_INFO_LOCK_DESTROY(pcbinfo);
279 }
280
281 /*
282  * Allocate a PCB and associate it with the socket.
283  * On success return with the PCB locked.
284  */
285 int
286 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
287 {
288         struct inpcb *inp;
289         int error;
290
291 #ifdef INVARIANTS
292         if (pcbinfo == &V_tcbinfo) {
293                 INP_INFO_RLOCK_ASSERT(pcbinfo);
294         } else {
295                 INP_INFO_WLOCK_ASSERT(pcbinfo);
296         }
297 #endif
298
299         error = 0;
300         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
301         if (inp == NULL)
302                 return (ENOBUFS);
303         bzero(&inp->inp_start_zero, inp_zero_size);
304         inp->inp_pcbinfo = pcbinfo;
305         inp->inp_socket = so;
306         inp->inp_cred = crhold(so->so_cred);
307         inp->inp_inc.inc_fibnum = so->so_fibnum;
308 #ifdef MAC
309         error = mac_inpcb_init(inp, M_NOWAIT);
310         if (error != 0)
311                 goto out;
312         mac_inpcb_create(so, inp);
313 #endif
314 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
315         error = ipsec_init_pcbpolicy(inp);
316         if (error != 0) {
317 #ifdef MAC
318                 mac_inpcb_destroy(inp);
319 #endif
320                 goto out;
321         }
322 #endif /*IPSEC*/
323 #ifdef INET6
324         if (INP_SOCKAF(so) == AF_INET6) {
325                 inp->inp_vflag |= INP_IPV6PROTO;
326                 if (V_ip6_v6only)
327                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
328         }
329 #endif
330         INP_WLOCK(inp);
331         INP_LIST_WLOCK(pcbinfo);
332         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
333         pcbinfo->ipi_count++;
334         so->so_pcb = (caddr_t)inp;
335 #ifdef INET6
336         if (V_ip6_auto_flowlabel)
337                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
338 #endif
339         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
340         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
341
342         /*
343          * Routes in inpcb's can cache L2 as well; they are guaranteed
344          * to be cleaned up.
345          */
346         inp->inp_route.ro_flags = RT_LLE_CACHE;
347         INP_LIST_WUNLOCK(pcbinfo);
348 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
349 out:
350         if (error != 0) {
351                 crfree(inp->inp_cred);
352                 uma_zfree(pcbinfo->ipi_zone, inp);
353         }
354 #endif
355         return (error);
356 }
357
358 #ifdef INET
359 int
360 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
361 {
362         int anonport, error;
363
364         INP_WLOCK_ASSERT(inp);
365         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
366
367         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
368                 return (EINVAL);
369         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
370         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
371             &inp->inp_lport, cred);
372         if (error)
373                 return (error);
374         if (in_pcbinshash(inp) != 0) {
375                 inp->inp_laddr.s_addr = INADDR_ANY;
376                 inp->inp_lport = 0;
377                 return (EAGAIN);
378         }
379         if (anonport)
380                 inp->inp_flags |= INP_ANONPORT;
381         return (0);
382 }
383 #endif
384
385 /*
386  * Select a local port (number) to use.
387  */
388 #if defined(INET) || defined(INET6)
389 int
390 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
391     struct ucred *cred, int lookupflags)
392 {
393         struct inpcbinfo *pcbinfo;
394         struct inpcb *tmpinp;
395         unsigned short *lastport;
396         int count, dorandom, error;
397         u_short aux, first, last, lport;
398 #ifdef INET
399         struct in_addr laddr;
400 #endif
401
402         pcbinfo = inp->inp_pcbinfo;
403
404         /*
405          * Because no actual state changes occur here, a global write lock on
406          * the pcbinfo isn't required.
407          */
408         INP_LOCK_ASSERT(inp);
409         INP_HASH_LOCK_ASSERT(pcbinfo);
410
411         if (inp->inp_flags & INP_HIGHPORT) {
412                 first = V_ipport_hifirstauto;   /* sysctl */
413                 last  = V_ipport_hilastauto;
414                 lastport = &pcbinfo->ipi_lasthi;
415         } else if (inp->inp_flags & INP_LOWPORT) {
416                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
417                 if (error)
418                         return (error);
419                 first = V_ipport_lowfirstauto;  /* 1023 */
420                 last  = V_ipport_lowlastauto;   /* 600 */
421                 lastport = &pcbinfo->ipi_lastlow;
422         } else {
423                 first = V_ipport_firstauto;     /* sysctl */
424                 last  = V_ipport_lastauto;
425                 lastport = &pcbinfo->ipi_lastport;
426         }
427         /*
428          * For UDP(-Lite), use random port allocation as long as the user
429          * allows it.  For TCP (and as of yet unknown) connections,
430          * use random port allocation only if the user allows it AND
431          * ipport_tick() allows it.
432          */
433         if (V_ipport_randomized &&
434                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
435                 pcbinfo == &V_ulitecbinfo))
436                 dorandom = 1;
437         else
438                 dorandom = 0;
439         /*
440          * It makes no sense to do random port allocation if
441          * we have the only port available.
442          */
443         if (first == last)
444                 dorandom = 0;
445         /* Make sure to not include UDP(-Lite) packets in the count. */
446         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
447                 V_ipport_tcpallocs++;
448         /*
449          * Instead of having two loops further down counting up or down
450          * make sure that first is always <= last and go with only one
451          * code path implementing all logic.
452          */
453         if (first > last) {
454                 aux = first;
455                 first = last;
456                 last = aux;
457         }
458
459 #ifdef INET
460         /* Make the compiler happy. */
461         laddr.s_addr = 0;
462         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
463                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
464                     __func__, inp));
465                 laddr = *laddrp;
466         }
467 #endif
468         tmpinp = NULL;  /* Make compiler happy. */
469         lport = *lportp;
470
471         if (dorandom)
472                 *lastport = first + (arc4random() % (last - first));
473
474         count = last - first;
475
476         do {
477                 if (count-- < 0)        /* completely used? */
478                         return (EADDRNOTAVAIL);
479                 ++*lastport;
480                 if (*lastport < first || *lastport > last)
481                         *lastport = first;
482                 lport = htons(*lastport);
483
484 #ifdef INET6
485                 if ((inp->inp_vflag & INP_IPV6) != 0)
486                         tmpinp = in6_pcblookup_local(pcbinfo,
487                             &inp->in6p_laddr, lport, lookupflags, cred);
488 #endif
489 #if defined(INET) && defined(INET6)
490                 else
491 #endif
492 #ifdef INET
493                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
494                             lport, lookupflags, cred);
495 #endif
496         } while (tmpinp != NULL);
497
498 #ifdef INET
499         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
500                 laddrp->s_addr = laddr.s_addr;
501 #endif
502         *lportp = lport;
503
504         return (0);
505 }
506
507 /*
508  * Return cached socket options.
509  */
510 short
511 inp_so_options(const struct inpcb *inp)
512 {
513    short so_options;
514
515    so_options = 0;
516
517    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
518            so_options |= SO_REUSEPORT;
519    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
520            so_options |= SO_REUSEADDR;
521    return (so_options);
522 }
523 #endif /* INET || INET6 */
524
525 /*
526  * Check if a new BINDMULTI socket is allowed to be created.
527  *
528  * ni points to the new inp.
529  * oi points to the exisitng inp.
530  *
531  * This checks whether the existing inp also has BINDMULTI and
532  * whether the credentials match.
533  */
534 int
535 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
536 {
537         /* Check permissions match */
538         if ((ni->inp_flags2 & INP_BINDMULTI) &&
539             (ni->inp_cred->cr_uid !=
540             oi->inp_cred->cr_uid))
541                 return (0);
542
543         /* Check the existing inp has BINDMULTI set */
544         if ((ni->inp_flags2 & INP_BINDMULTI) &&
545             ((oi->inp_flags2 & INP_BINDMULTI) == 0))
546                 return (0);
547
548         /*
549          * We're okay - either INP_BINDMULTI isn't set on ni, or
550          * it is and it matches the checks.
551          */
552         return (1);
553 }
554
555 #ifdef INET
556 /*
557  * Set up a bind operation on a PCB, performing port allocation
558  * as required, but do not actually modify the PCB. Callers can
559  * either complete the bind by setting inp_laddr/inp_lport and
560  * calling in_pcbinshash(), or they can just use the resulting
561  * port and address to authorise the sending of a once-off packet.
562  *
563  * On error, the values of *laddrp and *lportp are not changed.
564  */
565 int
566 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
567     u_short *lportp, struct ucred *cred)
568 {
569         struct socket *so = inp->inp_socket;
570         struct sockaddr_in *sin;
571         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
572         struct in_addr laddr;
573         u_short lport = 0;
574         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
575         int error;
576
577         /*
578          * No state changes, so read locks are sufficient here.
579          */
580         INP_LOCK_ASSERT(inp);
581         INP_HASH_LOCK_ASSERT(pcbinfo);
582
583         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
584                 return (EADDRNOTAVAIL);
585         laddr.s_addr = *laddrp;
586         if (nam != NULL && laddr.s_addr != INADDR_ANY)
587                 return (EINVAL);
588         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
589                 lookupflags = INPLOOKUP_WILDCARD;
590         if (nam == NULL) {
591                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
592                         return (error);
593         } else {
594                 sin = (struct sockaddr_in *)nam;
595                 if (nam->sa_len != sizeof (*sin))
596                         return (EINVAL);
597 #ifdef notdef
598                 /*
599                  * We should check the family, but old programs
600                  * incorrectly fail to initialize it.
601                  */
602                 if (sin->sin_family != AF_INET)
603                         return (EAFNOSUPPORT);
604 #endif
605                 error = prison_local_ip4(cred, &sin->sin_addr);
606                 if (error)
607                         return (error);
608                 if (sin->sin_port != *lportp) {
609                         /* Don't allow the port to change. */
610                         if (*lportp != 0)
611                                 return (EINVAL);
612                         lport = sin->sin_port;
613                 }
614                 /* NB: lport is left as 0 if the port isn't being changed. */
615                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
616                         /*
617                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
618                          * allow complete duplication of binding if
619                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
620                          * and a multicast address is bound on both
621                          * new and duplicated sockets.
622                          */
623                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
624                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
625                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
626                         sin->sin_port = 0;              /* yech... */
627                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
628                         /*
629                          * Is the address a local IP address? 
630                          * If INP_BINDANY is set, then the socket may be bound
631                          * to any endpoint address, local or not.
632                          */
633                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
634                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
635                                 return (EADDRNOTAVAIL);
636                 }
637                 laddr = sin->sin_addr;
638                 if (lport) {
639                         struct inpcb *t;
640                         struct tcptw *tw;
641
642                         /* GROSS */
643                         if (ntohs(lport) <= V_ipport_reservedhigh &&
644                             ntohs(lport) >= V_ipport_reservedlow &&
645                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
646                             0))
647                                 return (EACCES);
648                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
649                             priv_check_cred(inp->inp_cred,
650                             PRIV_NETINET_REUSEPORT, 0) != 0) {
651                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
652                                     lport, INPLOOKUP_WILDCARD, cred);
653         /*
654          * XXX
655          * This entire block sorely needs a rewrite.
656          */
657                                 if (t &&
658                                     ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
659                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
660                                     (so->so_type != SOCK_STREAM ||
661                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
662                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
663                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
664                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
665                                     (inp->inp_cred->cr_uid !=
666                                      t->inp_cred->cr_uid))
667                                         return (EADDRINUSE);
668
669                                 /*
670                                  * If the socket is a BINDMULTI socket, then
671                                  * the credentials need to match and the
672                                  * original socket also has to have been bound
673                                  * with BINDMULTI.
674                                  */
675                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
676                                         return (EADDRINUSE);
677                         }
678                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
679                             lport, lookupflags, cred);
680                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
681                                 /*
682                                  * XXXRW: If an incpb has had its timewait
683                                  * state recycled, we treat the address as
684                                  * being in use (for now).  This is better
685                                  * than a panic, but not desirable.
686                                  */
687                                 tw = intotw(t);
688                                 if (tw == NULL ||
689                                     (reuseport & tw->tw_so_options) == 0)
690                                         return (EADDRINUSE);
691                         } else if (t &&
692                             ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
693                             (reuseport & inp_so_options(t)) == 0) {
694 #ifdef INET6
695                                 if (ntohl(sin->sin_addr.s_addr) !=
696                                     INADDR_ANY ||
697                                     ntohl(t->inp_laddr.s_addr) !=
698                                     INADDR_ANY ||
699                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
700                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
701 #endif
702                                 return (EADDRINUSE);
703                                 if (t && (! in_pcbbind_check_bindmulti(inp, t)))
704                                         return (EADDRINUSE);
705                         }
706                 }
707         }
708         if (*lportp != 0)
709                 lport = *lportp;
710         if (lport == 0) {
711                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
712                 if (error != 0)
713                         return (error);
714
715         }
716         *laddrp = laddr.s_addr;
717         *lportp = lport;
718         return (0);
719 }
720
721 /*
722  * Connect from a socket to a specified address.
723  * Both address and port must be specified in argument sin.
724  * If don't have a local address for this socket yet,
725  * then pick one.
726  */
727 int
728 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
729     struct ucred *cred, struct mbuf *m)
730 {
731         u_short lport, fport;
732         in_addr_t laddr, faddr;
733         int anonport, error;
734
735         INP_WLOCK_ASSERT(inp);
736         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
737
738         lport = inp->inp_lport;
739         laddr = inp->inp_laddr.s_addr;
740         anonport = (lport == 0);
741         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
742             NULL, cred);
743         if (error)
744                 return (error);
745
746         /* Do the initial binding of the local address if required. */
747         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
748                 inp->inp_lport = lport;
749                 inp->inp_laddr.s_addr = laddr;
750                 if (in_pcbinshash(inp) != 0) {
751                         inp->inp_laddr.s_addr = INADDR_ANY;
752                         inp->inp_lport = 0;
753                         return (EAGAIN);
754                 }
755         }
756
757         /* Commit the remaining changes. */
758         inp->inp_lport = lport;
759         inp->inp_laddr.s_addr = laddr;
760         inp->inp_faddr.s_addr = faddr;
761         inp->inp_fport = fport;
762         in_pcbrehash_mbuf(inp, m);
763
764         if (anonport)
765                 inp->inp_flags |= INP_ANONPORT;
766         return (0);
767 }
768
769 int
770 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
771 {
772
773         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
774 }
775
776 /*
777  * Do proper source address selection on an unbound socket in case
778  * of connect. Take jails into account as well.
779  */
780 int
781 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
782     struct ucred *cred)
783 {
784         struct ifaddr *ifa;
785         struct sockaddr *sa;
786         struct sockaddr_in *sin;
787         struct route sro;
788         int error;
789
790         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
791
792         /*
793          * Bypass source address selection and use the primary jail IP
794          * if requested.
795          */
796         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
797                 return (0);
798
799         error = 0;
800         bzero(&sro, sizeof(sro));
801
802         sin = (struct sockaddr_in *)&sro.ro_dst;
803         sin->sin_family = AF_INET;
804         sin->sin_len = sizeof(struct sockaddr_in);
805         sin->sin_addr.s_addr = faddr->s_addr;
806
807         /*
808          * If route is known our src addr is taken from the i/f,
809          * else punt.
810          *
811          * Find out route to destination.
812          */
813         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
814                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
815
816         /*
817          * If we found a route, use the address corresponding to
818          * the outgoing interface.
819          * 
820          * Otherwise assume faddr is reachable on a directly connected
821          * network and try to find a corresponding interface to take
822          * the source address from.
823          */
824         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
825                 struct in_ifaddr *ia;
826                 struct ifnet *ifp;
827
828                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
829                                         inp->inp_socket->so_fibnum));
830                 if (ia == NULL)
831                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
832                                                 inp->inp_socket->so_fibnum));
833                 if (ia == NULL) {
834                         error = ENETUNREACH;
835                         goto done;
836                 }
837
838                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
839                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
840                         ifa_free(&ia->ia_ifa);
841                         goto done;
842                 }
843
844                 ifp = ia->ia_ifp;
845                 ifa_free(&ia->ia_ifa);
846                 ia = NULL;
847                 IF_ADDR_RLOCK(ifp);
848                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
849
850                         sa = ifa->ifa_addr;
851                         if (sa->sa_family != AF_INET)
852                                 continue;
853                         sin = (struct sockaddr_in *)sa;
854                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
855                                 ia = (struct in_ifaddr *)ifa;
856                                 break;
857                         }
858                 }
859                 if (ia != NULL) {
860                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
861                         IF_ADDR_RUNLOCK(ifp);
862                         goto done;
863                 }
864                 IF_ADDR_RUNLOCK(ifp);
865
866                 /* 3. As a last resort return the 'default' jail address. */
867                 error = prison_get_ip4(cred, laddr);
868                 goto done;
869         }
870
871         /*
872          * If the outgoing interface on the route found is not
873          * a loopback interface, use the address from that interface.
874          * In case of jails do those three steps:
875          * 1. check if the interface address belongs to the jail. If so use it.
876          * 2. check if we have any address on the outgoing interface
877          *    belonging to this jail. If so use it.
878          * 3. as a last resort return the 'default' jail address.
879          */
880         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
881                 struct in_ifaddr *ia;
882                 struct ifnet *ifp;
883
884                 /* If not jailed, use the default returned. */
885                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
886                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
887                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
888                         goto done;
889                 }
890
891                 /* Jailed. */
892                 /* 1. Check if the iface address belongs to the jail. */
893                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
894                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
895                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
896                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
897                         goto done;
898                 }
899
900                 /*
901                  * 2. Check if we have any address on the outgoing interface
902                  *    belonging to this jail.
903                  */
904                 ia = NULL;
905                 ifp = sro.ro_rt->rt_ifp;
906                 IF_ADDR_RLOCK(ifp);
907                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
908                         sa = ifa->ifa_addr;
909                         if (sa->sa_family != AF_INET)
910                                 continue;
911                         sin = (struct sockaddr_in *)sa;
912                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
913                                 ia = (struct in_ifaddr *)ifa;
914                                 break;
915                         }
916                 }
917                 if (ia != NULL) {
918                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
919                         IF_ADDR_RUNLOCK(ifp);
920                         goto done;
921                 }
922                 IF_ADDR_RUNLOCK(ifp);
923
924                 /* 3. As a last resort return the 'default' jail address. */
925                 error = prison_get_ip4(cred, laddr);
926                 goto done;
927         }
928
929         /*
930          * The outgoing interface is marked with 'loopback net', so a route
931          * to ourselves is here.
932          * Try to find the interface of the destination address and then
933          * take the address from there. That interface is not necessarily
934          * a loopback interface.
935          * In case of jails, check that it is an address of the jail
936          * and if we cannot find, fall back to the 'default' jail address.
937          */
938         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
939                 struct sockaddr_in sain;
940                 struct in_ifaddr *ia;
941
942                 bzero(&sain, sizeof(struct sockaddr_in));
943                 sain.sin_family = AF_INET;
944                 sain.sin_len = sizeof(struct sockaddr_in);
945                 sain.sin_addr.s_addr = faddr->s_addr;
946
947                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
948                                         inp->inp_socket->so_fibnum));
949                 if (ia == NULL)
950                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
951                                                 inp->inp_socket->so_fibnum));
952                 if (ia == NULL)
953                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
954
955                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
956                         if (ia == NULL) {
957                                 error = ENETUNREACH;
958                                 goto done;
959                         }
960                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
961                         ifa_free(&ia->ia_ifa);
962                         goto done;
963                 }
964
965                 /* Jailed. */
966                 if (ia != NULL) {
967                         struct ifnet *ifp;
968
969                         ifp = ia->ia_ifp;
970                         ifa_free(&ia->ia_ifa);
971                         ia = NULL;
972                         IF_ADDR_RLOCK(ifp);
973                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
974
975                                 sa = ifa->ifa_addr;
976                                 if (sa->sa_family != AF_INET)
977                                         continue;
978                                 sin = (struct sockaddr_in *)sa;
979                                 if (prison_check_ip4(cred,
980                                     &sin->sin_addr) == 0) {
981                                         ia = (struct in_ifaddr *)ifa;
982                                         break;
983                                 }
984                         }
985                         if (ia != NULL) {
986                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
987                                 IF_ADDR_RUNLOCK(ifp);
988                                 goto done;
989                         }
990                         IF_ADDR_RUNLOCK(ifp);
991                 }
992
993                 /* 3. As a last resort return the 'default' jail address. */
994                 error = prison_get_ip4(cred, laddr);
995                 goto done;
996         }
997
998 done:
999         if (sro.ro_rt != NULL)
1000                 RTFREE(sro.ro_rt);
1001         return (error);
1002 }
1003
1004 /*
1005  * Set up for a connect from a socket to the specified address.
1006  * On entry, *laddrp and *lportp should contain the current local
1007  * address and port for the PCB; these are updated to the values
1008  * that should be placed in inp_laddr and inp_lport to complete
1009  * the connect.
1010  *
1011  * On success, *faddrp and *fportp will be set to the remote address
1012  * and port. These are not updated in the error case.
1013  *
1014  * If the operation fails because the connection already exists,
1015  * *oinpp will be set to the PCB of that connection so that the
1016  * caller can decide to override it. In all other cases, *oinpp
1017  * is set to NULL.
1018  */
1019 int
1020 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1021     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1022     struct inpcb **oinpp, struct ucred *cred)
1023 {
1024         struct rm_priotracker in_ifa_tracker;
1025         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1026         struct in_ifaddr *ia;
1027         struct inpcb *oinp;
1028         struct in_addr laddr, faddr;
1029         u_short lport, fport;
1030         int error;
1031
1032         /*
1033          * Because a global state change doesn't actually occur here, a read
1034          * lock is sufficient.
1035          */
1036         INP_LOCK_ASSERT(inp);
1037         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1038
1039         if (oinpp != NULL)
1040                 *oinpp = NULL;
1041         if (nam->sa_len != sizeof (*sin))
1042                 return (EINVAL);
1043         if (sin->sin_family != AF_INET)
1044                 return (EAFNOSUPPORT);
1045         if (sin->sin_port == 0)
1046                 return (EADDRNOTAVAIL);
1047         laddr.s_addr = *laddrp;
1048         lport = *lportp;
1049         faddr = sin->sin_addr;
1050         fport = sin->sin_port;
1051
1052         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1053                 /*
1054                  * If the destination address is INADDR_ANY,
1055                  * use the primary local address.
1056                  * If the supplied address is INADDR_BROADCAST,
1057                  * and the primary interface supports broadcast,
1058                  * choose the broadcast address for that interface.
1059                  */
1060                 if (faddr.s_addr == INADDR_ANY) {
1061                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1062                         faddr =
1063                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1064                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1065                         if (cred != NULL &&
1066                             (error = prison_get_ip4(cred, &faddr)) != 0)
1067                                 return (error);
1068                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1069                         IN_IFADDR_RLOCK(&in_ifa_tracker);
1070                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1071                             IFF_BROADCAST)
1072                                 faddr = satosin(&TAILQ_FIRST(
1073                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1074                         IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1075                 }
1076         }
1077         if (laddr.s_addr == INADDR_ANY) {
1078                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1079                 /*
1080                  * If the destination address is multicast and an outgoing
1081                  * interface has been set as a multicast option, prefer the
1082                  * address of that interface as our source address.
1083                  */
1084                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1085                     inp->inp_moptions != NULL) {
1086                         struct ip_moptions *imo;
1087                         struct ifnet *ifp;
1088
1089                         imo = inp->inp_moptions;
1090                         if (imo->imo_multicast_ifp != NULL) {
1091                                 ifp = imo->imo_multicast_ifp;
1092                                 IN_IFADDR_RLOCK(&in_ifa_tracker);
1093                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1094                                         if ((ia->ia_ifp == ifp) &&
1095                                             (cred == NULL ||
1096                                             prison_check_ip4(cred,
1097                                             &ia->ia_addr.sin_addr) == 0))
1098                                                 break;
1099                                 }
1100                                 if (ia == NULL)
1101                                         error = EADDRNOTAVAIL;
1102                                 else {
1103                                         laddr = ia->ia_addr.sin_addr;
1104                                         error = 0;
1105                                 }
1106                                 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1107                         }
1108                 }
1109                 if (error)
1110                         return (error);
1111         }
1112         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1113             laddr, lport, 0, NULL);
1114         if (oinp != NULL) {
1115                 if (oinpp != NULL)
1116                         *oinpp = oinp;
1117                 return (EADDRINUSE);
1118         }
1119         if (lport == 0) {
1120                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1121                     cred);
1122                 if (error)
1123                         return (error);
1124         }
1125         *laddrp = laddr.s_addr;
1126         *lportp = lport;
1127         *faddrp = faddr.s_addr;
1128         *fportp = fport;
1129         return (0);
1130 }
1131
1132 void
1133 in_pcbdisconnect(struct inpcb *inp)
1134 {
1135
1136         INP_WLOCK_ASSERT(inp);
1137         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1138
1139         inp->inp_faddr.s_addr = INADDR_ANY;
1140         inp->inp_fport = 0;
1141         in_pcbrehash(inp);
1142 }
1143 #endif /* INET */
1144
1145 /*
1146  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1147  * For most protocols, this will be invoked immediately prior to calling
1148  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1149  * socket, in which case in_pcbfree() is deferred.
1150  */
1151 void
1152 in_pcbdetach(struct inpcb *inp)
1153 {
1154
1155         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1156
1157 #ifdef RATELIMIT
1158         if (inp->inp_snd_tag != NULL)
1159                 in_pcbdetach_txrtlmt(inp);
1160 #endif
1161         inp->inp_socket->so_pcb = NULL;
1162         inp->inp_socket = NULL;
1163 }
1164
1165 /*
1166  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1167  * stability of an inpcb pointer despite the inpcb lock being released.  This
1168  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1169  * but where the inpcb lock may already held, or when acquiring a reference
1170  * via a pcbgroup.
1171  *
1172  * in_pcbref() should be used only to provide brief memory stability, and
1173  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1174  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1175  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1176  * lock and rele are the *only* safe operations that may be performed on the
1177  * inpcb.
1178  *
1179  * While the inpcb will not be freed, releasing the inpcb lock means that the
1180  * connection's state may change, so the caller should be careful to
1181  * revalidate any cached state on reacquiring the lock.  Drop the reference
1182  * using in_pcbrele().
1183  */
1184 void
1185 in_pcbref(struct inpcb *inp)
1186 {
1187
1188         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1189
1190         refcount_acquire(&inp->inp_refcount);
1191 }
1192
1193 /*
1194  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1195  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1196  * return a flag indicating whether or not the inpcb remains valid.  If it is
1197  * valid, we return with the inpcb lock held.
1198  *
1199  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1200  * reference on an inpcb.  Historically more work was done here (actually, in
1201  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1202  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1203  * about memory stability (and continued use of the write lock).
1204  */
1205 int
1206 in_pcbrele_rlocked(struct inpcb *inp)
1207 {
1208         struct inpcbinfo *pcbinfo;
1209
1210         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1211
1212         INP_RLOCK_ASSERT(inp);
1213
1214         if (refcount_release(&inp->inp_refcount) == 0) {
1215                 /*
1216                  * If the inpcb has been freed, let the caller know, even if
1217                  * this isn't the last reference.
1218                  */
1219                 if (inp->inp_flags2 & INP_FREED) {
1220                         INP_RUNLOCK(inp);
1221                         return (1);
1222                 }
1223                 return (0);
1224         }
1225
1226         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1227
1228         INP_RUNLOCK(inp);
1229         pcbinfo = inp->inp_pcbinfo;
1230         uma_zfree(pcbinfo->ipi_zone, inp);
1231         return (1);
1232 }
1233
1234 int
1235 in_pcbrele_wlocked(struct inpcb *inp)
1236 {
1237         struct inpcbinfo *pcbinfo;
1238
1239         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1240
1241         INP_WLOCK_ASSERT(inp);
1242
1243         if (refcount_release(&inp->inp_refcount) == 0) {
1244                 /*
1245                  * If the inpcb has been freed, let the caller know, even if
1246                  * this isn't the last reference.
1247                  */
1248                 if (inp->inp_flags2 & INP_FREED) {
1249                         INP_WUNLOCK(inp);
1250                         return (1);
1251                 }
1252                 return (0);
1253         }
1254
1255         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1256
1257         INP_WUNLOCK(inp);
1258         pcbinfo = inp->inp_pcbinfo;
1259         uma_zfree(pcbinfo->ipi_zone, inp);
1260         return (1);
1261 }
1262
1263 /*
1264  * Temporary wrapper.
1265  */
1266 int
1267 in_pcbrele(struct inpcb *inp)
1268 {
1269
1270         return (in_pcbrele_wlocked(inp));
1271 }
1272
1273 /*
1274  * Unconditionally schedule an inpcb to be freed by decrementing its
1275  * reference count, which should occur only after the inpcb has been detached
1276  * from its socket.  If another thread holds a temporary reference (acquired
1277  * using in_pcbref()) then the free is deferred until that reference is
1278  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1279  * work, including removal from global lists, is done in this context, where
1280  * the pcbinfo lock is held.
1281  */
1282 void
1283 in_pcbfree(struct inpcb *inp)
1284 {
1285         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1286
1287         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1288
1289 #ifdef INVARIANTS
1290         if (pcbinfo == &V_tcbinfo) {
1291                 INP_INFO_LOCK_ASSERT(pcbinfo);
1292         } else {
1293                 INP_INFO_WLOCK_ASSERT(pcbinfo);
1294         }
1295 #endif
1296         INP_WLOCK_ASSERT(inp);
1297
1298         /* XXXRW: Do as much as possible here. */
1299 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1300         if (inp->inp_sp != NULL)
1301                 ipsec_delete_pcbpolicy(inp);
1302 #endif
1303         INP_LIST_WLOCK(pcbinfo);
1304         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1305         in_pcbremlists(inp);
1306         INP_LIST_WUNLOCK(pcbinfo);
1307 #ifdef INET6
1308         if (inp->inp_vflag & INP_IPV6PROTO) {
1309                 ip6_freepcbopts(inp->in6p_outputopts);
1310                 if (inp->in6p_moptions != NULL)
1311                         ip6_freemoptions(inp->in6p_moptions);
1312         }
1313 #endif
1314         if (inp->inp_options)
1315                 (void)m_free(inp->inp_options);
1316 #ifdef INET
1317         if (inp->inp_moptions != NULL)
1318                 inp_freemoptions(inp->inp_moptions);
1319 #endif
1320         RO_RTFREE(&inp->inp_route);
1321         if (inp->inp_route.ro_lle)
1322                 LLE_FREE(inp->inp_route.ro_lle);        /* zeros ro_lle */
1323
1324         inp->inp_vflag = 0;
1325         inp->inp_flags2 |= INP_FREED;
1326         crfree(inp->inp_cred);
1327 #ifdef MAC
1328         mac_inpcb_destroy(inp);
1329 #endif
1330         if (!in_pcbrele_wlocked(inp))
1331                 INP_WUNLOCK(inp);
1332 }
1333
1334 /*
1335  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1336  * port reservation, and preventing it from being returned by inpcb lookups.
1337  *
1338  * It is used by TCP to mark an inpcb as unused and avoid future packet
1339  * delivery or event notification when a socket remains open but TCP has
1340  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1341  * or a RST on the wire, and allows the port binding to be reused while still
1342  * maintaining the invariant that so_pcb always points to a valid inpcb until
1343  * in_pcbdetach().
1344  *
1345  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1346  * in_pcbnotifyall() and in_pcbpurgeif0()?
1347  */
1348 void
1349 in_pcbdrop(struct inpcb *inp)
1350 {
1351
1352         INP_WLOCK_ASSERT(inp);
1353
1354         /*
1355          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1356          * the hash lock...?
1357          */
1358         inp->inp_flags |= INP_DROPPED;
1359         if (inp->inp_flags & INP_INHASHLIST) {
1360                 struct inpcbport *phd = inp->inp_phd;
1361
1362                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1363                 LIST_REMOVE(inp, inp_hash);
1364                 LIST_REMOVE(inp, inp_portlist);
1365                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1366                         LIST_REMOVE(phd, phd_hash);
1367                         free(phd, M_PCB);
1368                 }
1369                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1370                 inp->inp_flags &= ~INP_INHASHLIST;
1371 #ifdef PCBGROUP
1372                 in_pcbgroup_remove(inp);
1373 #endif
1374         }
1375 }
1376
1377 #ifdef INET
1378 /*
1379  * Common routines to return the socket addresses associated with inpcbs.
1380  */
1381 struct sockaddr *
1382 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1383 {
1384         struct sockaddr_in *sin;
1385
1386         sin = malloc(sizeof *sin, M_SONAME,
1387                 M_WAITOK | M_ZERO);
1388         sin->sin_family = AF_INET;
1389         sin->sin_len = sizeof(*sin);
1390         sin->sin_addr = *addr_p;
1391         sin->sin_port = port;
1392
1393         return (struct sockaddr *)sin;
1394 }
1395
1396 int
1397 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1398 {
1399         struct inpcb *inp;
1400         struct in_addr addr;
1401         in_port_t port;
1402
1403         inp = sotoinpcb(so);
1404         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1405
1406         INP_RLOCK(inp);
1407         port = inp->inp_lport;
1408         addr = inp->inp_laddr;
1409         INP_RUNLOCK(inp);
1410
1411         *nam = in_sockaddr(port, &addr);
1412         return 0;
1413 }
1414
1415 int
1416 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1417 {
1418         struct inpcb *inp;
1419         struct in_addr addr;
1420         in_port_t port;
1421
1422         inp = sotoinpcb(so);
1423         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1424
1425         INP_RLOCK(inp);
1426         port = inp->inp_fport;
1427         addr = inp->inp_faddr;
1428         INP_RUNLOCK(inp);
1429
1430         *nam = in_sockaddr(port, &addr);
1431         return 0;
1432 }
1433
1434 void
1435 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1436     struct inpcb *(*notify)(struct inpcb *, int))
1437 {
1438         struct inpcb *inp, *inp_temp;
1439
1440         INP_INFO_WLOCK(pcbinfo);
1441         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1442                 INP_WLOCK(inp);
1443 #ifdef INET6
1444                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1445                         INP_WUNLOCK(inp);
1446                         continue;
1447                 }
1448 #endif
1449                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1450                     inp->inp_socket == NULL) {
1451                         INP_WUNLOCK(inp);
1452                         continue;
1453                 }
1454                 if ((*notify)(inp, errno))
1455                         INP_WUNLOCK(inp);
1456         }
1457         INP_INFO_WUNLOCK(pcbinfo);
1458 }
1459
1460 void
1461 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1462 {
1463         struct inpcb *inp;
1464         struct ip_moptions *imo;
1465         int i, gap;
1466
1467         INP_INFO_WLOCK(pcbinfo);
1468         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1469                 INP_WLOCK(inp);
1470                 imo = inp->inp_moptions;
1471                 if ((inp->inp_vflag & INP_IPV4) &&
1472                     imo != NULL) {
1473                         /*
1474                          * Unselect the outgoing interface if it is being
1475                          * detached.
1476                          */
1477                         if (imo->imo_multicast_ifp == ifp)
1478                                 imo->imo_multicast_ifp = NULL;
1479
1480                         /*
1481                          * Drop multicast group membership if we joined
1482                          * through the interface being detached.
1483                          */
1484                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1485                             i++) {
1486                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1487                                         in_delmulti(imo->imo_membership[i]);
1488                                         gap++;
1489                                 } else if (gap != 0)
1490                                         imo->imo_membership[i - gap] =
1491                                             imo->imo_membership[i];
1492                         }
1493                         imo->imo_num_memberships -= gap;
1494                 }
1495                 INP_WUNLOCK(inp);
1496         }
1497         INP_INFO_WUNLOCK(pcbinfo);
1498 }
1499
1500 /*
1501  * Lookup a PCB based on the local address and port.  Caller must hold the
1502  * hash lock.  No inpcb locks or references are acquired.
1503  */
1504 #define INP_LOOKUP_MAPPED_PCB_COST      3
1505 struct inpcb *
1506 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1507     u_short lport, int lookupflags, struct ucred *cred)
1508 {
1509         struct inpcb *inp;
1510 #ifdef INET6
1511         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1512 #else
1513         int matchwild = 3;
1514 #endif
1515         int wildcard;
1516
1517         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1518             ("%s: invalid lookup flags %d", __func__, lookupflags));
1519
1520         INP_HASH_LOCK_ASSERT(pcbinfo);
1521
1522         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1523                 struct inpcbhead *head;
1524                 /*
1525                  * Look for an unconnected (wildcard foreign addr) PCB that
1526                  * matches the local address and port we're looking for.
1527                  */
1528                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1529                     0, pcbinfo->ipi_hashmask)];
1530                 LIST_FOREACH(inp, head, inp_hash) {
1531 #ifdef INET6
1532                         /* XXX inp locking */
1533                         if ((inp->inp_vflag & INP_IPV4) == 0)
1534                                 continue;
1535 #endif
1536                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1537                             inp->inp_laddr.s_addr == laddr.s_addr &&
1538                             inp->inp_lport == lport) {
1539                                 /*
1540                                  * Found?
1541                                  */
1542                                 if (cred == NULL ||
1543                                     prison_equal_ip4(cred->cr_prison,
1544                                         inp->inp_cred->cr_prison))
1545                                         return (inp);
1546                         }
1547                 }
1548                 /*
1549                  * Not found.
1550                  */
1551                 return (NULL);
1552         } else {
1553                 struct inpcbporthead *porthash;
1554                 struct inpcbport *phd;
1555                 struct inpcb *match = NULL;
1556                 /*
1557                  * Best fit PCB lookup.
1558                  *
1559                  * First see if this local port is in use by looking on the
1560                  * port hash list.
1561                  */
1562                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1563                     pcbinfo->ipi_porthashmask)];
1564                 LIST_FOREACH(phd, porthash, phd_hash) {
1565                         if (phd->phd_port == lport)
1566                                 break;
1567                 }
1568                 if (phd != NULL) {
1569                         /*
1570                          * Port is in use by one or more PCBs. Look for best
1571                          * fit.
1572                          */
1573                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1574                                 wildcard = 0;
1575                                 if (cred != NULL &&
1576                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1577                                         cred->cr_prison))
1578                                         continue;
1579 #ifdef INET6
1580                                 /* XXX inp locking */
1581                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1582                                         continue;
1583                                 /*
1584                                  * We never select the PCB that has
1585                                  * INP_IPV6 flag and is bound to :: if
1586                                  * we have another PCB which is bound
1587                                  * to 0.0.0.0.  If a PCB has the
1588                                  * INP_IPV6 flag, then we set its cost
1589                                  * higher than IPv4 only PCBs.
1590                                  *
1591                                  * Note that the case only happens
1592                                  * when a socket is bound to ::, under
1593                                  * the condition that the use of the
1594                                  * mapped address is allowed.
1595                                  */
1596                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1597                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1598 #endif
1599                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1600                                         wildcard++;
1601                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1602                                         if (laddr.s_addr == INADDR_ANY)
1603                                                 wildcard++;
1604                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1605                                                 continue;
1606                                 } else {
1607                                         if (laddr.s_addr != INADDR_ANY)
1608                                                 wildcard++;
1609                                 }
1610                                 if (wildcard < matchwild) {
1611                                         match = inp;
1612                                         matchwild = wildcard;
1613                                         if (matchwild == 0)
1614                                                 break;
1615                                 }
1616                         }
1617                 }
1618                 return (match);
1619         }
1620 }
1621 #undef INP_LOOKUP_MAPPED_PCB_COST
1622
1623 #ifdef PCBGROUP
1624 /*
1625  * Lookup PCB in hash list, using pcbgroup tables.
1626  */
1627 static struct inpcb *
1628 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1629     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1630     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1631 {
1632         struct inpcbhead *head;
1633         struct inpcb *inp, *tmpinp;
1634         u_short fport = fport_arg, lport = lport_arg;
1635
1636         /*
1637          * First look for an exact match.
1638          */
1639         tmpinp = NULL;
1640         INP_GROUP_LOCK(pcbgroup);
1641         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1642             pcbgroup->ipg_hashmask)];
1643         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1644 #ifdef INET6
1645                 /* XXX inp locking */
1646                 if ((inp->inp_vflag & INP_IPV4) == 0)
1647                         continue;
1648 #endif
1649                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1650                     inp->inp_laddr.s_addr == laddr.s_addr &&
1651                     inp->inp_fport == fport &&
1652                     inp->inp_lport == lport) {
1653                         /*
1654                          * XXX We should be able to directly return
1655                          * the inp here, without any checks.
1656                          * Well unless both bound with SO_REUSEPORT?
1657                          */
1658                         if (prison_flag(inp->inp_cred, PR_IP4))
1659                                 goto found;
1660                         if (tmpinp == NULL)
1661                                 tmpinp = inp;
1662                 }
1663         }
1664         if (tmpinp != NULL) {
1665                 inp = tmpinp;
1666                 goto found;
1667         }
1668
1669 #ifdef  RSS
1670         /*
1671          * For incoming connections, we may wish to do a wildcard
1672          * match for an RSS-local socket.
1673          */
1674         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1675                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1676 #ifdef INET6
1677                 struct inpcb *local_wild_mapped = NULL;
1678 #endif
1679                 struct inpcb *jail_wild = NULL;
1680                 struct inpcbhead *head;
1681                 int injail;
1682
1683                 /*
1684                  * Order of socket selection - we always prefer jails.
1685                  *      1. jailed, non-wild.
1686                  *      2. jailed, wild.
1687                  *      3. non-jailed, non-wild.
1688                  *      4. non-jailed, wild.
1689                  */
1690
1691                 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1692                     lport, 0, pcbgroup->ipg_hashmask)];
1693                 LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1694 #ifdef INET6
1695                         /* XXX inp locking */
1696                         if ((inp->inp_vflag & INP_IPV4) == 0)
1697                                 continue;
1698 #endif
1699                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1700                             inp->inp_lport != lport)
1701                                 continue;
1702
1703                         injail = prison_flag(inp->inp_cred, PR_IP4);
1704                         if (injail) {
1705                                 if (prison_check_ip4(inp->inp_cred,
1706                                     &laddr) != 0)
1707                                         continue;
1708                         } else {
1709                                 if (local_exact != NULL)
1710                                         continue;
1711                         }
1712
1713                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1714                                 if (injail)
1715                                         goto found;
1716                                 else
1717                                         local_exact = inp;
1718                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1719 #ifdef INET6
1720                                 /* XXX inp locking, NULL check */
1721                                 if (inp->inp_vflag & INP_IPV6PROTO)
1722                                         local_wild_mapped = inp;
1723                                 else
1724 #endif
1725                                         if (injail)
1726                                                 jail_wild = inp;
1727                                         else
1728                                                 local_wild = inp;
1729                         }
1730                 } /* LIST_FOREACH */
1731
1732                 inp = jail_wild;
1733                 if (inp == NULL)
1734                         inp = local_exact;
1735                 if (inp == NULL)
1736                         inp = local_wild;
1737 #ifdef INET6
1738                 if (inp == NULL)
1739                         inp = local_wild_mapped;
1740 #endif
1741                 if (inp != NULL)
1742                         goto found;
1743         }
1744 #endif
1745
1746         /*
1747          * Then look for a wildcard match, if requested.
1748          */
1749         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1750                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1751 #ifdef INET6
1752                 struct inpcb *local_wild_mapped = NULL;
1753 #endif
1754                 struct inpcb *jail_wild = NULL;
1755                 struct inpcbhead *head;
1756                 int injail;
1757
1758                 /*
1759                  * Order of socket selection - we always prefer jails.
1760                  *      1. jailed, non-wild.
1761                  *      2. jailed, wild.
1762                  *      3. non-jailed, non-wild.
1763                  *      4. non-jailed, wild.
1764                  */
1765                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1766                     0, pcbinfo->ipi_wildmask)];
1767                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1768 #ifdef INET6
1769                         /* XXX inp locking */
1770                         if ((inp->inp_vflag & INP_IPV4) == 0)
1771                                 continue;
1772 #endif
1773                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1774                             inp->inp_lport != lport)
1775                                 continue;
1776
1777                         injail = prison_flag(inp->inp_cred, PR_IP4);
1778                         if (injail) {
1779                                 if (prison_check_ip4(inp->inp_cred,
1780                                     &laddr) != 0)
1781                                         continue;
1782                         } else {
1783                                 if (local_exact != NULL)
1784                                         continue;
1785                         }
1786
1787                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1788                                 if (injail)
1789                                         goto found;
1790                                 else
1791                                         local_exact = inp;
1792                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1793 #ifdef INET6
1794                                 /* XXX inp locking, NULL check */
1795                                 if (inp->inp_vflag & INP_IPV6PROTO)
1796                                         local_wild_mapped = inp;
1797                                 else
1798 #endif
1799                                         if (injail)
1800                                                 jail_wild = inp;
1801                                         else
1802                                                 local_wild = inp;
1803                         }
1804                 } /* LIST_FOREACH */
1805                 inp = jail_wild;
1806                 if (inp == NULL)
1807                         inp = local_exact;
1808                 if (inp == NULL)
1809                         inp = local_wild;
1810 #ifdef INET6
1811                 if (inp == NULL)
1812                         inp = local_wild_mapped;
1813 #endif
1814                 if (inp != NULL)
1815                         goto found;
1816         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1817         INP_GROUP_UNLOCK(pcbgroup);
1818         return (NULL);
1819
1820 found:
1821         in_pcbref(inp);
1822         INP_GROUP_UNLOCK(pcbgroup);
1823         if (lookupflags & INPLOOKUP_WLOCKPCB) {
1824                 INP_WLOCK(inp);
1825                 if (in_pcbrele_wlocked(inp))
1826                         return (NULL);
1827         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1828                 INP_RLOCK(inp);
1829                 if (in_pcbrele_rlocked(inp))
1830                         return (NULL);
1831         } else
1832                 panic("%s: locking bug", __func__);
1833         return (inp);
1834 }
1835 #endif /* PCBGROUP */
1836
1837 /*
1838  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1839  * that the caller has locked the hash list, and will not perform any further
1840  * locking or reference operations on either the hash list or the connection.
1841  */
1842 static struct inpcb *
1843 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1844     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1845     struct ifnet *ifp)
1846 {
1847         struct inpcbhead *head;
1848         struct inpcb *inp, *tmpinp;
1849         u_short fport = fport_arg, lport = lport_arg;
1850
1851         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1852             ("%s: invalid lookup flags %d", __func__, lookupflags));
1853
1854         INP_HASH_LOCK_ASSERT(pcbinfo);
1855
1856         /*
1857          * First look for an exact match.
1858          */
1859         tmpinp = NULL;
1860         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1861             pcbinfo->ipi_hashmask)];
1862         LIST_FOREACH(inp, head, inp_hash) {
1863 #ifdef INET6
1864                 /* XXX inp locking */
1865                 if ((inp->inp_vflag & INP_IPV4) == 0)
1866                         continue;
1867 #endif
1868                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1869                     inp->inp_laddr.s_addr == laddr.s_addr &&
1870                     inp->inp_fport == fport &&
1871                     inp->inp_lport == lport) {
1872                         /*
1873                          * XXX We should be able to directly return
1874                          * the inp here, without any checks.
1875                          * Well unless both bound with SO_REUSEPORT?
1876                          */
1877                         if (prison_flag(inp->inp_cred, PR_IP4))
1878                                 return (inp);
1879                         if (tmpinp == NULL)
1880                                 tmpinp = inp;
1881                 }
1882         }
1883         if (tmpinp != NULL)
1884                 return (tmpinp);
1885
1886         /*
1887          * Then look for a wildcard match, if requested.
1888          */
1889         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1890                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1891 #ifdef INET6
1892                 struct inpcb *local_wild_mapped = NULL;
1893 #endif
1894                 struct inpcb *jail_wild = NULL;
1895                 int injail;
1896
1897                 /*
1898                  * Order of socket selection - we always prefer jails.
1899                  *      1. jailed, non-wild.
1900                  *      2. jailed, wild.
1901                  *      3. non-jailed, non-wild.
1902                  *      4. non-jailed, wild.
1903                  */
1904
1905                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1906                     0, pcbinfo->ipi_hashmask)];
1907                 LIST_FOREACH(inp, head, inp_hash) {
1908 #ifdef INET6
1909                         /* XXX inp locking */
1910                         if ((inp->inp_vflag & INP_IPV4) == 0)
1911                                 continue;
1912 #endif
1913                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1914                             inp->inp_lport != lport)
1915                                 continue;
1916
1917                         injail = prison_flag(inp->inp_cred, PR_IP4);
1918                         if (injail) {
1919                                 if (prison_check_ip4(inp->inp_cred,
1920                                     &laddr) != 0)
1921                                         continue;
1922                         } else {
1923                                 if (local_exact != NULL)
1924                                         continue;
1925                         }
1926
1927                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1928                                 if (injail)
1929                                         return (inp);
1930                                 else
1931                                         local_exact = inp;
1932                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1933 #ifdef INET6
1934                                 /* XXX inp locking, NULL check */
1935                                 if (inp->inp_vflag & INP_IPV6PROTO)
1936                                         local_wild_mapped = inp;
1937                                 else
1938 #endif
1939                                         if (injail)
1940                                                 jail_wild = inp;
1941                                         else
1942                                                 local_wild = inp;
1943                         }
1944                 } /* LIST_FOREACH */
1945                 if (jail_wild != NULL)
1946                         return (jail_wild);
1947                 if (local_exact != NULL)
1948                         return (local_exact);
1949                 if (local_wild != NULL)
1950                         return (local_wild);
1951 #ifdef INET6
1952                 if (local_wild_mapped != NULL)
1953                         return (local_wild_mapped);
1954 #endif
1955         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1956
1957         return (NULL);
1958 }
1959
1960 /*
1961  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1962  * hash list lock, and will return the inpcb locked (i.e., requires
1963  * INPLOOKUP_LOCKPCB).
1964  */
1965 static struct inpcb *
1966 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1967     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1968     struct ifnet *ifp)
1969 {
1970         struct inpcb *inp;
1971
1972         INP_HASH_RLOCK(pcbinfo);
1973         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1974             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1975         if (inp != NULL) {
1976                 in_pcbref(inp);
1977                 INP_HASH_RUNLOCK(pcbinfo);
1978                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1979                         INP_WLOCK(inp);
1980                         if (in_pcbrele_wlocked(inp))
1981                                 return (NULL);
1982                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1983                         INP_RLOCK(inp);
1984                         if (in_pcbrele_rlocked(inp))
1985                                 return (NULL);
1986                 } else
1987                         panic("%s: locking bug", __func__);
1988         } else
1989                 INP_HASH_RUNLOCK(pcbinfo);
1990         return (inp);
1991 }
1992
1993 /*
1994  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1995  * from which a pre-calculated hash value may be extracted.
1996  *
1997  * Possibly more of this logic should be in in_pcbgroup.c.
1998  */
1999 struct inpcb *
2000 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2001     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2002 {
2003 #if defined(PCBGROUP) && !defined(RSS)
2004         struct inpcbgroup *pcbgroup;
2005 #endif
2006
2007         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2008             ("%s: invalid lookup flags %d", __func__, lookupflags));
2009         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2010             ("%s: LOCKPCB not set", __func__));
2011
2012         /*
2013          * When not using RSS, use connection groups in preference to the
2014          * reservation table when looking up 4-tuples.  When using RSS, just
2015          * use the reservation table, due to the cost of the Toeplitz hash
2016          * in software.
2017          *
2018          * XXXRW: This policy belongs in the pcbgroup code, as in principle
2019          * we could be doing RSS with a non-Toeplitz hash that is affordable
2020          * in software.
2021          */
2022 #if defined(PCBGROUP) && !defined(RSS)
2023         if (in_pcbgroup_enabled(pcbinfo)) {
2024                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2025                     fport);
2026                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2027                     laddr, lport, lookupflags, ifp));
2028         }
2029 #endif
2030         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2031             lookupflags, ifp));
2032 }
2033
2034 struct inpcb *
2035 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2036     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2037     struct ifnet *ifp, struct mbuf *m)
2038 {
2039 #ifdef PCBGROUP
2040         struct inpcbgroup *pcbgroup;
2041 #endif
2042
2043         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2044             ("%s: invalid lookup flags %d", __func__, lookupflags));
2045         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2046             ("%s: LOCKPCB not set", __func__));
2047
2048 #ifdef PCBGROUP
2049         /*
2050          * If we can use a hardware-generated hash to look up the connection
2051          * group, use that connection group to find the inpcb.  Otherwise
2052          * fall back on a software hash -- or the reservation table if we're
2053          * using RSS.
2054          *
2055          * XXXRW: As above, that policy belongs in the pcbgroup code.
2056          */
2057         if (in_pcbgroup_enabled(pcbinfo) &&
2058             !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2059                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2060                     m->m_pkthdr.flowid);
2061                 if (pcbgroup != NULL)
2062                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2063                             fport, laddr, lport, lookupflags, ifp));
2064 #ifndef RSS
2065                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2066                     fport);
2067                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2068                     laddr, lport, lookupflags, ifp));
2069 #endif
2070         }
2071 #endif
2072         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2073             lookupflags, ifp));
2074 }
2075 #endif /* INET */
2076
2077 /*
2078  * Insert PCB onto various hash lists.
2079  */
2080 static int
2081 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2082 {
2083         struct inpcbhead *pcbhash;
2084         struct inpcbporthead *pcbporthash;
2085         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2086         struct inpcbport *phd;
2087         u_int32_t hashkey_faddr;
2088
2089         INP_WLOCK_ASSERT(inp);
2090         INP_HASH_WLOCK_ASSERT(pcbinfo);
2091
2092         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2093             ("in_pcbinshash: INP_INHASHLIST"));
2094
2095 #ifdef INET6
2096         if (inp->inp_vflag & INP_IPV6)
2097                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2098         else
2099 #endif
2100         hashkey_faddr = inp->inp_faddr.s_addr;
2101
2102         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2103                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2104
2105         pcbporthash = &pcbinfo->ipi_porthashbase[
2106             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2107
2108         /*
2109          * Go through port list and look for a head for this lport.
2110          */
2111         LIST_FOREACH(phd, pcbporthash, phd_hash) {
2112                 if (phd->phd_port == inp->inp_lport)
2113                         break;
2114         }
2115         /*
2116          * If none exists, malloc one and tack it on.
2117          */
2118         if (phd == NULL) {
2119                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2120                 if (phd == NULL) {
2121                         return (ENOBUFS); /* XXX */
2122                 }
2123                 phd->phd_port = inp->inp_lport;
2124                 LIST_INIT(&phd->phd_pcblist);
2125                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2126         }
2127         inp->inp_phd = phd;
2128         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2129         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2130         inp->inp_flags |= INP_INHASHLIST;
2131 #ifdef PCBGROUP
2132         if (do_pcbgroup_update)
2133                 in_pcbgroup_update(inp);
2134 #endif
2135         return (0);
2136 }
2137
2138 /*
2139  * For now, there are two public interfaces to insert an inpcb into the hash
2140  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2141  * is used only in the TCP syncache, where in_pcbinshash is called before the
2142  * full 4-tuple is set for the inpcb, and we don't want to install in the
2143  * pcbgroup until later.
2144  *
2145  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2146  * connection groups, and partially initialised inpcbs should not be exposed
2147  * to either reservation hash tables or pcbgroups.
2148  */
2149 int
2150 in_pcbinshash(struct inpcb *inp)
2151 {
2152
2153         return (in_pcbinshash_internal(inp, 1));
2154 }
2155
2156 int
2157 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2158 {
2159
2160         return (in_pcbinshash_internal(inp, 0));
2161 }
2162
2163 /*
2164  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2165  * changed. NOTE: This does not handle the case of the lport changing (the
2166  * hashed port list would have to be updated as well), so the lport must
2167  * not change after in_pcbinshash() has been called.
2168  */
2169 void
2170 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2171 {
2172         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2173         struct inpcbhead *head;
2174         u_int32_t hashkey_faddr;
2175
2176         INP_WLOCK_ASSERT(inp);
2177         INP_HASH_WLOCK_ASSERT(pcbinfo);
2178
2179         KASSERT(inp->inp_flags & INP_INHASHLIST,
2180             ("in_pcbrehash: !INP_INHASHLIST"));
2181
2182 #ifdef INET6
2183         if (inp->inp_vflag & INP_IPV6)
2184                 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2185         else
2186 #endif
2187         hashkey_faddr = inp->inp_faddr.s_addr;
2188
2189         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2190                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2191
2192         LIST_REMOVE(inp, inp_hash);
2193         LIST_INSERT_HEAD(head, inp, inp_hash);
2194
2195 #ifdef PCBGROUP
2196         if (m != NULL)
2197                 in_pcbgroup_update_mbuf(inp, m);
2198         else
2199                 in_pcbgroup_update(inp);
2200 #endif
2201 }
2202
2203 void
2204 in_pcbrehash(struct inpcb *inp)
2205 {
2206
2207         in_pcbrehash_mbuf(inp, NULL);
2208 }
2209
2210 /*
2211  * Remove PCB from various lists.
2212  */
2213 static void
2214 in_pcbremlists(struct inpcb *inp)
2215 {
2216         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2217
2218 #ifdef INVARIANTS
2219         if (pcbinfo == &V_tcbinfo) {
2220                 INP_INFO_RLOCK_ASSERT(pcbinfo);
2221         } else {
2222                 INP_INFO_WLOCK_ASSERT(pcbinfo);
2223         }
2224 #endif
2225
2226         INP_WLOCK_ASSERT(inp);
2227         INP_LIST_WLOCK_ASSERT(pcbinfo);
2228
2229         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2230         if (inp->inp_flags & INP_INHASHLIST) {
2231                 struct inpcbport *phd = inp->inp_phd;
2232
2233                 INP_HASH_WLOCK(pcbinfo);
2234                 LIST_REMOVE(inp, inp_hash);
2235                 LIST_REMOVE(inp, inp_portlist);
2236                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2237                         LIST_REMOVE(phd, phd_hash);
2238                         free(phd, M_PCB);
2239                 }
2240                 INP_HASH_WUNLOCK(pcbinfo);
2241                 inp->inp_flags &= ~INP_INHASHLIST;
2242         }
2243         LIST_REMOVE(inp, inp_list);
2244         pcbinfo->ipi_count--;
2245 #ifdef PCBGROUP
2246         in_pcbgroup_remove(inp);
2247 #endif
2248 }
2249
2250 /*
2251  * Check for alternatives when higher level complains
2252  * about service problems.  For now, invalidate cached
2253  * routing information.  If the route was created dynamically
2254  * (by a redirect), time to try a default gateway again.
2255  */
2256 void
2257 in_losing(struct inpcb *inp)
2258 {
2259
2260         RO_RTFREE(&inp->inp_route);
2261         if (inp->inp_route.ro_lle)
2262                 LLE_FREE(inp->inp_route.ro_lle);        /* zeros ro_lle */
2263         return;
2264 }
2265
2266 /*
2267  * A set label operation has occurred at the socket layer, propagate the
2268  * label change into the in_pcb for the socket.
2269  */
2270 void
2271 in_pcbsosetlabel(struct socket *so)
2272 {
2273 #ifdef MAC
2274         struct inpcb *inp;
2275
2276         inp = sotoinpcb(so);
2277         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2278
2279         INP_WLOCK(inp);
2280         SOCK_LOCK(so);
2281         mac_inpcb_sosetlabel(so, inp);
2282         SOCK_UNLOCK(so);
2283         INP_WUNLOCK(inp);
2284 #endif
2285 }
2286
2287 /*
2288  * ipport_tick runs once per second, determining if random port allocation
2289  * should be continued.  If more than ipport_randomcps ports have been
2290  * allocated in the last second, then we return to sequential port
2291  * allocation. We return to random allocation only once we drop below
2292  * ipport_randomcps for at least ipport_randomtime seconds.
2293  */
2294 static void
2295 ipport_tick(void *xtp)
2296 {
2297         VNET_ITERATOR_DECL(vnet_iter);
2298
2299         VNET_LIST_RLOCK_NOSLEEP();
2300         VNET_FOREACH(vnet_iter) {
2301                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2302                 if (V_ipport_tcpallocs <=
2303                     V_ipport_tcplastcount + V_ipport_randomcps) {
2304                         if (V_ipport_stoprandom > 0)
2305                                 V_ipport_stoprandom--;
2306                 } else
2307                         V_ipport_stoprandom = V_ipport_randomtime;
2308                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2309                 CURVNET_RESTORE();
2310         }
2311         VNET_LIST_RUNLOCK_NOSLEEP();
2312         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2313 }
2314
2315 static void
2316 ip_fini(void *xtp)
2317 {
2318
2319         callout_stop(&ipport_tick_callout);
2320 }
2321
2322 /* 
2323  * The ipport_callout should start running at about the time we attach the
2324  * inet or inet6 domains.
2325  */
2326 static void
2327 ipport_tick_init(const void *unused __unused)
2328 {
2329
2330         /* Start ipport_tick. */
2331         callout_init(&ipport_tick_callout, 1);
2332         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2333         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2334                 SHUTDOWN_PRI_DEFAULT);
2335 }
2336 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2337     ipport_tick_init, NULL);
2338
2339 void
2340 inp_wlock(struct inpcb *inp)
2341 {
2342
2343         INP_WLOCK(inp);
2344 }
2345
2346 void
2347 inp_wunlock(struct inpcb *inp)
2348 {
2349
2350         INP_WUNLOCK(inp);
2351 }
2352
2353 void
2354 inp_rlock(struct inpcb *inp)
2355 {
2356
2357         INP_RLOCK(inp);
2358 }
2359
2360 void
2361 inp_runlock(struct inpcb *inp)
2362 {
2363
2364         INP_RUNLOCK(inp);
2365 }
2366
2367 #ifdef INVARIANT_SUPPORT
2368 void
2369 inp_lock_assert(struct inpcb *inp)
2370 {
2371
2372         INP_WLOCK_ASSERT(inp);
2373 }
2374
2375 void
2376 inp_unlock_assert(struct inpcb *inp)
2377 {
2378
2379         INP_UNLOCK_ASSERT(inp);
2380 }
2381 #endif
2382
2383 void
2384 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2385 {
2386         struct inpcb *inp;
2387
2388         INP_INFO_WLOCK(&V_tcbinfo);
2389         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2390                 INP_WLOCK(inp);
2391                 func(inp, arg);
2392                 INP_WUNLOCK(inp);
2393         }
2394         INP_INFO_WUNLOCK(&V_tcbinfo);
2395 }
2396
2397 struct socket *
2398 inp_inpcbtosocket(struct inpcb *inp)
2399 {
2400
2401         INP_WLOCK_ASSERT(inp);
2402         return (inp->inp_socket);
2403 }
2404
2405 struct tcpcb *
2406 inp_inpcbtotcpcb(struct inpcb *inp)
2407 {
2408
2409         INP_WLOCK_ASSERT(inp);
2410         return ((struct tcpcb *)inp->inp_ppcb);
2411 }
2412
2413 int
2414 inp_ip_tos_get(const struct inpcb *inp)
2415 {
2416
2417         return (inp->inp_ip_tos);
2418 }
2419
2420 void
2421 inp_ip_tos_set(struct inpcb *inp, int val)
2422 {
2423
2424         inp->inp_ip_tos = val;
2425 }
2426
2427 void
2428 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2429     uint32_t *faddr, uint16_t *fp)
2430 {
2431
2432         INP_LOCK_ASSERT(inp);
2433         *laddr = inp->inp_laddr.s_addr;
2434         *faddr = inp->inp_faddr.s_addr;
2435         *lp = inp->inp_lport;
2436         *fp = inp->inp_fport;
2437 }
2438
2439 struct inpcb *
2440 so_sotoinpcb(struct socket *so)
2441 {
2442
2443         return (sotoinpcb(so));
2444 }
2445
2446 struct tcpcb *
2447 so_sototcpcb(struct socket *so)
2448 {
2449
2450         return (sototcpcb(so));
2451 }
2452
2453 /*
2454  * Create an external-format (``xinpcb'') structure using the information in
2455  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2456  * reduce the spew of irrelevant information over this interface, to isolate
2457  * user code from changes in the kernel structure, and potentially to provide
2458  * information-hiding if we decide that some of this information should be
2459  * hidden from users.
2460  */
2461 void
2462 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2463 {
2464
2465         xi->xi_len = sizeof(struct xinpcb);
2466         if (inp->inp_socket)
2467                 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2468         else
2469                 bzero(&xi->xi_socket, sizeof(struct xsocket));
2470         bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2471         xi->inp_gencnt = inp->inp_gencnt;
2472         xi->inp_ppcb = inp->inp_ppcb;
2473         xi->inp_flow = inp->inp_flow;
2474         xi->inp_flowid = inp->inp_flowid;
2475         xi->inp_flowtype = inp->inp_flowtype;
2476         xi->inp_flags = inp->inp_flags;
2477         xi->inp_flags2 = inp->inp_flags2;
2478         xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2479         xi->in6p_cksum = inp->in6p_cksum;
2480         xi->in6p_hops = inp->in6p_hops;
2481         xi->inp_ip_tos = inp->inp_ip_tos;
2482         xi->inp_vflag = inp->inp_vflag;
2483         xi->inp_ip_ttl = inp->inp_ip_ttl;
2484         xi->inp_ip_p = inp->inp_ip_p;
2485         xi->inp_ip_minttl = inp->inp_ip_minttl;
2486 }
2487
2488 #ifdef DDB
2489 static void
2490 db_print_indent(int indent)
2491 {
2492         int i;
2493
2494         for (i = 0; i < indent; i++)
2495                 db_printf(" ");
2496 }
2497
2498 static void
2499 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2500 {
2501         char faddr_str[48], laddr_str[48];
2502
2503         db_print_indent(indent);
2504         db_printf("%s at %p\n", name, inc);
2505
2506         indent += 2;
2507
2508 #ifdef INET6
2509         if (inc->inc_flags & INC_ISIPV6) {
2510                 /* IPv6. */
2511                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2512                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2513         } else
2514 #endif
2515         {
2516                 /* IPv4. */
2517                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2518                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2519         }
2520         db_print_indent(indent);
2521         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2522             ntohs(inc->inc_lport));
2523         db_print_indent(indent);
2524         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2525             ntohs(inc->inc_fport));
2526 }
2527
2528 static void
2529 db_print_inpflags(int inp_flags)
2530 {
2531         int comma;
2532
2533         comma = 0;
2534         if (inp_flags & INP_RECVOPTS) {
2535                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2536                 comma = 1;
2537         }
2538         if (inp_flags & INP_RECVRETOPTS) {
2539                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2540                 comma = 1;
2541         }
2542         if (inp_flags & INP_RECVDSTADDR) {
2543                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2544                 comma = 1;
2545         }
2546         if (inp_flags & INP_ORIGDSTADDR) {
2547                 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2548                 comma = 1;
2549         }
2550         if (inp_flags & INP_HDRINCL) {
2551                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2552                 comma = 1;
2553         }
2554         if (inp_flags & INP_HIGHPORT) {
2555                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2556                 comma = 1;
2557         }
2558         if (inp_flags & INP_LOWPORT) {
2559                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2560                 comma = 1;
2561         }
2562         if (inp_flags & INP_ANONPORT) {
2563                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2564                 comma = 1;
2565         }
2566         if (inp_flags & INP_RECVIF) {
2567                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2568                 comma = 1;
2569         }
2570         if (inp_flags & INP_MTUDISC) {
2571                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2572                 comma = 1;
2573         }
2574         if (inp_flags & INP_RECVTTL) {
2575                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2576                 comma = 1;
2577         }
2578         if (inp_flags & INP_DONTFRAG) {
2579                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2580                 comma = 1;
2581         }
2582         if (inp_flags & INP_RECVTOS) {
2583                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2584                 comma = 1;
2585         }
2586         if (inp_flags & IN6P_IPV6_V6ONLY) {
2587                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2588                 comma = 1;
2589         }
2590         if (inp_flags & IN6P_PKTINFO) {
2591                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2592                 comma = 1;
2593         }
2594         if (inp_flags & IN6P_HOPLIMIT) {
2595                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2596                 comma = 1;
2597         }
2598         if (inp_flags & IN6P_HOPOPTS) {
2599                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2600                 comma = 1;
2601         }
2602         if (inp_flags & IN6P_DSTOPTS) {
2603                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2604                 comma = 1;
2605         }
2606         if (inp_flags & IN6P_RTHDR) {
2607                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2608                 comma = 1;
2609         }
2610         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2611                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2612                 comma = 1;
2613         }
2614         if (inp_flags & IN6P_TCLASS) {
2615                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2616                 comma = 1;
2617         }
2618         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2619                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2620                 comma = 1;
2621         }
2622         if (inp_flags & INP_TIMEWAIT) {
2623                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2624                 comma  = 1;
2625         }
2626         if (inp_flags & INP_ONESBCAST) {
2627                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2628                 comma  = 1;
2629         }
2630         if (inp_flags & INP_DROPPED) {
2631                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2632                 comma  = 1;
2633         }
2634         if (inp_flags & INP_SOCKREF) {
2635                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2636                 comma  = 1;
2637         }
2638         if (inp_flags & IN6P_RFC2292) {
2639                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2640                 comma = 1;
2641         }
2642         if (inp_flags & IN6P_MTU) {
2643                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2644                 comma = 1;
2645         }
2646 }
2647
2648 static void
2649 db_print_inpvflag(u_char inp_vflag)
2650 {
2651         int comma;
2652
2653         comma = 0;
2654         if (inp_vflag & INP_IPV4) {
2655                 db_printf("%sINP_IPV4", comma ? ", " : "");
2656                 comma  = 1;
2657         }
2658         if (inp_vflag & INP_IPV6) {
2659                 db_printf("%sINP_IPV6", comma ? ", " : "");
2660                 comma  = 1;
2661         }
2662         if (inp_vflag & INP_IPV6PROTO) {
2663                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2664                 comma  = 1;
2665         }
2666 }
2667
2668 static void
2669 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2670 {
2671
2672         db_print_indent(indent);
2673         db_printf("%s at %p\n", name, inp);
2674
2675         indent += 2;
2676
2677         db_print_indent(indent);
2678         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2679
2680         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2681
2682         db_print_indent(indent);
2683         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2684             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2685
2686         db_print_indent(indent);
2687         db_printf("inp_label: %p   inp_flags: 0x%x (",
2688            inp->inp_label, inp->inp_flags);
2689         db_print_inpflags(inp->inp_flags);
2690         db_printf(")\n");
2691
2692         db_print_indent(indent);
2693         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2694             inp->inp_vflag);
2695         db_print_inpvflag(inp->inp_vflag);
2696         db_printf(")\n");
2697
2698         db_print_indent(indent);
2699         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2700             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2701
2702         db_print_indent(indent);
2703 #ifdef INET6
2704         if (inp->inp_vflag & INP_IPV6) {
2705                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2706                     "in6p_moptions: %p\n", inp->in6p_options,
2707                     inp->in6p_outputopts, inp->in6p_moptions);
2708                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2709                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2710                     inp->in6p_hops);
2711         } else
2712 #endif
2713         {
2714                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2715                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2716                     inp->inp_options, inp->inp_moptions);
2717         }
2718
2719         db_print_indent(indent);
2720         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2721             (uintmax_t)inp->inp_gencnt);
2722 }
2723
2724 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2725 {
2726         struct inpcb *inp;
2727
2728         if (!have_addr) {
2729                 db_printf("usage: show inpcb <addr>\n");
2730                 return;
2731         }
2732         inp = (struct inpcb *)addr;
2733
2734         db_print_inpcb(inp, "inpcb", 0);
2735 }
2736 #endif /* DDB */
2737
2738 #ifdef RATELIMIT
2739 /*
2740  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2741  * if any.
2742  */
2743 int
2744 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2745 {
2746         union if_snd_tag_modify_params params = {
2747                 .rate_limit.max_rate = max_pacing_rate,
2748         };
2749         struct m_snd_tag *mst;
2750         struct ifnet *ifp;
2751         int error;
2752
2753         mst = inp->inp_snd_tag;
2754         if (mst == NULL)
2755                 return (EINVAL);
2756
2757         ifp = mst->ifp;
2758         if (ifp == NULL)
2759                 return (EINVAL);
2760
2761         if (ifp->if_snd_tag_modify == NULL) {
2762                 error = EOPNOTSUPP;
2763         } else {
2764                 error = ifp->if_snd_tag_modify(mst, &params);
2765         }
2766         return (error);
2767 }
2768
2769 /*
2770  * Query existing TX rate limit based on the existing
2771  * "inp->inp_snd_tag", if any.
2772  */
2773 int
2774 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2775 {
2776         union if_snd_tag_query_params params = { };
2777         struct m_snd_tag *mst;
2778         struct ifnet *ifp;
2779         int error;
2780
2781         mst = inp->inp_snd_tag;
2782         if (mst == NULL)
2783                 return (EINVAL);
2784
2785         ifp = mst->ifp;
2786         if (ifp == NULL)
2787                 return (EINVAL);
2788
2789         if (ifp->if_snd_tag_query == NULL) {
2790                 error = EOPNOTSUPP;
2791         } else {
2792                 error = ifp->if_snd_tag_query(mst, &params);
2793                 if (error == 0 &&  p_max_pacing_rate != NULL)
2794                         *p_max_pacing_rate = params.rate_limit.max_rate;
2795         }
2796         return (error);
2797 }
2798
2799 /*
2800  * Allocate a new TX rate limit send tag from the network interface
2801  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2802  */
2803 int
2804 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2805     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2806 {
2807         union if_snd_tag_alloc_params params = {
2808                 .rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
2809                 .rate_limit.hdr.flowid = flowid,
2810                 .rate_limit.hdr.flowtype = flowtype,
2811                 .rate_limit.max_rate = max_pacing_rate,
2812         };
2813         int error;
2814
2815         INP_WLOCK_ASSERT(inp);
2816
2817         if (inp->inp_snd_tag != NULL)
2818                 return (EINVAL);
2819
2820         if (ifp->if_snd_tag_alloc == NULL) {
2821                 error = EOPNOTSUPP;
2822         } else {
2823                 error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2824
2825                 /*
2826                  * At success increment the refcount on
2827                  * the send tag's network interface:
2828                  */
2829                 if (error == 0)
2830                         if_ref(inp->inp_snd_tag->ifp);
2831         }
2832         return (error);
2833 }
2834
2835 /*
2836  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2837  * if any:
2838  */
2839 void
2840 in_pcbdetach_txrtlmt(struct inpcb *inp)
2841 {
2842         struct m_snd_tag *mst;
2843         struct ifnet *ifp;
2844
2845         INP_WLOCK_ASSERT(inp);
2846
2847         mst = inp->inp_snd_tag;
2848         inp->inp_snd_tag = NULL;
2849
2850         if (mst == NULL)
2851                 return;
2852
2853         ifp = mst->ifp;
2854         if (ifp == NULL)
2855                 return;
2856
2857         /*
2858          * If the device was detached while we still had reference(s)
2859          * on the ifp, we assume if_snd_tag_free() was replaced with
2860          * stubs.
2861          */
2862         ifp->if_snd_tag_free(mst);
2863
2864         /* release reference count on network interface */
2865         if_rele(ifp);
2866 }
2867
2868 /*
2869  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
2870  * is set in the fast path and will attach/detach/modify the TX rate
2871  * limit send tag based on the socket's so_max_pacing_rate value.
2872  */
2873 void
2874 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
2875 {
2876         struct socket *socket;
2877         uint32_t max_pacing_rate;
2878         bool did_upgrade;
2879         int error;
2880
2881         if (inp == NULL)
2882                 return;
2883
2884         socket = inp->inp_socket;
2885         if (socket == NULL)
2886                 return;
2887
2888         if (!INP_WLOCKED(inp)) {
2889                 /*
2890                  * NOTE: If the write locking fails, we need to bail
2891                  * out and use the non-ratelimited ring for the
2892                  * transmit until there is a new chance to get the
2893                  * write lock.
2894                  */
2895                 if (!INP_TRY_UPGRADE(inp))
2896                         return;
2897                 did_upgrade = 1;
2898         } else {
2899                 did_upgrade = 0;
2900         }
2901
2902         /*
2903          * NOTE: The so_max_pacing_rate value is read unlocked,
2904          * because atomic updates are not required since the variable
2905          * is checked at every mbuf we send. It is assumed that the
2906          * variable read itself will be atomic.
2907          */
2908         max_pacing_rate = socket->so_max_pacing_rate;
2909
2910         /*
2911          * NOTE: When attaching to a network interface a reference is
2912          * made to ensure the network interface doesn't go away until
2913          * all ratelimit connections are gone. The network interface
2914          * pointers compared below represent valid network interfaces,
2915          * except when comparing towards NULL.
2916          */
2917         if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
2918                 error = 0;
2919         } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
2920                 if (inp->inp_snd_tag != NULL)
2921                         in_pcbdetach_txrtlmt(inp);
2922                 error = 0;
2923         } else if (inp->inp_snd_tag == NULL) {
2924                 /*
2925                  * In order to utilize packet pacing with RSS, we need
2926                  * to wait until there is a valid RSS hash before we
2927                  * can proceed:
2928                  */
2929                 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
2930                         error = EAGAIN;
2931                 } else {
2932                         error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
2933                             mb->m_pkthdr.flowid, max_pacing_rate);
2934                 }
2935         } else {
2936                 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
2937         }
2938         if (error == 0 || error == EOPNOTSUPP)
2939                 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
2940         if (did_upgrade)
2941                 INP_DOWNGRADE(inp);
2942 }
2943
2944 /*
2945  * Track route changes for TX rate limiting.
2946  */
2947 void
2948 in_pcboutput_eagain(struct inpcb *inp)
2949 {
2950         struct socket *socket;
2951         bool did_upgrade;
2952
2953         if (inp == NULL)
2954                 return;
2955
2956         socket = inp->inp_socket;
2957         if (socket == NULL)
2958                 return;
2959
2960         if (inp->inp_snd_tag == NULL)
2961                 return;
2962
2963         if (!INP_WLOCKED(inp)) {
2964                 /*
2965                  * NOTE: If the write locking fails, we need to bail
2966                  * out and use the non-ratelimited ring for the
2967                  * transmit until there is a new chance to get the
2968                  * write lock.
2969                  */
2970                 if (!INP_TRY_UPGRADE(inp))
2971                         return;
2972                 did_upgrade = 1;
2973         } else {
2974                 did_upgrade = 0;
2975         }
2976
2977         /* detach rate limiting */
2978         in_pcbdetach_txrtlmt(inp);
2979
2980         /* make sure new mbuf send tag allocation is made */
2981         inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
2982
2983         if (did_upgrade)
2984                 INP_DOWNGRADE(inp);
2985 }
2986 #endif /* RATELIMIT */