]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/ip_fw2.c
- Make strict-sacks be the default.
[FreeBSD/FreeBSD.git] / sys / netinet / ip_fw2.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #define        DEB(x)
30 #define        DDB(x) x
31
32 /*
33  * Implement IP packet firewall (new version)
34  */
35
36 #if !defined(KLD_MODULE)
37 #include "opt_ipfw.h"
38 #include "opt_ipdivert.h"
39 #include "opt_ipdn.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_mac.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/condvar.h>
52 #include <sys/eventhandler.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/jail.h>
58 #include <sys/module.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/rwlock.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sysctl.h>
65 #include <sys/syslog.h>
66 #include <sys/ucred.h>
67 #include <sys/vimage.h>
68 #include <net/if.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/pf_mtag.h>
72
73 #define IPFW_INTERNAL   /* Access to protected data structures in ip_fw.h. */
74
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/in_var.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/ip.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/ip_icmp.h>
82 #include <netinet/ip_fw.h>
83 #include <netinet/ip_divert.h>
84 #include <netinet/ip_dummynet.h>
85 #include <netinet/ip_carp.h>
86 #include <netinet/pim.h>
87 #include <netinet/tcp.h>
88 #include <netinet/tcp_timer.h>
89 #include <netinet/tcp_var.h>
90 #include <netinet/tcpip.h>
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/sctp.h>
94 #include <netgraph/ng_ipfw.h>
95
96 #include <altq/if_altq.h>
97
98 #include <netinet/ip6.h>
99 #include <netinet/icmp6.h>
100 #ifdef INET6
101 #include <netinet6/scope6_var.h>
102 #endif
103
104 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
105
106 #include <machine/in_cksum.h>   /* XXX for in_cksum */
107
108 #include <security/mac/mac_framework.h>
109
110 /*
111  * set_disable contains one bit per set value (0..31).
112  * If the bit is set, all rules with the corresponding set
113  * are disabled. Set RESVD_SET(31) is reserved for the default rule
114  * and rules that are not deleted by the flush command,
115  * and CANNOT be disabled.
116  * Rules in set RESVD_SET can only be deleted explicitly.
117  */
118 static u_int32_t set_disable;
119
120 static int fw_verbose;
121 static int verbose_limit;
122
123 static struct callout ipfw_timeout;
124 static uma_zone_t ipfw_dyn_rule_zone;
125 #define IPFW_DEFAULT_RULE       65535
126
127 /*
128  * Data structure to cache our ucred related
129  * information. This structure only gets used if
130  * the user specified UID/GID based constraints in
131  * a firewall rule.
132  */
133 struct ip_fw_ugid {
134         gid_t           fw_groups[NGROUPS];
135         int             fw_ngroups;
136         uid_t           fw_uid;
137         int             fw_prid;
138 };
139
140 /*
141  * list of rules for layer 3
142  */
143 struct ip_fw_chain layer3_chain;
144
145 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
146 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
147 #define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
148 ipfw_nat_t *ipfw_nat_ptr = NULL;
149 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
150 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
151 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
152 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
153
154 struct table_entry {
155         struct radix_node       rn[2];
156         struct sockaddr_in      addr, mask;
157         u_int32_t               value;
158 };
159
160 static int fw_debug = 1;
161 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
162
163 extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
164
165 #ifdef SYSCTL_NODE
166 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
167 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
168     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
169     ipfw_chg_hook, "I", "Enable ipfw");
170 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
171     &autoinc_step, 0, "Rule number autincrement step");
172 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
173     CTLFLAG_RW | CTLFLAG_SECURE3,
174     &fw_one_pass, 0,
175     "Only do a single pass through ipfw when using dummynet(4)");
176 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
177     &fw_debug, 0, "Enable printing of debug ip_fw statements");
178 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
179     CTLFLAG_RW | CTLFLAG_SECURE3,
180     &fw_verbose, 0, "Log matches to ipfw rules");
181 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
182     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
183
184 /*
185  * Description of dynamic rules.
186  *
187  * Dynamic rules are stored in lists accessed through a hash table
188  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
189  * be modified through the sysctl variable dyn_buckets which is
190  * updated when the table becomes empty.
191  *
192  * XXX currently there is only one list, ipfw_dyn.
193  *
194  * When a packet is received, its address fields are first masked
195  * with the mask defined for the rule, then hashed, then matched
196  * against the entries in the corresponding list.
197  * Dynamic rules can be used for different purposes:
198  *  + stateful rules;
199  *  + enforcing limits on the number of sessions;
200  *  + in-kernel NAT (not implemented yet)
201  *
202  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
203  * measured in seconds and depending on the flags.
204  *
205  * The total number of dynamic rules is stored in dyn_count.
206  * The max number of dynamic rules is dyn_max. When we reach
207  * the maximum number of rules we do not create anymore. This is
208  * done to avoid consuming too much memory, but also too much
209  * time when searching on each packet (ideally, we should try instead
210  * to put a limit on the length of the list on each bucket...).
211  *
212  * Each dynamic rule holds a pointer to the parent ipfw rule so
213  * we know what action to perform. Dynamic rules are removed when
214  * the parent rule is deleted. XXX we should make them survive.
215  *
216  * There are some limitations with dynamic rules -- we do not
217  * obey the 'randomized match', and we do not do multiple
218  * passes through the firewall. XXX check the latter!!!
219  */
220 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
221 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
222 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
223
224 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
225 #define IPFW_DYN_LOCK_INIT() \
226         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
227 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
228 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
229 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
230 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
231
232 /*
233  * Timeouts for various events in handing dynamic rules.
234  */
235 static u_int32_t dyn_ack_lifetime = 300;
236 static u_int32_t dyn_syn_lifetime = 20;
237 static u_int32_t dyn_fin_lifetime = 1;
238 static u_int32_t dyn_rst_lifetime = 1;
239 static u_int32_t dyn_udp_lifetime = 10;
240 static u_int32_t dyn_short_lifetime = 5;
241
242 /*
243  * Keepalives are sent if dyn_keepalive is set. They are sent every
244  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
245  * seconds of lifetime of a rule.
246  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
247  * than dyn_keepalive_period.
248  */
249
250 static u_int32_t dyn_keepalive_interval = 20;
251 static u_int32_t dyn_keepalive_period = 5;
252 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
253
254 static u_int32_t static_count;  /* # of static rules */
255 static u_int32_t static_len;    /* size in bytes of static rules */
256 static u_int32_t dyn_count;             /* # of dynamic rules */
257 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
258
259 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
260     &dyn_buckets, 0, "Number of dyn. buckets");
261 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
262     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
263 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
264     &dyn_count, 0, "Number of dyn. rules");
265 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
266     &dyn_max, 0, "Max number of dyn. rules");
267 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
268     &static_count, 0, "Number of static rules");
269 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
270     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
271 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
272     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
273 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
274     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
275 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
276     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
277 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
278     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
279 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
280     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
281 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
282     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
283
284 #ifdef INET6
285 /*
286  * IPv6 specific variables
287  */
288 SYSCTL_DECL(_net_inet6_ip6);
289
290 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
291 static struct sysctl_oid *ip6_fw_sysctl_tree;
292 #endif /* INET6 */
293 #endif /* SYSCTL_NODE */
294
295 static int fw_deny_unknown_exthdrs = 1;
296
297
298 /*
299  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
300  * Other macros just cast void * into the appropriate type
301  */
302 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
303 #define TCP(p)          ((struct tcphdr *)(p))
304 #define SCTP(p)         ((struct sctphdr *)(p))
305 #define UDP(p)          ((struct udphdr *)(p))
306 #define ICMP(p)         ((struct icmphdr *)(p))
307 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
308
309 static __inline int
310 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
311 {
312         int type = icmp->icmp_type;
313
314         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
315 }
316
317 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
318     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
319
320 static int
321 is_icmp_query(struct icmphdr *icmp)
322 {
323         int type = icmp->icmp_type;
324
325         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
326 }
327 #undef TT
328
329 /*
330  * The following checks use two arrays of 8 or 16 bits to store the
331  * bits that we want set or clear, respectively. They are in the
332  * low and high half of cmd->arg1 or cmd->d[0].
333  *
334  * We scan options and store the bits we find set. We succeed if
335  *
336  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
337  *
338  * The code is sometimes optimized not to store additional variables.
339  */
340
341 static int
342 flags_match(ipfw_insn *cmd, u_int8_t bits)
343 {
344         u_char want_clear;
345         bits = ~bits;
346
347         if ( ((cmd->arg1 & 0xff) & bits) != 0)
348                 return 0; /* some bits we want set were clear */
349         want_clear = (cmd->arg1 >> 8) & 0xff;
350         if ( (want_clear & bits) != want_clear)
351                 return 0; /* some bits we want clear were set */
352         return 1;
353 }
354
355 static int
356 ipopts_match(struct ip *ip, ipfw_insn *cmd)
357 {
358         int optlen, bits = 0;
359         u_char *cp = (u_char *)(ip + 1);
360         int x = (ip->ip_hl << 2) - sizeof (struct ip);
361
362         for (; x > 0; x -= optlen, cp += optlen) {
363                 int opt = cp[IPOPT_OPTVAL];
364
365                 if (opt == IPOPT_EOL)
366                         break;
367                 if (opt == IPOPT_NOP)
368                         optlen = 1;
369                 else {
370                         optlen = cp[IPOPT_OLEN];
371                         if (optlen <= 0 || optlen > x)
372                                 return 0; /* invalid or truncated */
373                 }
374                 switch (opt) {
375
376                 default:
377                         break;
378
379                 case IPOPT_LSRR:
380                         bits |= IP_FW_IPOPT_LSRR;
381                         break;
382
383                 case IPOPT_SSRR:
384                         bits |= IP_FW_IPOPT_SSRR;
385                         break;
386
387                 case IPOPT_RR:
388                         bits |= IP_FW_IPOPT_RR;
389                         break;
390
391                 case IPOPT_TS:
392                         bits |= IP_FW_IPOPT_TS;
393                         break;
394                 }
395         }
396         return (flags_match(cmd, bits));
397 }
398
399 static int
400 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
401 {
402         int optlen, bits = 0;
403         u_char *cp = (u_char *)(tcp + 1);
404         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
405
406         for (; x > 0; x -= optlen, cp += optlen) {
407                 int opt = cp[0];
408                 if (opt == TCPOPT_EOL)
409                         break;
410                 if (opt == TCPOPT_NOP)
411                         optlen = 1;
412                 else {
413                         optlen = cp[1];
414                         if (optlen <= 0)
415                                 break;
416                 }
417
418                 switch (opt) {
419
420                 default:
421                         break;
422
423                 case TCPOPT_MAXSEG:
424                         bits |= IP_FW_TCPOPT_MSS;
425                         break;
426
427                 case TCPOPT_WINDOW:
428                         bits |= IP_FW_TCPOPT_WINDOW;
429                         break;
430
431                 case TCPOPT_SACK_PERMITTED:
432                 case TCPOPT_SACK:
433                         bits |= IP_FW_TCPOPT_SACK;
434                         break;
435
436                 case TCPOPT_TIMESTAMP:
437                         bits |= IP_FW_TCPOPT_TS;
438                         break;
439
440                 }
441         }
442         return (flags_match(cmd, bits));
443 }
444
445 static int
446 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
447 {
448         if (ifp == NULL)        /* no iface with this packet, match fails */
449                 return 0;
450         /* Check by name or by IP address */
451         if (cmd->name[0] != '\0') { /* match by name */
452                 /* Check name */
453                 if (cmd->p.glob) {
454                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
455                                 return(1);
456                 } else {
457                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
458                                 return(1);
459                 }
460         } else {
461                 struct ifaddr *ia;
462
463                 /* XXX lock? */
464                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
465                         if (ia->ifa_addr->sa_family != AF_INET)
466                                 continue;
467                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
468                             (ia->ifa_addr))->sin_addr.s_addr)
469                                 return(1);      /* match */
470                 }
471         }
472         return(0);      /* no match, fail ... */
473 }
474
475 /*
476  * The verify_path function checks if a route to the src exists and
477  * if it is reachable via ifp (when provided).
478  * 
479  * The 'verrevpath' option checks that the interface that an IP packet
480  * arrives on is the same interface that traffic destined for the
481  * packet's source address would be routed out of.  The 'versrcreach'
482  * option just checks that the source address is reachable via any route
483  * (except default) in the routing table.  These two are a measure to block
484  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
485  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
486  * is purposely reminiscent of the Cisco IOS command,
487  *
488  *   ip verify unicast reverse-path
489  *   ip verify unicast source reachable-via any
490  *
491  * which implements the same functionality. But note that syntax is
492  * misleading. The check may be performed on all IP packets whether unicast,
493  * multicast, or broadcast.
494  */
495 static int
496 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
497 {
498         struct route ro;
499         struct sockaddr_in *dst;
500
501         bzero(&ro, sizeof(ro));
502
503         dst = (struct sockaddr_in *)&(ro.ro_dst);
504         dst->sin_family = AF_INET;
505         dst->sin_len = sizeof(*dst);
506         dst->sin_addr = src;
507         in_rtalloc_ign(&ro, RTF_CLONING, fib);
508
509         if (ro.ro_rt == NULL)
510                 return 0;
511
512         /*
513          * If ifp is provided, check for equality with rtentry.
514          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
515          * in order to pass packets injected back by if_simloop():
516          * if useloopback == 1 routing entry (via lo0) for our own address
517          * may exist, so we need to handle routing assymetry.
518          */
519         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
520                 RTFREE(ro.ro_rt);
521                 return 0;
522         }
523
524         /* if no ifp provided, check if rtentry is not default route */
525         if (ifp == NULL &&
526              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
527                 RTFREE(ro.ro_rt);
528                 return 0;
529         }
530
531         /* or if this is a blackhole/reject route */
532         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
533                 RTFREE(ro.ro_rt);
534                 return 0;
535         }
536
537         /* found valid route */
538         RTFREE(ro.ro_rt);
539         return 1;
540 }
541
542 #ifdef INET6
543 /*
544  * ipv6 specific rules here...
545  */
546 static __inline int
547 icmp6type_match (int type, ipfw_insn_u32 *cmd)
548 {
549         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
550 }
551
552 static int
553 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
554 {
555         int i;
556         for (i=0; i <= cmd->o.arg1; ++i )
557                 if (curr_flow == cmd->d[i] )
558                         return 1;
559         return 0;
560 }
561
562 /* support for IP6_*_ME opcodes */
563 static int
564 search_ip6_addr_net (struct in6_addr * ip6_addr)
565 {
566         struct ifnet *mdc;
567         struct ifaddr *mdc2;
568         struct in6_ifaddr *fdm;
569         struct in6_addr copia;
570
571         TAILQ_FOREACH(mdc, &V_ifnet, if_link)
572                 TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
573                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
574                                 fdm = (struct in6_ifaddr *)mdc2;
575                                 copia = fdm->ia_addr.sin6_addr;
576                                 /* need for leaving scope_id in the sock_addr */
577                                 in6_clearscope(&copia);
578                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
579                                         return 1;
580                         }
581                 }
582         return 0;
583 }
584
585 static int
586 verify_path6(struct in6_addr *src, struct ifnet *ifp)
587 {
588         struct route_in6 ro;
589         struct sockaddr_in6 *dst;
590
591         bzero(&ro, sizeof(ro));
592
593         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
594         dst->sin6_family = AF_INET6;
595         dst->sin6_len = sizeof(*dst);
596         dst->sin6_addr = *src;
597         /* XXX MRT 0 for ipv6 at this time */
598         rtalloc_ign((struct route *)&ro, RTF_CLONING);
599
600         if (ro.ro_rt == NULL)
601                 return 0;
602
603         /* 
604          * if ifp is provided, check for equality with rtentry
605          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
606          * to support the case of sending packets to an address of our own.
607          * (where the former interface is the first argument of if_simloop()
608          *  (=ifp), the latter is lo0)
609          */
610         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
611                 RTFREE(ro.ro_rt);
612                 return 0;
613         }
614
615         /* if no ifp provided, check if rtentry is not default route */
616         if (ifp == NULL &&
617             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
618                 RTFREE(ro.ro_rt);
619                 return 0;
620         }
621
622         /* or if this is a blackhole/reject route */
623         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
624                 RTFREE(ro.ro_rt);
625                 return 0;
626         }
627
628         /* found valid route */
629         RTFREE(ro.ro_rt);
630         return 1;
631
632 }
633 static __inline int
634 hash_packet6(struct ipfw_flow_id *id)
635 {
636         u_int32_t i;
637         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
638             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
639             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
640             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
641             (id->dst_port) ^ (id->src_port);
642         return i;
643 }
644
645 static int
646 is_icmp6_query(int icmp6_type)
647 {
648         if ((icmp6_type <= ICMP6_MAXTYPE) &&
649             (icmp6_type == ICMP6_ECHO_REQUEST ||
650             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
651             icmp6_type == ICMP6_WRUREQUEST ||
652             icmp6_type == ICMP6_FQDN_QUERY ||
653             icmp6_type == ICMP6_NI_QUERY))
654                 return (1);
655
656         return (0);
657 }
658
659 static void
660 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
661 {
662         struct mbuf *m;
663
664         m = args->m;
665         if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
666                 struct tcphdr *tcp;
667                 tcp_seq ack, seq;
668                 int flags;
669                 struct {
670                         struct ip6_hdr ip6;
671                         struct tcphdr th;
672                 } ti;
673                 tcp = (struct tcphdr *)((char *)ip6 + hlen);
674
675                 if ((tcp->th_flags & TH_RST) != 0) {
676                         m_freem(m);
677                         args->m = NULL;
678                         return;
679                 }
680
681                 ti.ip6 = *ip6;
682                 ti.th = *tcp;
683                 ti.th.th_seq = ntohl(ti.th.th_seq);
684                 ti.th.th_ack = ntohl(ti.th.th_ack);
685                 ti.ip6.ip6_nxt = IPPROTO_TCP;
686
687                 if (ti.th.th_flags & TH_ACK) {
688                         ack = 0;
689                         seq = ti.th.th_ack;
690                         flags = TH_RST;
691                 } else {
692                         ack = ti.th.th_seq;
693                         if ((m->m_flags & M_PKTHDR) != 0) {
694                                 /*
695                                  * total new data to ACK is:
696                                  * total packet length,
697                                  * minus the header length,
698                                  * minus the tcp header length.
699                                  */
700                                 ack += m->m_pkthdr.len - hlen
701                                         - (ti.th.th_off << 2);
702                         } else if (ip6->ip6_plen) {
703                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
704                                     hlen - (ti.th.th_off << 2);
705                         } else {
706                                 m_freem(m);
707                                 return;
708                         }
709                         if (tcp->th_flags & TH_SYN)
710                                 ack++;
711                         seq = 0;
712                         flags = TH_RST|TH_ACK;
713                 }
714                 bcopy(&ti, ip6, sizeof(ti));
715                 /*
716                  * m is only used to recycle the mbuf
717                  * The data in it is never read so we don't need
718                  * to correct the offsets or anything
719                  */
720                 tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
721         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
722 #if 0
723                 /*
724                  * Unlike above, the mbufs need to line up with the ip6 hdr,
725                  * as the contents are read. We need to m_adj() the
726                  * needed amount.
727                  * The mbuf will however be thrown away so we can adjust it.
728                  * Remember we did an m_pullup on it already so we
729                  * can make some assumptions about contiguousness.
730                  */
731                 if (args->L3offset)
732                         m_adj(m, args->L3offset);
733 #endif
734                 icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
735         } else
736                 m_freem(m);
737
738         args->m = NULL;
739 }
740
741 #endif /* INET6 */
742
743 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
744
745 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
746 #define SNP(buf) buf, sizeof(buf)
747
748 /*
749  * We enter here when we have a rule with O_LOG.
750  * XXX this function alone takes about 2Kbytes of code!
751  */
752 static void
753 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
754     struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
755     struct ip *ip)
756 {
757         struct ether_header *eh = args->eh;
758         char *action;
759         int limit_reached = 0;
760         char action2[40], proto[128], fragment[32];
761
762         fragment[0] = '\0';
763         proto[0] = '\0';
764
765         if (f == NULL) {        /* bogus pkt */
766                 if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
767                         return;
768                 V_norule_counter++;
769                 if (V_norule_counter == V_verbose_limit)
770                         limit_reached = V_verbose_limit;
771                 action = "Refuse";
772         } else {        /* O_LOG is the first action, find the real one */
773                 ipfw_insn *cmd = ACTION_PTR(f);
774                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
775
776                 if (l->max_log != 0 && l->log_left == 0)
777                         return;
778                 l->log_left--;
779                 if (l->log_left == 0)
780                         limit_reached = l->max_log;
781                 cmd += F_LEN(cmd);      /* point to first action */
782                 if (cmd->opcode == O_ALTQ) {
783                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
784
785                         snprintf(SNPARGS(action2, 0), "Altq %d",
786                                 altq->qid);
787                         cmd += F_LEN(cmd);
788                 }
789                 if (cmd->opcode == O_PROB)
790                         cmd += F_LEN(cmd);
791
792                 if (cmd->opcode == O_TAG)
793                         cmd += F_LEN(cmd);
794
795                 action = action2;
796                 switch (cmd->opcode) {
797                 case O_DENY:
798                         action = "Deny";
799                         break;
800
801                 case O_REJECT:
802                         if (cmd->arg1==ICMP_REJECT_RST)
803                                 action = "Reset";
804                         else if (cmd->arg1==ICMP_UNREACH_HOST)
805                                 action = "Reject";
806                         else
807                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
808                                         cmd->arg1);
809                         break;
810
811                 case O_UNREACH6:
812                         if (cmd->arg1==ICMP6_UNREACH_RST)
813                                 action = "Reset";
814                         else
815                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
816                                         cmd->arg1);
817                         break;
818
819                 case O_ACCEPT:
820                         action = "Accept";
821                         break;
822                 case O_COUNT:
823                         action = "Count";
824                         break;
825                 case O_DIVERT:
826                         snprintf(SNPARGS(action2, 0), "Divert %d",
827                                 cmd->arg1);
828                         break;
829                 case O_TEE:
830                         snprintf(SNPARGS(action2, 0), "Tee %d",
831                                 cmd->arg1);
832                         break;
833                 case O_SETFIB:
834                         snprintf(SNPARGS(action2, 0), "SetFib %d",
835                                 cmd->arg1);
836                         break;
837                 case O_SKIPTO:
838                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
839                                 cmd->arg1);
840                         break;
841                 case O_PIPE:
842                         snprintf(SNPARGS(action2, 0), "Pipe %d",
843                                 cmd->arg1);
844                         break;
845                 case O_QUEUE:
846                         snprintf(SNPARGS(action2, 0), "Queue %d",
847                                 cmd->arg1);
848                         break;
849                 case O_FORWARD_IP: {
850                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
851                         int len;
852                         struct in_addr dummyaddr;
853                         if (sa->sa.sin_addr.s_addr == INADDR_ANY)
854                                 dummyaddr.s_addr = htonl(tablearg);
855                         else
856                                 dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
857
858                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
859                                 inet_ntoa(dummyaddr));
860
861                         if (sa->sa.sin_port)
862                                 snprintf(SNPARGS(action2, len), ":%d",
863                                     sa->sa.sin_port);
864                         }
865                         break;
866                 case O_NETGRAPH:
867                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
868                                 cmd->arg1);
869                         break;
870                 case O_NGTEE:
871                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
872                                 cmd->arg1);
873                         break;
874                 case O_NAT:
875                         action = "Nat";
876                         break;
877                 default:
878                         action = "UNKNOWN";
879                         break;
880                 }
881         }
882
883         if (hlen == 0) {        /* non-ip */
884                 snprintf(SNPARGS(proto, 0), "MAC");
885
886         } else {
887                 int len;
888                 char src[48], dst[48];
889                 struct icmphdr *icmp;
890                 struct tcphdr *tcp;
891                 struct udphdr *udp;
892 #ifdef INET6
893                 struct ip6_hdr *ip6 = NULL;
894                 struct icmp6_hdr *icmp6;
895 #endif
896                 src[0] = '\0';
897                 dst[0] = '\0';
898 #ifdef INET6
899                 if (IS_IP6_FLOW_ID(&(args->f_id))) {
900                         char ip6buf[INET6_ADDRSTRLEN];
901                         snprintf(src, sizeof(src), "[%s]",
902                             ip6_sprintf(ip6buf, &args->f_id.src_ip6));
903                         snprintf(dst, sizeof(dst), "[%s]",
904                             ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
905
906                         ip6 = (struct ip6_hdr *)ip;
907                         tcp = (struct tcphdr *)(((char *)ip) + hlen);
908                         udp = (struct udphdr *)(((char *)ip) + hlen);
909                 } else
910 #endif
911                 {
912                         tcp = L3HDR(struct tcphdr, ip);
913                         udp = L3HDR(struct udphdr, ip);
914
915                         inet_ntoa_r(ip->ip_src, src);
916                         inet_ntoa_r(ip->ip_dst, dst);
917                 }
918
919                 switch (args->f_id.proto) {
920                 case IPPROTO_TCP:
921                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
922                         if (offset == 0)
923                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
924                                     ntohs(tcp->th_sport),
925                                     dst,
926                                     ntohs(tcp->th_dport));
927                         else
928                                 snprintf(SNPARGS(proto, len), " %s", dst);
929                         break;
930
931                 case IPPROTO_UDP:
932                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
933                         if (offset == 0)
934                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
935                                     ntohs(udp->uh_sport),
936                                     dst,
937                                     ntohs(udp->uh_dport));
938                         else
939                                 snprintf(SNPARGS(proto, len), " %s", dst);
940                         break;
941
942                 case IPPROTO_ICMP:
943                         icmp = L3HDR(struct icmphdr, ip);
944                         if (offset == 0)
945                                 len = snprintf(SNPARGS(proto, 0),
946                                     "ICMP:%u.%u ",
947                                     icmp->icmp_type, icmp->icmp_code);
948                         else
949                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
950                         len += snprintf(SNPARGS(proto, len), "%s", src);
951                         snprintf(SNPARGS(proto, len), " %s", dst);
952                         break;
953 #ifdef INET6
954                 case IPPROTO_ICMPV6:
955                         icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
956                         if (offset == 0)
957                                 len = snprintf(SNPARGS(proto, 0),
958                                     "ICMPv6:%u.%u ",
959                                     icmp6->icmp6_type, icmp6->icmp6_code);
960                         else
961                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
962                         len += snprintf(SNPARGS(proto, len), "%s", src);
963                         snprintf(SNPARGS(proto, len), " %s", dst);
964                         break;
965 #endif
966                 default:
967                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
968                             args->f_id.proto, src);
969                         snprintf(SNPARGS(proto, len), " %s", dst);
970                         break;
971                 }
972
973 #ifdef INET6
974                 if (IS_IP6_FLOW_ID(&(args->f_id))) {
975                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
976                                 snprintf(SNPARGS(fragment, 0),
977                                     " (frag %08x:%d@%d%s)",
978                                     args->f_id.frag_id6,
979                                     ntohs(ip6->ip6_plen) - hlen,
980                                     ntohs(offset & IP6F_OFF_MASK) << 3,
981                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
982                 } else
983 #endif
984                 {
985                         int ip_off, ip_len;
986                         if (eh != NULL) { /* layer 2 packets are as on the wire */
987                                 ip_off = ntohs(ip->ip_off);
988                                 ip_len = ntohs(ip->ip_len);
989                         } else {
990                                 ip_off = ip->ip_off;
991                                 ip_len = ip->ip_len;
992                         }
993                         if (ip_off & (IP_MF | IP_OFFMASK))
994                                 snprintf(SNPARGS(fragment, 0),
995                                     " (frag %d:%d@%d%s)",
996                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
997                                     offset << 3,
998                                     (ip_off & IP_MF) ? "+" : "");
999                 }
1000         }
1001         if (oif || m->m_pkthdr.rcvif)
1002                 log(LOG_SECURITY | LOG_INFO,
1003                     "ipfw: %d %s %s %s via %s%s\n",
1004                     f ? f->rulenum : -1,
1005                     action, proto, oif ? "out" : "in",
1006                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1007                     fragment);
1008         else
1009                 log(LOG_SECURITY | LOG_INFO,
1010                     "ipfw: %d %s %s [no if info]%s\n",
1011                     f ? f->rulenum : -1,
1012                     action, proto, fragment);
1013         if (limit_reached)
1014                 log(LOG_SECURITY | LOG_NOTICE,
1015                     "ipfw: limit %d reached on entry %d\n",
1016                     limit_reached, f ? f->rulenum : -1);
1017 }
1018
1019 /*
1020  * IMPORTANT: the hash function for dynamic rules must be commutative
1021  * in source and destination (ip,port), because rules are bidirectional
1022  * and we want to find both in the same bucket.
1023  */
1024 static __inline int
1025 hash_packet(struct ipfw_flow_id *id)
1026 {
1027         u_int32_t i;
1028
1029 #ifdef INET6
1030         if (IS_IP6_FLOW_ID(id)) 
1031                 i = hash_packet6(id);
1032         else
1033 #endif /* INET6 */
1034         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1035         i &= (V_curr_dyn_buckets - 1);
1036         return i;
1037 }
1038
1039 /**
1040  * unlink a dynamic rule from a chain. prev is a pointer to
1041  * the previous one, q is a pointer to the rule to delete,
1042  * head is a pointer to the head of the queue.
1043  * Modifies q and potentially also head.
1044  */
1045 #define UNLINK_DYN_RULE(prev, head, q) {                                \
1046         ipfw_dyn_rule *old_q = q;                                       \
1047                                                                         \
1048         /* remove a refcount to the parent */                           \
1049         if (q->dyn_type == O_LIMIT)                                     \
1050                 q->parent->count--;                                     \
1051         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1052                 (q->id.src_ip), (q->id.src_port),                       \
1053                 (q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); )    \
1054         if (prev != NULL)                                               \
1055                 prev->next = q = q->next;                               \
1056         else                                                            \
1057                 head = q = q->next;                                     \
1058         V_dyn_count--;                                                  \
1059         uma_zfree(ipfw_dyn_rule_zone, old_q); }
1060
1061 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1062
1063 /**
1064  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1065  *
1066  * If keep_me == NULL, rules are deleted even if not expired,
1067  * otherwise only expired rules are removed.
1068  *
1069  * The value of the second parameter is also used to point to identify
1070  * a rule we absolutely do not want to remove (e.g. because we are
1071  * holding a reference to it -- this is the case with O_LIMIT_PARENT
1072  * rules). The pointer is only used for comparison, so any non-null
1073  * value will do.
1074  */
1075 static void
1076 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1077 {
1078         static u_int32_t last_remove = 0;
1079
1080 #define FORCE (keep_me == NULL)
1081
1082         ipfw_dyn_rule *prev, *q;
1083         int i, pass = 0, max_pass = 0;
1084
1085         IPFW_DYN_LOCK_ASSERT();
1086
1087         if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1088                 return;
1089         /* do not expire more than once per second, it is useless */
1090         if (!FORCE && last_remove == time_uptime)
1091                 return;
1092         last_remove = time_uptime;
1093
1094         /*
1095          * because O_LIMIT refer to parent rules, during the first pass only
1096          * remove child and mark any pending LIMIT_PARENT, and remove
1097          * them in a second pass.
1098          */
1099 next_pass:
1100         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1101                 for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
1102                         /*
1103                          * Logic can become complex here, so we split tests.
1104                          */
1105                         if (q == keep_me)
1106                                 goto next;
1107                         if (rule != NULL && rule != q->rule)
1108                                 goto next; /* not the one we are looking for */
1109                         if (q->dyn_type == O_LIMIT_PARENT) {
1110                                 /*
1111                                  * handle parent in the second pass,
1112                                  * record we need one.
1113                                  */
1114                                 max_pass = 1;
1115                                 if (pass == 0)
1116                                         goto next;
1117                                 if (FORCE && q->count != 0 ) {
1118                                         /* XXX should not happen! */
1119                                         printf("ipfw: OUCH! cannot remove rule,"
1120                                              " count %d\n", q->count);
1121                                 }
1122                         } else {
1123                                 if (!FORCE &&
1124                                     !TIME_LEQ( q->expire, time_uptime ))
1125                                         goto next;
1126                         }
1127              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1128                      UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1129                      continue;
1130              }
1131 next:
1132                         prev=q;
1133                         q=q->next;
1134                 }
1135         }
1136         if (pass++ < max_pass)
1137                 goto next_pass;
1138 }
1139
1140
1141 /**
1142  * lookup a dynamic rule.
1143  */
1144 static ipfw_dyn_rule *
1145 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1146     struct tcphdr *tcp)
1147 {
1148         /*
1149          * stateful ipfw extensions.
1150          * Lookup into dynamic session queue
1151          */
1152 #define MATCH_REVERSE   0
1153 #define MATCH_FORWARD   1
1154 #define MATCH_NONE      2
1155 #define MATCH_UNKNOWN   3
1156         int i, dir = MATCH_NONE;
1157         ipfw_dyn_rule *prev, *q=NULL;
1158
1159         IPFW_DYN_LOCK_ASSERT();
1160
1161         if (V_ipfw_dyn_v == NULL)
1162                 goto done;      /* not found */
1163         i = hash_packet( pkt );
1164         for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
1165                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1166                         goto next;
1167                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1168                         UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1169                         continue;
1170                 }
1171                 if (pkt->proto == q->id.proto &&
1172                     q->dyn_type != O_LIMIT_PARENT) {
1173                         if (IS_IP6_FLOW_ID(pkt)) {
1174                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1175                                 &(q->id.src_ip6)) &&
1176                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1177                                 &(q->id.dst_ip6)) &&
1178                             pkt->src_port == q->id.src_port &&
1179                             pkt->dst_port == q->id.dst_port ) {
1180                                 dir = MATCH_FORWARD;
1181                                 break;
1182                             }
1183                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1184                                     &(q->id.dst_ip6)) &&
1185                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1186                                     &(q->id.src_ip6)) &&
1187                                 pkt->src_port == q->id.dst_port &&
1188                                 pkt->dst_port == q->id.src_port ) {
1189                                     dir = MATCH_REVERSE;
1190                                     break;
1191                             }
1192                         } else {
1193                             if (pkt->src_ip == q->id.src_ip &&
1194                                 pkt->dst_ip == q->id.dst_ip &&
1195                                 pkt->src_port == q->id.src_port &&
1196                                 pkt->dst_port == q->id.dst_port ) {
1197                                     dir = MATCH_FORWARD;
1198                                     break;
1199                             }
1200                             if (pkt->src_ip == q->id.dst_ip &&
1201                                 pkt->dst_ip == q->id.src_ip &&
1202                                 pkt->src_port == q->id.dst_port &&
1203                                 pkt->dst_port == q->id.src_port ) {
1204                                     dir = MATCH_REVERSE;
1205                                     break;
1206                             }
1207                         }
1208                 }
1209 next:
1210                 prev = q;
1211                 q = q->next;
1212         }
1213         if (q == NULL)
1214                 goto done; /* q = NULL, not found */
1215
1216         if ( prev != NULL) { /* found and not in front */
1217                 prev->next = q->next;
1218                 q->next = V_ipfw_dyn_v[i];
1219                 V_ipfw_dyn_v[i] = q;
1220         }
1221         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1222                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1223
1224 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
1225 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
1226                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1227                 switch (q->state) {
1228                 case TH_SYN:                            /* opening */
1229                         q->expire = time_uptime + V_dyn_syn_lifetime;
1230                         break;
1231
1232                 case BOTH_SYN:                  /* move to established */
1233                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
1234                 case BOTH_SYN | (TH_FIN << 8) :
1235                         if (tcp) {
1236 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1237                             u_int32_t ack = ntohl(tcp->th_ack);
1238                             if (dir == MATCH_FORWARD) {
1239                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1240                                     q->ack_fwd = ack;
1241                                 else { /* ignore out-of-sequence */
1242                                     break;
1243                                 }
1244                             } else {
1245                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1246                                     q->ack_rev = ack;
1247                                 else { /* ignore out-of-sequence */
1248                                     break;
1249                                 }
1250                             }
1251                         }
1252                         q->expire = time_uptime + V_dyn_ack_lifetime;
1253                         break;
1254
1255                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
1256                         if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1257                                 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1258                         q->expire = time_uptime + V_dyn_fin_lifetime;
1259                         break;
1260
1261                 default:
1262 #if 0
1263                         /*
1264                          * reset or some invalid combination, but can also
1265                          * occur if we use keep-state the wrong way.
1266                          */
1267                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1268                                 printf("invalid state: 0x%x\n", q->state);
1269 #endif
1270                         if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1271                                 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1272                         q->expire = time_uptime + V_dyn_rst_lifetime;
1273                         break;
1274                 }
1275         } else if (pkt->proto == IPPROTO_UDP) {
1276                 q->expire = time_uptime + V_dyn_udp_lifetime;
1277         } else {
1278                 /* other protocols */
1279                 q->expire = time_uptime + V_dyn_short_lifetime;
1280         }
1281 done:
1282         if (match_direction)
1283                 *match_direction = dir;
1284         return q;
1285 }
1286
1287 static ipfw_dyn_rule *
1288 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1289     struct tcphdr *tcp)
1290 {
1291         ipfw_dyn_rule *q;
1292
1293         IPFW_DYN_LOCK();
1294         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1295         if (q == NULL)
1296                 IPFW_DYN_UNLOCK();
1297         /* NB: return table locked when q is not NULL */
1298         return q;
1299 }
1300
1301 static void
1302 realloc_dynamic_table(void)
1303 {
1304         IPFW_DYN_LOCK_ASSERT();
1305
1306         /*
1307          * Try reallocation, make sure we have a power of 2 and do
1308          * not allow more than 64k entries. In case of overflow,
1309          * default to 1024.
1310          */
1311
1312         if (V_dyn_buckets > 65536)
1313                 V_dyn_buckets = 1024;
1314         if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
1315                 V_dyn_buckets = V_curr_dyn_buckets; /* reset */
1316                 return;
1317         }
1318         V_curr_dyn_buckets = V_dyn_buckets;
1319         if (V_ipfw_dyn_v != NULL)
1320                 free(V_ipfw_dyn_v, M_IPFW);
1321         for (;;) {
1322                 V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1323                        M_IPFW, M_NOWAIT | M_ZERO);
1324                 if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
1325                         break;
1326                 V_curr_dyn_buckets /= 2;
1327         }
1328 }
1329
1330 /**
1331  * Install state of type 'type' for a dynamic session.
1332  * The hash table contains two type of rules:
1333  * - regular rules (O_KEEP_STATE)
1334  * - rules for sessions with limited number of sess per user
1335  *   (O_LIMIT). When they are created, the parent is
1336  *   increased by 1, and decreased on delete. In this case,
1337  *   the third parameter is the parent rule and not the chain.
1338  * - "parent" rules for the above (O_LIMIT_PARENT).
1339  */
1340 static ipfw_dyn_rule *
1341 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1342 {
1343         ipfw_dyn_rule *r;
1344         int i;
1345
1346         IPFW_DYN_LOCK_ASSERT();
1347
1348         if (V_ipfw_dyn_v == NULL ||
1349             (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
1350                 realloc_dynamic_table();
1351                 if (V_ipfw_dyn_v == NULL)
1352                         return NULL; /* failed ! */
1353         }
1354         i = hash_packet(id);
1355
1356         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1357         if (r == NULL) {
1358                 printf ("ipfw: sorry cannot allocate state\n");
1359                 return NULL;
1360         }
1361
1362         /* increase refcount on parent, and set pointer */
1363         if (dyn_type == O_LIMIT) {
1364                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1365                 if ( parent->dyn_type != O_LIMIT_PARENT)
1366                         panic("invalid parent");
1367                 parent->count++;
1368                 r->parent = parent;
1369                 rule = parent->rule;
1370         }
1371
1372         r->id = *id;
1373         r->expire = time_uptime + V_dyn_syn_lifetime;
1374         r->rule = rule;
1375         r->dyn_type = dyn_type;
1376         r->pcnt = r->bcnt = 0;
1377         r->count = 0;
1378
1379         r->bucket = i;
1380         r->next = V_ipfw_dyn_v[i];
1381         V_ipfw_dyn_v[i] = r;
1382         V_dyn_count++;
1383         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1384            dyn_type,
1385            (r->id.src_ip), (r->id.src_port),
1386            (r->id.dst_ip), (r->id.dst_port),
1387            V_dyn_count ); )
1388         return r;
1389 }
1390
1391 /**
1392  * lookup dynamic parent rule using pkt and rule as search keys.
1393  * If the lookup fails, then install one.
1394  */
1395 static ipfw_dyn_rule *
1396 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1397 {
1398         ipfw_dyn_rule *q;
1399         int i;
1400
1401         IPFW_DYN_LOCK_ASSERT();
1402
1403         if (V_ipfw_dyn_v) {
1404                 int is_v6 = IS_IP6_FLOW_ID(pkt);
1405                 i = hash_packet( pkt );
1406                 for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1407                         if (q->dyn_type == O_LIMIT_PARENT &&
1408                             rule== q->rule &&
1409                             pkt->proto == q->id.proto &&
1410                             pkt->src_port == q->id.src_port &&
1411                             pkt->dst_port == q->id.dst_port &&
1412                             (
1413                                 (is_v6 &&
1414                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1415                                         &(q->id.src_ip6)) &&
1416                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1417                                         &(q->id.dst_ip6))) ||
1418                                 (!is_v6 &&
1419                                  pkt->src_ip == q->id.src_ip &&
1420                                  pkt->dst_ip == q->id.dst_ip)
1421                             )
1422                         ) {
1423                                 q->expire = time_uptime + V_dyn_short_lifetime;
1424                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1425                                 return q;
1426                         }
1427         }
1428         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1429 }
1430
1431 /**
1432  * Install dynamic state for rule type cmd->o.opcode
1433  *
1434  * Returns 1 (failure) if state is not installed because of errors or because
1435  * session limitations are enforced.
1436  */
1437 static int
1438 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1439     struct ip_fw_args *args, uint32_t tablearg)
1440 {
1441         static int last_log;
1442         ipfw_dyn_rule *q;
1443         struct in_addr da;
1444         char src[48], dst[48];
1445
1446         src[0] = '\0';
1447         dst[0] = '\0';
1448
1449         DEB(
1450         printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1451             __func__, cmd->o.opcode,
1452             (args->f_id.src_ip), (args->f_id.src_port),
1453             (args->f_id.dst_ip), (args->f_id.dst_port));
1454         )
1455
1456         IPFW_DYN_LOCK();
1457
1458         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1459
1460         if (q != NULL) {        /* should never occur */
1461                 if (last_log != time_uptime) {
1462                         last_log = time_uptime;
1463                         printf("ipfw: %s: entry already present, done\n",
1464                             __func__);
1465                 }
1466                 IPFW_DYN_UNLOCK();
1467                 return (0);
1468         }
1469
1470         if (V_dyn_count >= V_dyn_max)
1471                 /* Run out of slots, try to remove any expired rule. */
1472                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1473
1474         if (V_dyn_count >= V_dyn_max) {
1475                 if (last_log != time_uptime) {
1476                         last_log = time_uptime;
1477                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
1478                 }
1479                 IPFW_DYN_UNLOCK();
1480                 return (1);     /* cannot install, notify caller */
1481         }
1482
1483         switch (cmd->o.opcode) {
1484         case O_KEEP_STATE:      /* bidir rule */
1485                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1486                 break;
1487
1488         case O_LIMIT: {         /* limit number of sessions */
1489                 struct ipfw_flow_id id;
1490                 ipfw_dyn_rule *parent;
1491                 uint32_t conn_limit;
1492                 uint16_t limit_mask = cmd->limit_mask;
1493
1494                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1495                     tablearg : cmd->conn_limit;
1496                   
1497                 DEB(
1498                 if (cmd->conn_limit == IP_FW_TABLEARG)
1499                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1500                             "(tablearg)\n", __func__, conn_limit);
1501                 else
1502                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1503                             __func__, conn_limit);
1504                 )
1505
1506                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1507                 id.proto = args->f_id.proto;
1508                 id.addr_type = args->f_id.addr_type;
1509                 id.fib = M_GETFIB(args->m);
1510
1511                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
1512                         if (limit_mask & DYN_SRC_ADDR)
1513                                 id.src_ip6 = args->f_id.src_ip6;
1514                         if (limit_mask & DYN_DST_ADDR)
1515                                 id.dst_ip6 = args->f_id.dst_ip6;
1516                 } else {
1517                         if (limit_mask & DYN_SRC_ADDR)
1518                                 id.src_ip = args->f_id.src_ip;
1519                         if (limit_mask & DYN_DST_ADDR)
1520                                 id.dst_ip = args->f_id.dst_ip;
1521                 }
1522                 if (limit_mask & DYN_SRC_PORT)
1523                         id.src_port = args->f_id.src_port;
1524                 if (limit_mask & DYN_DST_PORT)
1525                         id.dst_port = args->f_id.dst_port;
1526                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1527                         printf("ipfw: %s: add parent failed\n", __func__);
1528                         IPFW_DYN_UNLOCK();
1529                         return (1);
1530                 }
1531
1532                 if (parent->count >= conn_limit) {
1533                         /* See if we can remove some expired rule. */
1534                         remove_dyn_rule(rule, parent);
1535                         if (parent->count >= conn_limit) {
1536                                 if (V_fw_verbose && last_log != time_uptime) {
1537                                         last_log = time_uptime;
1538 #ifdef INET6
1539                                         /*
1540                                          * XXX IPv6 flows are not
1541                                          * supported yet.
1542                                          */
1543                                         if (IS_IP6_FLOW_ID(&(args->f_id))) {
1544                                                 char ip6buf[INET6_ADDRSTRLEN];
1545                                                 snprintf(src, sizeof(src),
1546                                                     "[%s]", ip6_sprintf(ip6buf,
1547                                                         &args->f_id.src_ip6));
1548                                                 snprintf(dst, sizeof(dst),
1549                                                     "[%s]", ip6_sprintf(ip6buf,
1550                                                         &args->f_id.dst_ip6));
1551                                         } else
1552 #endif
1553                                         {
1554                                                 da.s_addr =
1555                                                     htonl(args->f_id.src_ip);
1556                                                 inet_ntoa_r(da, src);
1557                                                 da.s_addr =
1558                                                     htonl(args->f_id.dst_ip);
1559                                                 inet_ntoa_r(da, dst);
1560                                         }
1561                                         log(LOG_SECURITY | LOG_DEBUG,
1562                                             "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1563                                             parent->rule->rulenum,
1564                                             "drop session",
1565                                             src, (args->f_id.src_port),
1566                                             dst, (args->f_id.dst_port),
1567                                             "too many entries");
1568                                 }
1569                                 IPFW_DYN_UNLOCK();
1570                                 return (1);
1571                         }
1572                 }
1573                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1574                 break;
1575         }
1576         default:
1577                 printf("ipfw: %s: unknown dynamic rule type %u\n",
1578                     __func__, cmd->o.opcode);
1579                 IPFW_DYN_UNLOCK();
1580                 return (1);
1581         }
1582
1583         /* XXX just set lifetime */
1584         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1585
1586         IPFW_DYN_UNLOCK();
1587         return (0);
1588 }
1589
1590 /*
1591  * Generate a TCP packet, containing either a RST or a keepalive.
1592  * When flags & TH_RST, we are sending a RST packet, because of a
1593  * "reset" action matched the packet.
1594  * Otherwise we are sending a keepalive, and flags & TH_
1595  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1596  * so that MAC can label the reply appropriately.
1597  */
1598 static struct mbuf *
1599 send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1600     u_int32_t ack, int flags)
1601 {
1602         struct mbuf *m;
1603         struct ip *ip;
1604         struct tcphdr *tcp;
1605
1606         MGETHDR(m, M_DONTWAIT, MT_DATA);
1607         if (m == 0)
1608                 return (NULL);
1609         m->m_pkthdr.rcvif = (struct ifnet *)0;
1610
1611         M_SETFIB(m, id->fib);
1612 #ifdef MAC
1613         if (replyto != NULL)
1614                 mac_netinet_firewall_reply(replyto, m);
1615         else
1616                 mac_netinet_firewall_send(m);
1617 #else
1618         (void)replyto;          /* don't warn about unused arg */
1619 #endif
1620
1621         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1622         m->m_data += max_linkhdr;
1623
1624         ip = mtod(m, struct ip *);
1625         bzero(ip, m->m_len);
1626         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1627         ip->ip_p = IPPROTO_TCP;
1628         tcp->th_off = 5;
1629         /*
1630          * Assume we are sending a RST (or a keepalive in the reverse
1631          * direction), swap src and destination addresses and ports.
1632          */
1633         ip->ip_src.s_addr = htonl(id->dst_ip);
1634         ip->ip_dst.s_addr = htonl(id->src_ip);
1635         tcp->th_sport = htons(id->dst_port);
1636         tcp->th_dport = htons(id->src_port);
1637         if (flags & TH_RST) {   /* we are sending a RST */
1638                 if (flags & TH_ACK) {
1639                         tcp->th_seq = htonl(ack);
1640                         tcp->th_ack = htonl(0);
1641                         tcp->th_flags = TH_RST;
1642                 } else {
1643                         if (flags & TH_SYN)
1644                                 seq++;
1645                         tcp->th_seq = htonl(0);
1646                         tcp->th_ack = htonl(seq);
1647                         tcp->th_flags = TH_RST | TH_ACK;
1648                 }
1649         } else {
1650                 /*
1651                  * We are sending a keepalive. flags & TH_SYN determines
1652                  * the direction, forward if set, reverse if clear.
1653                  * NOTE: seq and ack are always assumed to be correct
1654                  * as set by the caller. This may be confusing...
1655                  */
1656                 if (flags & TH_SYN) {
1657                         /*
1658                          * we have to rewrite the correct addresses!
1659                          */
1660                         ip->ip_dst.s_addr = htonl(id->dst_ip);
1661                         ip->ip_src.s_addr = htonl(id->src_ip);
1662                         tcp->th_dport = htons(id->dst_port);
1663                         tcp->th_sport = htons(id->src_port);
1664                 }
1665                 tcp->th_seq = htonl(seq);
1666                 tcp->th_ack = htonl(ack);
1667                 tcp->th_flags = TH_ACK;
1668         }
1669         /*
1670          * set ip_len to the payload size so we can compute
1671          * the tcp checksum on the pseudoheader
1672          * XXX check this, could save a couple of words ?
1673          */
1674         ip->ip_len = htons(sizeof(struct tcphdr));
1675         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1676         /*
1677          * now fill fields left out earlier
1678          */
1679         ip->ip_ttl = V_ip_defttl;
1680         ip->ip_len = m->m_pkthdr.len;
1681         m->m_flags |= M_SKIP_FIREWALL;
1682         return (m);
1683 }
1684
1685 /*
1686  * sends a reject message, consuming the mbuf passed as an argument.
1687  */
1688 static void
1689 send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1690 {
1691
1692 #if 0
1693         /* XXX When ip is not guaranteed to be at mtod() we will
1694          * need to account for this */
1695          * The mbuf will however be thrown away so we can adjust it.
1696          * Remember we did an m_pullup on it already so we
1697          * can make some assumptions about contiguousness.
1698          */
1699         if (args->L3offset)
1700                 m_adj(m, args->L3offset);
1701 #endif
1702         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1703                 /* We need the IP header in host order for icmp_error(). */
1704                 if (args->eh != NULL) {
1705                         ip->ip_len = ntohs(ip->ip_len);
1706                         ip->ip_off = ntohs(ip->ip_off);
1707                 }
1708                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1709         } else if (args->f_id.proto == IPPROTO_TCP) {
1710                 struct tcphdr *const tcp =
1711                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1712                 if ( (tcp->th_flags & TH_RST) == 0) {
1713                         struct mbuf *m;
1714                         m = send_pkt(args->m, &(args->f_id),
1715                                 ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1716                                 tcp->th_flags | TH_RST);
1717                         if (m != NULL)
1718                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1719                 }
1720                 m_freem(args->m);
1721         } else
1722                 m_freem(args->m);
1723         args->m = NULL;
1724 }
1725
1726 /**
1727  *
1728  * Given an ip_fw *, lookup_next_rule will return a pointer
1729  * to the next rule, which can be either the jump
1730  * target (for skipto instructions) or the next one in the list (in
1731  * all other cases including a missing jump target).
1732  * The result is also written in the "next_rule" field of the rule.
1733  * Backward jumps are not allowed, so start looking from the next
1734  * rule...
1735  *
1736  * This never returns NULL -- in case we do not have an exact match,
1737  * the next rule is returned. When the ruleset is changed,
1738  * pointers are flushed so we are always correct.
1739  */
1740
1741 static struct ip_fw *
1742 lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
1743 {
1744         struct ip_fw *rule = NULL;
1745         ipfw_insn *cmd;
1746         u_int16_t       rulenum;
1747
1748         /* look for action, in case it is a skipto */
1749         cmd = ACTION_PTR(me);
1750         if (cmd->opcode == O_LOG)
1751                 cmd += F_LEN(cmd);
1752         if (cmd->opcode == O_ALTQ)
1753                 cmd += F_LEN(cmd);
1754         if (cmd->opcode == O_TAG)
1755                 cmd += F_LEN(cmd);
1756         if (cmd->opcode == O_SKIPTO ) {
1757                 if (tablearg != 0) {
1758                         rulenum = (u_int16_t)tablearg;
1759                 } else {
1760                         rulenum = cmd->arg1;
1761                 }
1762                 for (rule = me->next; rule ; rule = rule->next) {
1763                         if (rule->rulenum >= rulenum) {
1764                                 break;
1765                         }
1766                 }
1767         }
1768         if (rule == NULL)                       /* failure or not a skipto */
1769                 rule = me->next;
1770         me->next_rule = rule;
1771         return rule;
1772 }
1773
1774 static int
1775 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1776     uint8_t mlen, uint32_t value)
1777 {
1778         struct radix_node_head *rnh;
1779         struct table_entry *ent;
1780
1781         if (tbl >= IPFW_TABLES_MAX)
1782                 return (EINVAL);
1783         rnh = ch->tables[tbl];
1784         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1785         if (ent == NULL)
1786                 return (ENOMEM);
1787         ent->value = value;
1788         ent->addr.sin_len = ent->mask.sin_len = 8;
1789         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1790         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1791         IPFW_WLOCK(&V_layer3_chain);
1792         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1793             NULL) {
1794                 IPFW_WUNLOCK(&V_layer3_chain);
1795                 free(ent, M_IPFW_TBL);
1796                 return (EEXIST);
1797         }
1798         IPFW_WUNLOCK(&V_layer3_chain);
1799         return (0);
1800 }
1801
1802 static int
1803 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1804     uint8_t mlen)
1805 {
1806         struct radix_node_head *rnh;
1807         struct table_entry *ent;
1808         struct sockaddr_in sa, mask;
1809
1810         if (tbl >= IPFW_TABLES_MAX)
1811                 return (EINVAL);
1812         rnh = ch->tables[tbl];
1813         sa.sin_len = mask.sin_len = 8;
1814         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1815         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1816         IPFW_WLOCK(ch);
1817         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1818         if (ent == NULL) {
1819                 IPFW_WUNLOCK(ch);
1820                 return (ESRCH);
1821         }
1822         IPFW_WUNLOCK(ch);
1823         free(ent, M_IPFW_TBL);
1824         return (0);
1825 }
1826
1827 static int
1828 flush_table_entry(struct radix_node *rn, void *arg)
1829 {
1830         struct radix_node_head * const rnh = arg;
1831         struct table_entry *ent;
1832
1833         ent = (struct table_entry *)
1834             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1835         if (ent != NULL)
1836                 free(ent, M_IPFW_TBL);
1837         return (0);
1838 }
1839
1840 static int
1841 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1842 {
1843         struct radix_node_head *rnh;
1844
1845         IPFW_WLOCK_ASSERT(ch);
1846
1847         if (tbl >= IPFW_TABLES_MAX)
1848                 return (EINVAL);
1849         rnh = ch->tables[tbl];
1850         KASSERT(rnh != NULL, ("NULL IPFW table"));
1851         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1852         return (0);
1853 }
1854
1855 static void
1856 flush_tables(struct ip_fw_chain *ch)
1857 {
1858         uint16_t tbl;
1859
1860         IPFW_WLOCK_ASSERT(ch);
1861
1862         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1863                 flush_table(ch, tbl);
1864 }
1865
1866 static int
1867 init_tables(struct ip_fw_chain *ch)
1868
1869         int i;
1870         uint16_t j;
1871
1872         for (i = 0; i < IPFW_TABLES_MAX; i++) {
1873                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
1874                         for (j = 0; j < i; j++) {
1875                                 (void) flush_table(ch, j);
1876                         }
1877                         return (ENOMEM);
1878                 }
1879         }
1880         return (0);
1881 }
1882
1883 static int
1884 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1885     uint32_t *val)
1886 {
1887         struct radix_node_head *rnh;
1888         struct table_entry *ent;
1889         struct sockaddr_in sa;
1890
1891         if (tbl >= IPFW_TABLES_MAX)
1892                 return (0);
1893         rnh = ch->tables[tbl];
1894         sa.sin_len = 8;
1895         sa.sin_addr.s_addr = addr;
1896         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1897         if (ent != NULL) {
1898                 *val = ent->value;
1899                 return (1);
1900         }
1901         return (0);
1902 }
1903
1904 static int
1905 count_table_entry(struct radix_node *rn, void *arg)
1906 {
1907         u_int32_t * const cnt = arg;
1908
1909         (*cnt)++;
1910         return (0);
1911 }
1912
1913 static int
1914 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1915 {
1916         struct radix_node_head *rnh;
1917
1918         if (tbl >= IPFW_TABLES_MAX)
1919                 return (EINVAL);
1920         rnh = ch->tables[tbl];
1921         *cnt = 0;
1922         rnh->rnh_walktree(rnh, count_table_entry, cnt);
1923         return (0);
1924 }
1925
1926 static int
1927 dump_table_entry(struct radix_node *rn, void *arg)
1928 {
1929         struct table_entry * const n = (struct table_entry *)rn;
1930         ipfw_table * const tbl = arg;
1931         ipfw_table_entry *ent;
1932
1933         if (tbl->cnt == tbl->size)
1934                 return (1);
1935         ent = &tbl->ent[tbl->cnt];
1936         ent->tbl = tbl->tbl;
1937         if (in_nullhost(n->mask.sin_addr))
1938                 ent->masklen = 0;
1939         else
1940                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1941         ent->addr = n->addr.sin_addr.s_addr;
1942         ent->value = n->value;
1943         tbl->cnt++;
1944         return (0);
1945 }
1946
1947 static int
1948 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1949 {
1950         struct radix_node_head *rnh;
1951
1952         if (tbl->tbl >= IPFW_TABLES_MAX)
1953                 return (EINVAL);
1954         rnh = ch->tables[tbl->tbl];
1955         tbl->cnt = 0;
1956         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1957         return (0);
1958 }
1959
1960 static void
1961 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1962 {
1963         struct ucred *cr;
1964
1965         if (inp->inp_socket != NULL) {
1966                 cr = inp->inp_socket->so_cred;
1967                 ugp->fw_prid = jailed(cr) ?
1968                     cr->cr_prison->pr_id : -1;
1969                 ugp->fw_uid = cr->cr_uid;
1970                 ugp->fw_ngroups = cr->cr_ngroups;
1971                 bcopy(cr->cr_groups, ugp->fw_groups,
1972                     sizeof(ugp->fw_groups));
1973         }
1974 }
1975
1976 static int
1977 check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
1978     struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
1979     u_int16_t src_port, struct ip_fw_ugid *ugp, int *lookup,
1980     struct inpcb *inp)
1981 {
1982         struct inpcbinfo *pi;
1983         int wildcard;
1984         struct inpcb *pcb;
1985         int match;
1986         gid_t *gp;
1987
1988         /*
1989          * Check to see if the UDP or TCP stack supplied us with
1990          * the PCB. If so, rather then holding a lock and looking
1991          * up the PCB, we can use the one that was supplied.
1992          */
1993         if (inp && *lookup == 0) {
1994                 INP_LOCK_ASSERT(inp);
1995                 if (inp->inp_socket != NULL) {
1996                         fill_ugid_cache(inp, ugp);
1997                         *lookup = 1;
1998                 }
1999         }
2000         /*
2001          * If we have already been here and the packet has no
2002          * PCB entry associated with it, then we can safely
2003          * assume that this is a no match.
2004          */
2005         if (*lookup == -1)
2006                 return (0);
2007         if (proto == IPPROTO_TCP) {
2008                 wildcard = 0;
2009                 pi = &V_tcbinfo;
2010         } else if (proto == IPPROTO_UDP) {
2011                 wildcard = INPLOOKUP_WILDCARD;
2012                 pi = &V_udbinfo;
2013         } else
2014                 return 0;
2015         match = 0;
2016         if (*lookup == 0) {
2017                 INP_INFO_RLOCK(pi);
2018                 pcb =  (oif) ?
2019                         in_pcblookup_hash(pi,
2020                                 dst_ip, htons(dst_port),
2021                                 src_ip, htons(src_port),
2022                                 wildcard, oif) :
2023                         in_pcblookup_hash(pi,
2024                                 src_ip, htons(src_port),
2025                                 dst_ip, htons(dst_port),
2026                                 wildcard, NULL);
2027                 if (pcb != NULL) {
2028                         INP_RLOCK(pcb);
2029                         if (pcb->inp_socket != NULL) {
2030                                 fill_ugid_cache(pcb, ugp);
2031                                 *lookup = 1;
2032                         }
2033                         INP_RUNLOCK(pcb);
2034                 }
2035                 INP_INFO_RUNLOCK(pi);
2036                 if (*lookup == 0) {
2037                         /*
2038                          * If the lookup did not yield any results, there
2039                          * is no sense in coming back and trying again. So
2040                          * we can set lookup to -1 and ensure that we wont
2041                          * bother the pcb system again.
2042                          */
2043                         *lookup = -1;
2044                         return (0);
2045                 }
2046         } 
2047         if (insn->o.opcode == O_UID)
2048                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
2049         else if (insn->o.opcode == O_GID) {
2050                 for (gp = ugp->fw_groups;
2051                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
2052                         if (*gp == (gid_t)insn->d[0]) {
2053                                 match = 1;
2054                                 break;
2055                         }
2056         } else if (insn->o.opcode == O_JAIL)
2057                 match = (ugp->fw_prid == (int)insn->d[0]);
2058         return match;
2059 }
2060
2061 /*
2062  * The main check routine for the firewall.
2063  *
2064  * All arguments are in args so we can modify them and return them
2065  * back to the caller.
2066  *
2067  * Parameters:
2068  *
2069  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
2070  *              Starts with the IP header.
2071  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
2072  *      args->L3offset  Number of bytes bypassed if we came from L2.
2073  *                      e.g. often sizeof(eh)  ** NOTYET **
2074  *      args->oif       Outgoing interface, or NULL if packet is incoming.
2075  *              The incoming interface is in the mbuf. (in)
2076  *      args->divert_rule (in/out)
2077  *              Skip up to the first rule past this rule number;
2078  *              upon return, non-zero port number for divert or tee.
2079  *
2080  *      args->rule      Pointer to the last matching rule (in/out)
2081  *      args->next_hop  Socket we are forwarding to (out).
2082  *      args->f_id      Addresses grabbed from the packet (out)
2083  *      args->cookie    a cookie depending on rule action
2084  *
2085  * Return value:
2086  *
2087  *      IP_FW_PASS      the packet must be accepted
2088  *      IP_FW_DENY      the packet must be dropped
2089  *      IP_FW_DIVERT    divert packet, port in m_tag
2090  *      IP_FW_TEE       tee packet, port in m_tag
2091  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
2092  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
2093  *
2094  */
2095 int
2096 ipfw_chk(struct ip_fw_args *args)
2097 {
2098         /*
2099          * Local variables holding state during the processing of a packet:
2100          *
2101          * IMPORTANT NOTE: to speed up the processing of rules, there
2102          * are some assumption on the values of the variables, which
2103          * are documented here. Should you change them, please check
2104          * the implementation of the various instructions to make sure
2105          * that they still work.
2106          *
2107          * args->eh     The MAC header. It is non-null for a layer2
2108          *      packet, it is NULL for a layer-3 packet.
2109          * **notyet**
2110          * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2111          *
2112          * m | args->m  Pointer to the mbuf, as received from the caller.
2113          *      It may change if ipfw_chk() does an m_pullup, or if it
2114          *      consumes the packet because it calls send_reject().
2115          *      XXX This has to change, so that ipfw_chk() never modifies
2116          *      or consumes the buffer.
2117          * ip   is the beginning of the ip(4 or 6) header.
2118          *      Calculated by adding the L3offset to the start of data.
2119          *      (Until we start using L3offset, the packet is
2120          *      supposed to start with the ip header).
2121          */
2122         struct mbuf *m = args->m;
2123         struct ip *ip = mtod(m, struct ip *);
2124
2125         /*
2126          * For rules which contain uid/gid or jail constraints, cache
2127          * a copy of the users credentials after the pcb lookup has been
2128          * executed. This will speed up the processing of rules with
2129          * these types of constraints, as well as decrease contention
2130          * on pcb related locks.
2131          */
2132         struct ip_fw_ugid fw_ugid_cache;
2133         int ugid_lookup = 0;
2134
2135         /*
2136          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
2137          *      associated with a packet input on a divert socket.  This
2138          *      will allow to distinguish traffic and its direction when
2139          *      it originates from a divert socket.
2140          */
2141         u_int divinput_flags = 0;
2142
2143         /*
2144          * oif | args->oif      If NULL, ipfw_chk has been called on the
2145          *      inbound path (ether_input, ip_input).
2146          *      If non-NULL, ipfw_chk has been called on the outbound path
2147          *      (ether_output, ip_output).
2148          */
2149         struct ifnet *oif = args->oif;
2150
2151         struct ip_fw *f = NULL;         /* matching rule */
2152         int retval = 0;
2153
2154         /*
2155          * hlen The length of the IP header.
2156          */
2157         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
2158
2159         /*
2160          * offset       The offset of a fragment. offset != 0 means that
2161          *      we have a fragment at this offset of an IPv4 packet.
2162          *      offset == 0 means that (if this is an IPv4 packet)
2163          *      this is the first or only fragment.
2164          *      For IPv6 offset == 0 means there is no Fragment Header. 
2165          *      If offset != 0 for IPv6 always use correct mask to
2166          *      get the correct offset because we add IP6F_MORE_FRAG
2167          *      to be able to dectect the first fragment which would
2168          *      otherwise have offset = 0.
2169          */
2170         u_short offset = 0;
2171
2172         /*
2173          * Local copies of addresses. They are only valid if we have
2174          * an IP packet.
2175          *
2176          * proto        The protocol. Set to 0 for non-ip packets,
2177          *      or to the protocol read from the packet otherwise.
2178          *      proto != 0 means that we have an IPv4 packet.
2179          *
2180          * src_port, dst_port   port numbers, in HOST format. Only
2181          *      valid for TCP and UDP packets.
2182          *
2183          * src_ip, dst_ip       ip addresses, in NETWORK format.
2184          *      Only valid for IPv4 packets.
2185          */
2186         u_int8_t proto;
2187         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
2188         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
2189         u_int16_t ip_len=0;
2190         int pktlen;
2191         u_int16_t       etype = 0;      /* Host order stored ether type */
2192
2193         /*
2194          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2195          *      MATCH_NONE when checked and not matched (q = NULL),
2196          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2197          */
2198         int dyn_dir = MATCH_UNKNOWN;
2199         ipfw_dyn_rule *q = NULL;
2200         struct ip_fw_chain *chain = &V_layer3_chain;
2201         struct m_tag *mtag;
2202
2203         /*
2204          * We store in ulp a pointer to the upper layer protocol header.
2205          * In the ipv4 case this is easy to determine from the header,
2206          * but for ipv6 we might have some additional headers in the middle.
2207          * ulp is NULL if not found.
2208          */
2209         void *ulp = NULL;               /* upper layer protocol pointer. */
2210         /* XXX ipv6 variables */
2211         int is_ipv6 = 0;
2212         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
2213         /* end of ipv6 variables */
2214         int is_ipv4 = 0;
2215
2216         if (m->m_flags & M_SKIP_FIREWALL)
2217                 return (IP_FW_PASS);    /* accept */
2218
2219         pktlen = m->m_pkthdr.len;
2220         args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
2221         proto = args->f_id.proto = 0;   /* mark f_id invalid */
2222                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2223
2224 /*
2225  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2226  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2227  * pointer might become stale after other pullups (but we never use it
2228  * this way).
2229  */
2230 #define PULLUP_TO(len, p, T)                                            \
2231 do {                                                                    \
2232         int x = (len) + sizeof(T);                                      \
2233         if ((m)->m_len < x) {                                           \
2234                 args->m = m = m_pullup(m, x);                           \
2235                 if (m == NULL)                                          \
2236                         goto pullup_failed;                             \
2237         }                                                               \
2238         p = (mtod(m, char *) + (len));                                  \
2239 } while (0)
2240
2241         /*
2242          * if we have an ether header,
2243          */
2244         if (args->eh)
2245                 etype = ntohs(args->eh->ether_type);
2246
2247         /* Identify IP packets and fill up variables. */
2248         if (pktlen >= sizeof(struct ip6_hdr) &&
2249             (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2250                 struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2251                 is_ipv6 = 1;
2252                 args->f_id.addr_type = 6;
2253                 hlen = sizeof(struct ip6_hdr);
2254                 proto = ip6->ip6_nxt;
2255
2256                 /* Search extension headers to find upper layer protocols */
2257                 while (ulp == NULL) {
2258                         switch (proto) {
2259                         case IPPROTO_ICMPV6:
2260                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2261                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
2262                                 break;
2263
2264                         case IPPROTO_TCP:
2265                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2266                                 dst_port = TCP(ulp)->th_dport;
2267                                 src_port = TCP(ulp)->th_sport;
2268                                 args->f_id.flags = TCP(ulp)->th_flags;
2269                                 break;
2270
2271                         case IPPROTO_SCTP:
2272                                 PULLUP_TO(hlen, ulp, struct sctphdr);
2273                                 src_port = SCTP(ulp)->src_port;
2274                                 dst_port = SCTP(ulp)->dest_port;
2275                                 break;
2276
2277                         case IPPROTO_UDP:
2278                                 PULLUP_TO(hlen, ulp, struct udphdr);
2279                                 dst_port = UDP(ulp)->uh_dport;
2280                                 src_port = UDP(ulp)->uh_sport;
2281                                 break;
2282
2283                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
2284                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2285                                 ext_hd |= EXT_HOPOPTS;
2286                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2287                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2288                                 ulp = NULL;
2289                                 break;
2290
2291                         case IPPROTO_ROUTING:   /* RFC 2460 */
2292                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2293                                 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2294                                 case 0:
2295                                         ext_hd |= EXT_RTHDR0;
2296                                         break;
2297                                 case 2:
2298                                         ext_hd |= EXT_RTHDR2;
2299                                         break;
2300                                 default:
2301                                         printf("IPFW2: IPV6 - Unknown Routing "
2302                                             "Header type(%d)\n",
2303                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
2304                                         if (V_fw_deny_unknown_exthdrs)
2305                                             return (IP_FW_DENY);
2306                                         break;
2307                                 }
2308                                 ext_hd |= EXT_ROUTING;
2309                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2310                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2311                                 ulp = NULL;
2312                                 break;
2313
2314                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
2315                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
2316                                 ext_hd |= EXT_FRAGMENT;
2317                                 hlen += sizeof (struct ip6_frag);
2318                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2319                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2320                                         IP6F_OFF_MASK;
2321                                 /* Add IP6F_MORE_FRAG for offset of first
2322                                  * fragment to be != 0. */
2323                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2324                                         IP6F_MORE_FRAG;
2325                                 if (offset == 0) {
2326                                         printf("IPFW2: IPV6 - Invalid Fragment "
2327                                             "Header\n");
2328                                         if (V_fw_deny_unknown_exthdrs)
2329                                             return (IP_FW_DENY);
2330                                         break;
2331                                 }
2332                                 args->f_id.frag_id6 =
2333                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2334                                 ulp = NULL;
2335                                 break;
2336
2337                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
2338                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2339                                 ext_hd |= EXT_DSTOPTS;
2340                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2341                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2342                                 ulp = NULL;
2343                                 break;
2344
2345                         case IPPROTO_AH:        /* RFC 2402 */
2346                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2347                                 ext_hd |= EXT_AH;
2348                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2349                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2350                                 ulp = NULL;
2351                                 break;
2352
2353                         case IPPROTO_ESP:       /* RFC 2406 */
2354                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
2355                                 /* Anything past Seq# is variable length and
2356                                  * data past this ext. header is encrypted. */
2357                                 ext_hd |= EXT_ESP;
2358                                 break;
2359
2360                         case IPPROTO_NONE:      /* RFC 2460 */
2361                                 /*
2362                                  * Packet ends here, and IPv6 header has
2363                                  * already been pulled up. If ip6e_len!=0
2364                                  * then octets must be ignored.
2365                                  */
2366                                 ulp = ip; /* non-NULL to get out of loop. */
2367                                 break;
2368
2369                         case IPPROTO_OSPFIGP:
2370                                 /* XXX OSPF header check? */
2371                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2372                                 break;
2373
2374                         case IPPROTO_PIM:
2375                                 /* XXX PIM header check? */
2376                                 PULLUP_TO(hlen, ulp, struct pim);
2377                                 break;
2378
2379                         case IPPROTO_CARP:
2380                                 PULLUP_TO(hlen, ulp, struct carp_header);
2381                                 if (((struct carp_header *)ulp)->carp_version !=
2382                                     CARP_VERSION) 
2383                                         return (IP_FW_DENY);
2384                                 if (((struct carp_header *)ulp)->carp_type !=
2385                                     CARP_ADVERTISEMENT) 
2386                                         return (IP_FW_DENY);
2387                                 break;
2388
2389                         case IPPROTO_IPV6:      /* RFC 2893 */
2390                                 PULLUP_TO(hlen, ulp, struct ip6_hdr);
2391                                 break;
2392
2393                         case IPPROTO_IPV4:      /* RFC 2893 */
2394                                 PULLUP_TO(hlen, ulp, struct ip);
2395                                 break;
2396
2397                         default:
2398                                 printf("IPFW2: IPV6 - Unknown Extension "
2399                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
2400                                 if (V_fw_deny_unknown_exthdrs)
2401                                     return (IP_FW_DENY);
2402                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2403                                 break;
2404                         } /*switch */
2405                 }
2406                 ip = mtod(m, struct ip *);
2407                 ip6 = (struct ip6_hdr *)ip;
2408                 args->f_id.src_ip6 = ip6->ip6_src;
2409                 args->f_id.dst_ip6 = ip6->ip6_dst;
2410                 args->f_id.src_ip = 0;
2411                 args->f_id.dst_ip = 0;
2412                 args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2413         } else if (pktlen >= sizeof(struct ip) &&
2414             (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2415                 is_ipv4 = 1;
2416                 hlen = ip->ip_hl << 2;
2417                 args->f_id.addr_type = 4;
2418
2419                 /*
2420                  * Collect parameters into local variables for faster matching.
2421                  */
2422                 proto = ip->ip_p;
2423                 src_ip = ip->ip_src;
2424                 dst_ip = ip->ip_dst;
2425                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2426                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
2427                         ip_len = ntohs(ip->ip_len);
2428                 } else {
2429                         offset = ip->ip_off & IP_OFFMASK;
2430                         ip_len = ip->ip_len;
2431                 }
2432                 pktlen = ip_len < pktlen ? ip_len : pktlen;
2433
2434                 if (offset == 0) {
2435                         switch (proto) {
2436                         case IPPROTO_TCP:
2437                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2438                                 dst_port = TCP(ulp)->th_dport;
2439                                 src_port = TCP(ulp)->th_sport;
2440                                 args->f_id.flags = TCP(ulp)->th_flags;
2441                                 break;
2442
2443                         case IPPROTO_UDP:
2444                                 PULLUP_TO(hlen, ulp, struct udphdr);
2445                                 dst_port = UDP(ulp)->uh_dport;
2446                                 src_port = UDP(ulp)->uh_sport;
2447                                 break;
2448
2449                         case IPPROTO_ICMP:
2450                                 PULLUP_TO(hlen, ulp, struct icmphdr);
2451                                 args->f_id.flags = ICMP(ulp)->icmp_type;
2452                                 break;
2453
2454                         default:
2455                                 break;
2456                         }
2457                 }
2458
2459                 ip = mtod(m, struct ip *);
2460                 args->f_id.src_ip = ntohl(src_ip.s_addr);
2461                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2462         }
2463 #undef PULLUP_TO
2464         if (proto) { /* we may have port numbers, store them */
2465                 args->f_id.proto = proto;
2466                 args->f_id.src_port = src_port = ntohs(src_port);
2467                 args->f_id.dst_port = dst_port = ntohs(dst_port);
2468         }
2469
2470         IPFW_RLOCK(chain);
2471         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2472         if (args->rule) {
2473                 /*
2474                  * Packet has already been tagged. Look for the next rule
2475                  * to restart processing.
2476                  *
2477                  * If fw_one_pass != 0 then just accept it.
2478                  * XXX should not happen here, but optimized out in
2479                  * the caller.
2480                  */
2481                 if (V_fw_one_pass) {
2482                         IPFW_RUNLOCK(chain);
2483                         return (IP_FW_PASS);
2484                 }
2485
2486                 f = args->rule->next_rule;
2487                 if (f == NULL)
2488                         f = lookup_next_rule(args->rule, 0);
2489         } else {
2490                 /*
2491                  * Find the starting rule. It can be either the first
2492                  * one, or the one after divert_rule if asked so.
2493                  */
2494                 int skipto = mtag ? divert_cookie(mtag) : 0;
2495
2496                 f = chain->rules;
2497                 if (args->eh == NULL && skipto != 0) {
2498                         if (skipto >= IPFW_DEFAULT_RULE) {
2499                                 IPFW_RUNLOCK(chain);
2500                                 return (IP_FW_DENY); /* invalid */
2501                         }
2502                         while (f && f->rulenum <= skipto)
2503                                 f = f->next;
2504                         if (f == NULL) {        /* drop packet */
2505                                 IPFW_RUNLOCK(chain);
2506                                 return (IP_FW_DENY);
2507                         }
2508                 }
2509         }
2510         /* reset divert rule to avoid confusion later */
2511         if (mtag) {
2512                 divinput_flags = divert_info(mtag) &
2513                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2514                 m_tag_delete(m, mtag);
2515         }
2516
2517         /*
2518          * Now scan the rules, and parse microinstructions for each rule.
2519          */
2520         for (; f; f = f->next) {
2521                 ipfw_insn *cmd;
2522                 uint32_t tablearg = 0;
2523                 int l, cmdlen, skip_or; /* skip rest of OR block */
2524
2525 again:
2526                 if (V_set_disable & (1 << f->set) )
2527                         continue;
2528
2529                 skip_or = 0;
2530                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2531                     l -= cmdlen, cmd += cmdlen) {
2532                         int match;
2533
2534                         /*
2535                          * check_body is a jump target used when we find a
2536                          * CHECK_STATE, and need to jump to the body of
2537                          * the target rule.
2538                          */
2539
2540 check_body:
2541                         cmdlen = F_LEN(cmd);
2542                         /*
2543                          * An OR block (insn_1 || .. || insn_n) has the
2544                          * F_OR bit set in all but the last instruction.
2545                          * The first match will set "skip_or", and cause
2546                          * the following instructions to be skipped until
2547                          * past the one with the F_OR bit clear.
2548                          */
2549                         if (skip_or) {          /* skip this instruction */
2550                                 if ((cmd->len & F_OR) == 0)
2551                                         skip_or = 0;    /* next one is good */
2552                                 continue;
2553                         }
2554                         match = 0; /* set to 1 if we succeed */
2555
2556                         switch (cmd->opcode) {
2557                         /*
2558                          * The first set of opcodes compares the packet's
2559                          * fields with some pattern, setting 'match' if a
2560                          * match is found. At the end of the loop there is
2561                          * logic to deal with F_NOT and F_OR flags associated
2562                          * with the opcode.
2563                          */
2564                         case O_NOP:
2565                                 match = 1;
2566                                 break;
2567
2568                         case O_FORWARD_MAC:
2569                                 printf("ipfw: opcode %d unimplemented\n",
2570                                     cmd->opcode);
2571                                 break;
2572
2573                         case O_GID:
2574                         case O_UID:
2575                         case O_JAIL:
2576                                 /*
2577                                  * We only check offset == 0 && proto != 0,
2578                                  * as this ensures that we have a
2579                                  * packet with the ports info.
2580                                  */
2581                                 if (offset!=0)
2582                                         break;
2583                                 if (is_ipv6) /* XXX to be fixed later */
2584                                         break;
2585                                 if (proto == IPPROTO_TCP ||
2586                                     proto == IPPROTO_UDP)
2587                                         match = check_uidgid(
2588                                                     (ipfw_insn_u32 *)cmd,
2589                                                     proto, oif,
2590                                                     dst_ip, dst_port,
2591                                                     src_ip, src_port, &fw_ugid_cache,
2592                                                     &ugid_lookup, args->inp);
2593                                 break;
2594
2595                         case O_RECV:
2596                                 match = iface_match(m->m_pkthdr.rcvif,
2597                                     (ipfw_insn_if *)cmd);
2598                                 break;
2599
2600                         case O_XMIT:
2601                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
2602                                 break;
2603
2604                         case O_VIA:
2605                                 match = iface_match(oif ? oif :
2606                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2607                                 break;
2608
2609                         case O_MACADDR2:
2610                                 if (args->eh != NULL) { /* have MAC header */
2611                                         u_int32_t *want = (u_int32_t *)
2612                                                 ((ipfw_insn_mac *)cmd)->addr;
2613                                         u_int32_t *mask = (u_int32_t *)
2614                                                 ((ipfw_insn_mac *)cmd)->mask;
2615                                         u_int32_t *hdr = (u_int32_t *)args->eh;
2616
2617                                         match =
2618                                             ( want[0] == (hdr[0] & mask[0]) &&
2619                                               want[1] == (hdr[1] & mask[1]) &&
2620                                               want[2] == (hdr[2] & mask[2]) );
2621                                 }
2622                                 break;
2623
2624                         case O_MAC_TYPE:
2625                                 if (args->eh != NULL) {
2626                                         u_int16_t *p =
2627                                             ((ipfw_insn_u16 *)cmd)->ports;
2628                                         int i;
2629
2630                                         for (i = cmdlen - 1; !match && i>0;
2631                                             i--, p += 2)
2632                                                 match = (etype >= p[0] &&
2633                                                     etype <= p[1]);
2634                                 }
2635                                 break;
2636
2637                         case O_FRAG:
2638                                 match = (offset != 0);
2639                                 break;
2640
2641                         case O_IN:      /* "out" is "not in" */
2642                                 match = (oif == NULL);
2643                                 break;
2644
2645                         case O_LAYER2:
2646                                 match = (args->eh != NULL);
2647                                 break;
2648
2649                         case O_DIVERTED:
2650                                 match = (cmd->arg1 & 1 && divinput_flags &
2651                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
2652                                         (cmd->arg1 & 2 && divinput_flags &
2653                                     IP_FW_DIVERT_OUTPUT_FLAG);
2654                                 break;
2655
2656                         case O_PROTO:
2657                                 /*
2658                                  * We do not allow an arg of 0 so the
2659                                  * check of "proto" only suffices.
2660                                  */
2661                                 match = (proto == cmd->arg1);
2662                                 break;
2663
2664                         case O_IP_SRC:
2665                                 match = is_ipv4 &&
2666                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2667                                     src_ip.s_addr);
2668                                 break;
2669
2670                         case O_IP_SRC_LOOKUP:
2671                         case O_IP_DST_LOOKUP:
2672                                 if (is_ipv4) {
2673                                     uint32_t a =
2674                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
2675                                             dst_ip.s_addr : src_ip.s_addr;
2676                                     uint32_t v;
2677
2678                                     match = lookup_table(chain, cmd->arg1, a,
2679                                         &v);
2680                                     if (!match)
2681                                         break;
2682                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2683                                         match =
2684                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
2685                                     else
2686                                         tablearg = v;
2687                                 }
2688                                 break;
2689
2690                         case O_IP_SRC_MASK:
2691                         case O_IP_DST_MASK:
2692                                 if (is_ipv4) {
2693                                     uint32_t a =
2694                                         (cmd->opcode == O_IP_DST_MASK) ?
2695                                             dst_ip.s_addr : src_ip.s_addr;
2696                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2697                                     int i = cmdlen-1;
2698
2699                                     for (; !match && i>0; i-= 2, p+= 2)
2700                                         match = (p[0] == (a & p[1]));
2701                                 }
2702                                 break;
2703
2704                         case O_IP_SRC_ME:
2705                                 if (is_ipv4) {
2706                                         struct ifnet *tif;
2707
2708                                         INADDR_TO_IFP(src_ip, tif);
2709                                         match = (tif != NULL);
2710                                 }
2711                                 break;
2712
2713                         case O_IP_DST_SET:
2714                         case O_IP_SRC_SET:
2715                                 if (is_ipv4) {
2716                                         u_int32_t *d = (u_int32_t *)(cmd+1);
2717                                         u_int32_t addr =
2718                                             cmd->opcode == O_IP_DST_SET ?
2719                                                 args->f_id.dst_ip :
2720                                                 args->f_id.src_ip;
2721
2722                                             if (addr < d[0])
2723                                                     break;
2724                                             addr -= d[0]; /* subtract base */
2725                                             match = (addr < cmd->arg1) &&
2726                                                 ( d[ 1 + (addr>>5)] &
2727                                                   (1<<(addr & 0x1f)) );
2728                                 }
2729                                 break;
2730
2731                         case O_IP_DST:
2732                                 match = is_ipv4 &&
2733                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2734                                     dst_ip.s_addr);
2735                                 break;
2736
2737                         case O_IP_DST_ME:
2738                                 if (is_ipv4) {
2739                                         struct ifnet *tif;
2740
2741                                         INADDR_TO_IFP(dst_ip, tif);
2742                                         match = (tif != NULL);
2743                                 }
2744                                 break;
2745
2746                         case O_IP_SRCPORT:
2747                         case O_IP_DSTPORT:
2748                                 /*
2749                                  * offset == 0 && proto != 0 is enough
2750                                  * to guarantee that we have a
2751                                  * packet with port info.
2752                                  */
2753                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2754                                     && offset == 0) {
2755                                         u_int16_t x =
2756                                             (cmd->opcode == O_IP_SRCPORT) ?
2757                                                 src_port : dst_port ;
2758                                         u_int16_t *p =
2759                                             ((ipfw_insn_u16 *)cmd)->ports;
2760                                         int i;
2761
2762                                         for (i = cmdlen - 1; !match && i>0;
2763                                             i--, p += 2)
2764                                                 match = (x>=p[0] && x<=p[1]);
2765                                 }
2766                                 break;
2767
2768                         case O_ICMPTYPE:
2769                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
2770                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2771                                 break;
2772
2773 #ifdef INET6
2774                         case O_ICMP6TYPE:
2775                                 match = is_ipv6 && offset == 0 &&
2776                                     proto==IPPROTO_ICMPV6 &&
2777                                     icmp6type_match(
2778                                         ICMP6(ulp)->icmp6_type,
2779                                         (ipfw_insn_u32 *)cmd);
2780                                 break;
2781 #endif /* INET6 */
2782
2783                         case O_IPOPT:
2784                                 match = (is_ipv4 &&
2785                                     ipopts_match(ip, cmd) );
2786                                 break;
2787
2788                         case O_IPVER:
2789                                 match = (is_ipv4 &&
2790                                     cmd->arg1 == ip->ip_v);
2791                                 break;
2792
2793                         case O_IPID:
2794                         case O_IPLEN:
2795                         case O_IPTTL:
2796                                 if (is_ipv4) {  /* only for IP packets */
2797                                     uint16_t x;
2798                                     uint16_t *p;
2799                                     int i;
2800
2801                                     if (cmd->opcode == O_IPLEN)
2802                                         x = ip_len;
2803                                     else if (cmd->opcode == O_IPTTL)
2804                                         x = ip->ip_ttl;
2805                                     else /* must be IPID */
2806                                         x = ntohs(ip->ip_id);
2807                                     if (cmdlen == 1) {
2808                                         match = (cmd->arg1 == x);
2809                                         break;
2810                                     }
2811                                     /* otherwise we have ranges */
2812                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2813                                     i = cmdlen - 1;
2814                                     for (; !match && i>0; i--, p += 2)
2815                                         match = (x >= p[0] && x <= p[1]);
2816                                 }
2817                                 break;
2818
2819                         case O_IPPRECEDENCE:
2820                                 match = (is_ipv4 &&
2821                                     (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2822                                 break;
2823
2824                         case O_IPTOS:
2825                                 match = (is_ipv4 &&
2826                                     flags_match(cmd, ip->ip_tos));
2827                                 break;
2828
2829                         case O_TCPDATALEN:
2830                                 if (proto == IPPROTO_TCP && offset == 0) {
2831                                     struct tcphdr *tcp;
2832                                     uint16_t x;
2833                                     uint16_t *p;
2834                                     int i;
2835
2836                                     tcp = TCP(ulp);
2837                                     x = ip_len -
2838                                         ((ip->ip_hl + tcp->th_off) << 2);
2839                                     if (cmdlen == 1) {
2840                                         match = (cmd->arg1 == x);
2841                                         break;
2842                                     }
2843                                     /* otherwise we have ranges */
2844                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2845                                     i = cmdlen - 1;
2846                                     for (; !match && i>0; i--, p += 2)
2847                                         match = (x >= p[0] && x <= p[1]);
2848                                 }
2849                                 break;
2850
2851                         case O_TCPFLAGS:
2852                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2853                                     flags_match(cmd, TCP(ulp)->th_flags));
2854                                 break;
2855
2856                         case O_TCPOPTS:
2857                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2858                                     tcpopts_match(TCP(ulp), cmd));
2859                                 break;
2860
2861                         case O_TCPSEQ:
2862                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2863                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2864                                         TCP(ulp)->th_seq);
2865                                 break;
2866
2867                         case O_TCPACK:
2868                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2869                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2870                                         TCP(ulp)->th_ack);
2871                                 break;
2872
2873                         case O_TCPWIN:
2874                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2875                                     cmd->arg1 == TCP(ulp)->th_win);
2876                                 break;
2877
2878                         case O_ESTAB:
2879                                 /* reject packets which have SYN only */
2880                                 /* XXX should i also check for TH_ACK ? */
2881                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2882                                     (TCP(ulp)->th_flags &
2883                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2884                                 break;
2885
2886                         case O_ALTQ: {
2887                                 struct pf_mtag *at;
2888                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2889
2890                                 match = 1;
2891                                 at = pf_find_mtag(m);
2892                                 if (at != NULL && at->qid != 0)
2893                                         break;
2894                                 at = pf_get_mtag(m);
2895                                 if (at == NULL) {
2896                                         /*
2897                                          * Let the packet fall back to the
2898                                          * default ALTQ.
2899                                          */
2900                                         break;
2901                                 }
2902                                 at->qid = altq->qid;
2903                                 if (is_ipv4)
2904                                         at->af = AF_INET;
2905                                 else
2906                                         at->af = AF_LINK;
2907                                 at->hdr = ip;
2908                                 break;
2909                         }
2910
2911                         case O_LOG:
2912                                 if (V_fw_verbose)
2913                                         ipfw_log(f, hlen, args, m,
2914                                             oif, offset, tablearg, ip);
2915                                 match = 1;
2916                                 break;
2917
2918                         case O_PROB:
2919                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2920                                 break;
2921
2922                         case O_VERREVPATH:
2923                                 /* Outgoing packets automatically pass/match */
2924                                 match = ((oif != NULL) ||
2925                                     (m->m_pkthdr.rcvif == NULL) ||
2926                                     (
2927 #ifdef INET6
2928                                     is_ipv6 ?
2929                                         verify_path6(&(args->f_id.src_ip6),
2930                                             m->m_pkthdr.rcvif) :
2931 #endif
2932                                     verify_path(src_ip, m->m_pkthdr.rcvif,
2933                                         args->f_id.fib)));
2934                                 break;
2935
2936                         case O_VERSRCREACH:
2937                                 /* Outgoing packets automatically pass/match */
2938                                 match = (hlen > 0 && ((oif != NULL) ||
2939 #ifdef INET6
2940                                     is_ipv6 ?
2941                                         verify_path6(&(args->f_id.src_ip6),
2942                                             NULL) :
2943 #endif
2944                                     verify_path(src_ip, NULL, args->f_id.fib)));
2945                                 break;
2946
2947                         case O_ANTISPOOF:
2948                                 /* Outgoing packets automatically pass/match */
2949                                 if (oif == NULL && hlen > 0 &&
2950                                     (  (is_ipv4 && in_localaddr(src_ip))
2951 #ifdef INET6
2952                                     || (is_ipv6 &&
2953                                         in6_localaddr(&(args->f_id.src_ip6)))
2954 #endif
2955                                     ))
2956                                         match =
2957 #ifdef INET6
2958                                             is_ipv6 ? verify_path6(
2959                                                 &(args->f_id.src_ip6),
2960                                                 m->m_pkthdr.rcvif) :
2961 #endif
2962                                             verify_path(src_ip,
2963                                                 m->m_pkthdr.rcvif,
2964                                                 args->f_id.fib);
2965                                 else
2966                                         match = 1;
2967                                 break;
2968
2969                         case O_IPSEC:
2970 #ifdef IPSEC
2971                                 match = (m_tag_find(m,
2972                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2973 #endif
2974                                 /* otherwise no match */
2975                                 break;
2976
2977 #ifdef INET6
2978                         case O_IP6_SRC:
2979                                 match = is_ipv6 &&
2980                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2981                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2982                                 break;
2983
2984                         case O_IP6_DST:
2985                                 match = is_ipv6 &&
2986                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2987                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2988                                 break;
2989                         case O_IP6_SRC_MASK:
2990                         case O_IP6_DST_MASK:
2991                                 if (is_ipv6) {
2992                                         int i = cmdlen - 1;
2993                                         struct in6_addr p;
2994                                         struct in6_addr *d =
2995                                             &((ipfw_insn_ip6 *)cmd)->addr6;
2996
2997                                         for (; !match && i > 0; d += 2,
2998                                             i -= F_INSN_SIZE(struct in6_addr)
2999                                             * 2) {
3000                                                 p = (cmd->opcode ==
3001                                                     O_IP6_SRC_MASK) ?
3002                                                     args->f_id.src_ip6:
3003                                                     args->f_id.dst_ip6;
3004                                                 APPLY_MASK(&p, &d[1]);
3005                                                 match =
3006                                                     IN6_ARE_ADDR_EQUAL(&d[0],
3007                                                     &p);
3008                                         }
3009                                 }
3010                                 break;
3011
3012                         case O_IP6_SRC_ME:
3013                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3014                                 break;
3015
3016                         case O_IP6_DST_ME:
3017                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3018                                 break;
3019
3020                         case O_FLOW6ID:
3021                                 match = is_ipv6 &&
3022                                     flow6id_match(args->f_id.flow_id6,
3023                                     (ipfw_insn_u32 *) cmd);
3024                                 break;
3025
3026                         case O_EXT_HDR:
3027                                 match = is_ipv6 &&
3028                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
3029                                 break;
3030
3031                         case O_IP6:
3032                                 match = is_ipv6;
3033                                 break;
3034 #endif
3035
3036                         case O_IP4:
3037                                 match = is_ipv4;
3038                                 break;
3039
3040                         case O_TAG: {
3041                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3042                                     tablearg : cmd->arg1;
3043
3044                                 /* Packet is already tagged with this tag? */
3045                                 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3046
3047                                 /* We have `untag' action when F_NOT flag is
3048                                  * present. And we must remove this mtag from
3049                                  * mbuf and reset `match' to zero (`match' will
3050                                  * be inversed later).
3051                                  * Otherwise we should allocate new mtag and
3052                                  * push it into mbuf.
3053                                  */
3054                                 if (cmd->len & F_NOT) { /* `untag' action */
3055                                         if (mtag != NULL)
3056                                                 m_tag_delete(m, mtag);
3057                                 } else if (mtag == NULL) {
3058                                         if ((mtag = m_tag_alloc(MTAG_IPFW,
3059                                             tag, 0, M_NOWAIT)) != NULL)
3060                                                 m_tag_prepend(m, mtag);
3061                                 }
3062                                 match = (cmd->len & F_NOT) ? 0: 1;
3063                                 break;
3064                         }
3065
3066                         case O_FIB: /* try match the specified fib */
3067                                 if (args->f_id.fib == cmd->arg1)
3068                                         match = 1;
3069                                 break;
3070
3071                         case O_TAGGED: {
3072                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3073                                     tablearg : cmd->arg1;
3074
3075                                 if (cmdlen == 1) {
3076                                         match = m_tag_locate(m, MTAG_IPFW,
3077                                             tag, NULL) != NULL;
3078                                         break;
3079                                 }
3080
3081                                 /* we have ranges */
3082                                 for (mtag = m_tag_first(m);
3083                                     mtag != NULL && !match;
3084                                     mtag = m_tag_next(m, mtag)) {
3085                                         uint16_t *p;
3086                                         int i;
3087
3088                                         if (mtag->m_tag_cookie != MTAG_IPFW)
3089                                                 continue;
3090
3091                                         p = ((ipfw_insn_u16 *)cmd)->ports;
3092                                         i = cmdlen - 1;
3093                                         for(; !match && i > 0; i--, p += 2)
3094                                                 match =
3095                                                     mtag->m_tag_id >= p[0] &&
3096                                                     mtag->m_tag_id <= p[1];
3097                                 }
3098                                 break;
3099                         }
3100                                 
3101                         /*
3102                          * The second set of opcodes represents 'actions',
3103                          * i.e. the terminal part of a rule once the packet
3104                          * matches all previous patterns.
3105                          * Typically there is only one action for each rule,
3106                          * and the opcode is stored at the end of the rule
3107                          * (but there are exceptions -- see below).
3108                          *
3109                          * In general, here we set retval and terminate the
3110                          * outer loop (would be a 'break 3' in some language,
3111                          * but we need to do a 'goto done').
3112                          *
3113                          * Exceptions:
3114                          * O_COUNT and O_SKIPTO actions:
3115                          *   instead of terminating, we jump to the next rule
3116                          *   ('goto next_rule', equivalent to a 'break 2'),
3117                          *   or to the SKIPTO target ('goto again' after
3118                          *   having set f, cmd and l), respectively.
3119                          *
3120                          * O_TAG, O_LOG and O_ALTQ action parameters:
3121                          *   perform some action and set match = 1;
3122                          *
3123                          * O_LIMIT and O_KEEP_STATE: these opcodes are
3124                          *   not real 'actions', and are stored right
3125                          *   before the 'action' part of the rule.
3126                          *   These opcodes try to install an entry in the
3127                          *   state tables; if successful, we continue with
3128                          *   the next opcode (match=1; break;), otherwise
3129                          *   the packet *   must be dropped
3130                          *   ('goto done' after setting retval);
3131                          *
3132                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3133                          *   cause a lookup of the state table, and a jump
3134                          *   to the 'action' part of the parent rule
3135                          *   ('goto check_body') if an entry is found, or
3136                          *   (CHECK_STATE only) a jump to the next rule if
3137                          *   the entry is not found ('goto next_rule').
3138                          *   The result of the lookup is cached to make
3139                          *   further instances of these opcodes are
3140                          *   effectively NOPs.
3141                          */
3142                         case O_LIMIT:
3143                         case O_KEEP_STATE:
3144                                 if (install_state(f,
3145                                     (ipfw_insn_limit *)cmd, args, tablearg)) {
3146                                         retval = IP_FW_DENY;
3147                                         goto done; /* error/limit violation */
3148                                 }
3149                                 match = 1;
3150                                 break;
3151
3152                         case O_PROBE_STATE:
3153                         case O_CHECK_STATE:
3154                                 /*
3155                                  * dynamic rules are checked at the first
3156                                  * keep-state or check-state occurrence,
3157                                  * with the result being stored in dyn_dir.
3158                                  * The compiler introduces a PROBE_STATE
3159                                  * instruction for us when we have a
3160                                  * KEEP_STATE (because PROBE_STATE needs
3161                                  * to be run first).
3162                                  */
3163                                 if (dyn_dir == MATCH_UNKNOWN &&
3164                                     (q = lookup_dyn_rule(&args->f_id,
3165                                      &dyn_dir, proto == IPPROTO_TCP ?
3166                                         TCP(ulp) : NULL))
3167                                         != NULL) {
3168                                         /*
3169                                          * Found dynamic entry, update stats
3170                                          * and jump to the 'action' part of
3171                                          * the parent rule.
3172                                          */
3173                                         q->pcnt++;
3174                                         q->bcnt += pktlen;
3175                                         f = q->rule;
3176                                         cmd = ACTION_PTR(f);
3177                                         l = f->cmd_len - f->act_ofs;
3178                                         IPFW_DYN_UNLOCK();
3179                                         goto check_body;
3180                                 }
3181                                 /*
3182                                  * Dynamic entry not found. If CHECK_STATE,
3183                                  * skip to next rule, if PROBE_STATE just
3184                                  * ignore and continue with next opcode.
3185                                  */
3186                                 if (cmd->opcode == O_CHECK_STATE)
3187                                         goto next_rule;
3188                                 match = 1;
3189                                 break;
3190
3191                         case O_ACCEPT:
3192                                 retval = 0;     /* accept */
3193                                 goto done;
3194
3195                         case O_PIPE:
3196                         case O_QUEUE:
3197                                 args->rule = f; /* report matching rule */
3198                                 if (cmd->arg1 == IP_FW_TABLEARG)
3199                                         args->cookie = tablearg;
3200                                 else
3201                                         args->cookie = cmd->arg1;
3202                                 retval = IP_FW_DUMMYNET;
3203                                 goto done;
3204
3205                         case O_DIVERT:
3206                         case O_TEE: {
3207                                 struct divert_tag *dt;
3208
3209                                 if (args->eh) /* not on layer 2 */
3210                                         break;
3211                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
3212                                                 sizeof(struct divert_tag),
3213                                                 M_NOWAIT);
3214                                 if (mtag == NULL) {
3215                                         /* XXX statistic */
3216                                         /* drop packet */
3217                                         IPFW_RUNLOCK(chain);
3218                                         return (IP_FW_DENY);
3219                                 }
3220                                 dt = (struct divert_tag *)(mtag+1);
3221                                 dt->cookie = f->rulenum;
3222                                 if (cmd->arg1 == IP_FW_TABLEARG)
3223                                         dt->info = tablearg;
3224                                 else
3225                                         dt->info = cmd->arg1;
3226                                 m_tag_prepend(m, mtag);
3227                                 retval = (cmd->opcode == O_DIVERT) ?
3228                                     IP_FW_DIVERT : IP_FW_TEE;
3229                                 goto done;
3230                         }
3231                         case O_COUNT:
3232                         case O_SKIPTO:
3233                                 f->pcnt++;      /* update stats */
3234                                 f->bcnt += pktlen;
3235                                 f->timestamp = time_uptime;
3236                                 if (cmd->opcode == O_COUNT)
3237                                         goto next_rule;
3238                                 /* handle skipto */
3239                                 if (cmd->arg1 == IP_FW_TABLEARG) {
3240                                         f = lookup_next_rule(f, tablearg);
3241                                 } else {
3242                                         if (f->next_rule == NULL)
3243                                                 lookup_next_rule(f, 0);
3244                                         f = f->next_rule;
3245                                 }
3246                                 goto again;
3247
3248                         case O_REJECT:
3249                                 /*
3250                                  * Drop the packet and send a reject notice
3251                                  * if the packet is not ICMP (or is an ICMP
3252                                  * query), and it is not multicast/broadcast.
3253                                  */
3254                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
3255                                     (proto != IPPROTO_ICMP ||
3256                                      is_icmp_query(ICMP(ulp))) &&
3257                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3258                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3259                                         send_reject(args, cmd->arg1, ip_len, ip);
3260                                         m = args->m;
3261                                 }
3262                                 /* FALLTHROUGH */
3263 #ifdef INET6
3264                         case O_UNREACH6:
3265                                 if (hlen > 0 && is_ipv6 &&
3266                                     ((offset & IP6F_OFF_MASK) == 0) &&
3267                                     (proto != IPPROTO_ICMPV6 ||
3268                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
3269                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3270                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3271                                         send_reject6(
3272                                             args, cmd->arg1, hlen,
3273                                             (struct ip6_hdr *)ip);
3274                                         m = args->m;
3275                                 }
3276                                 /* FALLTHROUGH */
3277 #endif
3278                         case O_DENY:
3279                                 retval = IP_FW_DENY;
3280                                 goto done;
3281
3282                         case O_FORWARD_IP: {
3283                                 struct sockaddr_in *sa;
3284                                 sa = &(((ipfw_insn_sa *)cmd)->sa);
3285                                 if (args->eh)   /* not valid on layer2 pkts */
3286                                         break;
3287                                 if (!q || dyn_dir == MATCH_FORWARD) {
3288                                         if (sa->sin_addr.s_addr == INADDR_ANY) {
3289                                                 bcopy(sa, &args->hopstore,
3290                                                         sizeof(*sa));
3291                                                 args->hopstore.sin_addr.s_addr =
3292                                                     htonl(tablearg);
3293                                                 args->next_hop =
3294                                                     &args->hopstore;
3295                                         } else {
3296                                                 args->next_hop = sa;
3297                                         }
3298                                 }
3299                                 retval = IP_FW_PASS;
3300                             }
3301                             goto done;
3302
3303                         case O_NETGRAPH:
3304                         case O_NGTEE:
3305                                 args->rule = f; /* report matching rule */
3306                                 if (cmd->arg1 == IP_FW_TABLEARG)
3307                                         args->cookie = tablearg;
3308                                 else
3309                                         args->cookie = cmd->arg1;
3310                                 retval = (cmd->opcode == O_NETGRAPH) ?
3311                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
3312                                 goto done;
3313
3314                         case O_SETFIB:
3315                                 f->pcnt++;      /* update stats */
3316                                 f->bcnt += pktlen;
3317                                 f->timestamp = time_uptime;
3318                                 M_SETFIB(m, cmd->arg1);
3319                                 args->f_id.fib = cmd->arg1;
3320                                 goto next_rule;
3321
3322                         case O_NAT: {
3323                                 struct cfg_nat *t;
3324                                 int nat_id;
3325
3326                                 if (IPFW_NAT_LOADED) {
3327                                         args->rule = f; /* Report matching rule. */
3328                                         t = ((ipfw_insn_nat *)cmd)->nat;
3329                                         if (t == NULL) {
3330                                                 nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
3331                                                     tablearg : cmd->arg1;
3332                                                 LOOKUP_NAT(V_layer3_chain, nat_id, t);
3333                                                 if (t == NULL) {
3334                                                         retval = IP_FW_DENY;
3335                                                         goto done;
3336                                                 }
3337                                                 if (cmd->arg1 != IP_FW_TABLEARG)
3338                                                         ((ipfw_insn_nat *)cmd)->nat = t;
3339                                         }
3340                                         retval = ipfw_nat_ptr(args, t, m);
3341                                 } else
3342                                         retval = IP_FW_DENY;
3343                                 goto done;
3344                         }
3345
3346                         default:
3347                                 panic("-- unknown opcode %d\n", cmd->opcode);
3348                         } /* end of switch() on opcodes */
3349
3350                         if (cmd->len & F_NOT)
3351                                 match = !match;
3352
3353                         if (match) {
3354                                 if (cmd->len & F_OR)
3355                                         skip_or = 1;
3356                         } else {
3357                                 if (!(cmd->len & F_OR)) /* not an OR block, */
3358                                         break;          /* try next rule    */
3359                         }
3360
3361                 }       /* end of inner for, scan opcodes */
3362
3363 next_rule:;             /* try next rule                */
3364
3365         }               /* end of outer for, scan rules */
3366         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3367         IPFW_RUNLOCK(chain);
3368         return (IP_FW_DENY);
3369
3370 done:
3371         /* Update statistics */
3372         f->pcnt++;
3373         f->bcnt += pktlen;
3374         f->timestamp = time_uptime;
3375         IPFW_RUNLOCK(chain);
3376         return (retval);
3377
3378 pullup_failed:
3379         if (V_fw_verbose)
3380                 printf("ipfw: pullup failed\n");
3381         return (IP_FW_DENY);
3382 }
3383
3384 /*
3385  * When a rule is added/deleted, clear the next_rule pointers in all rules.
3386  * These will be reconstructed on the fly as packets are matched.
3387  */
3388 static void
3389 flush_rule_ptrs(struct ip_fw_chain *chain)
3390 {
3391         struct ip_fw *rule;
3392
3393         IPFW_WLOCK_ASSERT(chain);
3394
3395         for (rule = chain->rules; rule; rule = rule->next)
3396                 rule->next_rule = NULL;
3397 }
3398
3399 /*
3400  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3401  * possibly create a rule number and add the rule to the list.
3402  * Update the rule_number in the input struct so the caller knows it as well.
3403  */
3404 static int
3405 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3406 {
3407         struct ip_fw *rule, *f, *prev;
3408         int l = RULESIZE(input_rule);
3409
3410         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3411                 return (EINVAL);
3412
3413         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3414         if (rule == NULL)
3415                 return (ENOSPC);
3416
3417         bcopy(input_rule, rule, l);
3418
3419         rule->next = NULL;
3420         rule->next_rule = NULL;
3421
3422         rule->pcnt = 0;
3423         rule->bcnt = 0;
3424         rule->timestamp = 0;
3425
3426         IPFW_WLOCK(chain);
3427
3428         if (chain->rules == NULL) {     /* default rule */
3429                 chain->rules = rule;
3430                 goto done;
3431         }
3432
3433         /*
3434          * If rulenum is 0, find highest numbered rule before the
3435          * default rule, and add autoinc_step
3436          */
3437         if (V_autoinc_step < 1)
3438                 V_autoinc_step = 1;
3439         else if (V_autoinc_step > 1000)
3440                 V_autoinc_step = 1000;
3441         if (rule->rulenum == 0) {
3442                 /*
3443                  * locate the highest numbered rule before default
3444                  */
3445                 for (f = chain->rules; f; f = f->next) {
3446                         if (f->rulenum == IPFW_DEFAULT_RULE)
3447                                 break;
3448                         rule->rulenum = f->rulenum;
3449                 }
3450                 if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
3451                         rule->rulenum += V_autoinc_step;
3452                 input_rule->rulenum = rule->rulenum;
3453         }
3454
3455         /*
3456          * Now insert the new rule in the right place in the sorted list.
3457          */
3458         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3459                 if (f->rulenum > rule->rulenum) { /* found the location */
3460                         if (prev) {
3461                                 rule->next = f;
3462                                 prev->next = rule;
3463                         } else { /* head insert */
3464                                 rule->next = chain->rules;
3465                                 chain->rules = rule;
3466                         }
3467                         break;
3468                 }
3469         }
3470         flush_rule_ptrs(chain);
3471 done:
3472         V_static_count++;
3473         V_static_len += l;
3474         IPFW_WUNLOCK(chain);
3475         DEB(printf("ipfw: installed rule %d, static count now %d\n",
3476                 rule->rulenum, V_static_count);)
3477         return (0);
3478 }
3479
3480 /**
3481  * Remove a static rule (including derived * dynamic rules)
3482  * and place it on the ``reap list'' for later reclamation.
3483  * The caller is in charge of clearing rule pointers to avoid
3484  * dangling pointers.
3485  * @return a pointer to the next entry.
3486  * Arguments are not checked, so they better be correct.
3487  */
3488 static struct ip_fw *
3489 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3490     struct ip_fw *prev)
3491 {
3492         struct ip_fw *n;
3493         int l = RULESIZE(rule);
3494
3495         IPFW_WLOCK_ASSERT(chain);
3496
3497         n = rule->next;
3498         IPFW_DYN_LOCK();
3499         remove_dyn_rule(rule, NULL /* force removal */);
3500         IPFW_DYN_UNLOCK();
3501         if (prev == NULL)
3502                 chain->rules = n;
3503         else
3504                 prev->next = n;
3505         V_static_count--;
3506         V_static_len -= l;
3507
3508         rule->next = chain->reap;
3509         chain->reap = rule;
3510
3511         return n;
3512 }
3513
3514 /**
3515  * Reclaim storage associated with a list of rules.  This is
3516  * typically the list created using remove_rule.
3517  */
3518 static void
3519 reap_rules(struct ip_fw *head)
3520 {
3521         struct ip_fw *rule;
3522
3523         while ((rule = head) != NULL) {
3524                 head = head->next;
3525                 if (DUMMYNET_LOADED)
3526                         ip_dn_ruledel_ptr(rule);
3527                 free(rule, M_IPFW);
3528         }
3529 }
3530
3531 /*
3532  * Remove all rules from a chain (except rules in set RESVD_SET
3533  * unless kill_default = 1).  The caller is responsible for
3534  * reclaiming storage for the rules left in chain->reap.
3535  */
3536 static void
3537 free_chain(struct ip_fw_chain *chain, int kill_default)
3538 {
3539         struct ip_fw *prev, *rule;
3540
3541         IPFW_WLOCK_ASSERT(chain);
3542
3543         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3544         for (prev = NULL, rule = chain->rules; rule ; )
3545                 if (kill_default || rule->set != RESVD_SET)
3546                         rule = remove_rule(chain, rule, prev);
3547                 else {
3548                         prev = rule;
3549                         rule = rule->next;
3550                 }
3551 }
3552
3553 /**
3554  * Remove all rules with given number, and also do set manipulation.
3555  * Assumes chain != NULL && *chain != NULL.
3556  *
3557  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3558  * the next 8 bits are the new set, the top 8 bits are the command:
3559  *
3560  *      0       delete rules with given number
3561  *      1       delete rules with given set number
3562  *      2       move rules with given number to new set
3563  *      3       move rules with given set number to new set
3564  *      4       swap sets with given numbers
3565  *      5       delete rules with given number and with given set number
3566  */
3567 static int
3568 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3569 {
3570         struct ip_fw *prev = NULL, *rule;
3571         u_int16_t rulenum;      /* rule or old_set */
3572         u_int8_t cmd, new_set;
3573
3574         rulenum = arg & 0xffff;
3575         cmd = (arg >> 24) & 0xff;
3576         new_set = (arg >> 16) & 0xff;
3577
3578         if (cmd > 5 || new_set > RESVD_SET)
3579                 return EINVAL;
3580         if (cmd == 0 || cmd == 2 || cmd == 5) {
3581                 if (rulenum >= IPFW_DEFAULT_RULE)
3582                         return EINVAL;
3583         } else {
3584                 if (rulenum > RESVD_SET)        /* old_set */
3585                         return EINVAL;
3586         }
3587
3588         IPFW_WLOCK(chain);
3589         rule = chain->rules;
3590         chain->reap = NULL;
3591         switch (cmd) {
3592         case 0: /* delete rules with given number */
3593                 /*
3594                  * locate first rule to delete
3595                  */
3596                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3597                         ;
3598                 if (rule->rulenum != rulenum) {
3599                         IPFW_WUNLOCK(chain);
3600                         return EINVAL;
3601                 }
3602
3603                 /*
3604                  * flush pointers outside the loop, then delete all matching
3605                  * rules. prev remains the same throughout the cycle.
3606                  */
3607                 flush_rule_ptrs(chain);
3608                 while (rule->rulenum == rulenum)
3609                         rule = remove_rule(chain, rule, prev);
3610                 break;
3611
3612         case 1: /* delete all rules with given set number */
3613                 flush_rule_ptrs(chain);
3614                 rule = chain->rules;
3615                 while (rule->rulenum < IPFW_DEFAULT_RULE)
3616                         if (rule->set == rulenum)
3617                                 rule = remove_rule(chain, rule, prev);
3618                         else {
3619                                 prev = rule;
3620                                 rule = rule->next;
3621                         }
3622                 break;
3623
3624         case 2: /* move rules with given number to new set */
3625                 rule = chain->rules;
3626                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3627                         if (rule->rulenum == rulenum)
3628                                 rule->set = new_set;
3629                 break;
3630
3631         case 3: /* move rules with given set number to new set */
3632                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3633                         if (rule->set == rulenum)
3634                                 rule->set = new_set;
3635                 break;
3636
3637         case 4: /* swap two sets */
3638                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3639                         if (rule->set == rulenum)
3640                                 rule->set = new_set;
3641                         else if (rule->set == new_set)
3642                                 rule->set = rulenum;
3643                 break;
3644         case 5: /* delete rules with given number and with given set number.
3645                  * rulenum - given rule number;
3646                  * new_set - given set number.
3647                  */
3648                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3649                         ;
3650                 if (rule->rulenum != rulenum) {
3651                         IPFW_WUNLOCK(chain);
3652                         return (EINVAL);
3653                 }
3654                 flush_rule_ptrs(chain);
3655                 while (rule->rulenum == rulenum) {
3656                         if (rule->set == new_set)
3657                                 rule = remove_rule(chain, rule, prev);
3658                         else {
3659                                 prev = rule;
3660                                 rule = rule->next;
3661                         }
3662                 }
3663         }
3664         /*
3665          * Look for rules to reclaim.  We grab the list before
3666          * releasing the lock then reclaim them w/o the lock to
3667          * avoid a LOR with dummynet.
3668          */
3669         rule = chain->reap;
3670         chain->reap = NULL;
3671         IPFW_WUNLOCK(chain);
3672         if (rule)
3673                 reap_rules(rule);
3674         return 0;
3675 }
3676
3677 /*
3678  * Clear counters for a specific rule.
3679  * The enclosing "table" is assumed locked.
3680  */
3681 static void
3682 clear_counters(struct ip_fw *rule, int log_only)
3683 {
3684         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3685
3686         if (log_only == 0) {
3687                 rule->bcnt = rule->pcnt = 0;
3688                 rule->timestamp = 0;
3689         }
3690         if (l->o.opcode == O_LOG)
3691                 l->log_left = l->max_log;
3692 }
3693
3694 /**
3695  * Reset some or all counters on firewall rules.
3696  * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
3697  * the next 8 bits are the set number, the top 8 bits are the command:
3698  *      0       work with rules from all set's;
3699  *      1       work with rules only from specified set.
3700  * Specified rule number is zero if we want to clear all entries.
3701  * log_only is 1 if we only want to reset logs, zero otherwise.
3702  */
3703 static int
3704 zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
3705 {
3706         struct ip_fw *rule;
3707         char *msg;
3708
3709         uint16_t rulenum = arg & 0xffff;
3710         uint8_t set = (arg >> 16) & 0xff;
3711         uint8_t cmd = (arg >> 24) & 0xff;
3712
3713         if (cmd > 1)
3714                 return (EINVAL);
3715         if (cmd == 1 && set > RESVD_SET)
3716                 return (EINVAL);
3717
3718         IPFW_WLOCK(chain);
3719         if (rulenum == 0) {
3720                 V_norule_counter = 0;
3721                 for (rule = chain->rules; rule; rule = rule->next) {
3722                         /* Skip rules from another set. */
3723                         if (cmd == 1 && rule->set != set)
3724                                 continue;
3725                         clear_counters(rule, log_only);
3726                 }
3727                 msg = log_only ? "ipfw: All logging counts reset.\n" :
3728                     "ipfw: Accounting cleared.\n";
3729         } else {
3730                 int cleared = 0;
3731                 /*
3732                  * We can have multiple rules with the same number, so we
3733                  * need to clear them all.
3734                  */
3735                 for (rule = chain->rules; rule; rule = rule->next)
3736                         if (rule->rulenum == rulenum) {
3737                                 while (rule && rule->rulenum == rulenum) {
3738                                         if (cmd == 0 || rule->set == set)
3739                                                 clear_counters(rule, log_only);
3740                                         rule = rule->next;
3741                                 }
3742                                 cleared = 1;
3743                                 break;
3744                         }
3745                 if (!cleared) { /* we did not find any matching rules */
3746                         IPFW_WUNLOCK(chain);
3747                         return (EINVAL);
3748                 }
3749                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3750                     "ipfw: Entry %d cleared.\n";
3751         }
3752         IPFW_WUNLOCK(chain);
3753
3754         if (V_fw_verbose)
3755                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3756         return (0);
3757 }
3758
3759 /*
3760  * Check validity of the structure before insert.
3761  * Fortunately rules are simple, so this mostly need to check rule sizes.
3762  */
3763 static int
3764 check_ipfw_struct(struct ip_fw *rule, int size)
3765 {
3766         int l, cmdlen = 0;
3767         int have_action=0;
3768         ipfw_insn *cmd;
3769
3770         if (size < sizeof(*rule)) {
3771                 printf("ipfw: rule too short\n");
3772                 return (EINVAL);
3773         }
3774         /* first, check for valid size */
3775         l = RULESIZE(rule);
3776         if (l != size) {
3777                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3778                 return (EINVAL);
3779         }
3780         if (rule->act_ofs >= rule->cmd_len) {
3781                 printf("ipfw: bogus action offset (%u > %u)\n",
3782                     rule->act_ofs, rule->cmd_len - 1);
3783                 return (EINVAL);
3784         }
3785         /*
3786          * Now go for the individual checks. Very simple ones, basically only
3787          * instruction sizes.
3788          */
3789         for (l = rule->cmd_len, cmd = rule->cmd ;
3790                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
3791                 cmdlen = F_LEN(cmd);
3792                 if (cmdlen > l) {
3793                         printf("ipfw: opcode %d size truncated\n",
3794                             cmd->opcode);
3795                         return EINVAL;
3796                 }
3797                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3798                 switch (cmd->opcode) {
3799                 case O_PROBE_STATE:
3800                 case O_KEEP_STATE:
3801                 case O_PROTO:
3802                 case O_IP_SRC_ME:
3803                 case O_IP_DST_ME:
3804                 case O_LAYER2:
3805                 case O_IN:
3806                 case O_FRAG:
3807                 case O_DIVERTED:
3808                 case O_IPOPT:
3809                 case O_IPTOS:
3810                 case O_IPPRECEDENCE:
3811                 case O_IPVER:
3812                 case O_TCPWIN:
3813                 case O_TCPFLAGS:
3814                 case O_TCPOPTS:
3815                 case O_ESTAB:
3816                 case O_VERREVPATH:
3817                 case O_VERSRCREACH:
3818                 case O_ANTISPOOF:
3819                 case O_IPSEC:
3820 #ifdef INET6
3821                 case O_IP6_SRC_ME:
3822                 case O_IP6_DST_ME:
3823                 case O_EXT_HDR:
3824                 case O_IP6:
3825 #endif
3826                 case O_IP4:
3827                 case O_TAG:
3828                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3829                                 goto bad_size;
3830                         break;
3831
3832                 case O_FIB:
3833                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3834                                 goto bad_size;
3835                         if (cmd->arg1 >= rt_numfibs) {
3836                                 printf("ipfw: invalid fib number %d\n",
3837                                         cmd->arg1);
3838                                 return EINVAL;
3839                         }
3840                         break;
3841
3842                 case O_SETFIB:
3843                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3844                                 goto bad_size;
3845                         if (cmd->arg1 >= rt_numfibs) {
3846                                 printf("ipfw: invalid fib number %d\n",
3847                                         cmd->arg1);
3848                                 return EINVAL;
3849                         }
3850                         goto check_action;
3851
3852                 case O_UID:
3853                 case O_GID:
3854                 case O_JAIL:
3855                 case O_IP_SRC:
3856                 case O_IP_DST:
3857                 case O_TCPSEQ:
3858                 case O_TCPACK:
3859                 case O_PROB:
3860                 case O_ICMPTYPE:
3861                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3862                                 goto bad_size;
3863                         break;
3864
3865                 case O_LIMIT:
3866                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3867                                 goto bad_size;
3868                         break;
3869
3870                 case O_LOG:
3871                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3872                                 goto bad_size;
3873
3874                         ((ipfw_insn_log *)cmd)->log_left =
3875                             ((ipfw_insn_log *)cmd)->max_log;
3876
3877                         break;
3878
3879                 case O_IP_SRC_MASK:
3880                 case O_IP_DST_MASK:
3881                         /* only odd command lengths */
3882                         if ( !(cmdlen & 1) || cmdlen > 31)
3883                                 goto bad_size;
3884                         break;
3885
3886                 case O_IP_SRC_SET:
3887                 case O_IP_DST_SET:
3888                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3889                                 printf("ipfw: invalid set size %d\n",
3890                                         cmd->arg1);
3891                                 return EINVAL;
3892                         }
3893                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3894                             (cmd->arg1+31)/32 )
3895                                 goto bad_size;
3896                         break;
3897
3898                 case O_IP_SRC_LOOKUP:
3899                 case O_IP_DST_LOOKUP:
3900                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
3901                                 printf("ipfw: invalid table number %d\n",
3902                                     cmd->arg1);
3903                                 return (EINVAL);
3904                         }
3905                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3906                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3907                                 goto bad_size;
3908                         break;
3909
3910                 case O_MACADDR2:
3911                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3912                                 goto bad_size;
3913                         break;
3914
3915                 case O_NOP:
3916                 case O_IPID:
3917                 case O_IPTTL:
3918                 case O_IPLEN:
3919                 case O_TCPDATALEN:
3920                 case O_TAGGED:
3921                         if (cmdlen < 1 || cmdlen > 31)
3922                                 goto bad_size;
3923                         break;
3924
3925                 case O_MAC_TYPE:
3926                 case O_IP_SRCPORT:
3927                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3928                         if (cmdlen < 2 || cmdlen > 31)
3929                                 goto bad_size;
3930                         break;
3931
3932                 case O_RECV:
3933                 case O_XMIT:
3934                 case O_VIA:
3935                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3936                                 goto bad_size;
3937                         break;
3938
3939                 case O_ALTQ:
3940                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3941                                 goto bad_size;
3942                         break;
3943
3944                 case O_PIPE:
3945                 case O_QUEUE:
3946                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3947                                 goto bad_size;
3948                         goto check_action;
3949
3950                 case O_FORWARD_IP:
3951 #ifdef  IPFIREWALL_FORWARD
3952                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3953                                 goto bad_size;
3954                         goto check_action;
3955 #else
3956                         return EINVAL;
3957 #endif
3958
3959                 case O_DIVERT:
3960                 case O_TEE:
3961                         if (ip_divert_ptr == NULL)
3962                                 return EINVAL;
3963                         else
3964                                 goto check_size;
3965                 case O_NETGRAPH:
3966                 case O_NGTEE:
3967                         if (!NG_IPFW_LOADED)
3968                                 return EINVAL;
3969                         else
3970                                 goto check_size;
3971                 case O_NAT:
3972                         if (!IPFW_NAT_LOADED)
3973                                 return EINVAL;
3974                         if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
3975                                 goto bad_size;          
3976                         goto check_action;
3977                 case O_FORWARD_MAC: /* XXX not implemented yet */
3978                 case O_CHECK_STATE:
3979                 case O_COUNT:
3980                 case O_ACCEPT:
3981                 case O_DENY:
3982                 case O_REJECT:
3983 #ifdef INET6
3984                 case O_UNREACH6:
3985 #endif
3986                 case O_SKIPTO:
3987 check_size:
3988                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3989                                 goto bad_size;
3990 check_action:
3991                         if (have_action) {
3992                                 printf("ipfw: opcode %d, multiple actions"
3993                                         " not allowed\n",
3994                                         cmd->opcode);
3995                                 return EINVAL;
3996                         }
3997                         have_action = 1;
3998                         if (l != cmdlen) {
3999                                 printf("ipfw: opcode %d, action must be"
4000                                         " last opcode\n",
4001                                         cmd->opcode);
4002                                 return EINVAL;
4003                         }
4004                         break;
4005 #ifdef INET6
4006                 case O_IP6_SRC:
4007                 case O_IP6_DST:
4008                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4009                             F_INSN_SIZE(ipfw_insn))
4010                                 goto bad_size;
4011                         break;
4012
4013                 case O_FLOW6ID:
4014                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4015                             ((ipfw_insn_u32 *)cmd)->o.arg1)
4016                                 goto bad_size;
4017                         break;
4018
4019                 case O_IP6_SRC_MASK:
4020                 case O_IP6_DST_MASK:
4021                         if ( !(cmdlen & 1) || cmdlen > 127)
4022                                 goto bad_size;
4023                         break;
4024                 case O_ICMP6TYPE:
4025                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4026                                 goto bad_size;
4027                         break;
4028 #endif
4029
4030                 default:
4031                         switch (cmd->opcode) {
4032 #ifndef INET6
4033                         case O_IP6_SRC_ME:
4034                         case O_IP6_DST_ME:
4035                         case O_EXT_HDR:
4036                         case O_IP6:
4037                         case O_UNREACH6:
4038                         case O_IP6_SRC:
4039                         case O_IP6_DST:
4040                         case O_FLOW6ID:
4041                         case O_IP6_SRC_MASK:
4042                         case O_IP6_DST_MASK:
4043                         case O_ICMP6TYPE:
4044                                 printf("ipfw: no IPv6 support in kernel\n");
4045                                 return EPROTONOSUPPORT;
4046 #endif
4047                         default:
4048                                 printf("ipfw: opcode %d, unknown opcode\n",
4049                                         cmd->opcode);
4050                                 return EINVAL;
4051                         }
4052                 }
4053         }
4054         if (have_action == 0) {
4055                 printf("ipfw: missing action\n");
4056                 return EINVAL;
4057         }
4058         return 0;
4059
4060 bad_size:
4061         printf("ipfw: opcode %d size %d wrong\n",
4062                 cmd->opcode, cmdlen);
4063         return EINVAL;
4064 }
4065
4066 /*
4067  * Copy the static and dynamic rules to the supplied buffer
4068  * and return the amount of space actually used.
4069  */
4070 static size_t
4071 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4072 {
4073         char *bp = buf;
4074         char *ep = bp + space;
4075         struct ip_fw *rule;
4076         int i;
4077         time_t  boot_seconds;
4078
4079         boot_seconds = boottime.tv_sec;
4080         /* XXX this can take a long time and locking will block packet flow */
4081         IPFW_RLOCK(chain);
4082         for (rule = chain->rules; rule ; rule = rule->next) {
4083                 /*
4084                  * Verify the entry fits in the buffer in case the
4085                  * rules changed between calculating buffer space and
4086                  * now.  This would be better done using a generation
4087                  * number but should suffice for now.
4088                  */
4089                 i = RULESIZE(rule);
4090                 if (bp + i <= ep) {
4091                         bcopy(rule, bp, i);
4092                         /*
4093                          * XXX HACK. Store the disable mask in the "next"
4094                          * pointer in a wild attempt to keep the ABI the same.
4095                          * Why do we do this on EVERY rule?
4096                          */
4097                         bcopy(&V_set_disable,
4098                             &(((struct ip_fw *)bp)->next_rule),
4099                             sizeof(V_set_disable));
4100                         if (((struct ip_fw *)bp)->timestamp)
4101                                 ((struct ip_fw *)bp)->timestamp += boot_seconds;
4102                         bp += i;
4103                 }
4104         }
4105         IPFW_RUNLOCK(chain);
4106         if (V_ipfw_dyn_v) {
4107                 ipfw_dyn_rule *p, *last = NULL;
4108
4109                 IPFW_DYN_LOCK();
4110                 for (i = 0 ; i < V_curr_dyn_buckets; i++)
4111                         for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4112                                 if (bp + sizeof *p <= ep) {
4113                                         ipfw_dyn_rule *dst =
4114                                                 (ipfw_dyn_rule *)bp;
4115                                         bcopy(p, dst, sizeof *p);
4116                                         bcopy(&(p->rule->rulenum), &(dst->rule),
4117                                             sizeof(p->rule->rulenum));
4118                                         /*
4119                                          * store set number into high word of
4120                                          * dst->rule pointer.
4121                                          */
4122                                         bcopy(&(p->rule->set),
4123                                             (char *)&dst->rule +
4124                                             sizeof(p->rule->rulenum),
4125                                             sizeof(p->rule->set));
4126                                         /*
4127                                          * store a non-null value in "next".
4128                                          * The userland code will interpret a
4129                                          * NULL here as a marker
4130                                          * for the last dynamic rule.
4131                                          */
4132                                         bcopy(&dst, &dst->next, sizeof(dst));
4133                                         last = dst;
4134                                         dst->expire =
4135                                             TIME_LEQ(dst->expire, time_uptime) ?
4136                                                 0 : dst->expire - time_uptime ;
4137                                         bp += sizeof(ipfw_dyn_rule);
4138                                 }
4139                         }
4140                 IPFW_DYN_UNLOCK();
4141                 if (last != NULL) /* mark last dynamic rule */
4142                         bzero(&last->next, sizeof(last));
4143         }
4144         return (bp - (char *)buf);
4145 }
4146
4147
4148 /**
4149  * {set|get}sockopt parser.
4150  */
4151 static int
4152 ipfw_ctl(struct sockopt *sopt)
4153 {
4154 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
4155         int error;
4156         size_t size;
4157         struct ip_fw *buf, *rule;
4158         u_int32_t rulenum[2];
4159
4160         error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4161         if (error)
4162                 return (error);
4163
4164         /*
4165          * Disallow modifications in really-really secure mode, but still allow
4166          * the logging counters to be reset.
4167          */
4168         if (sopt->sopt_name == IP_FW_ADD ||
4169             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4170                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4171                 if (error)
4172                         return (error);
4173         }
4174
4175         error = 0;
4176
4177         switch (sopt->sopt_name) {
4178         case IP_FW_GET:
4179                 /*
4180                  * pass up a copy of the current rules. Static rules
4181                  * come first (the last of which has number IPFW_DEFAULT_RULE),
4182                  * followed by a possibly empty list of dynamic rule.
4183                  * The last dynamic rule has NULL in the "next" field.
4184                  *
4185                  * Note that the calculated size is used to bound the
4186                  * amount of data returned to the user.  The rule set may
4187                  * change between calculating the size and returning the
4188                  * data in which case we'll just return what fits.
4189                  */
4190                 size = V_static_len;    /* size of static rules */
4191                 if (V_ipfw_dyn_v)               /* add size of dyn.rules */
4192                         size += (V_dyn_count * sizeof(ipfw_dyn_rule));
4193
4194                 /*
4195                  * XXX todo: if the user passes a short length just to know
4196                  * how much room is needed, do not bother filling up the
4197                  * buffer, just jump to the sooptcopyout.
4198                  */
4199                 buf = malloc(size, M_TEMP, M_WAITOK);
4200                 error = sooptcopyout(sopt, buf,
4201                                 ipfw_getrules(&V_layer3_chain, buf, size));
4202                 free(buf, M_TEMP);
4203                 break;
4204
4205         case IP_FW_FLUSH:
4206                 /*
4207                  * Normally we cannot release the lock on each iteration.
4208                  * We could do it here only because we start from the head all
4209                  * the times so there is no risk of missing some entries.
4210                  * On the other hand, the risk is that we end up with
4211                  * a very inconsistent ruleset, so better keep the lock
4212                  * around the whole cycle.
4213                  *
4214                  * XXX this code can be improved by resetting the head of
4215                  * the list to point to the default rule, and then freeing
4216                  * the old list without the need for a lock.
4217                  */
4218
4219                 IPFW_WLOCK(&V_layer3_chain);
4220                 V_layer3_chain.reap = NULL;
4221                 free_chain(&V_layer3_chain, 0 /* keep default rule */);
4222                 rule = V_layer3_chain.reap;
4223                 V_layer3_chain.reap = NULL;
4224                 IPFW_WUNLOCK(&V_layer3_chain);
4225                 if (rule != NULL)
4226                         reap_rules(rule);
4227                 break;
4228
4229         case IP_FW_ADD:
4230                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4231                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4232                         sizeof(struct ip_fw) );
4233                 if (error == 0)
4234                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
4235                 if (error == 0) {
4236                         error = add_rule(&V_layer3_chain, rule);
4237                         size = RULESIZE(rule);
4238                         if (!error && sopt->sopt_dir == SOPT_GET)
4239                                 error = sooptcopyout(sopt, rule, size);
4240                 }
4241                 free(rule, M_TEMP);
4242                 break;
4243
4244         case IP_FW_DEL:
4245                 /*
4246                  * IP_FW_DEL is used for deleting single rules or sets,
4247                  * and (ab)used to atomically manipulate sets. Argument size
4248                  * is used to distinguish between the two:
4249                  *    sizeof(u_int32_t)
4250                  *      delete single rule or set of rules,
4251                  *      or reassign rules (or sets) to a different set.
4252                  *    2*sizeof(u_int32_t)
4253                  *      atomic disable/enable sets.
4254                  *      first u_int32_t contains sets to be disabled,
4255                  *      second u_int32_t contains sets to be enabled.
4256                  */
4257                 error = sooptcopyin(sopt, rulenum,
4258                         2*sizeof(u_int32_t), sizeof(u_int32_t));
4259                 if (error)
4260                         break;
4261                 size = sopt->sopt_valsize;
4262                 if (size == sizeof(u_int32_t))  /* delete or reassign */
4263                         error = del_entry(&V_layer3_chain, rulenum[0]);
4264                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4265                         V_set_disable =
4266                             (V_set_disable | rulenum[0]) & ~rulenum[1] &
4267                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4268                 else
4269                         error = EINVAL;
4270                 break;
4271
4272         case IP_FW_ZERO:
4273         case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4274                 rulenum[0] = 0;
4275                 if (sopt->sopt_val != 0) {
4276                     error = sooptcopyin(sopt, rulenum,
4277                             sizeof(u_int32_t), sizeof(u_int32_t));
4278                     if (error)
4279                         break;
4280                 }
4281                 error = zero_entry(&V_layer3_chain, rulenum[0],
4282                         sopt->sopt_name == IP_FW_RESETLOG);
4283                 break;
4284
4285         case IP_FW_TABLE_ADD:
4286                 {
4287                         ipfw_table_entry ent;
4288
4289                         error = sooptcopyin(sopt, &ent,
4290                             sizeof(ent), sizeof(ent));
4291                         if (error)
4292                                 break;
4293                         error = add_table_entry(&V_layer3_chain, ent.tbl,
4294                             ent.addr, ent.masklen, ent.value);
4295                 }
4296                 break;
4297
4298         case IP_FW_TABLE_DEL:
4299                 {
4300                         ipfw_table_entry ent;
4301
4302                         error = sooptcopyin(sopt, &ent,
4303                             sizeof(ent), sizeof(ent));
4304                         if (error)
4305                                 break;
4306                         error = del_table_entry(&V_layer3_chain, ent.tbl,
4307                             ent.addr, ent.masklen);
4308                 }
4309                 break;
4310
4311         case IP_FW_TABLE_FLUSH:
4312                 {
4313                         u_int16_t tbl;
4314
4315                         error = sooptcopyin(sopt, &tbl,
4316                             sizeof(tbl), sizeof(tbl));
4317                         if (error)
4318                                 break;
4319                         IPFW_WLOCK(&V_layer3_chain);
4320                         error = flush_table(&V_layer3_chain, tbl);
4321                         IPFW_WUNLOCK(&V_layer3_chain);
4322                 }
4323                 break;
4324
4325         case IP_FW_TABLE_GETSIZE:
4326                 {
4327                         u_int32_t tbl, cnt;
4328
4329                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4330                             sizeof(tbl))))
4331                                 break;
4332                         IPFW_RLOCK(&V_layer3_chain);
4333                         error = count_table(&V_layer3_chain, tbl, &cnt);
4334                         IPFW_RUNLOCK(&V_layer3_chain);
4335                         if (error)
4336                                 break;
4337                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4338                 }
4339                 break;
4340
4341         case IP_FW_TABLE_LIST:
4342                 {
4343                         ipfw_table *tbl;
4344
4345                         if (sopt->sopt_valsize < sizeof(*tbl)) {
4346                                 error = EINVAL;
4347                                 break;
4348                         }
4349                         size = sopt->sopt_valsize;
4350                         tbl = malloc(size, M_TEMP, M_WAITOK);
4351                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4352                         if (error) {
4353                                 free(tbl, M_TEMP);
4354                                 break;
4355                         }
4356                         tbl->size = (size - sizeof(*tbl)) /
4357                             sizeof(ipfw_table_entry);
4358                         IPFW_RLOCK(&V_layer3_chain);
4359                         error = dump_table(&V_layer3_chain, tbl);
4360                         IPFW_RUNLOCK(&V_layer3_chain);
4361                         if (error) {
4362                                 free(tbl, M_TEMP);
4363                                 break;
4364                         }
4365                         error = sooptcopyout(sopt, tbl, size);
4366                         free(tbl, M_TEMP);
4367                 }
4368                 break;
4369
4370         case IP_FW_NAT_CFG:
4371         {
4372                 if (IPFW_NAT_LOADED)
4373                         error = ipfw_nat_cfg_ptr(sopt);
4374                 else {
4375                         printf("IP_FW_NAT_CFG: ipfw_nat not present, please load it.\n");
4376                         error = EINVAL;
4377                 }
4378         }
4379         break;
4380
4381         case IP_FW_NAT_DEL:
4382         {
4383                 if (IPFW_NAT_LOADED)
4384                         error = ipfw_nat_del_ptr(sopt);
4385                 else {
4386                         printf("IP_FW_NAT_DEL: ipfw_nat not present, please load it.\n");
4387                         printf("ipfw_nat not loaded: %d\n", sopt->sopt_name);
4388                         error = EINVAL;
4389                 }
4390         }
4391         break;
4392
4393         case IP_FW_NAT_GET_CONFIG:
4394         {
4395                 if (IPFW_NAT_LOADED)
4396                         error = ipfw_nat_get_cfg_ptr(sopt);
4397                 else {
4398                         printf("IP_FW_NAT_GET_CFG: ipfw_nat not present, please load it.\n");
4399                         error = EINVAL;
4400                 }
4401         }
4402         break;
4403
4404         case IP_FW_NAT_GET_LOG:
4405         {
4406                 if (IPFW_NAT_LOADED)
4407                         error = ipfw_nat_get_log_ptr(sopt);
4408                 else {
4409                         printf("IP_FW_NAT_GET_LOG: ipfw_nat not present, please load it.\n");
4410                         error = EINVAL;
4411                 }
4412         }
4413         break;
4414
4415         default:
4416                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4417                 error = EINVAL;
4418         }
4419
4420         return (error);
4421 #undef RULE_MAXSIZE
4422 }
4423
4424 /**
4425  * dummynet needs a reference to the default rule, because rules can be
4426  * deleted while packets hold a reference to them. When this happens,
4427  * dummynet changes the reference to the default rule (it could well be a
4428  * NULL pointer, but this way we do not need to check for the special
4429  * case, plus here he have info on the default behaviour).
4430  */
4431 struct ip_fw *ip_fw_default_rule;
4432
4433 /*
4434  * This procedure is only used to handle keepalives. It is invoked
4435  * every dyn_keepalive_period
4436  */
4437 static void
4438 ipfw_tick(void * __unused unused)
4439 {
4440         struct mbuf *m0, *m, *mnext, **mtailp;
4441         int i;
4442         ipfw_dyn_rule *q;
4443
4444         if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
4445                 goto done;
4446
4447         /*
4448          * We make a chain of packets to go out here -- not deferring
4449          * until after we drop the IPFW dynamic rule lock would result
4450          * in a lock order reversal with the normal packet input -> ipfw
4451          * call stack.
4452          */
4453         m0 = NULL;
4454         mtailp = &m0;
4455         IPFW_DYN_LOCK();
4456         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
4457                 for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
4458                         if (q->dyn_type == O_LIMIT_PARENT)
4459                                 continue;
4460                         if (q->id.proto != IPPROTO_TCP)
4461                                 continue;
4462                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
4463                                 continue;
4464                         if (TIME_LEQ( time_uptime+V_dyn_keepalive_interval,
4465                             q->expire))
4466                                 continue;       /* too early */
4467                         if (TIME_LEQ(q->expire, time_uptime))
4468                                 continue;       /* too late, rule expired */
4469
4470                         *mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4471                                 q->ack_fwd, TH_SYN);
4472                         if (*mtailp != NULL)
4473                                 mtailp = &(*mtailp)->m_nextpkt;
4474                         *mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4475                                 q->ack_rev, 0);
4476                         if (*mtailp != NULL)
4477                                 mtailp = &(*mtailp)->m_nextpkt;
4478                 }
4479         }
4480         IPFW_DYN_UNLOCK();
4481         for (m = mnext = m0; m != NULL; m = mnext) {
4482                 mnext = m->m_nextpkt;
4483                 m->m_nextpkt = NULL;
4484                 ip_output(m, NULL, NULL, 0, NULL, NULL);
4485         }
4486 done:
4487         callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
4488                       ipfw_tick, NULL);
4489 }
4490
4491 int
4492 ipfw_init(void)
4493 {
4494         struct ip_fw default_rule;
4495         int error;
4496
4497 #ifdef INET6
4498         /* Setup IPv6 fw sysctl tree. */
4499         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4500         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4501             SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4502             CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4503         SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4504             OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4505             &V_fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4506         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4507             OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4508             &V_fw_deny_unknown_exthdrs, 0,
4509             "Deny packets with unknown IPv6 Extension Headers");
4510 #endif
4511
4512         V_layer3_chain.rules = NULL;
4513         IPFW_LOCK_INIT(&V_layer3_chain);
4514         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4515             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4516             UMA_ALIGN_PTR, 0);
4517         IPFW_DYN_LOCK_INIT();
4518         callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
4519
4520         bzero(&default_rule, sizeof default_rule);
4521
4522         default_rule.act_ofs = 0;
4523         default_rule.rulenum = IPFW_DEFAULT_RULE;
4524         default_rule.cmd_len = 1;
4525         default_rule.set = RESVD_SET;
4526
4527         default_rule.cmd[0].len = 1;
4528         default_rule.cmd[0].opcode =
4529 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4530                                 1 ? O_ACCEPT :
4531 #endif
4532                                 O_DENY;
4533
4534         error = add_rule(&V_layer3_chain, &default_rule);
4535         if (error != 0) {
4536                 printf("ipfw2: error %u initializing default rule "
4537                         "(support disabled)\n", error);
4538                 IPFW_DYN_LOCK_DESTROY();
4539                 IPFW_LOCK_DESTROY(&V_layer3_chain);
4540                 uma_zdestroy(ipfw_dyn_rule_zone);
4541                 return (error);
4542         }
4543
4544         ip_fw_default_rule = V_layer3_chain.rules;
4545         printf("ipfw2 "
4546 #ifdef INET6
4547                 "(+ipv6) "
4548 #endif
4549                 "initialized, divert %s, nat %s, "
4550                 "rule-based forwarding "
4551 #ifdef IPFIREWALL_FORWARD
4552                 "enabled, "
4553 #else
4554                 "disabled, "
4555 #endif
4556                 "default to %s, logging ",
4557 #ifdef IPDIVERT
4558                 "enabled",
4559 #else
4560                 "loadable",
4561 #endif
4562 #ifdef IPFIREWALL_NAT
4563                 "enabled",
4564 #else
4565                 "loadable",
4566 #endif
4567
4568                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4569
4570 #ifdef IPFIREWALL_VERBOSE
4571         V_fw_verbose = 1;
4572 #endif
4573 #ifdef IPFIREWALL_VERBOSE_LIMIT
4574         V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4575 #endif
4576         if (V_fw_verbose == 0)
4577                 printf("disabled\n");
4578         else if (V_verbose_limit == 0)
4579                 printf("unlimited\n");
4580         else
4581                 printf("limited to %d packets/entry by default\n",
4582                     V_verbose_limit);
4583
4584         error = init_tables(&V_layer3_chain);
4585         if (error) {
4586                 IPFW_DYN_LOCK_DESTROY();
4587                 IPFW_LOCK_DESTROY(&V_layer3_chain);
4588                 uma_zdestroy(ipfw_dyn_rule_zone);
4589                 return (error);
4590         }
4591         ip_fw_ctl_ptr = ipfw_ctl;
4592         ip_fw_chk_ptr = ipfw_chk;
4593         callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);    
4594         LIST_INIT(&V_layer3_chain.nat);
4595         return (0);
4596 }
4597
4598 void
4599 ipfw_destroy(void)
4600 {
4601         struct ip_fw *reap;
4602
4603         ip_fw_chk_ptr = NULL;
4604         ip_fw_ctl_ptr = NULL;
4605         callout_drain(&V_ipfw_timeout);
4606         IPFW_WLOCK(&V_layer3_chain);
4607         flush_tables(&V_layer3_chain);
4608         V_layer3_chain.reap = NULL;
4609         free_chain(&V_layer3_chain, 1 /* kill default rule */);
4610         reap = V_layer3_chain.reap, V_layer3_chain.reap = NULL;
4611         IPFW_WUNLOCK(&V_layer3_chain);
4612         if (reap != NULL)
4613                 reap_rules(reap);
4614         IPFW_DYN_LOCK_DESTROY();
4615         uma_zdestroy(ipfw_dyn_rule_zone);
4616         if (V_ipfw_dyn_v != NULL)
4617                 free(V_ipfw_dyn_v, M_IPFW);
4618         IPFW_LOCK_DESTROY(&V_layer3_chain);
4619
4620 #ifdef INET6
4621         /* Free IPv6 fw sysctl tree. */
4622         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4623 #endif
4624
4625         printf("IP firewall unloaded\n");
4626 }