]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/ip_fw2.c
add -n option to suppress clearing the build tree and add -DNO_CLEAN
[FreeBSD/FreeBSD.git] / sys / netinet / ip_fw2.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #define        DEB(x)
30 #define        DDB(x) x
31
32 /*
33  * Implement IP packet firewall (new version)
34  */
35
36 #if !defined(KLD_MODULE)
37 #include "opt_ipfw.h"
38 #include "opt_ipdivert.h"
39 #include "opt_ipdn.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_mac.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/condvar.h>
52 #include <sys/eventhandler.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/jail.h>
58 #include <sys/module.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/rwlock.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sysctl.h>
65 #include <sys/syslog.h>
66 #include <sys/ucred.h>
67 #include <sys/vimage.h>
68 #include <net/if.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/pf_mtag.h>
72
73 #define IPFW_INTERNAL   /* Access to protected data structures in ip_fw.h. */
74
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/in_var.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/ip.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/ip_icmp.h>
82 #include <netinet/ip_fw.h>
83 #include <netinet/ip_divert.h>
84 #include <netinet/ip_dummynet.h>
85 #include <netinet/ip_carp.h>
86 #include <netinet/pim.h>
87 #include <netinet/tcp.h>
88 #include <netinet/tcp_timer.h>
89 #include <netinet/tcp_var.h>
90 #include <netinet/tcpip.h>
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/sctp.h>
94 #include <netgraph/ng_ipfw.h>
95
96 #include <altq/if_altq.h>
97
98 #include <netinet/ip6.h>
99 #include <netinet/icmp6.h>
100 #ifdef INET6
101 #include <netinet6/scope6_var.h>
102 #endif
103
104 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
105
106 #include <machine/in_cksum.h>   /* XXX for in_cksum */
107
108 #include <security/mac/mac_framework.h>
109
110 /*
111  * set_disable contains one bit per set value (0..31).
112  * If the bit is set, all rules with the corresponding set
113  * are disabled. Set RESVD_SET(31) is reserved for the default rule
114  * and rules that are not deleted by the flush command,
115  * and CANNOT be disabled.
116  * Rules in set RESVD_SET can only be deleted explicitly.
117  */
118 static u_int32_t set_disable;
119
120 static int fw_verbose;
121 static int verbose_limit;
122
123 static struct callout ipfw_timeout;
124 static uma_zone_t ipfw_dyn_rule_zone;
125
126 /*
127  * Data structure to cache our ucred related
128  * information. This structure only gets used if
129  * the user specified UID/GID based constraints in
130  * a firewall rule.
131  */
132 struct ip_fw_ugid {
133         gid_t           fw_groups[NGROUPS];
134         int             fw_ngroups;
135         uid_t           fw_uid;
136         int             fw_prid;
137 };
138
139 /*
140  * list of rules for layer 3
141  */
142 struct ip_fw_chain layer3_chain;
143
144 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
145 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
146 #define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
147 ipfw_nat_t *ipfw_nat_ptr = NULL;
148 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
149 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
150 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
151 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
152
153 struct table_entry {
154         struct radix_node       rn[2];
155         struct sockaddr_in      addr, mask;
156         u_int32_t               value;
157 };
158
159 static int fw_debug = 1;
160 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
161
162 extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
163
164 #ifdef SYSCTL_NODE
165 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
166 SYSCTL_V_PROC(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, enable,
167     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, fw_enable, 0,
168     ipfw_chg_hook, "I", "Enable ipfw");
169 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, autoinc_step,
170     CTLFLAG_RW, autoinc_step, 0, "Rule number autincrement step");
171 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, one_pass,
172     CTLFLAG_RW | CTLFLAG_SECURE3, fw_one_pass, 0,
173     "Only do a single pass through ipfw when using dummynet(4)");
174 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
175     fw_debug, 0, "Enable printing of debug ip_fw statements");
176 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose,
177     CTLFLAG_RW | CTLFLAG_SECURE3,
178     fw_verbose, 0, "Log matches to ipfw rules");
179 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
180     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
181 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
182     NULL, IPFW_DEFAULT_RULE, "The default/max possible rule number.");
183 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
184     NULL, IPFW_TABLES_MAX, "The maximum number of tables.");
185
186 /*
187  * Description of dynamic rules.
188  *
189  * Dynamic rules are stored in lists accessed through a hash table
190  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
191  * be modified through the sysctl variable dyn_buckets which is
192  * updated when the table becomes empty.
193  *
194  * XXX currently there is only one list, ipfw_dyn.
195  *
196  * When a packet is received, its address fields are first masked
197  * with the mask defined for the rule, then hashed, then matched
198  * against the entries in the corresponding list.
199  * Dynamic rules can be used for different purposes:
200  *  + stateful rules;
201  *  + enforcing limits on the number of sessions;
202  *  + in-kernel NAT (not implemented yet)
203  *
204  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
205  * measured in seconds and depending on the flags.
206  *
207  * The total number of dynamic rules is stored in dyn_count.
208  * The max number of dynamic rules is dyn_max. When we reach
209  * the maximum number of rules we do not create anymore. This is
210  * done to avoid consuming too much memory, but also too much
211  * time when searching on each packet (ideally, we should try instead
212  * to put a limit on the length of the list on each bucket...).
213  *
214  * Each dynamic rule holds a pointer to the parent ipfw rule so
215  * we know what action to perform. Dynamic rules are removed when
216  * the parent rule is deleted. XXX we should make them survive.
217  *
218  * There are some limitations with dynamic rules -- we do not
219  * obey the 'randomized match', and we do not do multiple
220  * passes through the firewall. XXX check the latter!!!
221  */
222 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
223 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
224 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
225
226 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
227 #define IPFW_DYN_LOCK_INIT() \
228         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
229 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
230 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
231 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
232 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
233
234 /*
235  * Timeouts for various events in handing dynamic rules.
236  */
237 static u_int32_t dyn_ack_lifetime = 300;
238 static u_int32_t dyn_syn_lifetime = 20;
239 static u_int32_t dyn_fin_lifetime = 1;
240 static u_int32_t dyn_rst_lifetime = 1;
241 static u_int32_t dyn_udp_lifetime = 10;
242 static u_int32_t dyn_short_lifetime = 5;
243
244 /*
245  * Keepalives are sent if dyn_keepalive is set. They are sent every
246  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
247  * seconds of lifetime of a rule.
248  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
249  * than dyn_keepalive_period.
250  */
251
252 static u_int32_t dyn_keepalive_interval = 20;
253 static u_int32_t dyn_keepalive_period = 5;
254 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
255
256 static u_int32_t static_count;  /* # of static rules */
257 static u_int32_t static_len;    /* size in bytes of static rules */
258 static u_int32_t dyn_count;             /* # of dynamic rules */
259 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
260
261 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_buckets,
262     CTLFLAG_RW, dyn_buckets, 0, "Number of dyn. buckets");
263 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
264     CTLFLAG_RD, curr_dyn_buckets, 0, "Current Number of dyn. buckets");
265 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_count,
266     CTLFLAG_RD, dyn_count, 0, "Number of dyn. rules");
267 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_max,
268     CTLFLAG_RW, dyn_max, 0, "Max number of dyn. rules");
269 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, static_count,
270     CTLFLAG_RD, static_count, 0, "Number of static rules");
271 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
272     CTLFLAG_RW, dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
273 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
274     CTLFLAG_RW, dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
275 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
276     CTLFLAG_RW, dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
277 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
278     CTLFLAG_RW, dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
279 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
280     CTLFLAG_RW, dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
281 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
282     CTLFLAG_RW, dyn_short_lifetime, 0,
283     "Lifetime of dyn. rules for other situations");
284 SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_keepalive,
285     CTLFLAG_RW, dyn_keepalive, 0, "Enable keepalives for dyn. rules");
286
287
288 #ifdef INET6
289 /*
290  * IPv6 specific variables
291  */
292 SYSCTL_DECL(_net_inet6_ip6);
293
294 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
295 static struct sysctl_oid *ip6_fw_sysctl_tree;
296 #endif /* INET6 */
297 #endif /* SYSCTL_NODE */
298
299 static int fw_deny_unknown_exthdrs = 1;
300
301
302 /*
303  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
304  * Other macros just cast void * into the appropriate type
305  */
306 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
307 #define TCP(p)          ((struct tcphdr *)(p))
308 #define SCTP(p)         ((struct sctphdr *)(p))
309 #define UDP(p)          ((struct udphdr *)(p))
310 #define ICMP(p)         ((struct icmphdr *)(p))
311 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
312
313 static __inline int
314 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
315 {
316         int type = icmp->icmp_type;
317
318         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
319 }
320
321 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
322     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
323
324 static int
325 is_icmp_query(struct icmphdr *icmp)
326 {
327         int type = icmp->icmp_type;
328
329         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
330 }
331 #undef TT
332
333 /*
334  * The following checks use two arrays of 8 or 16 bits to store the
335  * bits that we want set or clear, respectively. They are in the
336  * low and high half of cmd->arg1 or cmd->d[0].
337  *
338  * We scan options and store the bits we find set. We succeed if
339  *
340  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
341  *
342  * The code is sometimes optimized not to store additional variables.
343  */
344
345 static int
346 flags_match(ipfw_insn *cmd, u_int8_t bits)
347 {
348         u_char want_clear;
349         bits = ~bits;
350
351         if ( ((cmd->arg1 & 0xff) & bits) != 0)
352                 return 0; /* some bits we want set were clear */
353         want_clear = (cmd->arg1 >> 8) & 0xff;
354         if ( (want_clear & bits) != want_clear)
355                 return 0; /* some bits we want clear were set */
356         return 1;
357 }
358
359 static int
360 ipopts_match(struct ip *ip, ipfw_insn *cmd)
361 {
362         int optlen, bits = 0;
363         u_char *cp = (u_char *)(ip + 1);
364         int x = (ip->ip_hl << 2) - sizeof (struct ip);
365
366         for (; x > 0; x -= optlen, cp += optlen) {
367                 int opt = cp[IPOPT_OPTVAL];
368
369                 if (opt == IPOPT_EOL)
370                         break;
371                 if (opt == IPOPT_NOP)
372                         optlen = 1;
373                 else {
374                         optlen = cp[IPOPT_OLEN];
375                         if (optlen <= 0 || optlen > x)
376                                 return 0; /* invalid or truncated */
377                 }
378                 switch (opt) {
379
380                 default:
381                         break;
382
383                 case IPOPT_LSRR:
384                         bits |= IP_FW_IPOPT_LSRR;
385                         break;
386
387                 case IPOPT_SSRR:
388                         bits |= IP_FW_IPOPT_SSRR;
389                         break;
390
391                 case IPOPT_RR:
392                         bits |= IP_FW_IPOPT_RR;
393                         break;
394
395                 case IPOPT_TS:
396                         bits |= IP_FW_IPOPT_TS;
397                         break;
398                 }
399         }
400         return (flags_match(cmd, bits));
401 }
402
403 static int
404 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
405 {
406         int optlen, bits = 0;
407         u_char *cp = (u_char *)(tcp + 1);
408         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
409
410         for (; x > 0; x -= optlen, cp += optlen) {
411                 int opt = cp[0];
412                 if (opt == TCPOPT_EOL)
413                         break;
414                 if (opt == TCPOPT_NOP)
415                         optlen = 1;
416                 else {
417                         optlen = cp[1];
418                         if (optlen <= 0)
419                                 break;
420                 }
421
422                 switch (opt) {
423
424                 default:
425                         break;
426
427                 case TCPOPT_MAXSEG:
428                         bits |= IP_FW_TCPOPT_MSS;
429                         break;
430
431                 case TCPOPT_WINDOW:
432                         bits |= IP_FW_TCPOPT_WINDOW;
433                         break;
434
435                 case TCPOPT_SACK_PERMITTED:
436                 case TCPOPT_SACK:
437                         bits |= IP_FW_TCPOPT_SACK;
438                         break;
439
440                 case TCPOPT_TIMESTAMP:
441                         bits |= IP_FW_TCPOPT_TS;
442                         break;
443
444                 }
445         }
446         return (flags_match(cmd, bits));
447 }
448
449 static int
450 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
451 {
452         if (ifp == NULL)        /* no iface with this packet, match fails */
453                 return 0;
454         /* Check by name or by IP address */
455         if (cmd->name[0] != '\0') { /* match by name */
456                 /* Check name */
457                 if (cmd->p.glob) {
458                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
459                                 return(1);
460                 } else {
461                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
462                                 return(1);
463                 }
464         } else {
465                 struct ifaddr *ia;
466
467                 /* XXX lock? */
468                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
469                         if (ia->ifa_addr->sa_family != AF_INET)
470                                 continue;
471                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
472                             (ia->ifa_addr))->sin_addr.s_addr)
473                                 return(1);      /* match */
474                 }
475         }
476         return(0);      /* no match, fail ... */
477 }
478
479 /*
480  * The verify_path function checks if a route to the src exists and
481  * if it is reachable via ifp (when provided).
482  * 
483  * The 'verrevpath' option checks that the interface that an IP packet
484  * arrives on is the same interface that traffic destined for the
485  * packet's source address would be routed out of.  The 'versrcreach'
486  * option just checks that the source address is reachable via any route
487  * (except default) in the routing table.  These two are a measure to block
488  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
489  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
490  * is purposely reminiscent of the Cisco IOS command,
491  *
492  *   ip verify unicast reverse-path
493  *   ip verify unicast source reachable-via any
494  *
495  * which implements the same functionality. But note that syntax is
496  * misleading. The check may be performed on all IP packets whether unicast,
497  * multicast, or broadcast.
498  */
499 static int
500 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
501 {
502         struct route ro;
503         struct sockaddr_in *dst;
504
505         bzero(&ro, sizeof(ro));
506
507         dst = (struct sockaddr_in *)&(ro.ro_dst);
508         dst->sin_family = AF_INET;
509         dst->sin_len = sizeof(*dst);
510         dst->sin_addr = src;
511         in_rtalloc_ign(&ro, RTF_CLONING, fib);
512
513         if (ro.ro_rt == NULL)
514                 return 0;
515
516         /*
517          * If ifp is provided, check for equality with rtentry.
518          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
519          * in order to pass packets injected back by if_simloop():
520          * if useloopback == 1 routing entry (via lo0) for our own address
521          * may exist, so we need to handle routing assymetry.
522          */
523         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
524                 RTFREE(ro.ro_rt);
525                 return 0;
526         }
527
528         /* if no ifp provided, check if rtentry is not default route */
529         if (ifp == NULL &&
530              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
531                 RTFREE(ro.ro_rt);
532                 return 0;
533         }
534
535         /* or if this is a blackhole/reject route */
536         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
537                 RTFREE(ro.ro_rt);
538                 return 0;
539         }
540
541         /* found valid route */
542         RTFREE(ro.ro_rt);
543         return 1;
544 }
545
546 #ifdef INET6
547 /*
548  * ipv6 specific rules here...
549  */
550 static __inline int
551 icmp6type_match (int type, ipfw_insn_u32 *cmd)
552 {
553         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
554 }
555
556 static int
557 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
558 {
559         int i;
560         for (i=0; i <= cmd->o.arg1; ++i )
561                 if (curr_flow == cmd->d[i] )
562                         return 1;
563         return 0;
564 }
565
566 /* support for IP6_*_ME opcodes */
567 static int
568 search_ip6_addr_net (struct in6_addr * ip6_addr)
569 {
570         INIT_VNET_NET(curvnet);
571         struct ifnet *mdc;
572         struct ifaddr *mdc2;
573         struct in6_ifaddr *fdm;
574         struct in6_addr copia;
575
576         TAILQ_FOREACH(mdc, &V_ifnet, if_link)
577                 TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
578                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
579                                 fdm = (struct in6_ifaddr *)mdc2;
580                                 copia = fdm->ia_addr.sin6_addr;
581                                 /* need for leaving scope_id in the sock_addr */
582                                 in6_clearscope(&copia);
583                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
584                                         return 1;
585                         }
586                 }
587         return 0;
588 }
589
590 static int
591 verify_path6(struct in6_addr *src, struct ifnet *ifp)
592 {
593         struct route_in6 ro;
594         struct sockaddr_in6 *dst;
595
596         bzero(&ro, sizeof(ro));
597
598         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
599         dst->sin6_family = AF_INET6;
600         dst->sin6_len = sizeof(*dst);
601         dst->sin6_addr = *src;
602         /* XXX MRT 0 for ipv6 at this time */
603         rtalloc_ign((struct route *)&ro, RTF_CLONING);
604
605         if (ro.ro_rt == NULL)
606                 return 0;
607
608         /* 
609          * if ifp is provided, check for equality with rtentry
610          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
611          * to support the case of sending packets to an address of our own.
612          * (where the former interface is the first argument of if_simloop()
613          *  (=ifp), the latter is lo0)
614          */
615         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
616                 RTFREE(ro.ro_rt);
617                 return 0;
618         }
619
620         /* if no ifp provided, check if rtentry is not default route */
621         if (ifp == NULL &&
622             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
623                 RTFREE(ro.ro_rt);
624                 return 0;
625         }
626
627         /* or if this is a blackhole/reject route */
628         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
629                 RTFREE(ro.ro_rt);
630                 return 0;
631         }
632
633         /* found valid route */
634         RTFREE(ro.ro_rt);
635         return 1;
636
637 }
638 static __inline int
639 hash_packet6(struct ipfw_flow_id *id)
640 {
641         u_int32_t i;
642         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
643             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
644             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
645             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
646             (id->dst_port) ^ (id->src_port);
647         return i;
648 }
649
650 static int
651 is_icmp6_query(int icmp6_type)
652 {
653         if ((icmp6_type <= ICMP6_MAXTYPE) &&
654             (icmp6_type == ICMP6_ECHO_REQUEST ||
655             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
656             icmp6_type == ICMP6_WRUREQUEST ||
657             icmp6_type == ICMP6_FQDN_QUERY ||
658             icmp6_type == ICMP6_NI_QUERY))
659                 return (1);
660
661         return (0);
662 }
663
664 static void
665 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
666 {
667         struct mbuf *m;
668
669         m = args->m;
670         if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
671                 struct tcphdr *tcp;
672                 tcp_seq ack, seq;
673                 int flags;
674                 struct {
675                         struct ip6_hdr ip6;
676                         struct tcphdr th;
677                 } ti;
678                 tcp = (struct tcphdr *)((char *)ip6 + hlen);
679
680                 if ((tcp->th_flags & TH_RST) != 0) {
681                         m_freem(m);
682                         args->m = NULL;
683                         return;
684                 }
685
686                 ti.ip6 = *ip6;
687                 ti.th = *tcp;
688                 ti.th.th_seq = ntohl(ti.th.th_seq);
689                 ti.th.th_ack = ntohl(ti.th.th_ack);
690                 ti.ip6.ip6_nxt = IPPROTO_TCP;
691
692                 if (ti.th.th_flags & TH_ACK) {
693                         ack = 0;
694                         seq = ti.th.th_ack;
695                         flags = TH_RST;
696                 } else {
697                         ack = ti.th.th_seq;
698                         if ((m->m_flags & M_PKTHDR) != 0) {
699                                 /*
700                                  * total new data to ACK is:
701                                  * total packet length,
702                                  * minus the header length,
703                                  * minus the tcp header length.
704                                  */
705                                 ack += m->m_pkthdr.len - hlen
706                                         - (ti.th.th_off << 2);
707                         } else if (ip6->ip6_plen) {
708                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
709                                     hlen - (ti.th.th_off << 2);
710                         } else {
711                                 m_freem(m);
712                                 return;
713                         }
714                         if (tcp->th_flags & TH_SYN)
715                                 ack++;
716                         seq = 0;
717                         flags = TH_RST|TH_ACK;
718                 }
719                 bcopy(&ti, ip6, sizeof(ti));
720                 /*
721                  * m is only used to recycle the mbuf
722                  * The data in it is never read so we don't need
723                  * to correct the offsets or anything
724                  */
725                 tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
726         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
727 #if 0
728                 /*
729                  * Unlike above, the mbufs need to line up with the ip6 hdr,
730                  * as the contents are read. We need to m_adj() the
731                  * needed amount.
732                  * The mbuf will however be thrown away so we can adjust it.
733                  * Remember we did an m_pullup on it already so we
734                  * can make some assumptions about contiguousness.
735                  */
736                 if (args->L3offset)
737                         m_adj(m, args->L3offset);
738 #endif
739                 icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
740         } else
741                 m_freem(m);
742
743         args->m = NULL;
744 }
745
746 #endif /* INET6 */
747
748 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
749
750 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
751 #define SNP(buf) buf, sizeof(buf)
752
753 /*
754  * We enter here when we have a rule with O_LOG.
755  * XXX this function alone takes about 2Kbytes of code!
756  */
757 static void
758 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
759     struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
760     struct ip *ip)
761 {
762         INIT_VNET_IPFW(curvnet);
763         struct ether_header *eh = args->eh;
764         char *action;
765         int limit_reached = 0;
766         char action2[40], proto[128], fragment[32];
767
768         fragment[0] = '\0';
769         proto[0] = '\0';
770
771         if (f == NULL) {        /* bogus pkt */
772                 if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
773                         return;
774                 V_norule_counter++;
775                 if (V_norule_counter == V_verbose_limit)
776                         limit_reached = V_verbose_limit;
777                 action = "Refuse";
778         } else {        /* O_LOG is the first action, find the real one */
779                 ipfw_insn *cmd = ACTION_PTR(f);
780                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
781
782                 if (l->max_log != 0 && l->log_left == 0)
783                         return;
784                 l->log_left--;
785                 if (l->log_left == 0)
786                         limit_reached = l->max_log;
787                 cmd += F_LEN(cmd);      /* point to first action */
788                 if (cmd->opcode == O_ALTQ) {
789                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
790
791                         snprintf(SNPARGS(action2, 0), "Altq %d",
792                                 altq->qid);
793                         cmd += F_LEN(cmd);
794                 }
795                 if (cmd->opcode == O_PROB)
796                         cmd += F_LEN(cmd);
797
798                 if (cmd->opcode == O_TAG)
799                         cmd += F_LEN(cmd);
800
801                 action = action2;
802                 switch (cmd->opcode) {
803                 case O_DENY:
804                         action = "Deny";
805                         break;
806
807                 case O_REJECT:
808                         if (cmd->arg1==ICMP_REJECT_RST)
809                                 action = "Reset";
810                         else if (cmd->arg1==ICMP_UNREACH_HOST)
811                                 action = "Reject";
812                         else
813                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
814                                         cmd->arg1);
815                         break;
816
817                 case O_UNREACH6:
818                         if (cmd->arg1==ICMP6_UNREACH_RST)
819                                 action = "Reset";
820                         else
821                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
822                                         cmd->arg1);
823                         break;
824
825                 case O_ACCEPT:
826                         action = "Accept";
827                         break;
828                 case O_COUNT:
829                         action = "Count";
830                         break;
831                 case O_DIVERT:
832                         snprintf(SNPARGS(action2, 0), "Divert %d",
833                                 cmd->arg1);
834                         break;
835                 case O_TEE:
836                         snprintf(SNPARGS(action2, 0), "Tee %d",
837                                 cmd->arg1);
838                         break;
839                 case O_SETFIB:
840                         snprintf(SNPARGS(action2, 0), "SetFib %d",
841                                 cmd->arg1);
842                         break;
843                 case O_SKIPTO:
844                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
845                                 cmd->arg1);
846                         break;
847                 case O_PIPE:
848                         snprintf(SNPARGS(action2, 0), "Pipe %d",
849                                 cmd->arg1);
850                         break;
851                 case O_QUEUE:
852                         snprintf(SNPARGS(action2, 0), "Queue %d",
853                                 cmd->arg1);
854                         break;
855                 case O_FORWARD_IP: {
856                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
857                         int len;
858                         struct in_addr dummyaddr;
859                         if (sa->sa.sin_addr.s_addr == INADDR_ANY)
860                                 dummyaddr.s_addr = htonl(tablearg);
861                         else
862                                 dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
863
864                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
865                                 inet_ntoa(dummyaddr));
866
867                         if (sa->sa.sin_port)
868                                 snprintf(SNPARGS(action2, len), ":%d",
869                                     sa->sa.sin_port);
870                         }
871                         break;
872                 case O_NETGRAPH:
873                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
874                                 cmd->arg1);
875                         break;
876                 case O_NGTEE:
877                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
878                                 cmd->arg1);
879                         break;
880                 case O_NAT:
881                         action = "Nat";
882                         break;
883                 default:
884                         action = "UNKNOWN";
885                         break;
886                 }
887         }
888
889         if (hlen == 0) {        /* non-ip */
890                 snprintf(SNPARGS(proto, 0), "MAC");
891
892         } else {
893                 int len;
894                 char src[48], dst[48];
895                 struct icmphdr *icmp;
896                 struct tcphdr *tcp;
897                 struct udphdr *udp;
898 #ifdef INET6
899                 struct ip6_hdr *ip6 = NULL;
900                 struct icmp6_hdr *icmp6;
901 #endif
902                 src[0] = '\0';
903                 dst[0] = '\0';
904 #ifdef INET6
905                 if (IS_IP6_FLOW_ID(&(args->f_id))) {
906                         char ip6buf[INET6_ADDRSTRLEN];
907                         snprintf(src, sizeof(src), "[%s]",
908                             ip6_sprintf(ip6buf, &args->f_id.src_ip6));
909                         snprintf(dst, sizeof(dst), "[%s]",
910                             ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
911
912                         ip6 = (struct ip6_hdr *)ip;
913                         tcp = (struct tcphdr *)(((char *)ip) + hlen);
914                         udp = (struct udphdr *)(((char *)ip) + hlen);
915                 } else
916 #endif
917                 {
918                         tcp = L3HDR(struct tcphdr, ip);
919                         udp = L3HDR(struct udphdr, ip);
920
921                         inet_ntoa_r(ip->ip_src, src);
922                         inet_ntoa_r(ip->ip_dst, dst);
923                 }
924
925                 switch (args->f_id.proto) {
926                 case IPPROTO_TCP:
927                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
928                         if (offset == 0)
929                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
930                                     ntohs(tcp->th_sport),
931                                     dst,
932                                     ntohs(tcp->th_dport));
933                         else
934                                 snprintf(SNPARGS(proto, len), " %s", dst);
935                         break;
936
937                 case IPPROTO_UDP:
938                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
939                         if (offset == 0)
940                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
941                                     ntohs(udp->uh_sport),
942                                     dst,
943                                     ntohs(udp->uh_dport));
944                         else
945                                 snprintf(SNPARGS(proto, len), " %s", dst);
946                         break;
947
948                 case IPPROTO_ICMP:
949                         icmp = L3HDR(struct icmphdr, ip);
950                         if (offset == 0)
951                                 len = snprintf(SNPARGS(proto, 0),
952                                     "ICMP:%u.%u ",
953                                     icmp->icmp_type, icmp->icmp_code);
954                         else
955                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
956                         len += snprintf(SNPARGS(proto, len), "%s", src);
957                         snprintf(SNPARGS(proto, len), " %s", dst);
958                         break;
959 #ifdef INET6
960                 case IPPROTO_ICMPV6:
961                         icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
962                         if (offset == 0)
963                                 len = snprintf(SNPARGS(proto, 0),
964                                     "ICMPv6:%u.%u ",
965                                     icmp6->icmp6_type, icmp6->icmp6_code);
966                         else
967                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
968                         len += snprintf(SNPARGS(proto, len), "%s", src);
969                         snprintf(SNPARGS(proto, len), " %s", dst);
970                         break;
971 #endif
972                 default:
973                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
974                             args->f_id.proto, src);
975                         snprintf(SNPARGS(proto, len), " %s", dst);
976                         break;
977                 }
978
979 #ifdef INET6
980                 if (IS_IP6_FLOW_ID(&(args->f_id))) {
981                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
982                                 snprintf(SNPARGS(fragment, 0),
983                                     " (frag %08x:%d@%d%s)",
984                                     args->f_id.frag_id6,
985                                     ntohs(ip6->ip6_plen) - hlen,
986                                     ntohs(offset & IP6F_OFF_MASK) << 3,
987                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
988                 } else
989 #endif
990                 {
991                         int ip_off, ip_len;
992                         if (eh != NULL) { /* layer 2 packets are as on the wire */
993                                 ip_off = ntohs(ip->ip_off);
994                                 ip_len = ntohs(ip->ip_len);
995                         } else {
996                                 ip_off = ip->ip_off;
997                                 ip_len = ip->ip_len;
998                         }
999                         if (ip_off & (IP_MF | IP_OFFMASK))
1000                                 snprintf(SNPARGS(fragment, 0),
1001                                     " (frag %d:%d@%d%s)",
1002                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1003                                     offset << 3,
1004                                     (ip_off & IP_MF) ? "+" : "");
1005                 }
1006         }
1007         if (oif || m->m_pkthdr.rcvif)
1008                 log(LOG_SECURITY | LOG_INFO,
1009                     "ipfw: %d %s %s %s via %s%s\n",
1010                     f ? f->rulenum : -1,
1011                     action, proto, oif ? "out" : "in",
1012                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1013                     fragment);
1014         else
1015                 log(LOG_SECURITY | LOG_INFO,
1016                     "ipfw: %d %s %s [no if info]%s\n",
1017                     f ? f->rulenum : -1,
1018                     action, proto, fragment);
1019         if (limit_reached)
1020                 log(LOG_SECURITY | LOG_NOTICE,
1021                     "ipfw: limit %d reached on entry %d\n",
1022                     limit_reached, f ? f->rulenum : -1);
1023 }
1024
1025 /*
1026  * IMPORTANT: the hash function for dynamic rules must be commutative
1027  * in source and destination (ip,port), because rules are bidirectional
1028  * and we want to find both in the same bucket.
1029  */
1030 static __inline int
1031 hash_packet(struct ipfw_flow_id *id)
1032 {
1033         INIT_VNET_IPFW(curvnet);
1034         u_int32_t i;
1035
1036 #ifdef INET6
1037         if (IS_IP6_FLOW_ID(id)) 
1038                 i = hash_packet6(id);
1039         else
1040 #endif /* INET6 */
1041         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1042         i &= (V_curr_dyn_buckets - 1);
1043         return i;
1044 }
1045
1046 /**
1047  * unlink a dynamic rule from a chain. prev is a pointer to
1048  * the previous one, q is a pointer to the rule to delete,
1049  * head is a pointer to the head of the queue.
1050  * Modifies q and potentially also head.
1051  */
1052 #define UNLINK_DYN_RULE(prev, head, q) {                                \
1053         ipfw_dyn_rule *old_q = q;                                       \
1054                                                                         \
1055         /* remove a refcount to the parent */                           \
1056         if (q->dyn_type == O_LIMIT)                                     \
1057                 q->parent->count--;                                     \
1058         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1059                 (q->id.src_ip), (q->id.src_port),                       \
1060                 (q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); )    \
1061         if (prev != NULL)                                               \
1062                 prev->next = q = q->next;                               \
1063         else                                                            \
1064                 head = q = q->next;                                     \
1065         V_dyn_count--;                                                  \
1066         uma_zfree(ipfw_dyn_rule_zone, old_q); }
1067
1068 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1069
1070 /**
1071  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1072  *
1073  * If keep_me == NULL, rules are deleted even if not expired,
1074  * otherwise only expired rules are removed.
1075  *
1076  * The value of the second parameter is also used to point to identify
1077  * a rule we absolutely do not want to remove (e.g. because we are
1078  * holding a reference to it -- this is the case with O_LIMIT_PARENT
1079  * rules). The pointer is only used for comparison, so any non-null
1080  * value will do.
1081  */
1082 static void
1083 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1084 {
1085         INIT_VNET_IPFW(curvnet);
1086         static u_int32_t last_remove = 0;
1087
1088 #define FORCE (keep_me == NULL)
1089
1090         ipfw_dyn_rule *prev, *q;
1091         int i, pass = 0, max_pass = 0;
1092
1093         IPFW_DYN_LOCK_ASSERT();
1094
1095         if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1096                 return;
1097         /* do not expire more than once per second, it is useless */
1098         if (!FORCE && last_remove == time_uptime)
1099                 return;
1100         last_remove = time_uptime;
1101
1102         /*
1103          * because O_LIMIT refer to parent rules, during the first pass only
1104          * remove child and mark any pending LIMIT_PARENT, and remove
1105          * them in a second pass.
1106          */
1107 next_pass:
1108         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1109                 for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
1110                         /*
1111                          * Logic can become complex here, so we split tests.
1112                          */
1113                         if (q == keep_me)
1114                                 goto next;
1115                         if (rule != NULL && rule != q->rule)
1116                                 goto next; /* not the one we are looking for */
1117                         if (q->dyn_type == O_LIMIT_PARENT) {
1118                                 /*
1119                                  * handle parent in the second pass,
1120                                  * record we need one.
1121                                  */
1122                                 max_pass = 1;
1123                                 if (pass == 0)
1124                                         goto next;
1125                                 if (FORCE && q->count != 0 ) {
1126                                         /* XXX should not happen! */
1127                                         printf("ipfw: OUCH! cannot remove rule,"
1128                                              " count %d\n", q->count);
1129                                 }
1130                         } else {
1131                                 if (!FORCE &&
1132                                     !TIME_LEQ( q->expire, time_uptime ))
1133                                         goto next;
1134                         }
1135              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1136                      UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1137                      continue;
1138              }
1139 next:
1140                         prev=q;
1141                         q=q->next;
1142                 }
1143         }
1144         if (pass++ < max_pass)
1145                 goto next_pass;
1146 }
1147
1148
1149 /**
1150  * lookup a dynamic rule.
1151  */
1152 static ipfw_dyn_rule *
1153 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1154     struct tcphdr *tcp)
1155 {
1156         INIT_VNET_IPFW(curvnet);
1157         /*
1158          * stateful ipfw extensions.
1159          * Lookup into dynamic session queue
1160          */
1161 #define MATCH_REVERSE   0
1162 #define MATCH_FORWARD   1
1163 #define MATCH_NONE      2
1164 #define MATCH_UNKNOWN   3
1165         int i, dir = MATCH_NONE;
1166         ipfw_dyn_rule *prev, *q=NULL;
1167
1168         IPFW_DYN_LOCK_ASSERT();
1169
1170         if (V_ipfw_dyn_v == NULL)
1171                 goto done;      /* not found */
1172         i = hash_packet( pkt );
1173         for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
1174                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1175                         goto next;
1176                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1177                         UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1178                         continue;
1179                 }
1180                 if (pkt->proto == q->id.proto &&
1181                     q->dyn_type != O_LIMIT_PARENT) {
1182                         if (IS_IP6_FLOW_ID(pkt)) {
1183                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1184                                 &(q->id.src_ip6)) &&
1185                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1186                                 &(q->id.dst_ip6)) &&
1187                             pkt->src_port == q->id.src_port &&
1188                             pkt->dst_port == q->id.dst_port ) {
1189                                 dir = MATCH_FORWARD;
1190                                 break;
1191                             }
1192                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1193                                     &(q->id.dst_ip6)) &&
1194                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1195                                     &(q->id.src_ip6)) &&
1196                                 pkt->src_port == q->id.dst_port &&
1197                                 pkt->dst_port == q->id.src_port ) {
1198                                     dir = MATCH_REVERSE;
1199                                     break;
1200                             }
1201                         } else {
1202                             if (pkt->src_ip == q->id.src_ip &&
1203                                 pkt->dst_ip == q->id.dst_ip &&
1204                                 pkt->src_port == q->id.src_port &&
1205                                 pkt->dst_port == q->id.dst_port ) {
1206                                     dir = MATCH_FORWARD;
1207                                     break;
1208                             }
1209                             if (pkt->src_ip == q->id.dst_ip &&
1210                                 pkt->dst_ip == q->id.src_ip &&
1211                                 pkt->src_port == q->id.dst_port &&
1212                                 pkt->dst_port == q->id.src_port ) {
1213                                     dir = MATCH_REVERSE;
1214                                     break;
1215                             }
1216                         }
1217                 }
1218 next:
1219                 prev = q;
1220                 q = q->next;
1221         }
1222         if (q == NULL)
1223                 goto done; /* q = NULL, not found */
1224
1225         if ( prev != NULL) { /* found and not in front */
1226                 prev->next = q->next;
1227                 q->next = V_ipfw_dyn_v[i];
1228                 V_ipfw_dyn_v[i] = q;
1229         }
1230         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1231                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1232
1233 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
1234 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
1235                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1236                 switch (q->state) {
1237                 case TH_SYN:                            /* opening */
1238                         q->expire = time_uptime + V_dyn_syn_lifetime;
1239                         break;
1240
1241                 case BOTH_SYN:                  /* move to established */
1242                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
1243                 case BOTH_SYN | (TH_FIN << 8) :
1244                         if (tcp) {
1245 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1246                             u_int32_t ack = ntohl(tcp->th_ack);
1247                             if (dir == MATCH_FORWARD) {
1248                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1249                                     q->ack_fwd = ack;
1250                                 else { /* ignore out-of-sequence */
1251                                     break;
1252                                 }
1253                             } else {
1254                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1255                                     q->ack_rev = ack;
1256                                 else { /* ignore out-of-sequence */
1257                                     break;
1258                                 }
1259                             }
1260                         }
1261                         q->expire = time_uptime + V_dyn_ack_lifetime;
1262                         break;
1263
1264                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
1265                         if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1266                                 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1267                         q->expire = time_uptime + V_dyn_fin_lifetime;
1268                         break;
1269
1270                 default:
1271 #if 0
1272                         /*
1273                          * reset or some invalid combination, but can also
1274                          * occur if we use keep-state the wrong way.
1275                          */
1276                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1277                                 printf("invalid state: 0x%x\n", q->state);
1278 #endif
1279                         if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1280                                 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1281                         q->expire = time_uptime + V_dyn_rst_lifetime;
1282                         break;
1283                 }
1284         } else if (pkt->proto == IPPROTO_UDP) {
1285                 q->expire = time_uptime + V_dyn_udp_lifetime;
1286         } else {
1287                 /* other protocols */
1288                 q->expire = time_uptime + V_dyn_short_lifetime;
1289         }
1290 done:
1291         if (match_direction)
1292                 *match_direction = dir;
1293         return q;
1294 }
1295
1296 static ipfw_dyn_rule *
1297 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1298     struct tcphdr *tcp)
1299 {
1300         ipfw_dyn_rule *q;
1301
1302         IPFW_DYN_LOCK();
1303         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1304         if (q == NULL)
1305                 IPFW_DYN_UNLOCK();
1306         /* NB: return table locked when q is not NULL */
1307         return q;
1308 }
1309
1310 static void
1311 realloc_dynamic_table(void)
1312 {
1313         INIT_VNET_IPFW(curvnet);
1314         IPFW_DYN_LOCK_ASSERT();
1315
1316         /*
1317          * Try reallocation, make sure we have a power of 2 and do
1318          * not allow more than 64k entries. In case of overflow,
1319          * default to 1024.
1320          */
1321
1322         if (V_dyn_buckets > 65536)
1323                 V_dyn_buckets = 1024;
1324         if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
1325                 V_dyn_buckets = V_curr_dyn_buckets; /* reset */
1326                 return;
1327         }
1328         V_curr_dyn_buckets = V_dyn_buckets;
1329         if (V_ipfw_dyn_v != NULL)
1330                 free(V_ipfw_dyn_v, M_IPFW);
1331         for (;;) {
1332                 V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1333                        M_IPFW, M_NOWAIT | M_ZERO);
1334                 if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
1335                         break;
1336                 V_curr_dyn_buckets /= 2;
1337         }
1338 }
1339
1340 /**
1341  * Install state of type 'type' for a dynamic session.
1342  * The hash table contains two type of rules:
1343  * - regular rules (O_KEEP_STATE)
1344  * - rules for sessions with limited number of sess per user
1345  *   (O_LIMIT). When they are created, the parent is
1346  *   increased by 1, and decreased on delete. In this case,
1347  *   the third parameter is the parent rule and not the chain.
1348  * - "parent" rules for the above (O_LIMIT_PARENT).
1349  */
1350 static ipfw_dyn_rule *
1351 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1352 {
1353         INIT_VNET_IPFW(curvnet);
1354         ipfw_dyn_rule *r;
1355         int i;
1356
1357         IPFW_DYN_LOCK_ASSERT();
1358
1359         if (V_ipfw_dyn_v == NULL ||
1360             (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
1361                 realloc_dynamic_table();
1362                 if (V_ipfw_dyn_v == NULL)
1363                         return NULL; /* failed ! */
1364         }
1365         i = hash_packet(id);
1366
1367         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1368         if (r == NULL) {
1369                 printf ("ipfw: sorry cannot allocate state\n");
1370                 return NULL;
1371         }
1372
1373         /* increase refcount on parent, and set pointer */
1374         if (dyn_type == O_LIMIT) {
1375                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1376                 if ( parent->dyn_type != O_LIMIT_PARENT)
1377                         panic("invalid parent");
1378                 parent->count++;
1379                 r->parent = parent;
1380                 rule = parent->rule;
1381         }
1382
1383         r->id = *id;
1384         r->expire = time_uptime + V_dyn_syn_lifetime;
1385         r->rule = rule;
1386         r->dyn_type = dyn_type;
1387         r->pcnt = r->bcnt = 0;
1388         r->count = 0;
1389
1390         r->bucket = i;
1391         r->next = V_ipfw_dyn_v[i];
1392         V_ipfw_dyn_v[i] = r;
1393         V_dyn_count++;
1394         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1395            dyn_type,
1396            (r->id.src_ip), (r->id.src_port),
1397            (r->id.dst_ip), (r->id.dst_port),
1398            V_dyn_count ); )
1399         return r;
1400 }
1401
1402 /**
1403  * lookup dynamic parent rule using pkt and rule as search keys.
1404  * If the lookup fails, then install one.
1405  */
1406 static ipfw_dyn_rule *
1407 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1408 {
1409         INIT_VNET_IPFW(curvnet);
1410         ipfw_dyn_rule *q;
1411         int i;
1412
1413         IPFW_DYN_LOCK_ASSERT();
1414
1415         if (V_ipfw_dyn_v) {
1416                 int is_v6 = IS_IP6_FLOW_ID(pkt);
1417                 i = hash_packet( pkt );
1418                 for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1419                         if (q->dyn_type == O_LIMIT_PARENT &&
1420                             rule== q->rule &&
1421                             pkt->proto == q->id.proto &&
1422                             pkt->src_port == q->id.src_port &&
1423                             pkt->dst_port == q->id.dst_port &&
1424                             (
1425                                 (is_v6 &&
1426                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1427                                         &(q->id.src_ip6)) &&
1428                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1429                                         &(q->id.dst_ip6))) ||
1430                                 (!is_v6 &&
1431                                  pkt->src_ip == q->id.src_ip &&
1432                                  pkt->dst_ip == q->id.dst_ip)
1433                             )
1434                         ) {
1435                                 q->expire = time_uptime + V_dyn_short_lifetime;
1436                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1437                                 return q;
1438                         }
1439         }
1440         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1441 }
1442
1443 /**
1444  * Install dynamic state for rule type cmd->o.opcode
1445  *
1446  * Returns 1 (failure) if state is not installed because of errors or because
1447  * session limitations are enforced.
1448  */
1449 static int
1450 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1451     struct ip_fw_args *args, uint32_t tablearg)
1452 {
1453         INIT_VNET_IPFW(curvnet);
1454         static int last_log;
1455         ipfw_dyn_rule *q;
1456         struct in_addr da;
1457         char src[48], dst[48];
1458
1459         src[0] = '\0';
1460         dst[0] = '\0';
1461
1462         DEB(
1463         printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1464             __func__, cmd->o.opcode,
1465             (args->f_id.src_ip), (args->f_id.src_port),
1466             (args->f_id.dst_ip), (args->f_id.dst_port));
1467         )
1468
1469         IPFW_DYN_LOCK();
1470
1471         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1472
1473         if (q != NULL) {        /* should never occur */
1474                 if (last_log != time_uptime) {
1475                         last_log = time_uptime;
1476                         printf("ipfw: %s: entry already present, done\n",
1477                             __func__);
1478                 }
1479                 IPFW_DYN_UNLOCK();
1480                 return (0);
1481         }
1482
1483         if (V_dyn_count >= V_dyn_max)
1484                 /* Run out of slots, try to remove any expired rule. */
1485                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1486
1487         if (V_dyn_count >= V_dyn_max) {
1488                 if (last_log != time_uptime) {
1489                         last_log = time_uptime;
1490                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
1491                 }
1492                 IPFW_DYN_UNLOCK();
1493                 return (1);     /* cannot install, notify caller */
1494         }
1495
1496         switch (cmd->o.opcode) {
1497         case O_KEEP_STATE:      /* bidir rule */
1498                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1499                 break;
1500
1501         case O_LIMIT: {         /* limit number of sessions */
1502                 struct ipfw_flow_id id;
1503                 ipfw_dyn_rule *parent;
1504                 uint32_t conn_limit;
1505                 uint16_t limit_mask = cmd->limit_mask;
1506
1507                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1508                     tablearg : cmd->conn_limit;
1509                   
1510                 DEB(
1511                 if (cmd->conn_limit == IP_FW_TABLEARG)
1512                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1513                             "(tablearg)\n", __func__, conn_limit);
1514                 else
1515                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1516                             __func__, conn_limit);
1517                 )
1518
1519                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1520                 id.proto = args->f_id.proto;
1521                 id.addr_type = args->f_id.addr_type;
1522                 id.fib = M_GETFIB(args->m);
1523
1524                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
1525                         if (limit_mask & DYN_SRC_ADDR)
1526                                 id.src_ip6 = args->f_id.src_ip6;
1527                         if (limit_mask & DYN_DST_ADDR)
1528                                 id.dst_ip6 = args->f_id.dst_ip6;
1529                 } else {
1530                         if (limit_mask & DYN_SRC_ADDR)
1531                                 id.src_ip = args->f_id.src_ip;
1532                         if (limit_mask & DYN_DST_ADDR)
1533                                 id.dst_ip = args->f_id.dst_ip;
1534                 }
1535                 if (limit_mask & DYN_SRC_PORT)
1536                         id.src_port = args->f_id.src_port;
1537                 if (limit_mask & DYN_DST_PORT)
1538                         id.dst_port = args->f_id.dst_port;
1539                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1540                         printf("ipfw: %s: add parent failed\n", __func__);
1541                         IPFW_DYN_UNLOCK();
1542                         return (1);
1543                 }
1544
1545                 if (parent->count >= conn_limit) {
1546                         /* See if we can remove some expired rule. */
1547                         remove_dyn_rule(rule, parent);
1548                         if (parent->count >= conn_limit) {
1549                                 if (V_fw_verbose && last_log != time_uptime) {
1550                                         last_log = time_uptime;
1551 #ifdef INET6
1552                                         /*
1553                                          * XXX IPv6 flows are not
1554                                          * supported yet.
1555                                          */
1556                                         if (IS_IP6_FLOW_ID(&(args->f_id))) {
1557                                                 char ip6buf[INET6_ADDRSTRLEN];
1558                                                 snprintf(src, sizeof(src),
1559                                                     "[%s]", ip6_sprintf(ip6buf,
1560                                                         &args->f_id.src_ip6));
1561                                                 snprintf(dst, sizeof(dst),
1562                                                     "[%s]", ip6_sprintf(ip6buf,
1563                                                         &args->f_id.dst_ip6));
1564                                         } else
1565 #endif
1566                                         {
1567                                                 da.s_addr =
1568                                                     htonl(args->f_id.src_ip);
1569                                                 inet_ntoa_r(da, src);
1570                                                 da.s_addr =
1571                                                     htonl(args->f_id.dst_ip);
1572                                                 inet_ntoa_r(da, dst);
1573                                         }
1574                                         log(LOG_SECURITY | LOG_DEBUG,
1575                                             "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1576                                             parent->rule->rulenum,
1577                                             "drop session",
1578                                             src, (args->f_id.src_port),
1579                                             dst, (args->f_id.dst_port),
1580                                             "too many entries");
1581                                 }
1582                                 IPFW_DYN_UNLOCK();
1583                                 return (1);
1584                         }
1585                 }
1586                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1587                 break;
1588         }
1589         default:
1590                 printf("ipfw: %s: unknown dynamic rule type %u\n",
1591                     __func__, cmd->o.opcode);
1592                 IPFW_DYN_UNLOCK();
1593                 return (1);
1594         }
1595
1596         /* XXX just set lifetime */
1597         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1598
1599         IPFW_DYN_UNLOCK();
1600         return (0);
1601 }
1602
1603 /*
1604  * Generate a TCP packet, containing either a RST or a keepalive.
1605  * When flags & TH_RST, we are sending a RST packet, because of a
1606  * "reset" action matched the packet.
1607  * Otherwise we are sending a keepalive, and flags & TH_
1608  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1609  * so that MAC can label the reply appropriately.
1610  */
1611 static struct mbuf *
1612 send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1613     u_int32_t ack, int flags)
1614 {
1615         INIT_VNET_INET(curvnet);
1616         struct mbuf *m;
1617         struct ip *ip;
1618         struct tcphdr *tcp;
1619
1620         MGETHDR(m, M_DONTWAIT, MT_DATA);
1621         if (m == 0)
1622                 return (NULL);
1623         m->m_pkthdr.rcvif = (struct ifnet *)0;
1624
1625         M_SETFIB(m, id->fib);
1626 #ifdef MAC
1627         if (replyto != NULL)
1628                 mac_netinet_firewall_reply(replyto, m);
1629         else
1630                 mac_netinet_firewall_send(m);
1631 #else
1632         (void)replyto;          /* don't warn about unused arg */
1633 #endif
1634
1635         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1636         m->m_data += max_linkhdr;
1637
1638         ip = mtod(m, struct ip *);
1639         bzero(ip, m->m_len);
1640         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1641         ip->ip_p = IPPROTO_TCP;
1642         tcp->th_off = 5;
1643         /*
1644          * Assume we are sending a RST (or a keepalive in the reverse
1645          * direction), swap src and destination addresses and ports.
1646          */
1647         ip->ip_src.s_addr = htonl(id->dst_ip);
1648         ip->ip_dst.s_addr = htonl(id->src_ip);
1649         tcp->th_sport = htons(id->dst_port);
1650         tcp->th_dport = htons(id->src_port);
1651         if (flags & TH_RST) {   /* we are sending a RST */
1652                 if (flags & TH_ACK) {
1653                         tcp->th_seq = htonl(ack);
1654                         tcp->th_ack = htonl(0);
1655                         tcp->th_flags = TH_RST;
1656                 } else {
1657                         if (flags & TH_SYN)
1658                                 seq++;
1659                         tcp->th_seq = htonl(0);
1660                         tcp->th_ack = htonl(seq);
1661                         tcp->th_flags = TH_RST | TH_ACK;
1662                 }
1663         } else {
1664                 /*
1665                  * We are sending a keepalive. flags & TH_SYN determines
1666                  * the direction, forward if set, reverse if clear.
1667                  * NOTE: seq and ack are always assumed to be correct
1668                  * as set by the caller. This may be confusing...
1669                  */
1670                 if (flags & TH_SYN) {
1671                         /*
1672                          * we have to rewrite the correct addresses!
1673                          */
1674                         ip->ip_dst.s_addr = htonl(id->dst_ip);
1675                         ip->ip_src.s_addr = htonl(id->src_ip);
1676                         tcp->th_dport = htons(id->dst_port);
1677                         tcp->th_sport = htons(id->src_port);
1678                 }
1679                 tcp->th_seq = htonl(seq);
1680                 tcp->th_ack = htonl(ack);
1681                 tcp->th_flags = TH_ACK;
1682         }
1683         /*
1684          * set ip_len to the payload size so we can compute
1685          * the tcp checksum on the pseudoheader
1686          * XXX check this, could save a couple of words ?
1687          */
1688         ip->ip_len = htons(sizeof(struct tcphdr));
1689         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1690         /*
1691          * now fill fields left out earlier
1692          */
1693         ip->ip_ttl = V_ip_defttl;
1694         ip->ip_len = m->m_pkthdr.len;
1695         m->m_flags |= M_SKIP_FIREWALL;
1696         return (m);
1697 }
1698
1699 /*
1700  * sends a reject message, consuming the mbuf passed as an argument.
1701  */
1702 static void
1703 send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1704 {
1705
1706 #if 0
1707         /* XXX When ip is not guaranteed to be at mtod() we will
1708          * need to account for this */
1709          * The mbuf will however be thrown away so we can adjust it.
1710          * Remember we did an m_pullup on it already so we
1711          * can make some assumptions about contiguousness.
1712          */
1713         if (args->L3offset)
1714                 m_adj(m, args->L3offset);
1715 #endif
1716         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1717                 /* We need the IP header in host order for icmp_error(). */
1718                 if (args->eh != NULL) {
1719                         ip->ip_len = ntohs(ip->ip_len);
1720                         ip->ip_off = ntohs(ip->ip_off);
1721                 }
1722                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1723         } else if (args->f_id.proto == IPPROTO_TCP) {
1724                 struct tcphdr *const tcp =
1725                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1726                 if ( (tcp->th_flags & TH_RST) == 0) {
1727                         struct mbuf *m;
1728                         m = send_pkt(args->m, &(args->f_id),
1729                                 ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1730                                 tcp->th_flags | TH_RST);
1731                         if (m != NULL)
1732                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1733                 }
1734                 m_freem(args->m);
1735         } else
1736                 m_freem(args->m);
1737         args->m = NULL;
1738 }
1739
1740 /**
1741  *
1742  * Given an ip_fw *, lookup_next_rule will return a pointer
1743  * to the next rule, which can be either the jump
1744  * target (for skipto instructions) or the next one in the list (in
1745  * all other cases including a missing jump target).
1746  * The result is also written in the "next_rule" field of the rule.
1747  * Backward jumps are not allowed, so start looking from the next
1748  * rule...
1749  *
1750  * This never returns NULL -- in case we do not have an exact match,
1751  * the next rule is returned. When the ruleset is changed,
1752  * pointers are flushed so we are always correct.
1753  */
1754
1755 static struct ip_fw *
1756 lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
1757 {
1758         struct ip_fw *rule = NULL;
1759         ipfw_insn *cmd;
1760         u_int16_t       rulenum;
1761
1762         /* look for action, in case it is a skipto */
1763         cmd = ACTION_PTR(me);
1764         if (cmd->opcode == O_LOG)
1765                 cmd += F_LEN(cmd);
1766         if (cmd->opcode == O_ALTQ)
1767                 cmd += F_LEN(cmd);
1768         if (cmd->opcode == O_TAG)
1769                 cmd += F_LEN(cmd);
1770         if (cmd->opcode == O_SKIPTO ) {
1771                 if (tablearg != 0) {
1772                         rulenum = (u_int16_t)tablearg;
1773                 } else {
1774                         rulenum = cmd->arg1;
1775                 }
1776                 for (rule = me->next; rule ; rule = rule->next) {
1777                         if (rule->rulenum >= rulenum) {
1778                                 break;
1779                         }
1780                 }
1781         }
1782         if (rule == NULL)                       /* failure or not a skipto */
1783                 rule = me->next;
1784         me->next_rule = rule;
1785         return rule;
1786 }
1787
1788 static int
1789 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1790     uint8_t mlen, uint32_t value)
1791 {
1792         INIT_VNET_IPFW(curvnet);
1793         struct radix_node_head *rnh;
1794         struct table_entry *ent;
1795
1796         if (tbl >= IPFW_TABLES_MAX)
1797                 return (EINVAL);
1798         rnh = ch->tables[tbl];
1799         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1800         if (ent == NULL)
1801                 return (ENOMEM);
1802         ent->value = value;
1803         ent->addr.sin_len = ent->mask.sin_len = 8;
1804         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1805         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1806         IPFW_WLOCK(&V_layer3_chain);
1807         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1808             NULL) {
1809                 IPFW_WUNLOCK(&V_layer3_chain);
1810                 free(ent, M_IPFW_TBL);
1811                 return (EEXIST);
1812         }
1813         IPFW_WUNLOCK(&V_layer3_chain);
1814         return (0);
1815 }
1816
1817 static int
1818 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1819     uint8_t mlen)
1820 {
1821         struct radix_node_head *rnh;
1822         struct table_entry *ent;
1823         struct sockaddr_in sa, mask;
1824
1825         if (tbl >= IPFW_TABLES_MAX)
1826                 return (EINVAL);
1827         rnh = ch->tables[tbl];
1828         sa.sin_len = mask.sin_len = 8;
1829         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1830         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1831         IPFW_WLOCK(ch);
1832         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1833         if (ent == NULL) {
1834                 IPFW_WUNLOCK(ch);
1835                 return (ESRCH);
1836         }
1837         IPFW_WUNLOCK(ch);
1838         free(ent, M_IPFW_TBL);
1839         return (0);
1840 }
1841
1842 static int
1843 flush_table_entry(struct radix_node *rn, void *arg)
1844 {
1845         struct radix_node_head * const rnh = arg;
1846         struct table_entry *ent;
1847
1848         ent = (struct table_entry *)
1849             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1850         if (ent != NULL)
1851                 free(ent, M_IPFW_TBL);
1852         return (0);
1853 }
1854
1855 static int
1856 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1857 {
1858         struct radix_node_head *rnh;
1859
1860         IPFW_WLOCK_ASSERT(ch);
1861
1862         if (tbl >= IPFW_TABLES_MAX)
1863                 return (EINVAL);
1864         rnh = ch->tables[tbl];
1865         KASSERT(rnh != NULL, ("NULL IPFW table"));
1866         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1867         return (0);
1868 }
1869
1870 static void
1871 flush_tables(struct ip_fw_chain *ch)
1872 {
1873         uint16_t tbl;
1874
1875         IPFW_WLOCK_ASSERT(ch);
1876
1877         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1878                 flush_table(ch, tbl);
1879 }
1880
1881 static int
1882 init_tables(struct ip_fw_chain *ch)
1883
1884         int i;
1885         uint16_t j;
1886
1887         for (i = 0; i < IPFW_TABLES_MAX; i++) {
1888                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
1889                         for (j = 0; j < i; j++) {
1890                                 (void) flush_table(ch, j);
1891                         }
1892                         return (ENOMEM);
1893                 }
1894         }
1895         return (0);
1896 }
1897
1898 static int
1899 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1900     uint32_t *val)
1901 {
1902         struct radix_node_head *rnh;
1903         struct table_entry *ent;
1904         struct sockaddr_in sa;
1905
1906         if (tbl >= IPFW_TABLES_MAX)
1907                 return (0);
1908         rnh = ch->tables[tbl];
1909         sa.sin_len = 8;
1910         sa.sin_addr.s_addr = addr;
1911         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1912         if (ent != NULL) {
1913                 *val = ent->value;
1914                 return (1);
1915         }
1916         return (0);
1917 }
1918
1919 static int
1920 count_table_entry(struct radix_node *rn, void *arg)
1921 {
1922         u_int32_t * const cnt = arg;
1923
1924         (*cnt)++;
1925         return (0);
1926 }
1927
1928 static int
1929 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1930 {
1931         struct radix_node_head *rnh;
1932
1933         if (tbl >= IPFW_TABLES_MAX)
1934                 return (EINVAL);
1935         rnh = ch->tables[tbl];
1936         *cnt = 0;
1937         rnh->rnh_walktree(rnh, count_table_entry, cnt);
1938         return (0);
1939 }
1940
1941 static int
1942 dump_table_entry(struct radix_node *rn, void *arg)
1943 {
1944         struct table_entry * const n = (struct table_entry *)rn;
1945         ipfw_table * const tbl = arg;
1946         ipfw_table_entry *ent;
1947
1948         if (tbl->cnt == tbl->size)
1949                 return (1);
1950         ent = &tbl->ent[tbl->cnt];
1951         ent->tbl = tbl->tbl;
1952         if (in_nullhost(n->mask.sin_addr))
1953                 ent->masklen = 0;
1954         else
1955                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1956         ent->addr = n->addr.sin_addr.s_addr;
1957         ent->value = n->value;
1958         tbl->cnt++;
1959         return (0);
1960 }
1961
1962 static int
1963 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1964 {
1965         struct radix_node_head *rnh;
1966
1967         if (tbl->tbl >= IPFW_TABLES_MAX)
1968                 return (EINVAL);
1969         rnh = ch->tables[tbl->tbl];
1970         tbl->cnt = 0;
1971         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1972         return (0);
1973 }
1974
1975 static void
1976 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1977 {
1978         struct ucred *cr;
1979
1980         cr = inp->inp_cred;
1981         ugp->fw_prid = jailed(cr) ? cr->cr_prison->pr_id : -1;
1982         ugp->fw_uid = cr->cr_uid;
1983         ugp->fw_ngroups = cr->cr_ngroups;
1984         bcopy(cr->cr_groups, ugp->fw_groups, sizeof(ugp->fw_groups));
1985 }
1986
1987 static int
1988 check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
1989     struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
1990     u_int16_t src_port, struct ip_fw_ugid *ugp, int *ugid_lookupp,
1991     struct inpcb *inp)
1992 {
1993         INIT_VNET_INET(curvnet);
1994         struct inpcbinfo *pi;
1995         int wildcard;
1996         struct inpcb *pcb;
1997         int match;
1998         gid_t *gp;
1999
2000         /*
2001          * Check to see if the UDP or TCP stack supplied us with
2002          * the PCB. If so, rather then holding a lock and looking
2003          * up the PCB, we can use the one that was supplied.
2004          */
2005         if (inp && *ugid_lookupp == 0) {
2006                 INP_LOCK_ASSERT(inp);
2007                 if (inp->inp_socket != NULL) {
2008                         fill_ugid_cache(inp, ugp);
2009                         *ugid_lookupp = 1;
2010                 } else
2011                         *ugid_lookupp = -1;
2012         }
2013         /*
2014          * If we have already been here and the packet has no
2015          * PCB entry associated with it, then we can safely
2016          * assume that this is a no match.
2017          */
2018         if (*ugid_lookupp == -1)
2019                 return (0);
2020         if (proto == IPPROTO_TCP) {
2021                 wildcard = 0;
2022                 pi = &V_tcbinfo;
2023         } else if (proto == IPPROTO_UDP) {
2024                 wildcard = INPLOOKUP_WILDCARD;
2025                 pi = &V_udbinfo;
2026         } else
2027                 return 0;
2028         match = 0;
2029         if (*ugid_lookupp == 0) {
2030                 INP_INFO_RLOCK(pi);
2031                 pcb =  (oif) ?
2032                         in_pcblookup_hash(pi,
2033                                 dst_ip, htons(dst_port),
2034                                 src_ip, htons(src_port),
2035                                 wildcard, oif) :
2036                         in_pcblookup_hash(pi,
2037                                 src_ip, htons(src_port),
2038                                 dst_ip, htons(dst_port),
2039                                 wildcard, NULL);
2040                 if (pcb != NULL) {
2041                         fill_ugid_cache(pcb, ugp);
2042                         *ugid_lookupp = 1;
2043                 }
2044                 INP_INFO_RUNLOCK(pi);
2045                 if (*ugid_lookupp == 0) {
2046                         /*
2047                          * If the lookup did not yield any results, there
2048                          * is no sense in coming back and trying again. So
2049                          * we can set lookup to -1 and ensure that we wont
2050                          * bother the pcb system again.
2051                          */
2052                         *ugid_lookupp = -1;
2053                         return (0);
2054                 }
2055         } 
2056         if (insn->o.opcode == O_UID)
2057                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
2058         else if (insn->o.opcode == O_GID) {
2059                 for (gp = ugp->fw_groups;
2060                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
2061                         if (*gp == (gid_t)insn->d[0]) {
2062                                 match = 1;
2063                                 break;
2064                         }
2065         } else if (insn->o.opcode == O_JAIL)
2066                 match = (ugp->fw_prid == (int)insn->d[0]);
2067         return match;
2068 }
2069
2070 /*
2071  * The main check routine for the firewall.
2072  *
2073  * All arguments are in args so we can modify them and return them
2074  * back to the caller.
2075  *
2076  * Parameters:
2077  *
2078  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
2079  *              Starts with the IP header.
2080  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
2081  *      args->L3offset  Number of bytes bypassed if we came from L2.
2082  *                      e.g. often sizeof(eh)  ** NOTYET **
2083  *      args->oif       Outgoing interface, or NULL if packet is incoming.
2084  *              The incoming interface is in the mbuf. (in)
2085  *      args->divert_rule (in/out)
2086  *              Skip up to the first rule past this rule number;
2087  *              upon return, non-zero port number for divert or tee.
2088  *
2089  *      args->rule      Pointer to the last matching rule (in/out)
2090  *      args->next_hop  Socket we are forwarding to (out).
2091  *      args->f_id      Addresses grabbed from the packet (out)
2092  *      args->cookie    a cookie depending on rule action
2093  *
2094  * Return value:
2095  *
2096  *      IP_FW_PASS      the packet must be accepted
2097  *      IP_FW_DENY      the packet must be dropped
2098  *      IP_FW_DIVERT    divert packet, port in m_tag
2099  *      IP_FW_TEE       tee packet, port in m_tag
2100  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
2101  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
2102  *
2103  */
2104 int
2105 ipfw_chk(struct ip_fw_args *args)
2106 {
2107         INIT_VNET_INET(curvnet);
2108         INIT_VNET_IPFW(curvnet);
2109
2110         /*
2111          * Local variables holding state during the processing of a packet:
2112          *
2113          * IMPORTANT NOTE: to speed up the processing of rules, there
2114          * are some assumption on the values of the variables, which
2115          * are documented here. Should you change them, please check
2116          * the implementation of the various instructions to make sure
2117          * that they still work.
2118          *
2119          * args->eh     The MAC header. It is non-null for a layer2
2120          *      packet, it is NULL for a layer-3 packet.
2121          * **notyet**
2122          * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2123          *
2124          * m | args->m  Pointer to the mbuf, as received from the caller.
2125          *      It may change if ipfw_chk() does an m_pullup, or if it
2126          *      consumes the packet because it calls send_reject().
2127          *      XXX This has to change, so that ipfw_chk() never modifies
2128          *      or consumes the buffer.
2129          * ip   is the beginning of the ip(4 or 6) header.
2130          *      Calculated by adding the L3offset to the start of data.
2131          *      (Until we start using L3offset, the packet is
2132          *      supposed to start with the ip header).
2133          */
2134         struct mbuf *m = args->m;
2135         struct ip *ip = mtod(m, struct ip *);
2136
2137         /*
2138          * For rules which contain uid/gid or jail constraints, cache
2139          * a copy of the users credentials after the pcb lookup has been
2140          * executed. This will speed up the processing of rules with
2141          * these types of constraints, as well as decrease contention
2142          * on pcb related locks.
2143          */
2144         struct ip_fw_ugid fw_ugid_cache;
2145         int ugid_lookup = 0;
2146
2147         /*
2148          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
2149          *      associated with a packet input on a divert socket.  This
2150          *      will allow to distinguish traffic and its direction when
2151          *      it originates from a divert socket.
2152          */
2153         u_int divinput_flags = 0;
2154
2155         /*
2156          * oif | args->oif      If NULL, ipfw_chk has been called on the
2157          *      inbound path (ether_input, ip_input).
2158          *      If non-NULL, ipfw_chk has been called on the outbound path
2159          *      (ether_output, ip_output).
2160          */
2161         struct ifnet *oif = args->oif;
2162
2163         struct ip_fw *f = NULL;         /* matching rule */
2164         int retval = 0;
2165
2166         /*
2167          * hlen The length of the IP header.
2168          */
2169         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
2170
2171         /*
2172          * offset       The offset of a fragment. offset != 0 means that
2173          *      we have a fragment at this offset of an IPv4 packet.
2174          *      offset == 0 means that (if this is an IPv4 packet)
2175          *      this is the first or only fragment.
2176          *      For IPv6 offset == 0 means there is no Fragment Header. 
2177          *      If offset != 0 for IPv6 always use correct mask to
2178          *      get the correct offset because we add IP6F_MORE_FRAG
2179          *      to be able to dectect the first fragment which would
2180          *      otherwise have offset = 0.
2181          */
2182         u_short offset = 0;
2183
2184         /*
2185          * Local copies of addresses. They are only valid if we have
2186          * an IP packet.
2187          *
2188          * proto        The protocol. Set to 0 for non-ip packets,
2189          *      or to the protocol read from the packet otherwise.
2190          *      proto != 0 means that we have an IPv4 packet.
2191          *
2192          * src_port, dst_port   port numbers, in HOST format. Only
2193          *      valid for TCP and UDP packets.
2194          *
2195          * src_ip, dst_ip       ip addresses, in NETWORK format.
2196          *      Only valid for IPv4 packets.
2197          */
2198         u_int8_t proto;
2199         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
2200         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
2201         u_int16_t ip_len=0;
2202         int pktlen;
2203         u_int16_t       etype = 0;      /* Host order stored ether type */
2204
2205         /*
2206          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2207          *      MATCH_NONE when checked and not matched (q = NULL),
2208          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2209          */
2210         int dyn_dir = MATCH_UNKNOWN;
2211         ipfw_dyn_rule *q = NULL;
2212         struct ip_fw_chain *chain = &V_layer3_chain;
2213         struct m_tag *mtag;
2214
2215         /*
2216          * We store in ulp a pointer to the upper layer protocol header.
2217          * In the ipv4 case this is easy to determine from the header,
2218          * but for ipv6 we might have some additional headers in the middle.
2219          * ulp is NULL if not found.
2220          */
2221         void *ulp = NULL;               /* upper layer protocol pointer. */
2222         /* XXX ipv6 variables */
2223         int is_ipv6 = 0;
2224         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
2225         /* end of ipv6 variables */
2226         int is_ipv4 = 0;
2227
2228         if (m->m_flags & M_SKIP_FIREWALL)
2229                 return (IP_FW_PASS);    /* accept */
2230
2231         pktlen = m->m_pkthdr.len;
2232         args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
2233         proto = args->f_id.proto = 0;   /* mark f_id invalid */
2234                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2235
2236 /*
2237  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2238  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2239  * pointer might become stale after other pullups (but we never use it
2240  * this way).
2241  */
2242 #define PULLUP_TO(len, p, T)                                            \
2243 do {                                                                    \
2244         int x = (len) + sizeof(T);                                      \
2245         if ((m)->m_len < x) {                                           \
2246                 args->m = m = m_pullup(m, x);                           \
2247                 if (m == NULL)                                          \
2248                         goto pullup_failed;                             \
2249         }                                                               \
2250         p = (mtod(m, char *) + (len));                                  \
2251 } while (0)
2252
2253         /*
2254          * if we have an ether header,
2255          */
2256         if (args->eh)
2257                 etype = ntohs(args->eh->ether_type);
2258
2259         /* Identify IP packets and fill up variables. */
2260         if (pktlen >= sizeof(struct ip6_hdr) &&
2261             (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2262                 struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2263                 is_ipv6 = 1;
2264                 args->f_id.addr_type = 6;
2265                 hlen = sizeof(struct ip6_hdr);
2266                 proto = ip6->ip6_nxt;
2267
2268                 /* Search extension headers to find upper layer protocols */
2269                 while (ulp == NULL) {
2270                         switch (proto) {
2271                         case IPPROTO_ICMPV6:
2272                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2273                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
2274                                 break;
2275
2276                         case IPPROTO_TCP:
2277                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2278                                 dst_port = TCP(ulp)->th_dport;
2279                                 src_port = TCP(ulp)->th_sport;
2280                                 args->f_id.flags = TCP(ulp)->th_flags;
2281                                 break;
2282
2283                         case IPPROTO_SCTP:
2284                                 PULLUP_TO(hlen, ulp, struct sctphdr);
2285                                 src_port = SCTP(ulp)->src_port;
2286                                 dst_port = SCTP(ulp)->dest_port;
2287                                 break;
2288
2289                         case IPPROTO_UDP:
2290                                 PULLUP_TO(hlen, ulp, struct udphdr);
2291                                 dst_port = UDP(ulp)->uh_dport;
2292                                 src_port = UDP(ulp)->uh_sport;
2293                                 break;
2294
2295                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
2296                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2297                                 ext_hd |= EXT_HOPOPTS;
2298                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2299                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2300                                 ulp = NULL;
2301                                 break;
2302
2303                         case IPPROTO_ROUTING:   /* RFC 2460 */
2304                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2305                                 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2306                                 case 0:
2307                                         ext_hd |= EXT_RTHDR0;
2308                                         break;
2309                                 case 2:
2310                                         ext_hd |= EXT_RTHDR2;
2311                                         break;
2312                                 default:
2313                                         printf("IPFW2: IPV6 - Unknown Routing "
2314                                             "Header type(%d)\n",
2315                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
2316                                         if (V_fw_deny_unknown_exthdrs)
2317                                             return (IP_FW_DENY);
2318                                         break;
2319                                 }
2320                                 ext_hd |= EXT_ROUTING;
2321                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2322                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2323                                 ulp = NULL;
2324                                 break;
2325
2326                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
2327                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
2328                                 ext_hd |= EXT_FRAGMENT;
2329                                 hlen += sizeof (struct ip6_frag);
2330                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2331                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2332                                         IP6F_OFF_MASK;
2333                                 /* Add IP6F_MORE_FRAG for offset of first
2334                                  * fragment to be != 0. */
2335                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2336                                         IP6F_MORE_FRAG;
2337                                 if (offset == 0) {
2338                                         printf("IPFW2: IPV6 - Invalid Fragment "
2339                                             "Header\n");
2340                                         if (V_fw_deny_unknown_exthdrs)
2341                                             return (IP_FW_DENY);
2342                                         break;
2343                                 }
2344                                 args->f_id.frag_id6 =
2345                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2346                                 ulp = NULL;
2347                                 break;
2348
2349                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
2350                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2351                                 ext_hd |= EXT_DSTOPTS;
2352                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2353                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2354                                 ulp = NULL;
2355                                 break;
2356
2357                         case IPPROTO_AH:        /* RFC 2402 */
2358                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2359                                 ext_hd |= EXT_AH;
2360                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2361                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2362                                 ulp = NULL;
2363                                 break;
2364
2365                         case IPPROTO_ESP:       /* RFC 2406 */
2366                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
2367                                 /* Anything past Seq# is variable length and
2368                                  * data past this ext. header is encrypted. */
2369                                 ext_hd |= EXT_ESP;
2370                                 break;
2371
2372                         case IPPROTO_NONE:      /* RFC 2460 */
2373                                 /*
2374                                  * Packet ends here, and IPv6 header has
2375                                  * already been pulled up. If ip6e_len!=0
2376                                  * then octets must be ignored.
2377                                  */
2378                                 ulp = ip; /* non-NULL to get out of loop. */
2379                                 break;
2380
2381                         case IPPROTO_OSPFIGP:
2382                                 /* XXX OSPF header check? */
2383                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2384                                 break;
2385
2386                         case IPPROTO_PIM:
2387                                 /* XXX PIM header check? */
2388                                 PULLUP_TO(hlen, ulp, struct pim);
2389                                 break;
2390
2391                         case IPPROTO_CARP:
2392                                 PULLUP_TO(hlen, ulp, struct carp_header);
2393                                 if (((struct carp_header *)ulp)->carp_version !=
2394                                     CARP_VERSION) 
2395                                         return (IP_FW_DENY);
2396                                 if (((struct carp_header *)ulp)->carp_type !=
2397                                     CARP_ADVERTISEMENT) 
2398                                         return (IP_FW_DENY);
2399                                 break;
2400
2401                         case IPPROTO_IPV6:      /* RFC 2893 */
2402                                 PULLUP_TO(hlen, ulp, struct ip6_hdr);
2403                                 break;
2404
2405                         case IPPROTO_IPV4:      /* RFC 2893 */
2406                                 PULLUP_TO(hlen, ulp, struct ip);
2407                                 break;
2408
2409                         default:
2410                                 printf("IPFW2: IPV6 - Unknown Extension "
2411                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
2412                                 if (V_fw_deny_unknown_exthdrs)
2413                                     return (IP_FW_DENY);
2414                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2415                                 break;
2416                         } /*switch */
2417                 }
2418                 ip = mtod(m, struct ip *);
2419                 ip6 = (struct ip6_hdr *)ip;
2420                 args->f_id.src_ip6 = ip6->ip6_src;
2421                 args->f_id.dst_ip6 = ip6->ip6_dst;
2422                 args->f_id.src_ip = 0;
2423                 args->f_id.dst_ip = 0;
2424                 args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2425         } else if (pktlen >= sizeof(struct ip) &&
2426             (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2427                 is_ipv4 = 1;
2428                 hlen = ip->ip_hl << 2;
2429                 args->f_id.addr_type = 4;
2430
2431                 /*
2432                  * Collect parameters into local variables for faster matching.
2433                  */
2434                 proto = ip->ip_p;
2435                 src_ip = ip->ip_src;
2436                 dst_ip = ip->ip_dst;
2437                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2438                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
2439                         ip_len = ntohs(ip->ip_len);
2440                 } else {
2441                         offset = ip->ip_off & IP_OFFMASK;
2442                         ip_len = ip->ip_len;
2443                 }
2444                 pktlen = ip_len < pktlen ? ip_len : pktlen;
2445
2446                 if (offset == 0) {
2447                         switch (proto) {
2448                         case IPPROTO_TCP:
2449                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2450                                 dst_port = TCP(ulp)->th_dport;
2451                                 src_port = TCP(ulp)->th_sport;
2452                                 args->f_id.flags = TCP(ulp)->th_flags;
2453                                 break;
2454
2455                         case IPPROTO_UDP:
2456                                 PULLUP_TO(hlen, ulp, struct udphdr);
2457                                 dst_port = UDP(ulp)->uh_dport;
2458                                 src_port = UDP(ulp)->uh_sport;
2459                                 break;
2460
2461                         case IPPROTO_ICMP:
2462                                 PULLUP_TO(hlen, ulp, struct icmphdr);
2463                                 args->f_id.flags = ICMP(ulp)->icmp_type;
2464                                 break;
2465
2466                         default:
2467                                 break;
2468                         }
2469                 }
2470
2471                 ip = mtod(m, struct ip *);
2472                 args->f_id.src_ip = ntohl(src_ip.s_addr);
2473                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2474         }
2475 #undef PULLUP_TO
2476         if (proto) { /* we may have port numbers, store them */
2477                 args->f_id.proto = proto;
2478                 args->f_id.src_port = src_port = ntohs(src_port);
2479                 args->f_id.dst_port = dst_port = ntohs(dst_port);
2480         }
2481
2482         IPFW_RLOCK(chain);
2483         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2484         if (args->rule) {
2485                 /*
2486                  * Packet has already been tagged. Look for the next rule
2487                  * to restart processing.
2488                  *
2489                  * If fw_one_pass != 0 then just accept it.
2490                  * XXX should not happen here, but optimized out in
2491                  * the caller.
2492                  */
2493                 if (V_fw_one_pass) {
2494                         IPFW_RUNLOCK(chain);
2495                         return (IP_FW_PASS);
2496                 }
2497
2498                 f = args->rule->next_rule;
2499                 if (f == NULL)
2500                         f = lookup_next_rule(args->rule, 0);
2501         } else {
2502                 /*
2503                  * Find the starting rule. It can be either the first
2504                  * one, or the one after divert_rule if asked so.
2505                  */
2506                 int skipto = mtag ? divert_cookie(mtag) : 0;
2507
2508                 f = chain->rules;
2509                 if (args->eh == NULL && skipto != 0) {
2510                         if (skipto >= IPFW_DEFAULT_RULE) {
2511                                 IPFW_RUNLOCK(chain);
2512                                 return (IP_FW_DENY); /* invalid */
2513                         }
2514                         while (f && f->rulenum <= skipto)
2515                                 f = f->next;
2516                         if (f == NULL) {        /* drop packet */
2517                                 IPFW_RUNLOCK(chain);
2518                                 return (IP_FW_DENY);
2519                         }
2520                 }
2521         }
2522         /* reset divert rule to avoid confusion later */
2523         if (mtag) {
2524                 divinput_flags = divert_info(mtag) &
2525                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2526                 m_tag_delete(m, mtag);
2527         }
2528
2529         /*
2530          * Now scan the rules, and parse microinstructions for each rule.
2531          */
2532         for (; f; f = f->next) {
2533                 ipfw_insn *cmd;
2534                 uint32_t tablearg = 0;
2535                 int l, cmdlen, skip_or; /* skip rest of OR block */
2536
2537 again:
2538                 if (V_set_disable & (1 << f->set) )
2539                         continue;
2540
2541                 skip_or = 0;
2542                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2543                     l -= cmdlen, cmd += cmdlen) {
2544                         int match;
2545
2546                         /*
2547                          * check_body is a jump target used when we find a
2548                          * CHECK_STATE, and need to jump to the body of
2549                          * the target rule.
2550                          */
2551
2552 check_body:
2553                         cmdlen = F_LEN(cmd);
2554                         /*
2555                          * An OR block (insn_1 || .. || insn_n) has the
2556                          * F_OR bit set in all but the last instruction.
2557                          * The first match will set "skip_or", and cause
2558                          * the following instructions to be skipped until
2559                          * past the one with the F_OR bit clear.
2560                          */
2561                         if (skip_or) {          /* skip this instruction */
2562                                 if ((cmd->len & F_OR) == 0)
2563                                         skip_or = 0;    /* next one is good */
2564                                 continue;
2565                         }
2566                         match = 0; /* set to 1 if we succeed */
2567
2568                         switch (cmd->opcode) {
2569                         /*
2570                          * The first set of opcodes compares the packet's
2571                          * fields with some pattern, setting 'match' if a
2572                          * match is found. At the end of the loop there is
2573                          * logic to deal with F_NOT and F_OR flags associated
2574                          * with the opcode.
2575                          */
2576                         case O_NOP:
2577                                 match = 1;
2578                                 break;
2579
2580                         case O_FORWARD_MAC:
2581                                 printf("ipfw: opcode %d unimplemented\n",
2582                                     cmd->opcode);
2583                                 break;
2584
2585                         case O_GID:
2586                         case O_UID:
2587                         case O_JAIL:
2588                                 /*
2589                                  * We only check offset == 0 && proto != 0,
2590                                  * as this ensures that we have a
2591                                  * packet with the ports info.
2592                                  */
2593                                 if (offset!=0)
2594                                         break;
2595                                 if (is_ipv6) /* XXX to be fixed later */
2596                                         break;
2597                                 if (proto == IPPROTO_TCP ||
2598                                     proto == IPPROTO_UDP)
2599                                         match = check_uidgid(
2600                                                     (ipfw_insn_u32 *)cmd,
2601                                                     proto, oif,
2602                                                     dst_ip, dst_port,
2603                                                     src_ip, src_port, &fw_ugid_cache,
2604                                                     &ugid_lookup, args->inp);
2605                                 break;
2606
2607                         case O_RECV:
2608                                 match = iface_match(m->m_pkthdr.rcvif,
2609                                     (ipfw_insn_if *)cmd);
2610                                 break;
2611
2612                         case O_XMIT:
2613                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
2614                                 break;
2615
2616                         case O_VIA:
2617                                 match = iface_match(oif ? oif :
2618                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2619                                 break;
2620
2621                         case O_MACADDR2:
2622                                 if (args->eh != NULL) { /* have MAC header */
2623                                         u_int32_t *want = (u_int32_t *)
2624                                                 ((ipfw_insn_mac *)cmd)->addr;
2625                                         u_int32_t *mask = (u_int32_t *)
2626                                                 ((ipfw_insn_mac *)cmd)->mask;
2627                                         u_int32_t *hdr = (u_int32_t *)args->eh;
2628
2629                                         match =
2630                                             ( want[0] == (hdr[0] & mask[0]) &&
2631                                               want[1] == (hdr[1] & mask[1]) &&
2632                                               want[2] == (hdr[2] & mask[2]) );
2633                                 }
2634                                 break;
2635
2636                         case O_MAC_TYPE:
2637                                 if (args->eh != NULL) {
2638                                         u_int16_t *p =
2639                                             ((ipfw_insn_u16 *)cmd)->ports;
2640                                         int i;
2641
2642                                         for (i = cmdlen - 1; !match && i>0;
2643                                             i--, p += 2)
2644                                                 match = (etype >= p[0] &&
2645                                                     etype <= p[1]);
2646                                 }
2647                                 break;
2648
2649                         case O_FRAG:
2650                                 match = (offset != 0);
2651                                 break;
2652
2653                         case O_IN:      /* "out" is "not in" */
2654                                 match = (oif == NULL);
2655                                 break;
2656
2657                         case O_LAYER2:
2658                                 match = (args->eh != NULL);
2659                                 break;
2660
2661                         case O_DIVERTED:
2662                                 match = (cmd->arg1 & 1 && divinput_flags &
2663                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
2664                                         (cmd->arg1 & 2 && divinput_flags &
2665                                     IP_FW_DIVERT_OUTPUT_FLAG);
2666                                 break;
2667
2668                         case O_PROTO:
2669                                 /*
2670                                  * We do not allow an arg of 0 so the
2671                                  * check of "proto" only suffices.
2672                                  */
2673                                 match = (proto == cmd->arg1);
2674                                 break;
2675
2676                         case O_IP_SRC:
2677                                 match = is_ipv4 &&
2678                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2679                                     src_ip.s_addr);
2680                                 break;
2681
2682                         case O_IP_SRC_LOOKUP:
2683                         case O_IP_DST_LOOKUP:
2684                                 if (is_ipv4) {
2685                                     uint32_t a =
2686                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
2687                                             dst_ip.s_addr : src_ip.s_addr;
2688                                     uint32_t v;
2689
2690                                     match = lookup_table(chain, cmd->arg1, a,
2691                                         &v);
2692                                     if (!match)
2693                                         break;
2694                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2695                                         match =
2696                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
2697                                     else
2698                                         tablearg = v;
2699                                 }
2700                                 break;
2701
2702                         case O_IP_SRC_MASK:
2703                         case O_IP_DST_MASK:
2704                                 if (is_ipv4) {
2705                                     uint32_t a =
2706                                         (cmd->opcode == O_IP_DST_MASK) ?
2707                                             dst_ip.s_addr : src_ip.s_addr;
2708                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2709                                     int i = cmdlen-1;
2710
2711                                     for (; !match && i>0; i-= 2, p+= 2)
2712                                         match = (p[0] == (a & p[1]));
2713                                 }
2714                                 break;
2715
2716                         case O_IP_SRC_ME:
2717                                 if (is_ipv4) {
2718                                         struct ifnet *tif;
2719
2720                                         INADDR_TO_IFP(src_ip, tif);
2721                                         match = (tif != NULL);
2722                                 }
2723                                 break;
2724
2725                         case O_IP_DST_SET:
2726                         case O_IP_SRC_SET:
2727                                 if (is_ipv4) {
2728                                         u_int32_t *d = (u_int32_t *)(cmd+1);
2729                                         u_int32_t addr =
2730                                             cmd->opcode == O_IP_DST_SET ?
2731                                                 args->f_id.dst_ip :
2732                                                 args->f_id.src_ip;
2733
2734                                             if (addr < d[0])
2735                                                     break;
2736                                             addr -= d[0]; /* subtract base */
2737                                             match = (addr < cmd->arg1) &&
2738                                                 ( d[ 1 + (addr>>5)] &
2739                                                   (1<<(addr & 0x1f)) );
2740                                 }
2741                                 break;
2742
2743                         case O_IP_DST:
2744                                 match = is_ipv4 &&
2745                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2746                                     dst_ip.s_addr);
2747                                 break;
2748
2749                         case O_IP_DST_ME:
2750                                 if (is_ipv4) {
2751                                         struct ifnet *tif;
2752
2753                                         INADDR_TO_IFP(dst_ip, tif);
2754                                         match = (tif != NULL);
2755                                 }
2756                                 break;
2757
2758                         case O_IP_SRCPORT:
2759                         case O_IP_DSTPORT:
2760                                 /*
2761                                  * offset == 0 && proto != 0 is enough
2762                                  * to guarantee that we have a
2763                                  * packet with port info.
2764                                  */
2765                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2766                                     && offset == 0) {
2767                                         u_int16_t x =
2768                                             (cmd->opcode == O_IP_SRCPORT) ?
2769                                                 src_port : dst_port ;
2770                                         u_int16_t *p =
2771                                             ((ipfw_insn_u16 *)cmd)->ports;
2772                                         int i;
2773
2774                                         for (i = cmdlen - 1; !match && i>0;
2775                                             i--, p += 2)
2776                                                 match = (x>=p[0] && x<=p[1]);
2777                                 }
2778                                 break;
2779
2780                         case O_ICMPTYPE:
2781                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
2782                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2783                                 break;
2784
2785 #ifdef INET6
2786                         case O_ICMP6TYPE:
2787                                 match = is_ipv6 && offset == 0 &&
2788                                     proto==IPPROTO_ICMPV6 &&
2789                                     icmp6type_match(
2790                                         ICMP6(ulp)->icmp6_type,
2791                                         (ipfw_insn_u32 *)cmd);
2792                                 break;
2793 #endif /* INET6 */
2794
2795                         case O_IPOPT:
2796                                 match = (is_ipv4 &&
2797                                     ipopts_match(ip, cmd) );
2798                                 break;
2799
2800                         case O_IPVER:
2801                                 match = (is_ipv4 &&
2802                                     cmd->arg1 == ip->ip_v);
2803                                 break;
2804
2805                         case O_IPID:
2806                         case O_IPLEN:
2807                         case O_IPTTL:
2808                                 if (is_ipv4) {  /* only for IP packets */
2809                                     uint16_t x;
2810                                     uint16_t *p;
2811                                     int i;
2812
2813                                     if (cmd->opcode == O_IPLEN)
2814                                         x = ip_len;
2815                                     else if (cmd->opcode == O_IPTTL)
2816                                         x = ip->ip_ttl;
2817                                     else /* must be IPID */
2818                                         x = ntohs(ip->ip_id);
2819                                     if (cmdlen == 1) {
2820                                         match = (cmd->arg1 == x);
2821                                         break;
2822                                     }
2823                                     /* otherwise we have ranges */
2824                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2825                                     i = cmdlen - 1;
2826                                     for (; !match && i>0; i--, p += 2)
2827                                         match = (x >= p[0] && x <= p[1]);
2828                                 }
2829                                 break;
2830
2831                         case O_IPPRECEDENCE:
2832                                 match = (is_ipv4 &&
2833                                     (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2834                                 break;
2835
2836                         case O_IPTOS:
2837                                 match = (is_ipv4 &&
2838                                     flags_match(cmd, ip->ip_tos));
2839                                 break;
2840
2841                         case O_TCPDATALEN:
2842                                 if (proto == IPPROTO_TCP && offset == 0) {
2843                                     struct tcphdr *tcp;
2844                                     uint16_t x;
2845                                     uint16_t *p;
2846                                     int i;
2847
2848                                     tcp = TCP(ulp);
2849                                     x = ip_len -
2850                                         ((ip->ip_hl + tcp->th_off) << 2);
2851                                     if (cmdlen == 1) {
2852                                         match = (cmd->arg1 == x);
2853                                         break;
2854                                     }
2855                                     /* otherwise we have ranges */
2856                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2857                                     i = cmdlen - 1;
2858                                     for (; !match && i>0; i--, p += 2)
2859                                         match = (x >= p[0] && x <= p[1]);
2860                                 }
2861                                 break;
2862
2863                         case O_TCPFLAGS:
2864                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2865                                     flags_match(cmd, TCP(ulp)->th_flags));
2866                                 break;
2867
2868                         case O_TCPOPTS:
2869                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2870                                     tcpopts_match(TCP(ulp), cmd));
2871                                 break;
2872
2873                         case O_TCPSEQ:
2874                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2875                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2876                                         TCP(ulp)->th_seq);
2877                                 break;
2878
2879                         case O_TCPACK:
2880                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2881                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2882                                         TCP(ulp)->th_ack);
2883                                 break;
2884
2885                         case O_TCPWIN:
2886                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2887                                     cmd->arg1 == TCP(ulp)->th_win);
2888                                 break;
2889
2890                         case O_ESTAB:
2891                                 /* reject packets which have SYN only */
2892                                 /* XXX should i also check for TH_ACK ? */
2893                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2894                                     (TCP(ulp)->th_flags &
2895                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2896                                 break;
2897
2898                         case O_ALTQ: {
2899                                 struct pf_mtag *at;
2900                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2901
2902                                 match = 1;
2903                                 at = pf_find_mtag(m);
2904                                 if (at != NULL && at->qid != 0)
2905                                         break;
2906                                 at = pf_get_mtag(m);
2907                                 if (at == NULL) {
2908                                         /*
2909                                          * Let the packet fall back to the
2910                                          * default ALTQ.
2911                                          */
2912                                         break;
2913                                 }
2914                                 at->qid = altq->qid;
2915                                 if (is_ipv4)
2916                                         at->af = AF_INET;
2917                                 else
2918                                         at->af = AF_LINK;
2919                                 at->hdr = ip;
2920                                 break;
2921                         }
2922
2923                         case O_LOG:
2924                                 if (V_fw_verbose)
2925                                         ipfw_log(f, hlen, args, m,
2926                                             oif, offset, tablearg, ip);
2927                                 match = 1;
2928                                 break;
2929
2930                         case O_PROB:
2931                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2932                                 break;
2933
2934                         case O_VERREVPATH:
2935                                 /* Outgoing packets automatically pass/match */
2936                                 match = ((oif != NULL) ||
2937                                     (m->m_pkthdr.rcvif == NULL) ||
2938                                     (
2939 #ifdef INET6
2940                                     is_ipv6 ?
2941                                         verify_path6(&(args->f_id.src_ip6),
2942                                             m->m_pkthdr.rcvif) :
2943 #endif
2944                                     verify_path(src_ip, m->m_pkthdr.rcvif,
2945                                         args->f_id.fib)));
2946                                 break;
2947
2948                         case O_VERSRCREACH:
2949                                 /* Outgoing packets automatically pass/match */
2950                                 match = (hlen > 0 && ((oif != NULL) ||
2951 #ifdef INET6
2952                                     is_ipv6 ?
2953                                         verify_path6(&(args->f_id.src_ip6),
2954                                             NULL) :
2955 #endif
2956                                     verify_path(src_ip, NULL, args->f_id.fib)));
2957                                 break;
2958
2959                         case O_ANTISPOOF:
2960                                 /* Outgoing packets automatically pass/match */
2961                                 if (oif == NULL && hlen > 0 &&
2962                                     (  (is_ipv4 && in_localaddr(src_ip))
2963 #ifdef INET6
2964                                     || (is_ipv6 &&
2965                                         in6_localaddr(&(args->f_id.src_ip6)))
2966 #endif
2967                                     ))
2968                                         match =
2969 #ifdef INET6
2970                                             is_ipv6 ? verify_path6(
2971                                                 &(args->f_id.src_ip6),
2972                                                 m->m_pkthdr.rcvif) :
2973 #endif
2974                                             verify_path(src_ip,
2975                                                 m->m_pkthdr.rcvif,
2976                                                 args->f_id.fib);
2977                                 else
2978                                         match = 1;
2979                                 break;
2980
2981                         case O_IPSEC:
2982 #ifdef IPSEC
2983                                 match = (m_tag_find(m,
2984                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2985 #endif
2986                                 /* otherwise no match */
2987                                 break;
2988
2989 #ifdef INET6
2990                         case O_IP6_SRC:
2991                                 match = is_ipv6 &&
2992                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2993                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2994                                 break;
2995
2996                         case O_IP6_DST:
2997                                 match = is_ipv6 &&
2998                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2999                                     &((ipfw_insn_ip6 *)cmd)->addr6);
3000                                 break;
3001                         case O_IP6_SRC_MASK:
3002                         case O_IP6_DST_MASK:
3003                                 if (is_ipv6) {
3004                                         int i = cmdlen - 1;
3005                                         struct in6_addr p;
3006                                         struct in6_addr *d =
3007                                             &((ipfw_insn_ip6 *)cmd)->addr6;
3008
3009                                         for (; !match && i > 0; d += 2,
3010                                             i -= F_INSN_SIZE(struct in6_addr)
3011                                             * 2) {
3012                                                 p = (cmd->opcode ==
3013                                                     O_IP6_SRC_MASK) ?
3014                                                     args->f_id.src_ip6:
3015                                                     args->f_id.dst_ip6;
3016                                                 APPLY_MASK(&p, &d[1]);
3017                                                 match =
3018                                                     IN6_ARE_ADDR_EQUAL(&d[0],
3019                                                     &p);
3020                                         }
3021                                 }
3022                                 break;
3023
3024                         case O_IP6_SRC_ME:
3025                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3026                                 break;
3027
3028                         case O_IP6_DST_ME:
3029                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3030                                 break;
3031
3032                         case O_FLOW6ID:
3033                                 match = is_ipv6 &&
3034                                     flow6id_match(args->f_id.flow_id6,
3035                                     (ipfw_insn_u32 *) cmd);
3036                                 break;
3037
3038                         case O_EXT_HDR:
3039                                 match = is_ipv6 &&
3040                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
3041                                 break;
3042
3043                         case O_IP6:
3044                                 match = is_ipv6;
3045                                 break;
3046 #endif
3047
3048                         case O_IP4:
3049                                 match = is_ipv4;
3050                                 break;
3051
3052                         case O_TAG: {
3053                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3054                                     tablearg : cmd->arg1;
3055
3056                                 /* Packet is already tagged with this tag? */
3057                                 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3058
3059                                 /* We have `untag' action when F_NOT flag is
3060                                  * present. And we must remove this mtag from
3061                                  * mbuf and reset `match' to zero (`match' will
3062                                  * be inversed later).
3063                                  * Otherwise we should allocate new mtag and
3064                                  * push it into mbuf.
3065                                  */
3066                                 if (cmd->len & F_NOT) { /* `untag' action */
3067                                         if (mtag != NULL)
3068                                                 m_tag_delete(m, mtag);
3069                                 } else if (mtag == NULL) {
3070                                         if ((mtag = m_tag_alloc(MTAG_IPFW,
3071                                             tag, 0, M_NOWAIT)) != NULL)
3072                                                 m_tag_prepend(m, mtag);
3073                                 }
3074                                 match = (cmd->len & F_NOT) ? 0: 1;
3075                                 break;
3076                         }
3077
3078                         case O_FIB: /* try match the specified fib */
3079                                 if (args->f_id.fib == cmd->arg1)
3080                                         match = 1;
3081                                 break;
3082
3083                         case O_TAGGED: {
3084                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3085                                     tablearg : cmd->arg1;
3086
3087                                 if (cmdlen == 1) {
3088                                         match = m_tag_locate(m, MTAG_IPFW,
3089                                             tag, NULL) != NULL;
3090                                         break;
3091                                 }
3092
3093                                 /* we have ranges */
3094                                 for (mtag = m_tag_first(m);
3095                                     mtag != NULL && !match;
3096                                     mtag = m_tag_next(m, mtag)) {
3097                                         uint16_t *p;
3098                                         int i;
3099
3100                                         if (mtag->m_tag_cookie != MTAG_IPFW)
3101                                                 continue;
3102
3103                                         p = ((ipfw_insn_u16 *)cmd)->ports;
3104                                         i = cmdlen - 1;
3105                                         for(; !match && i > 0; i--, p += 2)
3106                                                 match =
3107                                                     mtag->m_tag_id >= p[0] &&
3108                                                     mtag->m_tag_id <= p[1];
3109                                 }
3110                                 break;
3111                         }
3112                                 
3113                         /*
3114                          * The second set of opcodes represents 'actions',
3115                          * i.e. the terminal part of a rule once the packet
3116                          * matches all previous patterns.
3117                          * Typically there is only one action for each rule,
3118                          * and the opcode is stored at the end of the rule
3119                          * (but there are exceptions -- see below).
3120                          *
3121                          * In general, here we set retval and terminate the
3122                          * outer loop (would be a 'break 3' in some language,
3123                          * but we need to do a 'goto done').
3124                          *
3125                          * Exceptions:
3126                          * O_COUNT and O_SKIPTO actions:
3127                          *   instead of terminating, we jump to the next rule
3128                          *   ('goto next_rule', equivalent to a 'break 2'),
3129                          *   or to the SKIPTO target ('goto again' after
3130                          *   having set f, cmd and l), respectively.
3131                          *
3132                          * O_TAG, O_LOG and O_ALTQ action parameters:
3133                          *   perform some action and set match = 1;
3134                          *
3135                          * O_LIMIT and O_KEEP_STATE: these opcodes are
3136                          *   not real 'actions', and are stored right
3137                          *   before the 'action' part of the rule.
3138                          *   These opcodes try to install an entry in the
3139                          *   state tables; if successful, we continue with
3140                          *   the next opcode (match=1; break;), otherwise
3141                          *   the packet *   must be dropped
3142                          *   ('goto done' after setting retval);
3143                          *
3144                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3145                          *   cause a lookup of the state table, and a jump
3146                          *   to the 'action' part of the parent rule
3147                          *   ('goto check_body') if an entry is found, or
3148                          *   (CHECK_STATE only) a jump to the next rule if
3149                          *   the entry is not found ('goto next_rule').
3150                          *   The result of the lookup is cached to make
3151                          *   further instances of these opcodes are
3152                          *   effectively NOPs.
3153                          */
3154                         case O_LIMIT:
3155                         case O_KEEP_STATE:
3156                                 if (install_state(f,
3157                                     (ipfw_insn_limit *)cmd, args, tablearg)) {
3158                                         retval = IP_FW_DENY;
3159                                         goto done; /* error/limit violation */
3160                                 }
3161                                 match = 1;
3162                                 break;
3163
3164                         case O_PROBE_STATE:
3165                         case O_CHECK_STATE:
3166                                 /*
3167                                  * dynamic rules are checked at the first
3168                                  * keep-state or check-state occurrence,
3169                                  * with the result being stored in dyn_dir.
3170                                  * The compiler introduces a PROBE_STATE
3171                                  * instruction for us when we have a
3172                                  * KEEP_STATE (because PROBE_STATE needs
3173                                  * to be run first).
3174                                  */
3175                                 if (dyn_dir == MATCH_UNKNOWN &&
3176                                     (q = lookup_dyn_rule(&args->f_id,
3177                                      &dyn_dir, proto == IPPROTO_TCP ?
3178                                         TCP(ulp) : NULL))
3179                                         != NULL) {
3180                                         /*
3181                                          * Found dynamic entry, update stats
3182                                          * and jump to the 'action' part of
3183                                          * the parent rule.
3184                                          */
3185                                         q->pcnt++;
3186                                         q->bcnt += pktlen;
3187                                         f = q->rule;
3188                                         cmd = ACTION_PTR(f);
3189                                         l = f->cmd_len - f->act_ofs;
3190                                         IPFW_DYN_UNLOCK();
3191                                         goto check_body;
3192                                 }
3193                                 /*
3194                                  * Dynamic entry not found. If CHECK_STATE,
3195                                  * skip to next rule, if PROBE_STATE just
3196                                  * ignore and continue with next opcode.
3197                                  */
3198                                 if (cmd->opcode == O_CHECK_STATE)
3199                                         goto next_rule;
3200                                 match = 1;
3201                                 break;
3202
3203                         case O_ACCEPT:
3204                                 retval = 0;     /* accept */
3205                                 goto done;
3206
3207                         case O_PIPE:
3208                         case O_QUEUE:
3209                                 args->rule = f; /* report matching rule */
3210                                 if (cmd->arg1 == IP_FW_TABLEARG)
3211                                         args->cookie = tablearg;
3212                                 else
3213                                         args->cookie = cmd->arg1;
3214                                 retval = IP_FW_DUMMYNET;
3215                                 goto done;
3216
3217                         case O_DIVERT:
3218                         case O_TEE: {
3219                                 struct divert_tag *dt;
3220
3221                                 if (args->eh) /* not on layer 2 */
3222                                         break;
3223                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
3224                                                 sizeof(struct divert_tag),
3225                                                 M_NOWAIT);
3226                                 if (mtag == NULL) {
3227                                         /* XXX statistic */
3228                                         /* drop packet */
3229                                         IPFW_RUNLOCK(chain);
3230                                         return (IP_FW_DENY);
3231                                 }
3232                                 dt = (struct divert_tag *)(mtag+1);
3233                                 dt->cookie = f->rulenum;
3234                                 if (cmd->arg1 == IP_FW_TABLEARG)
3235                                         dt->info = tablearg;
3236                                 else
3237                                         dt->info = cmd->arg1;
3238                                 m_tag_prepend(m, mtag);
3239                                 retval = (cmd->opcode == O_DIVERT) ?
3240                                     IP_FW_DIVERT : IP_FW_TEE;
3241                                 goto done;
3242                         }
3243                         case O_COUNT:
3244                         case O_SKIPTO:
3245                                 f->pcnt++;      /* update stats */
3246                                 f->bcnt += pktlen;
3247                                 f->timestamp = time_uptime;
3248                                 if (cmd->opcode == O_COUNT)
3249                                         goto next_rule;
3250                                 /* handle skipto */
3251                                 if (cmd->arg1 == IP_FW_TABLEARG) {
3252                                         f = lookup_next_rule(f, tablearg);
3253                                 } else {
3254                                         if (f->next_rule == NULL)
3255                                                 lookup_next_rule(f, 0);
3256                                         f = f->next_rule;
3257                                 }
3258                                 goto again;
3259
3260                         case O_REJECT:
3261                                 /*
3262                                  * Drop the packet and send a reject notice
3263                                  * if the packet is not ICMP (or is an ICMP
3264                                  * query), and it is not multicast/broadcast.
3265                                  */
3266                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
3267                                     (proto != IPPROTO_ICMP ||
3268                                      is_icmp_query(ICMP(ulp))) &&
3269                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3270                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3271                                         send_reject(args, cmd->arg1, ip_len, ip);
3272                                         m = args->m;
3273                                 }
3274                                 /* FALLTHROUGH */
3275 #ifdef INET6
3276                         case O_UNREACH6:
3277                                 if (hlen > 0 && is_ipv6 &&
3278                                     ((offset & IP6F_OFF_MASK) == 0) &&
3279                                     (proto != IPPROTO_ICMPV6 ||
3280                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
3281                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3282                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3283                                         send_reject6(
3284                                             args, cmd->arg1, hlen,
3285                                             (struct ip6_hdr *)ip);
3286                                         m = args->m;
3287                                 }
3288                                 /* FALLTHROUGH */
3289 #endif
3290                         case O_DENY:
3291                                 retval = IP_FW_DENY;
3292                                 goto done;
3293
3294                         case O_FORWARD_IP: {
3295                                 struct sockaddr_in *sa;
3296                                 sa = &(((ipfw_insn_sa *)cmd)->sa);
3297                                 if (args->eh)   /* not valid on layer2 pkts */
3298                                         break;
3299                                 if (!q || dyn_dir == MATCH_FORWARD) {
3300                                         if (sa->sin_addr.s_addr == INADDR_ANY) {
3301                                                 bcopy(sa, &args->hopstore,
3302                                                         sizeof(*sa));
3303                                                 args->hopstore.sin_addr.s_addr =
3304                                                     htonl(tablearg);
3305                                                 args->next_hop =
3306                                                     &args->hopstore;
3307                                         } else {
3308                                                 args->next_hop = sa;
3309                                         }
3310                                 }
3311                                 retval = IP_FW_PASS;
3312                             }
3313                             goto done;
3314
3315                         case O_NETGRAPH:
3316                         case O_NGTEE:
3317                                 args->rule = f; /* report matching rule */
3318                                 if (cmd->arg1 == IP_FW_TABLEARG)
3319                                         args->cookie = tablearg;
3320                                 else
3321                                         args->cookie = cmd->arg1;
3322                                 retval = (cmd->opcode == O_NETGRAPH) ?
3323                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
3324                                 goto done;
3325
3326                         case O_SETFIB:
3327                                 f->pcnt++;      /* update stats */
3328                                 f->bcnt += pktlen;
3329                                 f->timestamp = time_uptime;
3330                                 M_SETFIB(m, cmd->arg1);
3331                                 args->f_id.fib = cmd->arg1;
3332                                 goto next_rule;
3333
3334                         case O_NAT: {
3335                                 struct cfg_nat *t;
3336                                 int nat_id;
3337
3338                                 if (IPFW_NAT_LOADED) {
3339                                         args->rule = f; /* Report matching rule. */
3340                                         t = ((ipfw_insn_nat *)cmd)->nat;
3341                                         if (t == NULL) {
3342                                                 nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
3343                                                     tablearg : cmd->arg1;
3344                                                 LOOKUP_NAT(V_layer3_chain, nat_id, t);
3345                                                 if (t == NULL) {
3346                                                         retval = IP_FW_DENY;
3347                                                         goto done;
3348                                                 }
3349                                                 if (cmd->arg1 != IP_FW_TABLEARG)
3350                                                         ((ipfw_insn_nat *)cmd)->nat = t;
3351                                         }
3352                                         retval = ipfw_nat_ptr(args, t, m);
3353                                 } else
3354                                         retval = IP_FW_DENY;
3355                                 goto done;
3356                         }
3357
3358                         default:
3359                                 panic("-- unknown opcode %d\n", cmd->opcode);
3360                         } /* end of switch() on opcodes */
3361
3362                         if (cmd->len & F_NOT)
3363                                 match = !match;
3364
3365                         if (match) {
3366                                 if (cmd->len & F_OR)
3367                                         skip_or = 1;
3368                         } else {
3369                                 if (!(cmd->len & F_OR)) /* not an OR block, */
3370                                         break;          /* try next rule    */
3371                         }
3372
3373                 }       /* end of inner for, scan opcodes */
3374
3375 next_rule:;             /* try next rule                */
3376
3377         }               /* end of outer for, scan rules */
3378         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3379         IPFW_RUNLOCK(chain);
3380         return (IP_FW_DENY);
3381
3382 done:
3383         /* Update statistics */
3384         f->pcnt++;
3385         f->bcnt += pktlen;
3386         f->timestamp = time_uptime;
3387         IPFW_RUNLOCK(chain);
3388         return (retval);
3389
3390 pullup_failed:
3391         if (V_fw_verbose)
3392                 printf("ipfw: pullup failed\n");
3393         return (IP_FW_DENY);
3394 }
3395
3396 /*
3397  * When a rule is added/deleted, clear the next_rule pointers in all rules.
3398  * These will be reconstructed on the fly as packets are matched.
3399  */
3400 static void
3401 flush_rule_ptrs(struct ip_fw_chain *chain)
3402 {
3403         struct ip_fw *rule;
3404
3405         IPFW_WLOCK_ASSERT(chain);
3406
3407         for (rule = chain->rules; rule; rule = rule->next)
3408                 rule->next_rule = NULL;
3409 }
3410
3411 /*
3412  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3413  * possibly create a rule number and add the rule to the list.
3414  * Update the rule_number in the input struct so the caller knows it as well.
3415  */
3416 static int
3417 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3418 {
3419         INIT_VNET_IPFW(curvnet);
3420         struct ip_fw *rule, *f, *prev;
3421         int l = RULESIZE(input_rule);
3422
3423         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3424                 return (EINVAL);
3425
3426         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3427         if (rule == NULL)
3428                 return (ENOSPC);
3429
3430         bcopy(input_rule, rule, l);
3431
3432         rule->next = NULL;
3433         rule->next_rule = NULL;
3434
3435         rule->pcnt = 0;
3436         rule->bcnt = 0;
3437         rule->timestamp = 0;
3438
3439         IPFW_WLOCK(chain);
3440
3441         if (chain->rules == NULL) {     /* default rule */
3442                 chain->rules = rule;
3443                 goto done;
3444         }
3445
3446         /*
3447          * If rulenum is 0, find highest numbered rule before the
3448          * default rule, and add autoinc_step
3449          */
3450         if (V_autoinc_step < 1)
3451                 V_autoinc_step = 1;
3452         else if (V_autoinc_step > 1000)
3453                 V_autoinc_step = 1000;
3454         if (rule->rulenum == 0) {
3455                 /*
3456                  * locate the highest numbered rule before default
3457                  */
3458                 for (f = chain->rules; f; f = f->next) {
3459                         if (f->rulenum == IPFW_DEFAULT_RULE)
3460                                 break;
3461                         rule->rulenum = f->rulenum;
3462                 }
3463                 if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
3464                         rule->rulenum += V_autoinc_step;
3465                 input_rule->rulenum = rule->rulenum;
3466         }
3467
3468         /*
3469          * Now insert the new rule in the right place in the sorted list.
3470          */
3471         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3472                 if (f->rulenum > rule->rulenum) { /* found the location */
3473                         if (prev) {
3474                                 rule->next = f;
3475                                 prev->next = rule;
3476                         } else { /* head insert */
3477                                 rule->next = chain->rules;
3478                                 chain->rules = rule;
3479                         }
3480                         break;
3481                 }
3482         }
3483         flush_rule_ptrs(chain);
3484 done:
3485         V_static_count++;
3486         V_static_len += l;
3487         IPFW_WUNLOCK(chain);
3488         DEB(printf("ipfw: installed rule %d, static count now %d\n",
3489                 rule->rulenum, V_static_count);)
3490         return (0);
3491 }
3492
3493 /**
3494  * Remove a static rule (including derived * dynamic rules)
3495  * and place it on the ``reap list'' for later reclamation.
3496  * The caller is in charge of clearing rule pointers to avoid
3497  * dangling pointers.
3498  * @return a pointer to the next entry.
3499  * Arguments are not checked, so they better be correct.
3500  */
3501 static struct ip_fw *
3502 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3503     struct ip_fw *prev)
3504 {
3505         INIT_VNET_IPFW(curvnet);
3506         struct ip_fw *n;
3507         int l = RULESIZE(rule);
3508
3509         IPFW_WLOCK_ASSERT(chain);
3510
3511         n = rule->next;
3512         IPFW_DYN_LOCK();
3513         remove_dyn_rule(rule, NULL /* force removal */);
3514         IPFW_DYN_UNLOCK();
3515         if (prev == NULL)
3516                 chain->rules = n;
3517         else
3518                 prev->next = n;
3519         V_static_count--;
3520         V_static_len -= l;
3521
3522         rule->next = chain->reap;
3523         chain->reap = rule;
3524
3525         return n;
3526 }
3527
3528 /**
3529  * Reclaim storage associated with a list of rules.  This is
3530  * typically the list created using remove_rule.
3531  */
3532 static void
3533 reap_rules(struct ip_fw *head)
3534 {
3535         struct ip_fw *rule;
3536
3537         while ((rule = head) != NULL) {
3538                 head = head->next;
3539                 if (DUMMYNET_LOADED)
3540                         ip_dn_ruledel_ptr(rule);
3541                 free(rule, M_IPFW);
3542         }
3543 }
3544
3545 /*
3546  * Remove all rules from a chain (except rules in set RESVD_SET
3547  * unless kill_default = 1).  The caller is responsible for
3548  * reclaiming storage for the rules left in chain->reap.
3549  */
3550 static void
3551 free_chain(struct ip_fw_chain *chain, int kill_default)
3552 {
3553         struct ip_fw *prev, *rule;
3554
3555         IPFW_WLOCK_ASSERT(chain);
3556
3557         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3558         for (prev = NULL, rule = chain->rules; rule ; )
3559                 if (kill_default || rule->set != RESVD_SET)
3560                         rule = remove_rule(chain, rule, prev);
3561                 else {
3562                         prev = rule;
3563                         rule = rule->next;
3564                 }
3565 }
3566
3567 /**
3568  * Remove all rules with given number, and also do set manipulation.
3569  * Assumes chain != NULL && *chain != NULL.
3570  *
3571  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3572  * the next 8 bits are the new set, the top 8 bits are the command:
3573  *
3574  *      0       delete rules with given number
3575  *      1       delete rules with given set number
3576  *      2       move rules with given number to new set
3577  *      3       move rules with given set number to new set
3578  *      4       swap sets with given numbers
3579  *      5       delete rules with given number and with given set number
3580  */
3581 static int
3582 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3583 {
3584         struct ip_fw *prev = NULL, *rule;
3585         u_int16_t rulenum;      /* rule or old_set */
3586         u_int8_t cmd, new_set;
3587
3588         rulenum = arg & 0xffff;
3589         cmd = (arg >> 24) & 0xff;
3590         new_set = (arg >> 16) & 0xff;
3591
3592         if (cmd > 5 || new_set > RESVD_SET)
3593                 return EINVAL;
3594         if (cmd == 0 || cmd == 2 || cmd == 5) {
3595                 if (rulenum >= IPFW_DEFAULT_RULE)
3596                         return EINVAL;
3597         } else {
3598                 if (rulenum > RESVD_SET)        /* old_set */
3599                         return EINVAL;
3600         }
3601
3602         IPFW_WLOCK(chain);
3603         rule = chain->rules;
3604         chain->reap = NULL;
3605         switch (cmd) {
3606         case 0: /* delete rules with given number */
3607                 /*
3608                  * locate first rule to delete
3609                  */
3610                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3611                         ;
3612                 if (rule->rulenum != rulenum) {
3613                         IPFW_WUNLOCK(chain);
3614                         return EINVAL;
3615                 }
3616
3617                 /*
3618                  * flush pointers outside the loop, then delete all matching
3619                  * rules. prev remains the same throughout the cycle.
3620                  */
3621                 flush_rule_ptrs(chain);
3622                 while (rule->rulenum == rulenum)
3623                         rule = remove_rule(chain, rule, prev);
3624                 break;
3625
3626         case 1: /* delete all rules with given set number */
3627                 flush_rule_ptrs(chain);
3628                 rule = chain->rules;
3629                 while (rule->rulenum < IPFW_DEFAULT_RULE)
3630                         if (rule->set == rulenum)
3631                                 rule = remove_rule(chain, rule, prev);
3632                         else {
3633                                 prev = rule;
3634                                 rule = rule->next;
3635                         }
3636                 break;
3637
3638         case 2: /* move rules with given number to new set */
3639                 rule = chain->rules;
3640                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3641                         if (rule->rulenum == rulenum)
3642                                 rule->set = new_set;
3643                 break;
3644
3645         case 3: /* move rules with given set number to new set */
3646                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3647                         if (rule->set == rulenum)
3648                                 rule->set = new_set;
3649                 break;
3650
3651         case 4: /* swap two sets */
3652                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3653                         if (rule->set == rulenum)
3654                                 rule->set = new_set;
3655                         else if (rule->set == new_set)
3656                                 rule->set = rulenum;
3657                 break;
3658         case 5: /* delete rules with given number and with given set number.
3659                  * rulenum - given rule number;
3660                  * new_set - given set number.
3661                  */
3662                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3663                         ;
3664                 if (rule->rulenum != rulenum) {
3665                         IPFW_WUNLOCK(chain);
3666                         return (EINVAL);
3667                 }
3668                 flush_rule_ptrs(chain);
3669                 while (rule->rulenum == rulenum) {
3670                         if (rule->set == new_set)
3671                                 rule = remove_rule(chain, rule, prev);
3672                         else {
3673                                 prev = rule;
3674                                 rule = rule->next;
3675                         }
3676                 }
3677         }
3678         /*
3679          * Look for rules to reclaim.  We grab the list before
3680          * releasing the lock then reclaim them w/o the lock to
3681          * avoid a LOR with dummynet.
3682          */
3683         rule = chain->reap;
3684         chain->reap = NULL;
3685         IPFW_WUNLOCK(chain);
3686         if (rule)
3687                 reap_rules(rule);
3688         return 0;
3689 }
3690
3691 /*
3692  * Clear counters for a specific rule.
3693  * The enclosing "table" is assumed locked.
3694  */
3695 static void
3696 clear_counters(struct ip_fw *rule, int log_only)
3697 {
3698         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3699
3700         if (log_only == 0) {
3701                 rule->bcnt = rule->pcnt = 0;
3702                 rule->timestamp = 0;
3703         }
3704         if (l->o.opcode == O_LOG)
3705                 l->log_left = l->max_log;
3706 }
3707
3708 /**
3709  * Reset some or all counters on firewall rules.
3710  * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
3711  * the next 8 bits are the set number, the top 8 bits are the command:
3712  *      0       work with rules from all set's;
3713  *      1       work with rules only from specified set.
3714  * Specified rule number is zero if we want to clear all entries.
3715  * log_only is 1 if we only want to reset logs, zero otherwise.
3716  */
3717 static int
3718 zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
3719 {
3720         INIT_VNET_IPFW(curvnet);
3721         struct ip_fw *rule;
3722         char *msg;
3723
3724         uint16_t rulenum = arg & 0xffff;
3725         uint8_t set = (arg >> 16) & 0xff;
3726         uint8_t cmd = (arg >> 24) & 0xff;
3727
3728         if (cmd > 1)
3729                 return (EINVAL);
3730         if (cmd == 1 && set > RESVD_SET)
3731                 return (EINVAL);
3732
3733         IPFW_WLOCK(chain);
3734         if (rulenum == 0) {
3735                 V_norule_counter = 0;
3736                 for (rule = chain->rules; rule; rule = rule->next) {
3737                         /* Skip rules from another set. */
3738                         if (cmd == 1 && rule->set != set)
3739                                 continue;
3740                         clear_counters(rule, log_only);
3741                 }
3742                 msg = log_only ? "ipfw: All logging counts reset.\n" :
3743                     "ipfw: Accounting cleared.\n";
3744         } else {
3745                 int cleared = 0;
3746                 /*
3747                  * We can have multiple rules with the same number, so we
3748                  * need to clear them all.
3749                  */
3750                 for (rule = chain->rules; rule; rule = rule->next)
3751                         if (rule->rulenum == rulenum) {
3752                                 while (rule && rule->rulenum == rulenum) {
3753                                         if (cmd == 0 || rule->set == set)
3754                                                 clear_counters(rule, log_only);
3755                                         rule = rule->next;
3756                                 }
3757                                 cleared = 1;
3758                                 break;
3759                         }
3760                 if (!cleared) { /* we did not find any matching rules */
3761                         IPFW_WUNLOCK(chain);
3762                         return (EINVAL);
3763                 }
3764                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3765                     "ipfw: Entry %d cleared.\n";
3766         }
3767         IPFW_WUNLOCK(chain);
3768
3769         if (V_fw_verbose)
3770                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3771         return (0);
3772 }
3773
3774 /*
3775  * Check validity of the structure before insert.
3776  * Fortunately rules are simple, so this mostly need to check rule sizes.
3777  */
3778 static int
3779 check_ipfw_struct(struct ip_fw *rule, int size)
3780 {
3781         int l, cmdlen = 0;
3782         int have_action=0;
3783         ipfw_insn *cmd;
3784
3785         if (size < sizeof(*rule)) {
3786                 printf("ipfw: rule too short\n");
3787                 return (EINVAL);
3788         }
3789         /* first, check for valid size */
3790         l = RULESIZE(rule);
3791         if (l != size) {
3792                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3793                 return (EINVAL);
3794         }
3795         if (rule->act_ofs >= rule->cmd_len) {
3796                 printf("ipfw: bogus action offset (%u > %u)\n",
3797                     rule->act_ofs, rule->cmd_len - 1);
3798                 return (EINVAL);
3799         }
3800         /*
3801          * Now go for the individual checks. Very simple ones, basically only
3802          * instruction sizes.
3803          */
3804         for (l = rule->cmd_len, cmd = rule->cmd ;
3805                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
3806                 cmdlen = F_LEN(cmd);
3807                 if (cmdlen > l) {
3808                         printf("ipfw: opcode %d size truncated\n",
3809                             cmd->opcode);
3810                         return EINVAL;
3811                 }
3812                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3813                 switch (cmd->opcode) {
3814                 case O_PROBE_STATE:
3815                 case O_KEEP_STATE:
3816                 case O_PROTO:
3817                 case O_IP_SRC_ME:
3818                 case O_IP_DST_ME:
3819                 case O_LAYER2:
3820                 case O_IN:
3821                 case O_FRAG:
3822                 case O_DIVERTED:
3823                 case O_IPOPT:
3824                 case O_IPTOS:
3825                 case O_IPPRECEDENCE:
3826                 case O_IPVER:
3827                 case O_TCPWIN:
3828                 case O_TCPFLAGS:
3829                 case O_TCPOPTS:
3830                 case O_ESTAB:
3831                 case O_VERREVPATH:
3832                 case O_VERSRCREACH:
3833                 case O_ANTISPOOF:
3834                 case O_IPSEC:
3835 #ifdef INET6
3836                 case O_IP6_SRC_ME:
3837                 case O_IP6_DST_ME:
3838                 case O_EXT_HDR:
3839                 case O_IP6:
3840 #endif
3841                 case O_IP4:
3842                 case O_TAG:
3843                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3844                                 goto bad_size;
3845                         break;
3846
3847                 case O_FIB:
3848                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3849                                 goto bad_size;
3850                         if (cmd->arg1 >= rt_numfibs) {
3851                                 printf("ipfw: invalid fib number %d\n",
3852                                         cmd->arg1);
3853                                 return EINVAL;
3854                         }
3855                         break;
3856
3857                 case O_SETFIB:
3858                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3859                                 goto bad_size;
3860                         if (cmd->arg1 >= rt_numfibs) {
3861                                 printf("ipfw: invalid fib number %d\n",
3862                                         cmd->arg1);
3863                                 return EINVAL;
3864                         }
3865                         goto check_action;
3866
3867                 case O_UID:
3868                 case O_GID:
3869                 case O_JAIL:
3870                 case O_IP_SRC:
3871                 case O_IP_DST:
3872                 case O_TCPSEQ:
3873                 case O_TCPACK:
3874                 case O_PROB:
3875                 case O_ICMPTYPE:
3876                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3877                                 goto bad_size;
3878                         break;
3879
3880                 case O_LIMIT:
3881                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3882                                 goto bad_size;
3883                         break;
3884
3885                 case O_LOG:
3886                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3887                                 goto bad_size;
3888
3889                         ((ipfw_insn_log *)cmd)->log_left =
3890                             ((ipfw_insn_log *)cmd)->max_log;
3891
3892                         break;
3893
3894                 case O_IP_SRC_MASK:
3895                 case O_IP_DST_MASK:
3896                         /* only odd command lengths */
3897                         if ( !(cmdlen & 1) || cmdlen > 31)
3898                                 goto bad_size;
3899                         break;
3900
3901                 case O_IP_SRC_SET:
3902                 case O_IP_DST_SET:
3903                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3904                                 printf("ipfw: invalid set size %d\n",
3905                                         cmd->arg1);
3906                                 return EINVAL;
3907                         }
3908                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3909                             (cmd->arg1+31)/32 )
3910                                 goto bad_size;
3911                         break;
3912
3913                 case O_IP_SRC_LOOKUP:
3914                 case O_IP_DST_LOOKUP:
3915                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
3916                                 printf("ipfw: invalid table number %d\n",
3917                                     cmd->arg1);
3918                                 return (EINVAL);
3919                         }
3920                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3921                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3922                                 goto bad_size;
3923                         break;
3924
3925                 case O_MACADDR2:
3926                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3927                                 goto bad_size;
3928                         break;
3929
3930                 case O_NOP:
3931                 case O_IPID:
3932                 case O_IPTTL:
3933                 case O_IPLEN:
3934                 case O_TCPDATALEN:
3935                 case O_TAGGED:
3936                         if (cmdlen < 1 || cmdlen > 31)
3937                                 goto bad_size;
3938                         break;
3939
3940                 case O_MAC_TYPE:
3941                 case O_IP_SRCPORT:
3942                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3943                         if (cmdlen < 2 || cmdlen > 31)
3944                                 goto bad_size;
3945                         break;
3946
3947                 case O_RECV:
3948                 case O_XMIT:
3949                 case O_VIA:
3950                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3951                                 goto bad_size;
3952                         break;
3953
3954                 case O_ALTQ:
3955                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3956                                 goto bad_size;
3957                         break;
3958
3959                 case O_PIPE:
3960                 case O_QUEUE:
3961                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3962                                 goto bad_size;
3963                         goto check_action;
3964
3965                 case O_FORWARD_IP:
3966 #ifdef  IPFIREWALL_FORWARD
3967                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3968                                 goto bad_size;
3969                         goto check_action;
3970 #else
3971                         return EINVAL;
3972 #endif
3973
3974                 case O_DIVERT:
3975                 case O_TEE:
3976                         if (ip_divert_ptr == NULL)
3977                                 return EINVAL;
3978                         else
3979                                 goto check_size;
3980                 case O_NETGRAPH:
3981                 case O_NGTEE:
3982                         if (!NG_IPFW_LOADED)
3983                                 return EINVAL;
3984                         else
3985                                 goto check_size;
3986                 case O_NAT:
3987                         if (!IPFW_NAT_LOADED)
3988                                 return EINVAL;
3989                         if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
3990                                 goto bad_size;          
3991                         goto check_action;
3992                 case O_FORWARD_MAC: /* XXX not implemented yet */
3993                 case O_CHECK_STATE:
3994                 case O_COUNT:
3995                 case O_ACCEPT:
3996                 case O_DENY:
3997                 case O_REJECT:
3998 #ifdef INET6
3999                 case O_UNREACH6:
4000 #endif
4001                 case O_SKIPTO:
4002 check_size:
4003                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
4004                                 goto bad_size;
4005 check_action:
4006                         if (have_action) {
4007                                 printf("ipfw: opcode %d, multiple actions"
4008                                         " not allowed\n",
4009                                         cmd->opcode);
4010                                 return EINVAL;
4011                         }
4012                         have_action = 1;
4013                         if (l != cmdlen) {
4014                                 printf("ipfw: opcode %d, action must be"
4015                                         " last opcode\n",
4016                                         cmd->opcode);
4017                                 return EINVAL;
4018                         }
4019                         break;
4020 #ifdef INET6
4021                 case O_IP6_SRC:
4022                 case O_IP6_DST:
4023                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4024                             F_INSN_SIZE(ipfw_insn))
4025                                 goto bad_size;
4026                         break;
4027
4028                 case O_FLOW6ID:
4029                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4030                             ((ipfw_insn_u32 *)cmd)->o.arg1)
4031                                 goto bad_size;
4032                         break;
4033
4034                 case O_IP6_SRC_MASK:
4035                 case O_IP6_DST_MASK:
4036                         if ( !(cmdlen & 1) || cmdlen > 127)
4037                                 goto bad_size;
4038                         break;
4039                 case O_ICMP6TYPE:
4040                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4041                                 goto bad_size;
4042                         break;
4043 #endif
4044
4045                 default:
4046                         switch (cmd->opcode) {
4047 #ifndef INET6
4048                         case O_IP6_SRC_ME:
4049                         case O_IP6_DST_ME:
4050                         case O_EXT_HDR:
4051                         case O_IP6:
4052                         case O_UNREACH6:
4053                         case O_IP6_SRC:
4054                         case O_IP6_DST:
4055                         case O_FLOW6ID:
4056                         case O_IP6_SRC_MASK:
4057                         case O_IP6_DST_MASK:
4058                         case O_ICMP6TYPE:
4059                                 printf("ipfw: no IPv6 support in kernel\n");
4060                                 return EPROTONOSUPPORT;
4061 #endif
4062                         default:
4063                                 printf("ipfw: opcode %d, unknown opcode\n",
4064                                         cmd->opcode);
4065                                 return EINVAL;
4066                         }
4067                 }
4068         }
4069         if (have_action == 0) {
4070                 printf("ipfw: missing action\n");
4071                 return EINVAL;
4072         }
4073         return 0;
4074
4075 bad_size:
4076         printf("ipfw: opcode %d size %d wrong\n",
4077                 cmd->opcode, cmdlen);
4078         return EINVAL;
4079 }
4080
4081 /*
4082  * Copy the static and dynamic rules to the supplied buffer
4083  * and return the amount of space actually used.
4084  */
4085 static size_t
4086 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4087 {
4088         INIT_VNET_IPFW(curvnet);
4089         char *bp = buf;
4090         char *ep = bp + space;
4091         struct ip_fw *rule;
4092         int i;
4093         time_t  boot_seconds;
4094
4095         boot_seconds = boottime.tv_sec;
4096         /* XXX this can take a long time and locking will block packet flow */
4097         IPFW_RLOCK(chain);
4098         for (rule = chain->rules; rule ; rule = rule->next) {
4099                 /*
4100                  * Verify the entry fits in the buffer in case the
4101                  * rules changed between calculating buffer space and
4102                  * now.  This would be better done using a generation
4103                  * number but should suffice for now.
4104                  */
4105                 i = RULESIZE(rule);
4106                 if (bp + i <= ep) {
4107                         bcopy(rule, bp, i);
4108                         /*
4109                          * XXX HACK. Store the disable mask in the "next"
4110                          * pointer in a wild attempt to keep the ABI the same.
4111                          * Why do we do this on EVERY rule?
4112                          */
4113                         bcopy(&V_set_disable,
4114                             &(((struct ip_fw *)bp)->next_rule),
4115                             sizeof(V_set_disable));
4116                         if (((struct ip_fw *)bp)->timestamp)
4117                                 ((struct ip_fw *)bp)->timestamp += boot_seconds;
4118                         bp += i;
4119                 }
4120         }
4121         IPFW_RUNLOCK(chain);
4122         if (V_ipfw_dyn_v) {
4123                 ipfw_dyn_rule *p, *last = NULL;
4124
4125                 IPFW_DYN_LOCK();
4126                 for (i = 0 ; i < V_curr_dyn_buckets; i++)
4127                         for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4128                                 if (bp + sizeof *p <= ep) {
4129                                         ipfw_dyn_rule *dst =
4130                                                 (ipfw_dyn_rule *)bp;
4131                                         bcopy(p, dst, sizeof *p);
4132                                         bcopy(&(p->rule->rulenum), &(dst->rule),
4133                                             sizeof(p->rule->rulenum));
4134                                         /*
4135                                          * store set number into high word of
4136                                          * dst->rule pointer.
4137                                          */
4138                                         bcopy(&(p->rule->set),
4139                                             (char *)&dst->rule +
4140                                             sizeof(p->rule->rulenum),
4141                                             sizeof(p->rule->set));
4142                                         /*
4143                                          * store a non-null value in "next".
4144                                          * The userland code will interpret a
4145                                          * NULL here as a marker
4146                                          * for the last dynamic rule.
4147                                          */
4148                                         bcopy(&dst, &dst->next, sizeof(dst));
4149                                         last = dst;
4150                                         dst->expire =
4151                                             TIME_LEQ(dst->expire, time_uptime) ?
4152                                                 0 : dst->expire - time_uptime ;
4153                                         bp += sizeof(ipfw_dyn_rule);
4154                                 }
4155                         }
4156                 IPFW_DYN_UNLOCK();
4157                 if (last != NULL) /* mark last dynamic rule */
4158                         bzero(&last->next, sizeof(last));
4159         }
4160         return (bp - (char *)buf);
4161 }
4162
4163
4164 /**
4165  * {set|get}sockopt parser.
4166  */
4167 static int
4168 ipfw_ctl(struct sockopt *sopt)
4169 {
4170 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
4171         INIT_VNET_IPFW(curvnet);
4172         int error;
4173         size_t size;
4174         struct ip_fw *buf, *rule;
4175         u_int32_t rulenum[2];
4176
4177         error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4178         if (error)
4179                 return (error);
4180
4181         /*
4182          * Disallow modifications in really-really secure mode, but still allow
4183          * the logging counters to be reset.
4184          */
4185         if (sopt->sopt_name == IP_FW_ADD ||
4186             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4187                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4188                 if (error)
4189                         return (error);
4190         }
4191
4192         error = 0;
4193
4194         switch (sopt->sopt_name) {
4195         case IP_FW_GET:
4196                 /*
4197                  * pass up a copy of the current rules. Static rules
4198                  * come first (the last of which has number IPFW_DEFAULT_RULE),
4199                  * followed by a possibly empty list of dynamic rule.
4200                  * The last dynamic rule has NULL in the "next" field.
4201                  *
4202                  * Note that the calculated size is used to bound the
4203                  * amount of data returned to the user.  The rule set may
4204                  * change between calculating the size and returning the
4205                  * data in which case we'll just return what fits.
4206                  */
4207                 size = V_static_len;    /* size of static rules */
4208                 if (V_ipfw_dyn_v)               /* add size of dyn.rules */
4209                         size += (V_dyn_count * sizeof(ipfw_dyn_rule));
4210
4211                 /*
4212                  * XXX todo: if the user passes a short length just to know
4213                  * how much room is needed, do not bother filling up the
4214                  * buffer, just jump to the sooptcopyout.
4215                  */
4216                 buf = malloc(size, M_TEMP, M_WAITOK);
4217                 error = sooptcopyout(sopt, buf,
4218                                 ipfw_getrules(&V_layer3_chain, buf, size));
4219                 free(buf, M_TEMP);
4220                 break;
4221
4222         case IP_FW_FLUSH:
4223                 /*
4224                  * Normally we cannot release the lock on each iteration.
4225                  * We could do it here only because we start from the head all
4226                  * the times so there is no risk of missing some entries.
4227                  * On the other hand, the risk is that we end up with
4228                  * a very inconsistent ruleset, so better keep the lock
4229                  * around the whole cycle.
4230                  *
4231                  * XXX this code can be improved by resetting the head of
4232                  * the list to point to the default rule, and then freeing
4233                  * the old list without the need for a lock.
4234                  */
4235
4236                 IPFW_WLOCK(&V_layer3_chain);
4237                 V_layer3_chain.reap = NULL;
4238                 free_chain(&V_layer3_chain, 0 /* keep default rule */);
4239                 rule = V_layer3_chain.reap;
4240                 V_layer3_chain.reap = NULL;
4241                 IPFW_WUNLOCK(&V_layer3_chain);
4242                 if (rule != NULL)
4243                         reap_rules(rule);
4244                 break;
4245
4246         case IP_FW_ADD:
4247                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4248                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4249                         sizeof(struct ip_fw) );
4250                 if (error == 0)
4251                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
4252                 if (error == 0) {
4253                         error = add_rule(&V_layer3_chain, rule);
4254                         size = RULESIZE(rule);
4255                         if (!error && sopt->sopt_dir == SOPT_GET)
4256                                 error = sooptcopyout(sopt, rule, size);
4257                 }
4258                 free(rule, M_TEMP);
4259                 break;
4260
4261         case IP_FW_DEL:
4262                 /*
4263                  * IP_FW_DEL is used for deleting single rules or sets,
4264                  * and (ab)used to atomically manipulate sets. Argument size
4265                  * is used to distinguish between the two:
4266                  *    sizeof(u_int32_t)
4267                  *      delete single rule or set of rules,
4268                  *      or reassign rules (or sets) to a different set.
4269                  *    2*sizeof(u_int32_t)
4270                  *      atomic disable/enable sets.
4271                  *      first u_int32_t contains sets to be disabled,
4272                  *      second u_int32_t contains sets to be enabled.
4273                  */
4274                 error = sooptcopyin(sopt, rulenum,
4275                         2*sizeof(u_int32_t), sizeof(u_int32_t));
4276                 if (error)
4277                         break;
4278                 size = sopt->sopt_valsize;
4279                 if (size == sizeof(u_int32_t))  /* delete or reassign */
4280                         error = del_entry(&V_layer3_chain, rulenum[0]);
4281                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4282                         V_set_disable =
4283                             (V_set_disable | rulenum[0]) & ~rulenum[1] &
4284                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4285                 else
4286                         error = EINVAL;
4287                 break;
4288
4289         case IP_FW_ZERO:
4290         case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4291                 rulenum[0] = 0;
4292                 if (sopt->sopt_val != 0) {
4293                     error = sooptcopyin(sopt, rulenum,
4294                             sizeof(u_int32_t), sizeof(u_int32_t));
4295                     if (error)
4296                         break;
4297                 }
4298                 error = zero_entry(&V_layer3_chain, rulenum[0],
4299                         sopt->sopt_name == IP_FW_RESETLOG);
4300                 break;
4301
4302         case IP_FW_TABLE_ADD:
4303                 {
4304                         ipfw_table_entry ent;
4305
4306                         error = sooptcopyin(sopt, &ent,
4307                             sizeof(ent), sizeof(ent));
4308                         if (error)
4309                                 break;
4310                         error = add_table_entry(&V_layer3_chain, ent.tbl,
4311                             ent.addr, ent.masklen, ent.value);
4312                 }
4313                 break;
4314
4315         case IP_FW_TABLE_DEL:
4316                 {
4317                         ipfw_table_entry ent;
4318
4319                         error = sooptcopyin(sopt, &ent,
4320                             sizeof(ent), sizeof(ent));
4321                         if (error)
4322                                 break;
4323                         error = del_table_entry(&V_layer3_chain, ent.tbl,
4324                             ent.addr, ent.masklen);
4325                 }
4326                 break;
4327
4328         case IP_FW_TABLE_FLUSH:
4329                 {
4330                         u_int16_t tbl;
4331
4332                         error = sooptcopyin(sopt, &tbl,
4333                             sizeof(tbl), sizeof(tbl));
4334                         if (error)
4335                                 break;
4336                         IPFW_WLOCK(&V_layer3_chain);
4337                         error = flush_table(&V_layer3_chain, tbl);
4338                         IPFW_WUNLOCK(&V_layer3_chain);
4339                 }
4340                 break;
4341
4342         case IP_FW_TABLE_GETSIZE:
4343                 {
4344                         u_int32_t tbl, cnt;
4345
4346                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4347                             sizeof(tbl))))
4348                                 break;
4349                         IPFW_RLOCK(&V_layer3_chain);
4350                         error = count_table(&V_layer3_chain, tbl, &cnt);
4351                         IPFW_RUNLOCK(&V_layer3_chain);
4352                         if (error)
4353                                 break;
4354                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4355                 }
4356                 break;
4357
4358         case IP_FW_TABLE_LIST:
4359                 {
4360                         ipfw_table *tbl;
4361
4362                         if (sopt->sopt_valsize < sizeof(*tbl)) {
4363                                 error = EINVAL;
4364                                 break;
4365                         }
4366                         size = sopt->sopt_valsize;
4367                         tbl = malloc(size, M_TEMP, M_WAITOK);
4368                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4369                         if (error) {
4370                                 free(tbl, M_TEMP);
4371                                 break;
4372                         }
4373                         tbl->size = (size - sizeof(*tbl)) /
4374                             sizeof(ipfw_table_entry);
4375                         IPFW_RLOCK(&V_layer3_chain);
4376                         error = dump_table(&V_layer3_chain, tbl);
4377                         IPFW_RUNLOCK(&V_layer3_chain);
4378                         if (error) {
4379                                 free(tbl, M_TEMP);
4380                                 break;
4381                         }
4382                         error = sooptcopyout(sopt, tbl, size);
4383                         free(tbl, M_TEMP);
4384                 }
4385                 break;
4386
4387         case IP_FW_NAT_CFG:
4388                 if (IPFW_NAT_LOADED)
4389                         error = ipfw_nat_cfg_ptr(sopt);
4390                 else {
4391                         printf("IP_FW_NAT_CFG: %s\n",
4392                             "ipfw_nat not present, please load it");
4393                         error = EINVAL;
4394                 }
4395                 break;
4396
4397         case IP_FW_NAT_DEL:
4398                 if (IPFW_NAT_LOADED)
4399                         error = ipfw_nat_del_ptr(sopt);
4400                 else {
4401                         printf("IP_FW_NAT_DEL: %s\n",
4402                             "ipfw_nat not present, please load it");
4403                         error = EINVAL;
4404                 }
4405                 break;
4406
4407         case IP_FW_NAT_GET_CONFIG:
4408                 if (IPFW_NAT_LOADED)
4409                         error = ipfw_nat_get_cfg_ptr(sopt);
4410                 else {
4411                         printf("IP_FW_NAT_GET_CFG: %s\n",
4412                             "ipfw_nat not present, please load it");
4413                         error = EINVAL;
4414                 }
4415                 break;
4416
4417         case IP_FW_NAT_GET_LOG:
4418                 if (IPFW_NAT_LOADED)
4419                         error = ipfw_nat_get_log_ptr(sopt);
4420                 else {
4421                         printf("IP_FW_NAT_GET_LOG: %s\n",
4422                             "ipfw_nat not present, please load it");
4423                         error = EINVAL;
4424                 }
4425                 break;
4426
4427         default:
4428                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4429                 error = EINVAL;
4430         }
4431
4432         return (error);
4433 #undef RULE_MAXSIZE
4434 }
4435
4436 /**
4437  * dummynet needs a reference to the default rule, because rules can be
4438  * deleted while packets hold a reference to them. When this happens,
4439  * dummynet changes the reference to the default rule (it could well be a
4440  * NULL pointer, but this way we do not need to check for the special
4441  * case, plus here he have info on the default behaviour).
4442  */
4443 struct ip_fw *ip_fw_default_rule;
4444
4445 /*
4446  * This procedure is only used to handle keepalives. It is invoked
4447  * every dyn_keepalive_period
4448  */
4449 static void
4450 ipfw_tick(void * __unused unused)
4451 {
4452         struct mbuf *m0, *m, *mnext, **mtailp;
4453         int i;
4454         ipfw_dyn_rule *q;
4455
4456         if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
4457                 goto done;
4458
4459         /*
4460          * We make a chain of packets to go out here -- not deferring
4461          * until after we drop the IPFW dynamic rule lock would result
4462          * in a lock order reversal with the normal packet input -> ipfw
4463          * call stack.
4464          */
4465         m0 = NULL;
4466         mtailp = &m0;
4467         IPFW_DYN_LOCK();
4468         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
4469                 for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
4470                         if (q->dyn_type == O_LIMIT_PARENT)
4471                                 continue;
4472                         if (q->id.proto != IPPROTO_TCP)
4473                                 continue;
4474                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
4475                                 continue;
4476                         if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
4477                             q->expire))
4478                                 continue;       /* too early */
4479                         if (TIME_LEQ(q->expire, time_uptime))
4480                                 continue;       /* too late, rule expired */
4481
4482                         *mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4483                                 q->ack_fwd, TH_SYN);
4484                         if (*mtailp != NULL)
4485                                 mtailp = &(*mtailp)->m_nextpkt;
4486                         *mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4487                                 q->ack_rev, 0);
4488                         if (*mtailp != NULL)
4489                                 mtailp = &(*mtailp)->m_nextpkt;
4490                 }
4491         }
4492         IPFW_DYN_UNLOCK();
4493         for (m = mnext = m0; m != NULL; m = mnext) {
4494                 mnext = m->m_nextpkt;
4495                 m->m_nextpkt = NULL;
4496                 ip_output(m, NULL, NULL, 0, NULL, NULL);
4497         }
4498 done:
4499         callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
4500                       ipfw_tick, NULL);
4501 }
4502
4503 int
4504 ipfw_init(void)
4505 {
4506         INIT_VNET_IPFW(curvnet);
4507         struct ip_fw default_rule;
4508         int error;
4509
4510 #ifdef INET6
4511         /* Setup IPv6 fw sysctl tree. */
4512         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4513         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4514             SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4515             CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4516         SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4517             OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4518             &V_fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4519         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4520             OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4521             &V_fw_deny_unknown_exthdrs, 0,
4522             "Deny packets with unknown IPv6 Extension Headers");
4523 #endif
4524
4525         V_layer3_chain.rules = NULL;
4526         IPFW_LOCK_INIT(&V_layer3_chain);
4527         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4528             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4529             UMA_ALIGN_PTR, 0);
4530         IPFW_DYN_LOCK_INIT();
4531         callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
4532
4533         bzero(&default_rule, sizeof default_rule);
4534
4535         default_rule.act_ofs = 0;
4536         default_rule.rulenum = IPFW_DEFAULT_RULE;
4537         default_rule.cmd_len = 1;
4538         default_rule.set = RESVD_SET;
4539
4540         default_rule.cmd[0].len = 1;
4541         default_rule.cmd[0].opcode =
4542 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4543                                 1 ? O_ACCEPT :
4544 #endif
4545                                 O_DENY;
4546
4547         error = add_rule(&V_layer3_chain, &default_rule);
4548         if (error != 0) {
4549                 printf("ipfw2: error %u initializing default rule "
4550                         "(support disabled)\n", error);
4551                 IPFW_DYN_LOCK_DESTROY();
4552                 IPFW_LOCK_DESTROY(&V_layer3_chain);
4553                 uma_zdestroy(ipfw_dyn_rule_zone);
4554                 return (error);
4555         }
4556
4557         ip_fw_default_rule = V_layer3_chain.rules;
4558         printf("ipfw2 "
4559 #ifdef INET6
4560                 "(+ipv6) "
4561 #endif
4562                 "initialized, divert %s, nat %s, "
4563                 "rule-based forwarding "
4564 #ifdef IPFIREWALL_FORWARD
4565                 "enabled, "
4566 #else
4567                 "disabled, "
4568 #endif
4569                 "default to %s, logging ",
4570 #ifdef IPDIVERT
4571                 "enabled",
4572 #else
4573                 "loadable",
4574 #endif
4575 #ifdef IPFIREWALL_NAT
4576                 "enabled",
4577 #else
4578                 "loadable",
4579 #endif
4580
4581                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4582
4583 #ifdef IPFIREWALL_VERBOSE
4584         V_fw_verbose = 1;
4585 #endif
4586 #ifdef IPFIREWALL_VERBOSE_LIMIT
4587         V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4588 #endif
4589         if (V_fw_verbose == 0)
4590                 printf("disabled\n");
4591         else if (V_verbose_limit == 0)
4592                 printf("unlimited\n");
4593         else
4594                 printf("limited to %d packets/entry by default\n",
4595                     V_verbose_limit);
4596
4597         error = init_tables(&V_layer3_chain);
4598         if (error) {
4599                 IPFW_DYN_LOCK_DESTROY();
4600                 IPFW_LOCK_DESTROY(&V_layer3_chain);
4601                 uma_zdestroy(ipfw_dyn_rule_zone);
4602                 return (error);
4603         }
4604         ip_fw_ctl_ptr = ipfw_ctl;
4605         ip_fw_chk_ptr = ipfw_chk;
4606         callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);    
4607         LIST_INIT(&V_layer3_chain.nat);
4608         return (0);
4609 }
4610
4611 void
4612 ipfw_destroy(void)
4613 {
4614         struct ip_fw *reap;
4615
4616         ip_fw_chk_ptr = NULL;
4617         ip_fw_ctl_ptr = NULL;
4618         callout_drain(&V_ipfw_timeout);
4619         IPFW_WLOCK(&V_layer3_chain);
4620         flush_tables(&V_layer3_chain);
4621         V_layer3_chain.reap = NULL;
4622         free_chain(&V_layer3_chain, 1 /* kill default rule */);
4623         reap = V_layer3_chain.reap, V_layer3_chain.reap = NULL;
4624         IPFW_WUNLOCK(&V_layer3_chain);
4625         if (reap != NULL)
4626                 reap_rules(reap);
4627         IPFW_DYN_LOCK_DESTROY();
4628         uma_zdestroy(ipfw_dyn_rule_zone);
4629         if (V_ipfw_dyn_v != NULL)
4630                 free(V_ipfw_dyn_v, M_IPFW);
4631         IPFW_LOCK_DESTROY(&V_layer3_chain);
4632
4633 #ifdef INET6
4634         /* Free IPv6 fw sysctl tree. */
4635         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4636 #endif
4637
4638         printf("IP firewall unloaded\n");
4639 }