]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/ip_fw2.c
Retire MT_HEADER mbuf type and change its users to use MT_DATA.
[FreeBSD/FreeBSD.git] / sys / netinet / ip_fw2.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27
28 #define        DEB(x)
29 #define        DDB(x) x
30
31 /*
32  * Implement IP packet firewall (new version)
33  */
34
35 #if !defined(KLD_MODULE)
36 #include "opt_ipfw.h"
37 #include "opt_ip6fw.h"
38 #include "opt_ipdn.h"
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41 #include "opt_ipsec.h"
42 #ifndef INET
43 #error IPFIREWALL requires INET.
44 #endif /* INET */
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/condvar.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/kernel.h>
53 #include <sys/jail.h>
54 #include <sys/module.h>
55 #include <sys/proc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sysctl.h>
59 #include <sys/syslog.h>
60 #include <sys/ucred.h>
61 #include <net/if.h>
62 #include <net/radix.h>
63 #include <net/route.h>
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/ip_icmp.h>
71 #include <netinet/ip_fw.h>
72 #include <netinet/ip_divert.h>
73 #include <netinet/ip_dummynet.h>
74 #include <netinet/tcp.h>
75 #include <netinet/tcp_timer.h>
76 #include <netinet/tcp_var.h>
77 #include <netinet/tcpip.h>
78 #include <netinet/udp.h>
79 #include <netinet/udp_var.h>
80
81 #include <netgraph/ng_ipfw.h>
82
83 #include <altq/if_altq.h>
84
85 #ifdef IPSEC
86 #include <netinet6/ipsec.h>
87 #endif
88
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #ifdef INET6
92 #include <netinet6/scope6_var.h>
93 #endif
94
95 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
96
97 #include <machine/in_cksum.h>   /* XXX for in_cksum */
98
99 /*
100  * set_disable contains one bit per set value (0..31).
101  * If the bit is set, all rules with the corresponding set
102  * are disabled. Set RESVD_SET(31) is reserved for the default rule
103  * and rules that are not deleted by the flush command,
104  * and CANNOT be disabled.
105  * Rules in set RESVD_SET can only be deleted explicitly.
106  */
107 static u_int32_t set_disable;
108
109 static int fw_verbose;
110 static int verbose_limit;
111
112 static struct callout ipfw_timeout;
113 static uma_zone_t ipfw_dyn_rule_zone;
114 #define IPFW_DEFAULT_RULE       65535
115
116 /*
117  * Data structure to cache our ucred related
118  * information. This structure only gets used if
119  * the user specified UID/GID based constraints in
120  * a firewall rule.
121  */
122 struct ip_fw_ugid {
123         gid_t           fw_groups[NGROUPS];
124         int             fw_ngroups;
125         uid_t           fw_uid;
126         int             fw_prid;
127 };
128
129 struct ip_fw_chain {
130         struct ip_fw    *rules;         /* list of rules */
131         struct ip_fw    *reap;          /* list of rules to reap */
132         struct mtx      mtx;            /* lock guarding rule list */
133         int             busy_count;     /* busy count for rw locks */
134         int             want_write;
135         struct cv       cv;
136 };
137 #define IPFW_LOCK_INIT(_chain) \
138         mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
139                 MTX_DEF | MTX_RECURSE)
140 #define IPFW_LOCK_DESTROY(_chain)       mtx_destroy(&(_chain)->mtx)
141 #define IPFW_WLOCK_ASSERT(_chain)       do {                            \
142         mtx_assert(&(_chain)->mtx, MA_OWNED);                           \
143         NET_ASSERT_GIANT();                                             \
144 } while (0)
145
146 static __inline void
147 IPFW_RLOCK(struct ip_fw_chain *chain)
148 {
149         mtx_lock(&chain->mtx);
150         chain->busy_count++;
151         mtx_unlock(&chain->mtx);
152 }
153
154 static __inline void
155 IPFW_RUNLOCK(struct ip_fw_chain *chain)
156 {
157         mtx_lock(&chain->mtx);
158         chain->busy_count--;
159         if (chain->busy_count == 0 && chain->want_write)
160                 cv_signal(&chain->cv);
161         mtx_unlock(&chain->mtx);
162 }
163
164 static __inline void
165 IPFW_WLOCK(struct ip_fw_chain *chain)
166 {
167         mtx_lock(&chain->mtx);
168         chain->want_write++;
169         while (chain->busy_count > 0)
170                 cv_wait(&chain->cv, &chain->mtx);
171 }
172
173 static __inline void
174 IPFW_WUNLOCK(struct ip_fw_chain *chain)
175 {
176         chain->want_write--;
177         cv_signal(&chain->cv);
178         mtx_unlock(&chain->mtx);
179 }
180
181 /*
182  * list of rules for layer 3
183  */
184 static struct ip_fw_chain layer3_chain;
185
186 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
187 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
188
189 struct table_entry {
190         struct radix_node       rn[2];
191         struct sockaddr_in      addr, mask;
192         u_int32_t               value;
193 };
194
195 #define IPFW_TABLES_MAX         128
196 static struct ip_fw_table {
197         struct radix_node_head  *rnh;
198         int                     modified;
199         in_addr_t               last_addr;
200         int                     last_match;
201         u_int32_t               last_value;
202 } ipfw_tables[IPFW_TABLES_MAX];
203
204 static int fw_debug = 1;
205 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
206
207 #ifdef SYSCTL_NODE
208 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
209 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
210     CTLFLAG_RW | CTLFLAG_SECURE3,
211     &fw_enable, 0, "Enable ipfw");
212 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
213     &autoinc_step, 0, "Rule number autincrement step");
214 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
215     CTLFLAG_RW | CTLFLAG_SECURE3,
216     &fw_one_pass, 0,
217     "Only do a single pass through ipfw when using dummynet(4)");
218 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
219     &fw_debug, 0, "Enable printing of debug ip_fw statements");
220 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
221     CTLFLAG_RW | CTLFLAG_SECURE3,
222     &fw_verbose, 0, "Log matches to ipfw rules");
223 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
224     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
225
226 /*
227  * Description of dynamic rules.
228  *
229  * Dynamic rules are stored in lists accessed through a hash table
230  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
231  * be modified through the sysctl variable dyn_buckets which is
232  * updated when the table becomes empty.
233  *
234  * XXX currently there is only one list, ipfw_dyn.
235  *
236  * When a packet is received, its address fields are first masked
237  * with the mask defined for the rule, then hashed, then matched
238  * against the entries in the corresponding list.
239  * Dynamic rules can be used for different purposes:
240  *  + stateful rules;
241  *  + enforcing limits on the number of sessions;
242  *  + in-kernel NAT (not implemented yet)
243  *
244  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
245  * measured in seconds and depending on the flags.
246  *
247  * The total number of dynamic rules is stored in dyn_count.
248  * The max number of dynamic rules is dyn_max. When we reach
249  * the maximum number of rules we do not create anymore. This is
250  * done to avoid consuming too much memory, but also too much
251  * time when searching on each packet (ideally, we should try instead
252  * to put a limit on the length of the list on each bucket...).
253  *
254  * Each dynamic rule holds a pointer to the parent ipfw rule so
255  * we know what action to perform. Dynamic rules are removed when
256  * the parent rule is deleted. XXX we should make them survive.
257  *
258  * There are some limitations with dynamic rules -- we do not
259  * obey the 'randomized match', and we do not do multiple
260  * passes through the firewall. XXX check the latter!!!
261  */
262 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
263 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
264 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
265
266 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
267 #define IPFW_DYN_LOCK_INIT() \
268         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
269 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
270 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
271 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
272 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
273
274 /*
275  * Timeouts for various events in handing dynamic rules.
276  */
277 static u_int32_t dyn_ack_lifetime = 300;
278 static u_int32_t dyn_syn_lifetime = 20;
279 static u_int32_t dyn_fin_lifetime = 1;
280 static u_int32_t dyn_rst_lifetime = 1;
281 static u_int32_t dyn_udp_lifetime = 10;
282 static u_int32_t dyn_short_lifetime = 5;
283
284 /*
285  * Keepalives are sent if dyn_keepalive is set. They are sent every
286  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
287  * seconds of lifetime of a rule.
288  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
289  * than dyn_keepalive_period.
290  */
291
292 static u_int32_t dyn_keepalive_interval = 20;
293 static u_int32_t dyn_keepalive_period = 5;
294 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
295
296 static u_int32_t static_count;  /* # of static rules */
297 static u_int32_t static_len;    /* size in bytes of static rules */
298 static u_int32_t dyn_count;             /* # of dynamic rules */
299 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
300
301 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
302     &dyn_buckets, 0, "Number of dyn. buckets");
303 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
304     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
305 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
306     &dyn_count, 0, "Number of dyn. rules");
307 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
308     &dyn_max, 0, "Max number of dyn. rules");
309 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
310     &static_count, 0, "Number of static rules");
311 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
312     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
313 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
314     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
315 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
316     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
317 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
318     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
319 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
320     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
321 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
322     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
323 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
324     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
325
326 #ifdef INET6
327 /*
328  * IPv6 specific variables
329  */
330 SYSCTL_DECL(_net_inet6_ip6);
331
332 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
333 static struct sysctl_oid *ip6_fw_sysctl_tree;
334 #endif /* INET6 */
335 #endif /* SYSCTL_NODE */
336
337 static int fw_deny_unknown_exthdrs = 1;
338
339
340 /*
341  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
342  * Other macros just cast void * into the appropriate type
343  */
344 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
345 #define TCP(p)          ((struct tcphdr *)(p))
346 #define UDP(p)          ((struct udphdr *)(p))
347 #define ICMP(p)         ((struct icmphdr *)(p))
348 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
349
350 static __inline int
351 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
352 {
353         int type = icmp->icmp_type;
354
355         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
356 }
357
358 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
359     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
360
361 static int
362 is_icmp_query(struct icmphdr *icmp)
363 {
364         int type = icmp->icmp_type;
365
366         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
367 }
368 #undef TT
369
370 /*
371  * The following checks use two arrays of 8 or 16 bits to store the
372  * bits that we want set or clear, respectively. They are in the
373  * low and high half of cmd->arg1 or cmd->d[0].
374  *
375  * We scan options and store the bits we find set. We succeed if
376  *
377  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
378  *
379  * The code is sometimes optimized not to store additional variables.
380  */
381
382 static int
383 flags_match(ipfw_insn *cmd, u_int8_t bits)
384 {
385         u_char want_clear;
386         bits = ~bits;
387
388         if ( ((cmd->arg1 & 0xff) & bits) != 0)
389                 return 0; /* some bits we want set were clear */
390         want_clear = (cmd->arg1 >> 8) & 0xff;
391         if ( (want_clear & bits) != want_clear)
392                 return 0; /* some bits we want clear were set */
393         return 1;
394 }
395
396 static int
397 ipopts_match(struct ip *ip, ipfw_insn *cmd)
398 {
399         int optlen, bits = 0;
400         u_char *cp = (u_char *)(ip + 1);
401         int x = (ip->ip_hl << 2) - sizeof (struct ip);
402
403         for (; x > 0; x -= optlen, cp += optlen) {
404                 int opt = cp[IPOPT_OPTVAL];
405
406                 if (opt == IPOPT_EOL)
407                         break;
408                 if (opt == IPOPT_NOP)
409                         optlen = 1;
410                 else {
411                         optlen = cp[IPOPT_OLEN];
412                         if (optlen <= 0 || optlen > x)
413                                 return 0; /* invalid or truncated */
414                 }
415                 switch (opt) {
416
417                 default:
418                         break;
419
420                 case IPOPT_LSRR:
421                         bits |= IP_FW_IPOPT_LSRR;
422                         break;
423
424                 case IPOPT_SSRR:
425                         bits |= IP_FW_IPOPT_SSRR;
426                         break;
427
428                 case IPOPT_RR:
429                         bits |= IP_FW_IPOPT_RR;
430                         break;
431
432                 case IPOPT_TS:
433                         bits |= IP_FW_IPOPT_TS;
434                         break;
435                 }
436         }
437         return (flags_match(cmd, bits));
438 }
439
440 static int
441 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
442 {
443         int optlen, bits = 0;
444         u_char *cp = (u_char *)(tcp + 1);
445         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
446
447         for (; x > 0; x -= optlen, cp += optlen) {
448                 int opt = cp[0];
449                 if (opt == TCPOPT_EOL)
450                         break;
451                 if (opt == TCPOPT_NOP)
452                         optlen = 1;
453                 else {
454                         optlen = cp[1];
455                         if (optlen <= 0)
456                                 break;
457                 }
458
459                 switch (opt) {
460
461                 default:
462                         break;
463
464                 case TCPOPT_MAXSEG:
465                         bits |= IP_FW_TCPOPT_MSS;
466                         break;
467
468                 case TCPOPT_WINDOW:
469                         bits |= IP_FW_TCPOPT_WINDOW;
470                         break;
471
472                 case TCPOPT_SACK_PERMITTED:
473                 case TCPOPT_SACK:
474                         bits |= IP_FW_TCPOPT_SACK;
475                         break;
476
477                 case TCPOPT_TIMESTAMP:
478                         bits |= IP_FW_TCPOPT_TS;
479                         break;
480
481                 }
482         }
483         return (flags_match(cmd, bits));
484 }
485
486 static int
487 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
488 {
489         if (ifp == NULL)        /* no iface with this packet, match fails */
490                 return 0;
491         /* Check by name or by IP address */
492         if (cmd->name[0] != '\0') { /* match by name */
493                 /* Check name */
494                 if (cmd->p.glob) {
495                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
496                                 return(1);
497                 } else {
498                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
499                                 return(1);
500                 }
501         } else {
502                 struct ifaddr *ia;
503
504                 /* XXX lock? */
505                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
506                         if (ia->ifa_addr == NULL)
507                                 continue;
508                         if (ia->ifa_addr->sa_family != AF_INET)
509                                 continue;
510                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
511                             (ia->ifa_addr))->sin_addr.s_addr)
512                                 return(1);      /* match */
513                 }
514         }
515         return(0);      /* no match, fail ... */
516 }
517
518 /*
519  * The verify_path function checks if a route to the src exists and
520  * if it is reachable via ifp (when provided).
521  * 
522  * The 'verrevpath' option checks that the interface that an IP packet
523  * arrives on is the same interface that traffic destined for the
524  * packet's source address would be routed out of.  The 'versrcreach'
525  * option just checks that the source address is reachable via any route
526  * (except default) in the routing table.  These two are a measure to block
527  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
528  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
529  * is purposely reminiscent of the Cisco IOS command,
530  *
531  *   ip verify unicast reverse-path
532  *   ip verify unicast source reachable-via any
533  *
534  * which implements the same functionality. But note that syntax is
535  * misleading. The check may be performed on all IP packets whether unicast,
536  * multicast, or broadcast.
537  */
538 static int
539 verify_path(struct in_addr src, struct ifnet *ifp)
540 {
541         struct route ro;
542         struct sockaddr_in *dst;
543
544         bzero(&ro, sizeof(ro));
545
546         dst = (struct sockaddr_in *)&(ro.ro_dst);
547         dst->sin_family = AF_INET;
548         dst->sin_len = sizeof(*dst);
549         dst->sin_addr = src;
550         rtalloc_ign(&ro, RTF_CLONING);
551
552         if (ro.ro_rt == NULL)
553                 return 0;
554
555         /* if ifp is provided, check for equality with rtentry */
556         if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
557                 RTFREE(ro.ro_rt);
558                 return 0;
559         }
560
561         /* if no ifp provided, check if rtentry is not default route */
562         if (ifp == NULL &&
563              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
564                 RTFREE(ro.ro_rt);
565                 return 0;
566         }
567
568         /* or if this is a blackhole/reject route */
569         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
570                 RTFREE(ro.ro_rt);
571                 return 0;
572         }
573
574         /* found valid route */
575         RTFREE(ro.ro_rt);
576         return 1;
577 }
578
579 #ifdef INET6
580 /*
581  * ipv6 specific rules here...
582  */
583 static __inline int
584 icmp6type_match (int type, ipfw_insn_u32 *cmd)
585 {
586         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
587 }
588
589 static int
590 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
591 {
592         int i;
593         for (i=0; i <= cmd->o.arg1; ++i )
594                 if (curr_flow == cmd->d[i] )
595                         return 1;
596         return 0;
597 }
598
599 /* support for IP6_*_ME opcodes */
600 static int
601 search_ip6_addr_net (struct in6_addr * ip6_addr)
602 {
603         struct ifnet *mdc;
604         struct ifaddr *mdc2;
605         struct in6_ifaddr *fdm;
606         struct in6_addr copia;
607
608         TAILQ_FOREACH(mdc, &ifnet, if_link)
609                 for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
610                     mdc2 = mdc2->ifa_list.tqe_next) {
611                         if (!mdc2->ifa_addr)
612                                 continue;
613                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
614                                 fdm = (struct in6_ifaddr *)mdc2;
615                                 copia = fdm->ia_addr.sin6_addr;
616                                 /* need for leaving scope_id in the sock_addr */
617                                 in6_clearscope(&copia);
618                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
619                                         return 1;
620                         }
621                 }
622         return 0;
623 }
624
625 static int
626 verify_path6(struct in6_addr *src, struct ifnet *ifp)
627 {
628         struct route_in6 ro;
629         struct sockaddr_in6 *dst;
630
631         bzero(&ro, sizeof(ro));
632
633         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
634         dst->sin6_family = AF_INET6;
635         dst->sin6_len = sizeof(*dst);
636         dst->sin6_addr = *src;
637         rtalloc_ign((struct route *)&ro, RTF_CLONING);
638
639         if (ro.ro_rt == NULL)
640                 return 0;
641
642         /* if ifp is provided, check for equality with rtentry */
643         if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
644                 RTFREE(ro.ro_rt);
645                 return 0;
646         }
647
648         /* if no ifp provided, check if rtentry is not default route */
649         if (ifp == NULL &&
650             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
651                 RTFREE(ro.ro_rt);
652                 return 0;
653         }
654
655         /* or if this is a blackhole/reject route */
656         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
657                 RTFREE(ro.ro_rt);
658                 return 0;
659         }
660
661         /* found valid route */
662         RTFREE(ro.ro_rt);
663         return 1;
664
665 }
666 static __inline int
667 hash_packet6(struct ipfw_flow_id *id)
668 {
669         u_int32_t i;
670         i = (id->dst_ip6.__u6_addr.__u6_addr32[0]) ^
671             (id->dst_ip6.__u6_addr.__u6_addr32[1]) ^
672             (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
673             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
674             (id->dst_port) ^ (id->src_port) ^ (id->flow_id6);
675         return i;
676 }
677
678 static int
679 is_icmp6_query(int icmp6_type)
680 {
681         if ((icmp6_type <= ICMP6_MAXTYPE) &&
682             (icmp6_type == ICMP6_ECHO_REQUEST ||
683             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
684             icmp6_type == ICMP6_WRUREQUEST ||
685             icmp6_type == ICMP6_FQDN_QUERY ||
686             icmp6_type == ICMP6_NI_QUERY))
687                 return (1);
688
689         return (0);
690 }
691
692 static void
693 send_reject6(struct ip_fw_args *args, int code, u_short offset, u_int hlen)
694 {
695         if (code == ICMP6_UNREACH_RST && offset == 0 &&
696             args->f_id.proto == IPPROTO_TCP) {
697                 struct ip6_hdr *ip6;
698                 struct tcphdr *tcp;
699                 tcp_seq ack, seq;
700                 int flags;
701                 struct {
702                         struct ip6_hdr ip6;
703                         struct tcphdr th;
704                 } ti;
705
706                 if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
707                         args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
708                         if (args->m == NULL)
709                                 return;
710                 }
711
712                 ip6 = mtod(args->m, struct ip6_hdr *);
713                 tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
714
715                 if ((tcp->th_flags & TH_RST) != 0) {
716                         m_freem(args->m);
717                         return;
718                 }
719
720                 ti.ip6 = *ip6;
721                 ti.th = *tcp;
722                 ti.th.th_seq = ntohl(ti.th.th_seq);
723                 ti.th.th_ack = ntohl(ti.th.th_ack);
724                 ti.ip6.ip6_nxt = IPPROTO_TCP;
725
726                 if (ti.th.th_flags & TH_ACK) {
727                         ack = 0;
728                         seq = ti.th.th_ack;
729                         flags = TH_RST;
730                 } else {
731                         ack = ti.th.th_seq;
732                         if (((args->m)->m_flags & M_PKTHDR) != 0) {
733                                 ack += (args->m)->m_pkthdr.len - hlen
734                                         - (ti.th.th_off << 2);
735                         } else if (ip6->ip6_plen) {
736                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
737                                         - hlen - (ti.th.th_off << 2);
738                         } else {
739                                 m_freem(args->m);
740                                 return;
741                         }
742                         if (tcp->th_flags & TH_SYN)
743                                 ack++;
744                         seq = 0;
745                         flags = TH_RST|TH_ACK;
746                 }
747                 bcopy(&ti, ip6, sizeof(ti));
748                 tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
749                         args->m, ack, seq, flags);
750
751         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
752                 icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
753
754         } else
755                 m_freem(args->m);
756
757         args->m = NULL;
758 }
759
760 #endif /* INET6 */
761
762 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
763
764 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
765 #define SNP(buf) buf, sizeof(buf)
766
767 /*
768  * We enter here when we have a rule with O_LOG.
769  * XXX this function alone takes about 2Kbytes of code!
770  */
771 static void
772 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
773         struct mbuf *m, struct ifnet *oif, u_short offset)
774 {
775         struct ether_header *eh = args->eh;
776         char *action;
777         int limit_reached = 0;
778         char action2[40], proto[128], fragment[32];
779
780         fragment[0] = '\0';
781         proto[0] = '\0';
782
783         if (f == NULL) {        /* bogus pkt */
784                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
785                         return;
786                 norule_counter++;
787                 if (norule_counter == verbose_limit)
788                         limit_reached = verbose_limit;
789                 action = "Refuse";
790         } else {        /* O_LOG is the first action, find the real one */
791                 ipfw_insn *cmd = ACTION_PTR(f);
792                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
793
794                 if (l->max_log != 0 && l->log_left == 0)
795                         return;
796                 l->log_left--;
797                 if (l->log_left == 0)
798                         limit_reached = l->max_log;
799                 cmd += F_LEN(cmd);      /* point to first action */
800                 if (cmd->opcode == O_ALTQ) {
801                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
802
803                         snprintf(SNPARGS(action2, 0), "Altq %d",
804                                 altq->qid);
805                         cmd += F_LEN(cmd);
806                 }
807                 if (cmd->opcode == O_PROB)
808                         cmd += F_LEN(cmd);
809
810                 action = action2;
811                 switch (cmd->opcode) {
812                 case O_DENY:
813                         action = "Deny";
814                         break;
815
816                 case O_REJECT:
817                         if (cmd->arg1==ICMP_REJECT_RST)
818                                 action = "Reset";
819                         else if (cmd->arg1==ICMP_UNREACH_HOST)
820                                 action = "Reject";
821                         else
822                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
823                                         cmd->arg1);
824                         break;
825
826                 case O_UNREACH6:
827                         if (cmd->arg1==ICMP6_UNREACH_RST)
828                                 action = "Reset";
829                         else
830                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
831                                         cmd->arg1);
832                         break;
833
834                 case O_ACCEPT:
835                         action = "Accept";
836                         break;
837                 case O_COUNT:
838                         action = "Count";
839                         break;
840                 case O_DIVERT:
841                         snprintf(SNPARGS(action2, 0), "Divert %d",
842                                 cmd->arg1);
843                         break;
844                 case O_TEE:
845                         snprintf(SNPARGS(action2, 0), "Tee %d",
846                                 cmd->arg1);
847                         break;
848                 case O_SKIPTO:
849                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
850                                 cmd->arg1);
851                         break;
852                 case O_PIPE:
853                         snprintf(SNPARGS(action2, 0), "Pipe %d",
854                                 cmd->arg1);
855                         break;
856                 case O_QUEUE:
857                         snprintf(SNPARGS(action2, 0), "Queue %d",
858                                 cmd->arg1);
859                         break;
860                 case O_FORWARD_IP: {
861                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
862                         int len;
863
864                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
865                                 inet_ntoa(sa->sa.sin_addr));
866                         if (sa->sa.sin_port)
867                                 snprintf(SNPARGS(action2, len), ":%d",
868                                     sa->sa.sin_port);
869                         }
870                         break;
871                 case O_NETGRAPH:
872                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
873                                 cmd->arg1);
874                         break;
875                 case O_NGTEE:
876                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
877                                 cmd->arg1);
878                         break;
879                 default:
880                         action = "UNKNOWN";
881                         break;
882                 }
883         }
884
885         if (hlen == 0) {        /* non-ip */
886                 snprintf(SNPARGS(proto, 0), "MAC");
887
888         } else {
889                 int len;
890                 char src[48], dst[48];
891                 struct icmphdr *icmp;
892                 struct tcphdr *tcp;
893                 struct udphdr *udp;
894                 /* Initialize to make compiler happy. */
895                 struct ip *ip = NULL;
896 #ifdef INET6
897                 struct ip6_hdr *ip6 = NULL;
898                 struct icmp6_hdr *icmp6;
899 #endif
900                 src[0] = '\0';
901                 dst[0] = '\0';
902 #ifdef INET6
903                 if (args->f_id.addr_type == 6) {
904                         snprintf(src, sizeof(src), "[%s]",
905                             ip6_sprintf(&args->f_id.src_ip6));
906                         snprintf(dst, sizeof(dst), "[%s]",
907                             ip6_sprintf(&args->f_id.dst_ip6));
908
909                         ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
910                         tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
911                         udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
912                 } else
913 #endif
914                 {
915                         ip = mtod(m, struct ip *);
916                         tcp = L3HDR(struct tcphdr, ip);
917                         udp = L3HDR(struct udphdr, ip);
918
919                         inet_ntoa_r(ip->ip_src, src);
920                         inet_ntoa_r(ip->ip_dst, dst);
921                 }
922
923                 switch (args->f_id.proto) {
924                 case IPPROTO_TCP:
925                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
926                         if (offset == 0)
927                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
928                                     ntohs(tcp->th_sport),
929                                     dst,
930                                     ntohs(tcp->th_dport));
931                         else
932                                 snprintf(SNPARGS(proto, len), " %s", dst);
933                         break;
934
935                 case IPPROTO_UDP:
936                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
937                         if (offset == 0)
938                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
939                                     ntohs(udp->uh_sport),
940                                     dst,
941                                     ntohs(udp->uh_dport));
942                         else
943                                 snprintf(SNPARGS(proto, len), " %s", dst);
944                         break;
945
946                 case IPPROTO_ICMP:
947                         icmp = L3HDR(struct icmphdr, ip);
948                         if (offset == 0)
949                                 len = snprintf(SNPARGS(proto, 0),
950                                     "ICMP:%u.%u ",
951                                     icmp->icmp_type, icmp->icmp_code);
952                         else
953                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
954                         len += snprintf(SNPARGS(proto, len), "%s", src);
955                         snprintf(SNPARGS(proto, len), " %s", dst);
956                         break;
957 #ifdef INET6
958                 case IPPROTO_ICMPV6:
959                         icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
960                         if (offset == 0)
961                                 len = snprintf(SNPARGS(proto, 0),
962                                     "ICMPv6:%u.%u ",
963                                     icmp6->icmp6_type, icmp6->icmp6_code);
964                         else
965                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
966                         len += snprintf(SNPARGS(proto, len), "%s", src);
967                         snprintf(SNPARGS(proto, len), " %s", dst);
968                         break;
969 #endif
970                 default:
971                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
972                             args->f_id.proto, src);
973                         snprintf(SNPARGS(proto, len), " %s", dst);
974                         break;
975                 }
976
977 #ifdef INET6
978                 if (args->f_id.addr_type == 6) {
979                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
980                                 snprintf(SNPARGS(fragment, 0),
981                                     " (frag %08x:%d@%d%s)",
982                                     args->f_id.frag_id6,
983                                     ntohs(ip6->ip6_plen) - hlen,
984                                     ntohs(offset & IP6F_OFF_MASK) << 3,
985                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
986                 } else
987 #endif
988                 {
989                         int ip_off, ip_len;
990                         if (eh != NULL) { /* layer 2 packets are as on the wire */
991                                 ip_off = ntohs(ip->ip_off);
992                                 ip_len = ntohs(ip->ip_len);
993                         } else {
994                                 ip_off = ip->ip_off;
995                                 ip_len = ip->ip_len;
996                         }
997                         if (ip_off & (IP_MF | IP_OFFMASK))
998                                 snprintf(SNPARGS(fragment, 0),
999                                     " (frag %d:%d@%d%s)",
1000                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1001                                     offset << 3,
1002                                     (ip_off & IP_MF) ? "+" : "");
1003                 }
1004         }
1005         if (oif || m->m_pkthdr.rcvif)
1006                 log(LOG_SECURITY | LOG_INFO,
1007                     "ipfw: %d %s %s %s via %s%s\n",
1008                     f ? f->rulenum : -1,
1009                     action, proto, oif ? "out" : "in",
1010                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1011                     fragment);
1012         else
1013                 log(LOG_SECURITY | LOG_INFO,
1014                     "ipfw: %d %s %s [no if info]%s\n",
1015                     f ? f->rulenum : -1,
1016                     action, proto, fragment);
1017         if (limit_reached)
1018                 log(LOG_SECURITY | LOG_NOTICE,
1019                     "ipfw: limit %d reached on entry %d\n",
1020                     limit_reached, f ? f->rulenum : -1);
1021 }
1022
1023 /*
1024  * IMPORTANT: the hash function for dynamic rules must be commutative
1025  * in source and destination (ip,port), because rules are bidirectional
1026  * and we want to find both in the same bucket.
1027  */
1028 static __inline int
1029 hash_packet(struct ipfw_flow_id *id)
1030 {
1031         u_int32_t i;
1032
1033 #ifdef INET6
1034         if (IS_IP6_FLOW_ID(id)) 
1035                 i = hash_packet6(id);
1036         else
1037 #endif /* INET6 */
1038         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1039         i &= (curr_dyn_buckets - 1);
1040         return i;
1041 }
1042
1043 /**
1044  * unlink a dynamic rule from a chain. prev is a pointer to
1045  * the previous one, q is a pointer to the rule to delete,
1046  * head is a pointer to the head of the queue.
1047  * Modifies q and potentially also head.
1048  */
1049 #define UNLINK_DYN_RULE(prev, head, q) {                                \
1050         ipfw_dyn_rule *old_q = q;                                       \
1051                                                                         \
1052         /* remove a refcount to the parent */                           \
1053         if (q->dyn_type == O_LIMIT)                                     \
1054                 q->parent->count--;                                     \
1055         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1056                 (q->id.src_ip), (q->id.src_port),                       \
1057                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
1058         if (prev != NULL)                                               \
1059                 prev->next = q = q->next;                               \
1060         else                                                            \
1061                 head = q = q->next;                                     \
1062         dyn_count--;                                                    \
1063         uma_zfree(ipfw_dyn_rule_zone, old_q); }
1064
1065 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1066
1067 /**
1068  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1069  *
1070  * If keep_me == NULL, rules are deleted even if not expired,
1071  * otherwise only expired rules are removed.
1072  *
1073  * The value of the second parameter is also used to point to identify
1074  * a rule we absolutely do not want to remove (e.g. because we are
1075  * holding a reference to it -- this is the case with O_LIMIT_PARENT
1076  * rules). The pointer is only used for comparison, so any non-null
1077  * value will do.
1078  */
1079 static void
1080 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1081 {
1082         static u_int32_t last_remove = 0;
1083
1084 #define FORCE (keep_me == NULL)
1085
1086         ipfw_dyn_rule *prev, *q;
1087         int i, pass = 0, max_pass = 0;
1088
1089         IPFW_DYN_LOCK_ASSERT();
1090
1091         if (ipfw_dyn_v == NULL || dyn_count == 0)
1092                 return;
1093         /* do not expire more than once per second, it is useless */
1094         if (!FORCE && last_remove == time_uptime)
1095                 return;
1096         last_remove = time_uptime;
1097
1098         /*
1099          * because O_LIMIT refer to parent rules, during the first pass only
1100          * remove child and mark any pending LIMIT_PARENT, and remove
1101          * them in a second pass.
1102          */
1103 next_pass:
1104         for (i = 0 ; i < curr_dyn_buckets ; i++) {
1105                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1106                         /*
1107                          * Logic can become complex here, so we split tests.
1108                          */
1109                         if (q == keep_me)
1110                                 goto next;
1111                         if (rule != NULL && rule != q->rule)
1112                                 goto next; /* not the one we are looking for */
1113                         if (q->dyn_type == O_LIMIT_PARENT) {
1114                                 /*
1115                                  * handle parent in the second pass,
1116                                  * record we need one.
1117                                  */
1118                                 max_pass = 1;
1119                                 if (pass == 0)
1120                                         goto next;
1121                                 if (FORCE && q->count != 0 ) {
1122                                         /* XXX should not happen! */
1123                                         printf("ipfw: OUCH! cannot remove rule,"
1124                                              " count %d\n", q->count);
1125                                 }
1126                         } else {
1127                                 if (!FORCE &&
1128                                     !TIME_LEQ( q->expire, time_uptime ))
1129                                         goto next;
1130                         }
1131              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1132                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1133                      continue;
1134              }
1135 next:
1136                         prev=q;
1137                         q=q->next;
1138                 }
1139         }
1140         if (pass++ < max_pass)
1141                 goto next_pass;
1142 }
1143
1144
1145 /**
1146  * lookup a dynamic rule.
1147  */
1148 static ipfw_dyn_rule *
1149 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1150         struct tcphdr *tcp)
1151 {
1152         /*
1153          * stateful ipfw extensions.
1154          * Lookup into dynamic session queue
1155          */
1156 #define MATCH_REVERSE   0
1157 #define MATCH_FORWARD   1
1158 #define MATCH_NONE      2
1159 #define MATCH_UNKNOWN   3
1160         int i, dir = MATCH_NONE;
1161         ipfw_dyn_rule *prev, *q=NULL;
1162
1163         IPFW_DYN_LOCK_ASSERT();
1164
1165         if (ipfw_dyn_v == NULL)
1166                 goto done;      /* not found */
1167         i = hash_packet( pkt );
1168         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1169                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1170                         goto next;
1171                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1172                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1173                         continue;
1174                 }
1175                 if (pkt->proto == q->id.proto &&
1176                     q->dyn_type != O_LIMIT_PARENT) {
1177                         if (IS_IP6_FLOW_ID(pkt)) {
1178                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1179                                 &(q->id.src_ip6)) &&
1180                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1181                                 &(q->id.dst_ip6)) &&
1182                             pkt->src_port == q->id.src_port &&
1183                             pkt->dst_port == q->id.dst_port ) {
1184                                 dir = MATCH_FORWARD;
1185                                 break;
1186                             }
1187                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1188                                     &(q->id.dst_ip6)) &&
1189                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1190                                     &(q->id.src_ip6)) &&
1191                                 pkt->src_port == q->id.dst_port &&
1192                                 pkt->dst_port == q->id.src_port ) {
1193                                     dir = MATCH_REVERSE;
1194                                     break;
1195                             }
1196                         } else {
1197                             if (pkt->src_ip == q->id.src_ip &&
1198                                 pkt->dst_ip == q->id.dst_ip &&
1199                                 pkt->src_port == q->id.src_port &&
1200                                 pkt->dst_port == q->id.dst_port ) {
1201                                     dir = MATCH_FORWARD;
1202                                     break;
1203                             }
1204                             if (pkt->src_ip == q->id.dst_ip &&
1205                                 pkt->dst_ip == q->id.src_ip &&
1206                                 pkt->src_port == q->id.dst_port &&
1207                                 pkt->dst_port == q->id.src_port ) {
1208                                     dir = MATCH_REVERSE;
1209                                     break;
1210                             }
1211                         }
1212                 }
1213 next:
1214                 prev = q;
1215                 q = q->next;
1216         }
1217         if (q == NULL)
1218                 goto done; /* q = NULL, not found */
1219
1220         if ( prev != NULL) { /* found and not in front */
1221                 prev->next = q->next;
1222                 q->next = ipfw_dyn_v[i];
1223                 ipfw_dyn_v[i] = q;
1224         }
1225         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1226                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1227
1228 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
1229 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
1230                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1231                 switch (q->state) {
1232                 case TH_SYN:                            /* opening */
1233                         q->expire = time_uptime + dyn_syn_lifetime;
1234                         break;
1235
1236                 case BOTH_SYN:                  /* move to established */
1237                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
1238                 case BOTH_SYN | (TH_FIN << 8) :
1239                         if (tcp) {
1240 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1241                             u_int32_t ack = ntohl(tcp->th_ack);
1242                             if (dir == MATCH_FORWARD) {
1243                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1244                                     q->ack_fwd = ack;
1245                                 else { /* ignore out-of-sequence */
1246                                     break;
1247                                 }
1248                             } else {
1249                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1250                                     q->ack_rev = ack;
1251                                 else { /* ignore out-of-sequence */
1252                                     break;
1253                                 }
1254                             }
1255                         }
1256                         q->expire = time_uptime + dyn_ack_lifetime;
1257                         break;
1258
1259                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
1260                         if (dyn_fin_lifetime >= dyn_keepalive_period)
1261                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
1262                         q->expire = time_uptime + dyn_fin_lifetime;
1263                         break;
1264
1265                 default:
1266 #if 0
1267                         /*
1268                          * reset or some invalid combination, but can also
1269                          * occur if we use keep-state the wrong way.
1270                          */
1271                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1272                                 printf("invalid state: 0x%x\n", q->state);
1273 #endif
1274                         if (dyn_rst_lifetime >= dyn_keepalive_period)
1275                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
1276                         q->expire = time_uptime + dyn_rst_lifetime;
1277                         break;
1278                 }
1279         } else if (pkt->proto == IPPROTO_UDP) {
1280                 q->expire = time_uptime + dyn_udp_lifetime;
1281         } else {
1282                 /* other protocols */
1283                 q->expire = time_uptime + dyn_short_lifetime;
1284         }
1285 done:
1286         if (match_direction)
1287                 *match_direction = dir;
1288         return q;
1289 }
1290
1291 static ipfw_dyn_rule *
1292 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1293         struct tcphdr *tcp)
1294 {
1295         ipfw_dyn_rule *q;
1296
1297         IPFW_DYN_LOCK();
1298         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1299         if (q == NULL)
1300                 IPFW_DYN_UNLOCK();
1301         /* NB: return table locked when q is not NULL */
1302         return q;
1303 }
1304
1305 static void
1306 realloc_dynamic_table(void)
1307 {
1308         IPFW_DYN_LOCK_ASSERT();
1309
1310         /*
1311          * Try reallocation, make sure we have a power of 2 and do
1312          * not allow more than 64k entries. In case of overflow,
1313          * default to 1024.
1314          */
1315
1316         if (dyn_buckets > 65536)
1317                 dyn_buckets = 1024;
1318         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1319                 dyn_buckets = curr_dyn_buckets; /* reset */
1320                 return;
1321         }
1322         curr_dyn_buckets = dyn_buckets;
1323         if (ipfw_dyn_v != NULL)
1324                 free(ipfw_dyn_v, M_IPFW);
1325         for (;;) {
1326                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1327                        M_IPFW, M_NOWAIT | M_ZERO);
1328                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1329                         break;
1330                 curr_dyn_buckets /= 2;
1331         }
1332 }
1333
1334 /**
1335  * Install state of type 'type' for a dynamic session.
1336  * The hash table contains two type of rules:
1337  * - regular rules (O_KEEP_STATE)
1338  * - rules for sessions with limited number of sess per user
1339  *   (O_LIMIT). When they are created, the parent is
1340  *   increased by 1, and decreased on delete. In this case,
1341  *   the third parameter is the parent rule and not the chain.
1342  * - "parent" rules for the above (O_LIMIT_PARENT).
1343  */
1344 static ipfw_dyn_rule *
1345 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1346 {
1347         ipfw_dyn_rule *r;
1348         int i;
1349
1350         IPFW_DYN_LOCK_ASSERT();
1351
1352         if (ipfw_dyn_v == NULL ||
1353             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1354                 realloc_dynamic_table();
1355                 if (ipfw_dyn_v == NULL)
1356                         return NULL; /* failed ! */
1357         }
1358         i = hash_packet(id);
1359
1360         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1361         if (r == NULL) {
1362                 printf ("ipfw: sorry cannot allocate state\n");
1363                 return NULL;
1364         }
1365
1366         /* increase refcount on parent, and set pointer */
1367         if (dyn_type == O_LIMIT) {
1368                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1369                 if ( parent->dyn_type != O_LIMIT_PARENT)
1370                         panic("invalid parent");
1371                 parent->count++;
1372                 r->parent = parent;
1373                 rule = parent->rule;
1374         }
1375
1376         r->id = *id;
1377         r->expire = time_uptime + dyn_syn_lifetime;
1378         r->rule = rule;
1379         r->dyn_type = dyn_type;
1380         r->pcnt = r->bcnt = 0;
1381         r->count = 0;
1382
1383         r->bucket = i;
1384         r->next = ipfw_dyn_v[i];
1385         ipfw_dyn_v[i] = r;
1386         dyn_count++;
1387         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1388            dyn_type,
1389            (r->id.src_ip), (r->id.src_port),
1390            (r->id.dst_ip), (r->id.dst_port),
1391            dyn_count ); )
1392         return r;
1393 }
1394
1395 /**
1396  * lookup dynamic parent rule using pkt and rule as search keys.
1397  * If the lookup fails, then install one.
1398  */
1399 static ipfw_dyn_rule *
1400 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1401 {
1402         ipfw_dyn_rule *q;
1403         int i;
1404
1405         IPFW_DYN_LOCK_ASSERT();
1406
1407         if (ipfw_dyn_v) {
1408                 int is_v6 = IS_IP6_FLOW_ID(pkt);
1409                 i = hash_packet( pkt );
1410                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1411                         if (q->dyn_type == O_LIMIT_PARENT &&
1412                             rule== q->rule &&
1413                             pkt->proto == q->id.proto &&
1414                             pkt->src_port == q->id.src_port &&
1415                             pkt->dst_port == q->id.dst_port &&
1416                             (
1417                                 (is_v6 &&
1418                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1419                                         &(q->id.src_ip6)) &&
1420                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1421                                         &(q->id.dst_ip6))) ||
1422                                 (!is_v6 &&
1423                                  pkt->src_ip == q->id.src_ip &&
1424                                  pkt->dst_ip == q->id.dst_ip)
1425                             )
1426                         ) {
1427                                 q->expire = time_uptime + dyn_short_lifetime;
1428                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1429                                 return q;
1430                         }
1431         }
1432         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1433 }
1434
1435 /**
1436  * Install dynamic state for rule type cmd->o.opcode
1437  *
1438  * Returns 1 (failure) if state is not installed because of errors or because
1439  * session limitations are enforced.
1440  */
1441 static int
1442 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1443         struct ip_fw_args *args)
1444 {
1445         static int last_log;
1446
1447         ipfw_dyn_rule *q;
1448
1449         DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1450             cmd->o.opcode,
1451             (args->f_id.src_ip), (args->f_id.src_port),
1452             (args->f_id.dst_ip), (args->f_id.dst_port) );)
1453
1454         IPFW_DYN_LOCK();
1455
1456         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1457
1458         if (q != NULL) { /* should never occur */
1459                 if (last_log != time_uptime) {
1460                         last_log = time_uptime;
1461                         printf("ipfw: install_state: entry already present, done\n");
1462                 }
1463                 IPFW_DYN_UNLOCK();
1464                 return 0;
1465         }
1466
1467         if (dyn_count >= dyn_max)
1468                 /*
1469                  * Run out of slots, try to remove any expired rule.
1470                  */
1471                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1472
1473         if (dyn_count >= dyn_max) {
1474                 if (last_log != time_uptime) {
1475                         last_log = time_uptime;
1476                         printf("ipfw: install_state: Too many dynamic rules\n");
1477                 }
1478                 IPFW_DYN_UNLOCK();
1479                 return 1; /* cannot install, notify caller */
1480         }
1481
1482         switch (cmd->o.opcode) {
1483         case O_KEEP_STATE: /* bidir rule */
1484                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1485                 break;
1486
1487         case O_LIMIT: /* limit number of sessions */
1488             {
1489                 u_int16_t limit_mask = cmd->limit_mask;
1490                 struct ipfw_flow_id id;
1491                 ipfw_dyn_rule *parent;
1492
1493                 DEB(printf("ipfw: installing dyn-limit rule %d\n",
1494                     cmd->conn_limit);)
1495
1496                 id.dst_ip = id.src_ip = 0;
1497                 id.dst_port = id.src_port = 0;
1498                 id.proto = args->f_id.proto;
1499
1500                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
1501                         if (limit_mask & DYN_SRC_ADDR)
1502                                 id.src_ip6 = args->f_id.src_ip6;
1503                         if (limit_mask & DYN_DST_ADDR)
1504                                 id.dst_ip6 = args->f_id.dst_ip6;
1505                 } else {
1506                         if (limit_mask & DYN_SRC_ADDR)
1507                                 id.src_ip = args->f_id.src_ip;
1508                         if (limit_mask & DYN_DST_ADDR)
1509                                 id.dst_ip = args->f_id.dst_ip;
1510                 }
1511                 if (limit_mask & DYN_SRC_PORT)
1512                         id.src_port = args->f_id.src_port;
1513                 if (limit_mask & DYN_DST_PORT)
1514                         id.dst_port = args->f_id.dst_port;
1515                 parent = lookup_dyn_parent(&id, rule);
1516                 if (parent == NULL) {
1517                         printf("ipfw: add parent failed\n");
1518                         IPFW_DYN_UNLOCK();
1519                         return 1;
1520                 }
1521                 if (parent->count >= cmd->conn_limit) {
1522                         /*
1523                          * See if we can remove some expired rule.
1524                          */
1525                         remove_dyn_rule(rule, parent);
1526                         if (parent->count >= cmd->conn_limit) {
1527                                 if (fw_verbose && last_log != time_uptime) {
1528                                         last_log = time_uptime;
1529                                         log(LOG_SECURITY | LOG_DEBUG,
1530                                             "drop session, too many entries\n");
1531                                 }
1532                                 IPFW_DYN_UNLOCK();
1533                                 return 1;
1534                         }
1535                 }
1536                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1537             }
1538                 break;
1539         default:
1540                 printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1541                 IPFW_DYN_UNLOCK();
1542                 return 1;
1543         }
1544         lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1545         IPFW_DYN_UNLOCK();
1546         return 0;
1547 }
1548
1549 /*
1550  * Generate a TCP packet, containing either a RST or a keepalive.
1551  * When flags & TH_RST, we are sending a RST packet, because of a
1552  * "reset" action matched the packet.
1553  * Otherwise we are sending a keepalive, and flags & TH_
1554  */
1555 static struct mbuf *
1556 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1557 {
1558         struct mbuf *m;
1559         struct ip *ip;
1560         struct tcphdr *tcp;
1561
1562         MGETHDR(m, M_DONTWAIT, MT_DATA);
1563         if (m == 0)
1564                 return (NULL);
1565         m->m_pkthdr.rcvif = (struct ifnet *)0;
1566         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1567         m->m_data += max_linkhdr;
1568
1569         ip = mtod(m, struct ip *);
1570         bzero(ip, m->m_len);
1571         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1572         ip->ip_p = IPPROTO_TCP;
1573         tcp->th_off = 5;
1574         /*
1575          * Assume we are sending a RST (or a keepalive in the reverse
1576          * direction), swap src and destination addresses and ports.
1577          */
1578         ip->ip_src.s_addr = htonl(id->dst_ip);
1579         ip->ip_dst.s_addr = htonl(id->src_ip);
1580         tcp->th_sport = htons(id->dst_port);
1581         tcp->th_dport = htons(id->src_port);
1582         if (flags & TH_RST) {   /* we are sending a RST */
1583                 if (flags & TH_ACK) {
1584                         tcp->th_seq = htonl(ack);
1585                         tcp->th_ack = htonl(0);
1586                         tcp->th_flags = TH_RST;
1587                 } else {
1588                         if (flags & TH_SYN)
1589                                 seq++;
1590                         tcp->th_seq = htonl(0);
1591                         tcp->th_ack = htonl(seq);
1592                         tcp->th_flags = TH_RST | TH_ACK;
1593                 }
1594         } else {
1595                 /*
1596                  * We are sending a keepalive. flags & TH_SYN determines
1597                  * the direction, forward if set, reverse if clear.
1598                  * NOTE: seq and ack are always assumed to be correct
1599                  * as set by the caller. This may be confusing...
1600                  */
1601                 if (flags & TH_SYN) {
1602                         /*
1603                          * we have to rewrite the correct addresses!
1604                          */
1605                         ip->ip_dst.s_addr = htonl(id->dst_ip);
1606                         ip->ip_src.s_addr = htonl(id->src_ip);
1607                         tcp->th_dport = htons(id->dst_port);
1608                         tcp->th_sport = htons(id->src_port);
1609                 }
1610                 tcp->th_seq = htonl(seq);
1611                 tcp->th_ack = htonl(ack);
1612                 tcp->th_flags = TH_ACK;
1613         }
1614         /*
1615          * set ip_len to the payload size so we can compute
1616          * the tcp checksum on the pseudoheader
1617          * XXX check this, could save a couple of words ?
1618          */
1619         ip->ip_len = htons(sizeof(struct tcphdr));
1620         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1621         /*
1622          * now fill fields left out earlier
1623          */
1624         ip->ip_ttl = ip_defttl;
1625         ip->ip_len = m->m_pkthdr.len;
1626         m->m_flags |= M_SKIP_FIREWALL;
1627         return (m);
1628 }
1629
1630 /*
1631  * sends a reject message, consuming the mbuf passed as an argument.
1632  */
1633 static void
1634 send_reject(struct ip_fw_args *args, int code, u_short offset, int ip_len)
1635 {
1636
1637         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1638                 /* We need the IP header in host order for icmp_error(). */
1639                 if (args->eh != NULL) {
1640                         struct ip *ip = mtod(args->m, struct ip *);
1641                         ip->ip_len = ntohs(ip->ip_len);
1642                         ip->ip_off = ntohs(ip->ip_off);
1643                 }
1644                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1645         } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1646                 struct tcphdr *const tcp =
1647                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1648                 if ( (tcp->th_flags & TH_RST) == 0) {
1649                         struct mbuf *m;
1650                         m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1651                                 ntohl(tcp->th_ack),
1652                                 tcp->th_flags | TH_RST);
1653                         if (m != NULL)
1654                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1655                 }
1656                 m_freem(args->m);
1657         } else
1658                 m_freem(args->m);
1659         args->m = NULL;
1660 }
1661
1662 /**
1663  *
1664  * Given an ip_fw *, lookup_next_rule will return a pointer
1665  * to the next rule, which can be either the jump
1666  * target (for skipto instructions) or the next one in the list (in
1667  * all other cases including a missing jump target).
1668  * The result is also written in the "next_rule" field of the rule.
1669  * Backward jumps are not allowed, so start looking from the next
1670  * rule...
1671  *
1672  * This never returns NULL -- in case we do not have an exact match,
1673  * the next rule is returned. When the ruleset is changed,
1674  * pointers are flushed so we are always correct.
1675  */
1676
1677 static struct ip_fw *
1678 lookup_next_rule(struct ip_fw *me)
1679 {
1680         struct ip_fw *rule = NULL;
1681         ipfw_insn *cmd;
1682
1683         /* look for action, in case it is a skipto */
1684         cmd = ACTION_PTR(me);
1685         if (cmd->opcode == O_LOG)
1686                 cmd += F_LEN(cmd);
1687         if (cmd->opcode == O_ALTQ)
1688                 cmd += F_LEN(cmd);
1689         if ( cmd->opcode == O_SKIPTO )
1690                 for (rule = me->next; rule ; rule = rule->next)
1691                         if (rule->rulenum >= cmd->arg1)
1692                                 break;
1693         if (rule == NULL)                       /* failure or not a skipto */
1694                 rule = me->next;
1695         me->next_rule = rule;
1696         return rule;
1697 }
1698
1699 static void
1700 init_tables(void)
1701 {
1702         int i;
1703
1704         for (i = 0; i < IPFW_TABLES_MAX; i++) {
1705                 rn_inithead((void **)&ipfw_tables[i].rnh, 32);
1706                 ipfw_tables[i].modified = 1;
1707         }
1708 }
1709
1710 static int
1711 add_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen, u_int32_t value)
1712 {
1713         struct radix_node_head *rnh;
1714         struct table_entry *ent;
1715
1716         if (tbl >= IPFW_TABLES_MAX)
1717                 return (EINVAL);
1718         rnh = ipfw_tables[tbl].rnh;
1719         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1720         if (ent == NULL)
1721                 return (ENOMEM);
1722         ent->value = value;
1723         ent->addr.sin_len = ent->mask.sin_len = 8;
1724         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1725         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1726         RADIX_NODE_HEAD_LOCK(rnh);
1727         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1728             NULL) {
1729                 RADIX_NODE_HEAD_UNLOCK(rnh);
1730                 free(ent, M_IPFW_TBL);
1731                 return (EEXIST);
1732         }
1733         ipfw_tables[tbl].modified = 1;
1734         RADIX_NODE_HEAD_UNLOCK(rnh);
1735         return (0);
1736 }
1737
1738 static int
1739 del_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen)
1740 {
1741         struct radix_node_head *rnh;
1742         struct table_entry *ent;
1743         struct sockaddr_in sa, mask;
1744
1745         if (tbl >= IPFW_TABLES_MAX)
1746                 return (EINVAL);
1747         rnh = ipfw_tables[tbl].rnh;
1748         sa.sin_len = mask.sin_len = 8;
1749         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1750         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1751         RADIX_NODE_HEAD_LOCK(rnh);
1752         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1753         if (ent == NULL) {
1754                 RADIX_NODE_HEAD_UNLOCK(rnh);
1755                 return (ESRCH);
1756         }
1757         ipfw_tables[tbl].modified = 1;
1758         RADIX_NODE_HEAD_UNLOCK(rnh);
1759         free(ent, M_IPFW_TBL);
1760         return (0);
1761 }
1762
1763 static int
1764 flush_table_entry(struct radix_node *rn, void *arg)
1765 {
1766         struct radix_node_head * const rnh = arg;
1767         struct table_entry *ent;
1768
1769         ent = (struct table_entry *)
1770             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1771         if (ent != NULL)
1772                 free(ent, M_IPFW_TBL);
1773         return (0);
1774 }
1775
1776 static int
1777 flush_table(u_int16_t tbl)
1778 {
1779         struct radix_node_head *rnh;
1780
1781         if (tbl >= IPFW_TABLES_MAX)
1782                 return (EINVAL);
1783         rnh = ipfw_tables[tbl].rnh;
1784         RADIX_NODE_HEAD_LOCK(rnh);
1785         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1786         ipfw_tables[tbl].modified = 1;
1787         RADIX_NODE_HEAD_UNLOCK(rnh);
1788         return (0);
1789 }
1790
1791 static void
1792 flush_tables(void)
1793 {
1794         u_int16_t tbl;
1795
1796         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1797                 flush_table(tbl);
1798 }
1799
1800 static int
1801 lookup_table(u_int16_t tbl, in_addr_t addr, u_int32_t *val)
1802 {
1803         struct radix_node_head *rnh;
1804         struct ip_fw_table *table;
1805         struct table_entry *ent;
1806         struct sockaddr_in sa;
1807         int last_match;
1808
1809         if (tbl >= IPFW_TABLES_MAX)
1810                 return (0);
1811         table = &ipfw_tables[tbl];
1812         rnh = table->rnh;
1813         RADIX_NODE_HEAD_LOCK(rnh);
1814         if (addr == table->last_addr && !table->modified) {
1815                 last_match = table->last_match;
1816                 if (last_match)
1817                         *val = table->last_value;
1818                 RADIX_NODE_HEAD_UNLOCK(rnh);
1819                 return (last_match);
1820         }
1821         table->modified = 0;
1822         sa.sin_len = 8;
1823         sa.sin_addr.s_addr = addr;
1824         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1825         table->last_addr = addr;
1826         if (ent != NULL) {
1827                 table->last_value = *val = ent->value;
1828                 table->last_match = 1;
1829                 RADIX_NODE_HEAD_UNLOCK(rnh);
1830                 return (1);
1831         }
1832         table->last_match = 0;
1833         RADIX_NODE_HEAD_UNLOCK(rnh);
1834         return (0);
1835 }
1836
1837 static int
1838 count_table_entry(struct radix_node *rn, void *arg)
1839 {
1840         u_int32_t * const cnt = arg;
1841
1842         (*cnt)++;
1843         return (0);
1844 }
1845
1846 static int
1847 count_table(u_int32_t tbl, u_int32_t *cnt)
1848 {
1849         struct radix_node_head *rnh;
1850
1851         if (tbl >= IPFW_TABLES_MAX)
1852                 return (EINVAL);
1853         rnh = ipfw_tables[tbl].rnh;
1854         *cnt = 0;
1855         RADIX_NODE_HEAD_LOCK(rnh);
1856         rnh->rnh_walktree(rnh, count_table_entry, cnt);
1857         RADIX_NODE_HEAD_UNLOCK(rnh);
1858         return (0);
1859 }
1860
1861 static int
1862 dump_table_entry(struct radix_node *rn, void *arg)
1863 {
1864         struct table_entry * const n = (struct table_entry *)rn;
1865         ipfw_table * const tbl = arg;
1866         ipfw_table_entry *ent;
1867
1868         if (tbl->cnt == tbl->size)
1869                 return (1);
1870         ent = &tbl->ent[tbl->cnt];
1871         ent->tbl = tbl->tbl;
1872         if (in_nullhost(n->mask.sin_addr))
1873                 ent->masklen = 0;
1874         else
1875                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1876         ent->addr = n->addr.sin_addr.s_addr;
1877         ent->value = n->value;
1878         tbl->cnt++;
1879         return (0);
1880 }
1881
1882 static int
1883 dump_table(ipfw_table *tbl)
1884 {
1885         struct radix_node_head *rnh;
1886
1887         if (tbl->tbl >= IPFW_TABLES_MAX)
1888                 return (EINVAL);
1889         rnh = ipfw_tables[tbl->tbl].rnh;
1890         tbl->cnt = 0;
1891         RADIX_NODE_HEAD_LOCK(rnh);
1892         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1893         RADIX_NODE_HEAD_UNLOCK(rnh);
1894         return (0);
1895 }
1896
1897 static void
1898 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1899 {
1900         struct ucred *cr;
1901
1902         if (inp->inp_socket != NULL) {
1903                 cr = inp->inp_socket->so_cred;
1904                 ugp->fw_prid = jailed(cr) ?
1905                     cr->cr_prison->pr_id : -1;
1906                 ugp->fw_uid = cr->cr_uid;
1907                 ugp->fw_ngroups = cr->cr_ngroups;
1908                 bcopy(cr->cr_groups, ugp->fw_groups,
1909                     sizeof(ugp->fw_groups));
1910         }
1911 }
1912
1913 static int
1914 check_uidgid(ipfw_insn_u32 *insn,
1915         int proto, struct ifnet *oif,
1916         struct in_addr dst_ip, u_int16_t dst_port,
1917         struct in_addr src_ip, u_int16_t src_port,
1918         struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1919 {
1920         struct inpcbinfo *pi;
1921         int wildcard;
1922         struct inpcb *pcb;
1923         int match;
1924         gid_t *gp;
1925
1926         /*
1927          * Check to see if the UDP or TCP stack supplied us with
1928          * the PCB. If so, rather then holding a lock and looking
1929          * up the PCB, we can use the one that was supplied.
1930          */
1931         if (inp && *lookup == 0) {
1932                 INP_LOCK_ASSERT(inp);
1933                 if (inp->inp_socket != NULL) {
1934                         fill_ugid_cache(inp, ugp);
1935                         *lookup = 1;
1936                 }
1937         }
1938         /*
1939          * If we have already been here and the packet has no
1940          * PCB entry associated with it, then we can safely
1941          * assume that this is a no match.
1942          */
1943         if (*lookup == -1)
1944                 return (0);
1945         if (proto == IPPROTO_TCP) {
1946                 wildcard = 0;
1947                 pi = &tcbinfo;
1948         } else if (proto == IPPROTO_UDP) {
1949                 wildcard = 1;
1950                 pi = &udbinfo;
1951         } else
1952                 return 0;
1953         match = 0;
1954         if (*lookup == 0) {
1955                 INP_INFO_RLOCK(pi);
1956                 pcb =  (oif) ?
1957                         in_pcblookup_hash(pi,
1958                                 dst_ip, htons(dst_port),
1959                                 src_ip, htons(src_port),
1960                                 wildcard, oif) :
1961                         in_pcblookup_hash(pi,
1962                                 src_ip, htons(src_port),
1963                                 dst_ip, htons(dst_port),
1964                                 wildcard, NULL);
1965                 if (pcb != NULL) {
1966                         INP_LOCK(pcb);
1967                         if (pcb->inp_socket != NULL) {
1968                                 fill_ugid_cache(pcb, ugp);
1969                                 *lookup = 1;
1970                         }
1971                         INP_UNLOCK(pcb);
1972                 }
1973                 INP_INFO_RUNLOCK(pi);
1974                 if (*lookup == 0) {
1975                         /*
1976                          * If the lookup did not yield any results, there
1977                          * is no sense in coming back and trying again. So
1978                          * we can set lookup to -1 and ensure that we wont
1979                          * bother the pcb system again.
1980                          */
1981                         *lookup = -1;
1982                         return (0);
1983                 }
1984         } 
1985         if (insn->o.opcode == O_UID)
1986                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
1987         else if (insn->o.opcode == O_GID) {
1988                 for (gp = ugp->fw_groups;
1989                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1990                         if (*gp == (gid_t)insn->d[0]) {
1991                                 match = 1;
1992                                 break;
1993                         }
1994         } else if (insn->o.opcode == O_JAIL)
1995                 match = (ugp->fw_prid == (int)insn->d[0]);
1996         return match;
1997 }
1998
1999 /*
2000  * The main check routine for the firewall.
2001  *
2002  * All arguments are in args so we can modify them and return them
2003  * back to the caller.
2004  *
2005  * Parameters:
2006  *
2007  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
2008  *              Starts with the IP header.
2009  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
2010  *      args->oif       Outgoing interface, or NULL if packet is incoming.
2011  *              The incoming interface is in the mbuf. (in)
2012  *      args->divert_rule (in/out)
2013  *              Skip up to the first rule past this rule number;
2014  *              upon return, non-zero port number for divert or tee.
2015  *
2016  *      args->rule      Pointer to the last matching rule (in/out)
2017  *      args->next_hop  Socket we are forwarding to (out).
2018  *      args->f_id      Addresses grabbed from the packet (out)
2019  *      args->cookie    a cookie depending on rule action
2020  *
2021  * Return value:
2022  *
2023  *      IP_FW_PASS      the packet must be accepted
2024  *      IP_FW_DENY      the packet must be dropped
2025  *      IP_FW_DIVERT    divert packet, port in m_tag
2026  *      IP_FW_TEE       tee packet, port in m_tag
2027  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
2028  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
2029  *
2030  */
2031
2032 int
2033 ipfw_chk(struct ip_fw_args *args)
2034 {
2035         /*
2036          * Local variables hold state during the processing of a packet.
2037          *
2038          * IMPORTANT NOTE: to speed up the processing of rules, there
2039          * are some assumption on the values of the variables, which
2040          * are documented here. Should you change them, please check
2041          * the implementation of the various instructions to make sure
2042          * that they still work.
2043          *
2044          * args->eh     The MAC header. It is non-null for a layer2
2045          *      packet, it is NULL for a layer-3 packet.
2046          *
2047          * m | args->m  Pointer to the mbuf, as received from the caller.
2048          *      It may change if ipfw_chk() does an m_pullup, or if it
2049          *      consumes the packet because it calls send_reject().
2050          *      XXX This has to change, so that ipfw_chk() never modifies
2051          *      or consumes the buffer.
2052          * ip   is simply an alias of the value of m, and it is kept
2053          *      in sync with it (the packet is  supposed to start with
2054          *      the ip header).
2055          */
2056         struct mbuf *m = args->m;
2057         struct ip *ip = mtod(m, struct ip *);
2058
2059         /*
2060          * For rules which contain uid/gid or jail constraints, cache
2061          * a copy of the users credentials after the pcb lookup has been
2062          * executed. This will speed up the processing of rules with
2063          * these types of constraints, as well as decrease contention
2064          * on pcb related locks.
2065          */
2066         struct ip_fw_ugid fw_ugid_cache;
2067         int ugid_lookup = 0;
2068
2069         /*
2070          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
2071          *      associated with a packet input on a divert socket.  This
2072          *      will allow to distinguish traffic and its direction when
2073          *      it originates from a divert socket.
2074          */
2075         u_int divinput_flags = 0;
2076
2077         /*
2078          * oif | args->oif      If NULL, ipfw_chk has been called on the
2079          *      inbound path (ether_input, ip_input).
2080          *      If non-NULL, ipfw_chk has been called on the outbound path
2081          *      (ether_output, ip_output).
2082          */
2083         struct ifnet *oif = args->oif;
2084
2085         struct ip_fw *f = NULL;         /* matching rule */
2086         int retval = 0;
2087
2088         /*
2089          * hlen The length of the IP header.
2090          */
2091         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
2092
2093         /*
2094          * offset       The offset of a fragment. offset != 0 means that
2095          *      we have a fragment at this offset of an IPv4 packet.
2096          *      offset == 0 means that (if this is an IPv4 packet)
2097          *      this is the first or only fragment.
2098          *      For IPv6 offset == 0 means there is no Fragment Header. 
2099          *      If offset != 0 for IPv6 always use correct mask to
2100          *      get the correct offset because we add IP6F_MORE_FRAG
2101          *      to be able to dectect the first fragment which would
2102          *      otherwise have offset = 0.
2103          */
2104         u_short offset = 0;
2105
2106         /*
2107          * Local copies of addresses. They are only valid if we have
2108          * an IP packet.
2109          *
2110          * proto        The protocol. Set to 0 for non-ip packets,
2111          *      or to the protocol read from the packet otherwise.
2112          *      proto != 0 means that we have an IPv4 packet.
2113          *
2114          * src_port, dst_port   port numbers, in HOST format. Only
2115          *      valid for TCP and UDP packets.
2116          *
2117          * src_ip, dst_ip       ip addresses, in NETWORK format.
2118          *      Only valid for IPv4 packets.
2119          */
2120         u_int8_t proto;
2121         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
2122         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
2123         u_int16_t ip_len=0;
2124         int pktlen;
2125
2126         /*
2127          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2128          *      MATCH_NONE when checked and not matched (q = NULL),
2129          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2130          */
2131         int dyn_dir = MATCH_UNKNOWN;
2132         ipfw_dyn_rule *q = NULL;
2133         struct ip_fw_chain *chain = &layer3_chain;
2134         struct m_tag *mtag;
2135
2136         /*
2137          * We store in ulp a pointer to the upper layer protocol header.
2138          * In the ipv4 case this is easy to determine from the header,
2139          * but for ipv6 we might have some additional headers in the middle.
2140          * ulp is NULL if not found.
2141          */
2142         void *ulp = NULL;               /* upper layer protocol pointer. */
2143         /* XXX ipv6 variables */
2144         int is_ipv6 = 0;
2145         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
2146         /* end of ipv6 variables */
2147         int is_ipv4 = 0;
2148
2149         if (m->m_flags & M_SKIP_FIREWALL)
2150                 return (IP_FW_PASS);    /* accept */
2151
2152         pktlen = m->m_pkthdr.len;
2153         proto = args->f_id.proto = 0;   /* mark f_id invalid */
2154                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2155
2156 /*
2157  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2158  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2159  * pointer might become stale after other pullups (but we never use it
2160  * this way).
2161  */
2162 #define PULLUP_TO(len, p, T)                                            \
2163 do {                                                                    \
2164         int x = (len) + sizeof(T);                                      \
2165         if ((m)->m_len < x) {                                           \
2166                 args->m = m = m_pullup(m, x);                           \
2167                 if (m == NULL)                                          \
2168                         goto pullup_failed;                             \
2169         }                                                               \
2170         p = (mtod(m, char *) + (len));                                  \
2171 } while (0)
2172
2173         /* Identify IP packets and fill up variables. */
2174         if (pktlen >= sizeof(struct ip6_hdr) &&
2175             (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2176             mtod(m, struct ip *)->ip_v == 6) {
2177                 is_ipv6 = 1;
2178                 args->f_id.addr_type = 6;
2179                 hlen = sizeof(struct ip6_hdr);
2180                 proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2181
2182                 /* Search extension headers to find upper layer protocols */
2183                 while (ulp == NULL) {
2184                         switch (proto) {
2185                         case IPPROTO_ICMPV6:
2186                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2187                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
2188                                 break;
2189
2190                         case IPPROTO_TCP:
2191                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2192                                 dst_port = TCP(ulp)->th_dport;
2193                                 src_port = TCP(ulp)->th_sport;
2194                                 args->f_id.flags = TCP(ulp)->th_flags;
2195                                 break;
2196
2197                         case IPPROTO_UDP:
2198                                 PULLUP_TO(hlen, ulp, struct udphdr);
2199                                 dst_port = UDP(ulp)->uh_dport;
2200                                 src_port = UDP(ulp)->uh_sport;
2201                                 break;
2202
2203                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
2204                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2205                                 ext_hd |= EXT_HOPOPTS;
2206                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2207                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2208                                 ulp = NULL;
2209                                 break;
2210
2211                         case IPPROTO_ROUTING:   /* RFC 2460 */
2212                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2213                                 if (((struct ip6_rthdr *)ulp)->ip6r_type != 0) {
2214                                         printf("IPFW2: IPV6 - Unknown Routing "
2215                                             "Header type(%d)\n",
2216                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
2217                                         if (fw_deny_unknown_exthdrs)
2218                                             return (IP_FW_DENY);
2219                                         break;
2220                                 }
2221                                 ext_hd |= EXT_ROUTING;
2222                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2223                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2224                                 ulp = NULL;
2225                                 break;
2226
2227                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
2228                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
2229                                 ext_hd |= EXT_FRAGMENT;
2230                                 hlen += sizeof (struct ip6_frag);
2231                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2232                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2233                                         IP6F_OFF_MASK;
2234                                 /* Add IP6F_MORE_FRAG for offset of first
2235                                  * fragment to be != 0. */
2236                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2237                                         IP6F_MORE_FRAG;
2238                                 if (offset == 0) {
2239                                         printf("IPFW2: IPV6 - Invalid Fragment "
2240                                             "Header\n");
2241                                         if (fw_deny_unknown_exthdrs)
2242                                             return (IP_FW_DENY);
2243                                         break;
2244                                 }
2245                                 args->f_id.frag_id6 =
2246                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2247                                 ulp = NULL;
2248                                 break;
2249
2250                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
2251                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2252                                 ext_hd |= EXT_DSTOPTS;
2253                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2254                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2255                                 ulp = NULL;
2256                                 break;
2257
2258                         case IPPROTO_AH:        /* RFC 2402 */
2259                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2260                                 ext_hd |= EXT_AH;
2261                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2262                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2263                                 ulp = NULL;
2264                                 break;
2265
2266                         case IPPROTO_ESP:       /* RFC 2406 */
2267                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
2268                                 /* Anything past Seq# is variable length and
2269                                  * data past this ext. header is encrypted. */
2270                                 ext_hd |= EXT_ESP;
2271                                 break;
2272
2273                         case IPPROTO_NONE:      /* RFC 2460 */
2274                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2275                                 /* Packet ends here. if ip6e_len!=0 octets
2276                                  * must be ignored. */
2277                                 break;
2278
2279                         case IPPROTO_OSPFIGP:
2280                                 /* XXX OSPF header check? */
2281                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2282                                 break;
2283
2284                         default:
2285                                 printf("IPFW2: IPV6 - Unknown Extension "
2286                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
2287                                 if (fw_deny_unknown_exthdrs)
2288                                     return (IP_FW_DENY);
2289                                 break;
2290                         } /*switch */
2291                 }
2292                 args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2293                 args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2294                 args->f_id.src_ip = 0;
2295                 args->f_id.dst_ip = 0;
2296                 args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2297         } else if (pktlen >= sizeof(struct ip) &&
2298             (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2299             mtod(m, struct ip *)->ip_v == 4) {
2300                 is_ipv4 = 1;
2301                 ip = mtod(m, struct ip *);
2302                 hlen = ip->ip_hl << 2;
2303                 args->f_id.addr_type = 4;
2304
2305                 /*
2306                  * Collect parameters into local variables for faster matching.
2307                  */
2308                 proto = ip->ip_p;
2309                 src_ip = ip->ip_src;
2310                 dst_ip = ip->ip_dst;
2311                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2312                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
2313                         ip_len = ntohs(ip->ip_len);
2314                 } else {
2315                         offset = ip->ip_off & IP_OFFMASK;
2316                         ip_len = ip->ip_len;
2317                 }
2318                 pktlen = ip_len < pktlen ? ip_len : pktlen;
2319
2320                 if (offset == 0) {
2321                         switch (proto) {
2322                         case IPPROTO_TCP:
2323                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2324                                 dst_port = TCP(ulp)->th_dport;
2325                                 src_port = TCP(ulp)->th_sport;
2326                                 args->f_id.flags = TCP(ulp)->th_flags;
2327                                 break;
2328
2329                         case IPPROTO_UDP:
2330                                 PULLUP_TO(hlen, ulp, struct udphdr);
2331                                 dst_port = UDP(ulp)->uh_dport;
2332                                 src_port = UDP(ulp)->uh_sport;
2333                                 break;
2334
2335                         case IPPROTO_ICMP:
2336                                 PULLUP_TO(hlen, ulp, struct icmphdr);
2337                                 args->f_id.flags = ICMP(ulp)->icmp_type;
2338                                 break;
2339
2340                         default:
2341                                 break;
2342                         }
2343                 }
2344
2345                 args->f_id.src_ip = ntohl(src_ip.s_addr);
2346                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2347         }
2348 #undef PULLUP_TO
2349         if (proto) { /* we may have port numbers, store them */
2350                 args->f_id.proto = proto;
2351                 args->f_id.src_port = src_port = ntohs(src_port);
2352                 args->f_id.dst_port = dst_port = ntohs(dst_port);
2353         }
2354
2355         IPFW_RLOCK(chain);
2356         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2357         if (args->rule) {
2358                 /*
2359                  * Packet has already been tagged. Look for the next rule
2360                  * to restart processing.
2361                  *
2362                  * If fw_one_pass != 0 then just accept it.
2363                  * XXX should not happen here, but optimized out in
2364                  * the caller.
2365                  */
2366                 if (fw_one_pass) {
2367                         IPFW_RUNLOCK(chain);
2368                         return (IP_FW_PASS);
2369                 }
2370
2371                 f = args->rule->next_rule;
2372                 if (f == NULL)
2373                         f = lookup_next_rule(args->rule);
2374         } else {
2375                 /*
2376                  * Find the starting rule. It can be either the first
2377                  * one, or the one after divert_rule if asked so.
2378                  */
2379                 int skipto = mtag ? divert_cookie(mtag) : 0;
2380
2381                 f = chain->rules;
2382                 if (args->eh == NULL && skipto != 0) {
2383                         if (skipto >= IPFW_DEFAULT_RULE) {
2384                                 IPFW_RUNLOCK(chain);
2385                                 return (IP_FW_DENY); /* invalid */
2386                         }
2387                         while (f && f->rulenum <= skipto)
2388                                 f = f->next;
2389                         if (f == NULL) {        /* drop packet */
2390                                 IPFW_RUNLOCK(chain);
2391                                 return (IP_FW_DENY);
2392                         }
2393                 }
2394         }
2395         /* reset divert rule to avoid confusion later */
2396         if (mtag) {
2397                 divinput_flags = divert_info(mtag) &
2398                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2399                 m_tag_delete(m, mtag);
2400         }
2401
2402         /*
2403          * Now scan the rules, and parse microinstructions for each rule.
2404          */
2405         for (; f; f = f->next) {
2406                 int l, cmdlen;
2407                 ipfw_insn *cmd;
2408                 int skip_or; /* skip rest of OR block */
2409
2410 again:
2411                 if (set_disable & (1 << f->set) )
2412                         continue;
2413
2414                 skip_or = 0;
2415                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2416                     l -= cmdlen, cmd += cmdlen) {
2417                         int match;
2418
2419                         /*
2420                          * check_body is a jump target used when we find a
2421                          * CHECK_STATE, and need to jump to the body of
2422                          * the target rule.
2423                          */
2424
2425 check_body:
2426                         cmdlen = F_LEN(cmd);
2427                         /*
2428                          * An OR block (insn_1 || .. || insn_n) has the
2429                          * F_OR bit set in all but the last instruction.
2430                          * The first match will set "skip_or", and cause
2431                          * the following instructions to be skipped until
2432                          * past the one with the F_OR bit clear.
2433                          */
2434                         if (skip_or) {          /* skip this instruction */
2435                                 if ((cmd->len & F_OR) == 0)
2436                                         skip_or = 0;    /* next one is good */
2437                                 continue;
2438                         }
2439                         match = 0; /* set to 1 if we succeed */
2440
2441                         switch (cmd->opcode) {
2442                         /*
2443                          * The first set of opcodes compares the packet's
2444                          * fields with some pattern, setting 'match' if a
2445                          * match is found. At the end of the loop there is
2446                          * logic to deal with F_NOT and F_OR flags associated
2447                          * with the opcode.
2448                          */
2449                         case O_NOP:
2450                                 match = 1;
2451                                 break;
2452
2453                         case O_FORWARD_MAC:
2454                                 printf("ipfw: opcode %d unimplemented\n",
2455                                     cmd->opcode);
2456                                 break;
2457
2458                         case O_GID:
2459                         case O_UID:
2460                         case O_JAIL:
2461                                 /*
2462                                  * We only check offset == 0 && proto != 0,
2463                                  * as this ensures that we have a
2464                                  * packet with the ports info.
2465                                  */
2466                                 if (offset!=0)
2467                                         break;
2468                                 if (is_ipv6) /* XXX to be fixed later */
2469                                         break;
2470                                 if (proto == IPPROTO_TCP ||
2471                                     proto == IPPROTO_UDP)
2472                                         match = check_uidgid(
2473                                                     (ipfw_insn_u32 *)cmd,
2474                                                     proto, oif,
2475                                                     dst_ip, dst_port,
2476                                                     src_ip, src_port, &fw_ugid_cache,
2477                                                     &ugid_lookup, args->inp);
2478                                 break;
2479
2480                         case O_RECV:
2481                                 match = iface_match(m->m_pkthdr.rcvif,
2482                                     (ipfw_insn_if *)cmd);
2483                                 break;
2484
2485                         case O_XMIT:
2486                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
2487                                 break;
2488
2489                         case O_VIA:
2490                                 match = iface_match(oif ? oif :
2491                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2492                                 break;
2493
2494                         case O_MACADDR2:
2495                                 if (args->eh != NULL) { /* have MAC header */
2496                                         u_int32_t *want = (u_int32_t *)
2497                                                 ((ipfw_insn_mac *)cmd)->addr;
2498                                         u_int32_t *mask = (u_int32_t *)
2499                                                 ((ipfw_insn_mac *)cmd)->mask;
2500                                         u_int32_t *hdr = (u_int32_t *)args->eh;
2501
2502                                         match =
2503                                             ( want[0] == (hdr[0] & mask[0]) &&
2504                                               want[1] == (hdr[1] & mask[1]) &&
2505                                               want[2] == (hdr[2] & mask[2]) );
2506                                 }
2507                                 break;
2508
2509                         case O_MAC_TYPE:
2510                                 if (args->eh != NULL) {
2511                                         u_int16_t t =
2512                                             ntohs(args->eh->ether_type);
2513                                         u_int16_t *p =
2514                                             ((ipfw_insn_u16 *)cmd)->ports;
2515                                         int i;
2516
2517                                         for (i = cmdlen - 1; !match && i>0;
2518                                             i--, p += 2)
2519                                                 match = (t>=p[0] && t<=p[1]);
2520                                 }
2521                                 break;
2522
2523                         case O_FRAG:
2524                                 match = (offset != 0);
2525                                 break;
2526
2527                         case O_IN:      /* "out" is "not in" */
2528                                 match = (oif == NULL);
2529                                 break;
2530
2531                         case O_LAYER2:
2532                                 match = (args->eh != NULL);
2533                                 break;
2534
2535                         case O_DIVERTED:
2536                                 match = (cmd->arg1 & 1 && divinput_flags &
2537                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
2538                                         (cmd->arg1 & 2 && divinput_flags &
2539                                     IP_FW_DIVERT_OUTPUT_FLAG);
2540                                 break;
2541
2542                         case O_PROTO:
2543                                 /*
2544                                  * We do not allow an arg of 0 so the
2545                                  * check of "proto" only suffices.
2546                                  */
2547                                 match = (proto == cmd->arg1);
2548                                 break;
2549
2550                         case O_IP_SRC:
2551                                 match = is_ipv4 &&
2552                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2553                                     src_ip.s_addr);
2554                                 break;
2555
2556                         case O_IP_SRC_LOOKUP:
2557                         case O_IP_DST_LOOKUP:
2558                                 if (is_ipv4) {
2559                                     uint32_t a =
2560                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
2561                                             dst_ip.s_addr : src_ip.s_addr;
2562                                     uint32_t v;
2563
2564                                     match = lookup_table(cmd->arg1, a, &v);
2565                                     if (!match)
2566                                         break;
2567                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2568                                         match =
2569                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
2570                                 }
2571                                 break;
2572
2573                         case O_IP_SRC_MASK:
2574                         case O_IP_DST_MASK:
2575                                 if (is_ipv4) {
2576                                     uint32_t a =
2577                                         (cmd->opcode == O_IP_DST_MASK) ?
2578                                             dst_ip.s_addr : src_ip.s_addr;
2579                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2580                                     int i = cmdlen-1;
2581
2582                                     for (; !match && i>0; i-= 2, p+= 2)
2583                                         match = (p[0] == (a & p[1]));
2584                                 }
2585                                 break;
2586
2587                         case O_IP_SRC_ME:
2588                                 if (is_ipv4) {
2589                                         struct ifnet *tif;
2590
2591                                         INADDR_TO_IFP(src_ip, tif);
2592                                         match = (tif != NULL);
2593                                 }
2594                                 break;
2595
2596                         case O_IP_DST_SET:
2597                         case O_IP_SRC_SET:
2598                                 if (is_ipv4) {
2599                                         u_int32_t *d = (u_int32_t *)(cmd+1);
2600                                         u_int32_t addr =
2601                                             cmd->opcode == O_IP_DST_SET ?
2602                                                 args->f_id.dst_ip :
2603                                                 args->f_id.src_ip;
2604
2605                                             if (addr < d[0])
2606                                                     break;
2607                                             addr -= d[0]; /* subtract base */
2608                                             match = (addr < cmd->arg1) &&
2609                                                 ( d[ 1 + (addr>>5)] &
2610                                                   (1<<(addr & 0x1f)) );
2611                                 }
2612                                 break;
2613
2614                         case O_IP_DST:
2615                                 match = is_ipv4 &&
2616                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2617                                     dst_ip.s_addr);
2618                                 break;
2619
2620                         case O_IP_DST_ME:
2621                                 if (is_ipv4) {
2622                                         struct ifnet *tif;
2623
2624                                         INADDR_TO_IFP(dst_ip, tif);
2625                                         match = (tif != NULL);
2626                                 }
2627                                 break;
2628
2629                         case O_IP_SRCPORT:
2630                         case O_IP_DSTPORT:
2631                                 /*
2632                                  * offset == 0 && proto != 0 is enough
2633                                  * to guarantee that we have a
2634                                  * packet with port info.
2635                                  */
2636                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2637                                     && offset == 0) {
2638                                         u_int16_t x =
2639                                             (cmd->opcode == O_IP_SRCPORT) ?
2640                                                 src_port : dst_port ;
2641                                         u_int16_t *p =
2642                                             ((ipfw_insn_u16 *)cmd)->ports;
2643                                         int i;
2644
2645                                         for (i = cmdlen - 1; !match && i>0;
2646                                             i--, p += 2)
2647                                                 match = (x>=p[0] && x<=p[1]);
2648                                 }
2649                                 break;
2650
2651                         case O_ICMPTYPE:
2652                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
2653                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2654                                 break;
2655
2656 #ifdef INET6
2657                         case O_ICMP6TYPE:
2658                                 match = is_ipv6 && offset == 0 &&
2659                                     proto==IPPROTO_ICMPV6 &&
2660                                     icmp6type_match(
2661                                         ICMP6(ulp)->icmp6_type,
2662                                         (ipfw_insn_u32 *)cmd);
2663                                 break;
2664 #endif /* INET6 */
2665
2666                         case O_IPOPT:
2667                                 match = (is_ipv4 &&
2668                                     ipopts_match(mtod(m, struct ip *), cmd) );
2669                                 break;
2670
2671                         case O_IPVER:
2672                                 match = (is_ipv4 &&
2673                                     cmd->arg1 == mtod(m, struct ip *)->ip_v);
2674                                 break;
2675
2676                         case O_IPID:
2677                         case O_IPLEN:
2678                         case O_IPTTL:
2679                                 if (is_ipv4) {  /* only for IP packets */
2680                                     uint16_t x;
2681                                     uint16_t *p;
2682                                     int i;
2683
2684                                     if (cmd->opcode == O_IPLEN)
2685                                         x = ip_len;
2686                                     else if (cmd->opcode == O_IPTTL)
2687                                         x = mtod(m, struct ip *)->ip_ttl;
2688                                     else /* must be IPID */
2689                                         x = ntohs(mtod(m, struct ip *)->ip_id);
2690                                     if (cmdlen == 1) {
2691                                         match = (cmd->arg1 == x);
2692                                         break;
2693                                     }
2694                                     /* otherwise we have ranges */
2695                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2696                                     i = cmdlen - 1;
2697                                     for (; !match && i>0; i--, p += 2)
2698                                         match = (x >= p[0] && x <= p[1]);
2699                                 }
2700                                 break;
2701
2702                         case O_IPPRECEDENCE:
2703                                 match = (is_ipv4 &&
2704                                     (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2705                                 break;
2706
2707                         case O_IPTOS:
2708                                 match = (is_ipv4 &&
2709                                     flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2710                                 break;
2711
2712                         case O_TCPDATALEN:
2713                                 if (proto == IPPROTO_TCP && offset == 0) {
2714                                     struct tcphdr *tcp;
2715                                     uint16_t x;
2716                                     uint16_t *p;
2717                                     int i;
2718
2719                                     tcp = TCP(ulp);
2720                                     x = ip_len -
2721                                         ((ip->ip_hl + tcp->th_off) << 2);
2722                                     if (cmdlen == 1) {
2723                                         match = (cmd->arg1 == x);
2724                                         break;
2725                                     }
2726                                     /* otherwise we have ranges */
2727                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2728                                     i = cmdlen - 1;
2729                                     for (; !match && i>0; i--, p += 2)
2730                                         match = (x >= p[0] && x <= p[1]);
2731                                 }
2732                                 break;
2733
2734                         case O_TCPFLAGS:
2735                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2736                                     flags_match(cmd, TCP(ulp)->th_flags));
2737                                 break;
2738
2739                         case O_TCPOPTS:
2740                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2741                                     tcpopts_match(TCP(ulp), cmd));
2742                                 break;
2743
2744                         case O_TCPSEQ:
2745                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2746                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2747                                         TCP(ulp)->th_seq);
2748                                 break;
2749
2750                         case O_TCPACK:
2751                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2752                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2753                                         TCP(ulp)->th_ack);
2754                                 break;
2755
2756                         case O_TCPWIN:
2757                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2758                                     cmd->arg1 == TCP(ulp)->th_win);
2759                                 break;
2760
2761                         case O_ESTAB:
2762                                 /* reject packets which have SYN only */
2763                                 /* XXX should i also check for TH_ACK ? */
2764                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2765                                     (TCP(ulp)->th_flags &
2766                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2767                                 break;
2768
2769                         case O_ALTQ: {
2770                                 struct altq_tag *at;
2771                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2772
2773                                 match = 1;
2774                                 mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2775                                 if (mtag != NULL)
2776                                         break;
2777                                 mtag = m_tag_get(PACKET_TAG_PF_QID,
2778                                                 sizeof(struct altq_tag),
2779                                                 M_NOWAIT);
2780                                 if (mtag == NULL) {
2781                                         /*
2782                                          * Let the packet fall back to the
2783                                          * default ALTQ.
2784                                          */
2785                                         break;
2786                                 }
2787                                 at = (struct altq_tag *)(mtag+1);
2788                                 at->qid = altq->qid;
2789                                 if (is_ipv4)
2790                                         at->af = AF_INET;
2791                                 else
2792                                         at->af = AF_LINK;
2793                                 at->hdr = ip;
2794                                 m_tag_prepend(m, mtag);
2795                                 break;
2796                         }
2797
2798                         case O_LOG:
2799                                 if (fw_verbose)
2800                                         ipfw_log(f, hlen, args, m, oif, offset);
2801                                 match = 1;
2802                                 break;
2803
2804                         case O_PROB:
2805                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2806                                 break;
2807
2808                         case O_VERREVPATH:
2809                                 /* Outgoing packets automatically pass/match */
2810                                 match = ((oif != NULL) ||
2811                                     (m->m_pkthdr.rcvif == NULL) ||
2812                                     (
2813 #ifdef INET6
2814                                     is_ipv6 ?
2815                                         verify_path6(&(args->f_id.src_ip6),
2816                                             m->m_pkthdr.rcvif) :
2817 #endif
2818                                     verify_path(src_ip, m->m_pkthdr.rcvif)));
2819                                 break;
2820
2821                         case O_VERSRCREACH:
2822                                 /* Outgoing packets automatically pass/match */
2823                                 match = (hlen > 0 && ((oif != NULL) ||
2824 #ifdef INET6
2825                                     is_ipv6 ?
2826                                         verify_path6(&(args->f_id.src_ip6),
2827                                             NULL) :
2828 #endif
2829                                     verify_path(src_ip, NULL)));
2830                                 break;
2831
2832                         case O_ANTISPOOF:
2833                                 /* Outgoing packets automatically pass/match */
2834                                 if (oif == NULL && hlen > 0 &&
2835                                     (  (is_ipv4 && in_localaddr(src_ip))
2836 #ifdef INET6
2837                                     || (is_ipv6 &&
2838                                         in6_localaddr(&(args->f_id.src_ip6)))
2839 #endif
2840                                     ))
2841                                         match =
2842 #ifdef INET6
2843                                             is_ipv6 ? verify_path6(
2844                                                 &(args->f_id.src_ip6),
2845                                                 m->m_pkthdr.rcvif) :
2846 #endif
2847                                             verify_path(src_ip,
2848                                                 m->m_pkthdr.rcvif);
2849                                 else
2850                                         match = 1;
2851                                 break;
2852
2853                         case O_IPSEC:
2854 #ifdef FAST_IPSEC
2855                                 match = (m_tag_find(m,
2856                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2857 #endif
2858 #ifdef IPSEC
2859                                 match = (ipsec_getnhist(m) != 0);
2860 #endif
2861                                 /* otherwise no match */
2862                                 break;
2863
2864 #ifdef INET6
2865                         case O_IP6_SRC:
2866                                 match = is_ipv6 &&
2867                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2868                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2869                                 break;
2870
2871                         case O_IP6_DST:
2872                                 match = is_ipv6 &&
2873                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2874                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2875                                 break;
2876                         case O_IP6_SRC_MASK:
2877                                 if (is_ipv6) {
2878                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2879                                         struct in6_addr p = args->f_id.src_ip6;
2880
2881                                         APPLY_MASK(&p, &te->mask6);
2882                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2883                                 }
2884                                 break;
2885
2886                         case O_IP6_DST_MASK:
2887                                 if (is_ipv6) {
2888                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2889                                         struct in6_addr p = args->f_id.dst_ip6;
2890
2891                                         APPLY_MASK(&p, &te->mask6);
2892                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2893                                 }
2894                                 break;
2895
2896                         case O_IP6_SRC_ME:
2897                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2898                                 break;
2899
2900                         case O_IP6_DST_ME:
2901                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2902                                 break;
2903
2904                         case O_FLOW6ID:
2905                                 match = is_ipv6 &&
2906                                     flow6id_match(args->f_id.flow_id6,
2907                                     (ipfw_insn_u32 *) cmd);
2908                                 break;
2909
2910                         case O_EXT_HDR:
2911                                 match = is_ipv6 &&
2912                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
2913                                 break;
2914
2915                         case O_IP6:
2916                                 match = is_ipv6;
2917                                 break;
2918 #endif
2919
2920                         case O_IP4:
2921                                 match = is_ipv4;
2922                                 break;
2923
2924                         /*
2925                          * The second set of opcodes represents 'actions',
2926                          * i.e. the terminal part of a rule once the packet
2927                          * matches all previous patterns.
2928                          * Typically there is only one action for each rule,
2929                          * and the opcode is stored at the end of the rule
2930                          * (but there are exceptions -- see below).
2931                          *
2932                          * In general, here we set retval and terminate the
2933                          * outer loop (would be a 'break 3' in some language,
2934                          * but we need to do a 'goto done').
2935                          *
2936                          * Exceptions:
2937                          * O_COUNT and O_SKIPTO actions:
2938                          *   instead of terminating, we jump to the next rule
2939                          *   ('goto next_rule', equivalent to a 'break 2'),
2940                          *   or to the SKIPTO target ('goto again' after
2941                          *   having set f, cmd and l), respectively.
2942                          *
2943                          * O_LOG and O_ALTQ action parameters:
2944                          *   perform some action and set match = 1;
2945                          *
2946                          * O_LIMIT and O_KEEP_STATE: these opcodes are
2947                          *   not real 'actions', and are stored right
2948                          *   before the 'action' part of the rule.
2949                          *   These opcodes try to install an entry in the
2950                          *   state tables; if successful, we continue with
2951                          *   the next opcode (match=1; break;), otherwise
2952                          *   the packet *   must be dropped
2953                          *   ('goto done' after setting retval);
2954                          *
2955                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2956                          *   cause a lookup of the state table, and a jump
2957                          *   to the 'action' part of the parent rule
2958                          *   ('goto check_body') if an entry is found, or
2959                          *   (CHECK_STATE only) a jump to the next rule if
2960                          *   the entry is not found ('goto next_rule').
2961                          *   The result of the lookup is cached to make
2962                          *   further instances of these opcodes are
2963                          *   effectively NOPs.
2964                          */
2965                         case O_LIMIT:
2966                         case O_KEEP_STATE:
2967                                 if (install_state(f,
2968                                     (ipfw_insn_limit *)cmd, args)) {
2969                                         retval = IP_FW_DENY;
2970                                         goto done; /* error/limit violation */
2971                                 }
2972                                 match = 1;
2973                                 break;
2974
2975                         case O_PROBE_STATE:
2976                         case O_CHECK_STATE:
2977                                 /*
2978                                  * dynamic rules are checked at the first
2979                                  * keep-state or check-state occurrence,
2980                                  * with the result being stored in dyn_dir.
2981                                  * The compiler introduces a PROBE_STATE
2982                                  * instruction for us when we have a
2983                                  * KEEP_STATE (because PROBE_STATE needs
2984                                  * to be run first).
2985                                  */
2986                                 if (dyn_dir == MATCH_UNKNOWN &&
2987                                     (q = lookup_dyn_rule(&args->f_id,
2988                                      &dyn_dir, proto == IPPROTO_TCP ?
2989                                         TCP(ulp) : NULL))
2990                                         != NULL) {
2991                                         /*
2992                                          * Found dynamic entry, update stats
2993                                          * and jump to the 'action' part of
2994                                          * the parent rule.
2995                                          */
2996                                         q->pcnt++;
2997                                         q->bcnt += pktlen;
2998                                         f = q->rule;
2999                                         cmd = ACTION_PTR(f);
3000                                         l = f->cmd_len - f->act_ofs;
3001                                         IPFW_DYN_UNLOCK();
3002                                         goto check_body;
3003                                 }
3004                                 /*
3005                                  * Dynamic entry not found. If CHECK_STATE,
3006                                  * skip to next rule, if PROBE_STATE just
3007                                  * ignore and continue with next opcode.
3008                                  */
3009                                 if (cmd->opcode == O_CHECK_STATE)
3010                                         goto next_rule;
3011                                 match = 1;
3012                                 break;
3013
3014                         case O_ACCEPT:
3015                                 retval = 0;     /* accept */
3016                                 goto done;
3017
3018                         case O_PIPE:
3019                         case O_QUEUE:
3020                                 args->rule = f; /* report matching rule */
3021                                 args->cookie = cmd->arg1;
3022                                 retval = IP_FW_DUMMYNET;
3023                                 goto done;
3024
3025                         case O_DIVERT:
3026                         case O_TEE: {
3027                                 struct divert_tag *dt;
3028
3029                                 if (args->eh) /* not on layer 2 */
3030                                         break;
3031                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
3032                                                 sizeof(struct divert_tag),
3033                                                 M_NOWAIT);
3034                                 if (mtag == NULL) {
3035                                         /* XXX statistic */
3036                                         /* drop packet */
3037                                         IPFW_RUNLOCK(chain);
3038                                         return (IP_FW_DENY);
3039                                 }
3040                                 dt = (struct divert_tag *)(mtag+1);
3041                                 dt->cookie = f->rulenum;
3042                                 dt->info = cmd->arg1;
3043                                 m_tag_prepend(m, mtag);
3044                                 retval = (cmd->opcode == O_DIVERT) ?
3045                                     IP_FW_DIVERT : IP_FW_TEE;
3046                                 goto done;
3047                         }
3048
3049                         case O_COUNT:
3050                         case O_SKIPTO:
3051                                 f->pcnt++;      /* update stats */
3052                                 f->bcnt += pktlen;
3053                                 f->timestamp = time_uptime;
3054                                 if (cmd->opcode == O_COUNT)
3055                                         goto next_rule;
3056                                 /* handle skipto */
3057                                 if (f->next_rule == NULL)
3058                                         lookup_next_rule(f);
3059                                 f = f->next_rule;
3060                                 goto again;
3061
3062                         case O_REJECT:
3063                                 /*
3064                                  * Drop the packet and send a reject notice
3065                                  * if the packet is not ICMP (or is an ICMP
3066                                  * query), and it is not multicast/broadcast.
3067                                  */
3068                                 if (hlen > 0 && is_ipv4 &&
3069                                     (proto != IPPROTO_ICMP ||
3070                                      is_icmp_query(ICMP(ulp))) &&
3071                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3072                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3073                                         send_reject(args, cmd->arg1,
3074                                             offset,ip_len);
3075                                         m = args->m;
3076                                 }
3077                                 /* FALLTHROUGH */
3078 #ifdef INET6
3079                         case O_UNREACH6:
3080                                 if (hlen > 0 && is_ipv6 &&
3081                                     (proto != IPPROTO_ICMPV6 ||
3082                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
3083                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3084                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3085                                         send_reject6(args, cmd->arg1,
3086                                             offset, hlen);
3087                                         m = args->m;
3088                                 }
3089                                 /* FALLTHROUGH */
3090 #endif
3091                         case O_DENY:
3092                                 retval = IP_FW_DENY;
3093                                 goto done;
3094
3095                         case O_FORWARD_IP:
3096                                 if (args->eh)   /* not valid on layer2 pkts */
3097                                         break;
3098                                 if (!q || dyn_dir == MATCH_FORWARD)
3099                                         args->next_hop =
3100                                             &((ipfw_insn_sa *)cmd)->sa;
3101                                 retval = IP_FW_PASS;
3102                                 goto done;
3103
3104                         case O_NETGRAPH:
3105                         case O_NGTEE:
3106                                 args->rule = f; /* report matching rule */
3107                                 args->cookie = cmd->arg1;
3108                                 retval = (cmd->opcode == O_NETGRAPH) ?
3109                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
3110                                 goto done;
3111
3112                         default:
3113                                 panic("-- unknown opcode %d\n", cmd->opcode);
3114                         } /* end of switch() on opcodes */
3115
3116                         if (cmd->len & F_NOT)
3117                                 match = !match;
3118
3119                         if (match) {
3120                                 if (cmd->len & F_OR)
3121                                         skip_or = 1;
3122                         } else {
3123                                 if (!(cmd->len & F_OR)) /* not an OR block, */
3124                                         break;          /* try next rule    */
3125                         }
3126
3127                 }       /* end of inner for, scan opcodes */
3128
3129 next_rule:;             /* try next rule                */
3130
3131         }               /* end of outer for, scan rules */
3132         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3133         IPFW_RUNLOCK(chain);
3134         return (IP_FW_DENY);
3135
3136 done:
3137         /* Update statistics */
3138         f->pcnt++;
3139         f->bcnt += pktlen;
3140         f->timestamp = time_uptime;
3141         IPFW_RUNLOCK(chain);
3142         return (retval);
3143
3144 pullup_failed:
3145         if (fw_verbose)
3146                 printf("ipfw: pullup failed\n");
3147         return (IP_FW_DENY);
3148 }
3149
3150 /*
3151  * When a rule is added/deleted, clear the next_rule pointers in all rules.
3152  * These will be reconstructed on the fly as packets are matched.
3153  */
3154 static void
3155 flush_rule_ptrs(struct ip_fw_chain *chain)
3156 {
3157         struct ip_fw *rule;
3158
3159         IPFW_WLOCK_ASSERT(chain);
3160
3161         for (rule = chain->rules; rule; rule = rule->next)
3162                 rule->next_rule = NULL;
3163 }
3164
3165 /*
3166  * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
3167  * pipe/queue, or to all of them (match == NULL).
3168  */
3169 void
3170 flush_pipe_ptrs(struct dn_flow_set *match)
3171 {
3172         struct ip_fw *rule;
3173
3174         IPFW_WLOCK(&layer3_chain);
3175         for (rule = layer3_chain.rules; rule; rule = rule->next) {
3176                 ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
3177
3178                 if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
3179                         continue;
3180                 /*
3181                  * XXX Use bcmp/bzero to handle pipe_ptr to overcome
3182                  * possible alignment problems on 64-bit architectures.
3183                  * This code is seldom used so we do not worry too
3184                  * much about efficiency.
3185                  */
3186                 if (match == NULL ||
3187                     !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
3188                         bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
3189         }
3190         IPFW_WUNLOCK(&layer3_chain);
3191 }
3192
3193 /*
3194  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3195  * possibly create a rule number and add the rule to the list.
3196  * Update the rule_number in the input struct so the caller knows it as well.
3197  */
3198 static int
3199 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3200 {
3201         struct ip_fw *rule, *f, *prev;
3202         int l = RULESIZE(input_rule);
3203
3204         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3205                 return (EINVAL);
3206
3207         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3208         if (rule == NULL)
3209                 return (ENOSPC);
3210
3211         bcopy(input_rule, rule, l);
3212
3213         rule->next = NULL;
3214         rule->next_rule = NULL;
3215
3216         rule->pcnt = 0;
3217         rule->bcnt = 0;
3218         rule->timestamp = 0;
3219
3220         IPFW_WLOCK(chain);
3221
3222         if (chain->rules == NULL) {     /* default rule */
3223                 chain->rules = rule;
3224                 goto done;
3225         }
3226
3227         /*
3228          * If rulenum is 0, find highest numbered rule before the
3229          * default rule, and add autoinc_step
3230          */
3231         if (autoinc_step < 1)
3232                 autoinc_step = 1;
3233         else if (autoinc_step > 1000)
3234                 autoinc_step = 1000;
3235         if (rule->rulenum == 0) {
3236                 /*
3237                  * locate the highest numbered rule before default
3238                  */
3239                 for (f = chain->rules; f; f = f->next) {
3240                         if (f->rulenum == IPFW_DEFAULT_RULE)
3241                                 break;
3242                         rule->rulenum = f->rulenum;
3243                 }
3244                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3245                         rule->rulenum += autoinc_step;
3246                 input_rule->rulenum = rule->rulenum;
3247         }
3248
3249         /*
3250          * Now insert the new rule in the right place in the sorted list.
3251          */
3252         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3253                 if (f->rulenum > rule->rulenum) { /* found the location */
3254                         if (prev) {
3255                                 rule->next = f;
3256                                 prev->next = rule;
3257                         } else { /* head insert */
3258                                 rule->next = chain->rules;
3259                                 chain->rules = rule;
3260                         }
3261                         break;
3262                 }
3263         }
3264         flush_rule_ptrs(chain);
3265 done:
3266         static_count++;
3267         static_len += l;
3268         IPFW_WUNLOCK(chain);
3269         DEB(printf("ipfw: installed rule %d, static count now %d\n",
3270                 rule->rulenum, static_count);)
3271         return (0);
3272 }
3273
3274 /**
3275  * Remove a static rule (including derived * dynamic rules)
3276  * and place it on the ``reap list'' for later reclamation.
3277  * The caller is in charge of clearing rule pointers to avoid
3278  * dangling pointers.
3279  * @return a pointer to the next entry.
3280  * Arguments are not checked, so they better be correct.
3281  */
3282 static struct ip_fw *
3283 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3284 {
3285         struct ip_fw *n;
3286         int l = RULESIZE(rule);
3287
3288         IPFW_WLOCK_ASSERT(chain);
3289
3290         n = rule->next;
3291         IPFW_DYN_LOCK();
3292         remove_dyn_rule(rule, NULL /* force removal */);
3293         IPFW_DYN_UNLOCK();
3294         if (prev == NULL)
3295                 chain->rules = n;
3296         else
3297                 prev->next = n;
3298         static_count--;
3299         static_len -= l;
3300
3301         rule->next = chain->reap;
3302         chain->reap = rule;
3303
3304         return n;
3305 }
3306
3307 /**
3308  * Reclaim storage associated with a list of rules.  This is
3309  * typically the list created using remove_rule.
3310  */
3311 static void
3312 reap_rules(struct ip_fw *head)
3313 {
3314         struct ip_fw *rule;
3315
3316         while ((rule = head) != NULL) {
3317                 head = head->next;
3318                 if (DUMMYNET_LOADED)
3319                         ip_dn_ruledel_ptr(rule);
3320                 free(rule, M_IPFW);
3321         }
3322 }
3323
3324 /*
3325  * Remove all rules from a chain (except rules in set RESVD_SET
3326  * unless kill_default = 1).  The caller is responsible for
3327  * reclaiming storage for the rules left in chain->reap.
3328  */
3329 static void
3330 free_chain(struct ip_fw_chain *chain, int kill_default)
3331 {
3332         struct ip_fw *prev, *rule;
3333
3334         IPFW_WLOCK_ASSERT(chain);
3335
3336         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3337         for (prev = NULL, rule = chain->rules; rule ; )
3338                 if (kill_default || rule->set != RESVD_SET)
3339                         rule = remove_rule(chain, rule, prev);
3340                 else {
3341                         prev = rule;
3342                         rule = rule->next;
3343                 }
3344 }
3345
3346 /**
3347  * Remove all rules with given number, and also do set manipulation.
3348  * Assumes chain != NULL && *chain != NULL.
3349  *
3350  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3351  * the next 8 bits are the new set, the top 8 bits are the command:
3352  *
3353  *      0       delete rules with given number
3354  *      1       delete rules with given set number
3355  *      2       move rules with given number to new set
3356  *      3       move rules with given set number to new set
3357  *      4       swap sets with given numbers
3358  */
3359 static int
3360 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3361 {
3362         struct ip_fw *prev = NULL, *rule;
3363         u_int16_t rulenum;      /* rule or old_set */
3364         u_int8_t cmd, new_set;
3365
3366         rulenum = arg & 0xffff;
3367         cmd = (arg >> 24) & 0xff;
3368         new_set = (arg >> 16) & 0xff;
3369
3370         if (cmd > 4)
3371                 return EINVAL;
3372         if (new_set > RESVD_SET)
3373                 return EINVAL;
3374         if (cmd == 0 || cmd == 2) {
3375                 if (rulenum >= IPFW_DEFAULT_RULE)
3376                         return EINVAL;
3377         } else {
3378                 if (rulenum > RESVD_SET)        /* old_set */
3379                         return EINVAL;
3380         }
3381
3382         IPFW_WLOCK(chain);
3383         rule = chain->rules;
3384         chain->reap = NULL;
3385         switch (cmd) {
3386         case 0: /* delete rules with given number */
3387                 /*
3388                  * locate first rule to delete
3389                  */
3390                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3391                         ;
3392                 if (rule->rulenum != rulenum) {
3393                         IPFW_WUNLOCK(chain);
3394                         return EINVAL;
3395                 }
3396
3397                 /*
3398                  * flush pointers outside the loop, then delete all matching
3399                  * rules. prev remains the same throughout the cycle.
3400                  */
3401                 flush_rule_ptrs(chain);
3402                 while (rule->rulenum == rulenum)
3403                         rule = remove_rule(chain, rule, prev);
3404                 break;
3405
3406         case 1: /* delete all rules with given set number */
3407                 flush_rule_ptrs(chain);
3408                 rule = chain->rules;
3409                 while (rule->rulenum < IPFW_DEFAULT_RULE)
3410                         if (rule->set == rulenum)
3411                                 rule = remove_rule(chain, rule, prev);
3412                         else {
3413                                 prev = rule;
3414                                 rule = rule->next;
3415                         }
3416                 break;
3417
3418         case 2: /* move rules with given number to new set */
3419                 rule = chain->rules;
3420                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3421                         if (rule->rulenum == rulenum)
3422                                 rule->set = new_set;
3423                 break;
3424
3425         case 3: /* move rules with given set number to new set */
3426                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3427                         if (rule->set == rulenum)
3428                                 rule->set = new_set;
3429                 break;
3430
3431         case 4: /* swap two sets */
3432                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3433                         if (rule->set == rulenum)
3434                                 rule->set = new_set;
3435                         else if (rule->set == new_set)
3436                                 rule->set = rulenum;
3437                 break;
3438         }
3439         /*
3440          * Look for rules to reclaim.  We grab the list before
3441          * releasing the lock then reclaim them w/o the lock to
3442          * avoid a LOR with dummynet.
3443          */
3444         rule = chain->reap;
3445         chain->reap = NULL;
3446         IPFW_WUNLOCK(chain);
3447         if (rule)
3448                 reap_rules(rule);
3449         return 0;
3450 }
3451
3452 /*
3453  * Clear counters for a specific rule.
3454  * The enclosing "table" is assumed locked.
3455  */
3456 static void
3457 clear_counters(struct ip_fw *rule, int log_only)
3458 {
3459         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3460
3461         if (log_only == 0) {
3462                 rule->bcnt = rule->pcnt = 0;
3463                 rule->timestamp = 0;
3464         }
3465         if (l->o.opcode == O_LOG)
3466                 l->log_left = l->max_log;
3467 }
3468
3469 /**
3470  * Reset some or all counters on firewall rules.
3471  * @arg frwl is null to clear all entries, or contains a specific
3472  * rule number.
3473  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3474  */
3475 static int
3476 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3477 {
3478         struct ip_fw *rule;
3479         char *msg;
3480
3481         IPFW_WLOCK(chain);
3482         if (rulenum == 0) {
3483                 norule_counter = 0;
3484                 for (rule = chain->rules; rule; rule = rule->next)
3485                         clear_counters(rule, log_only);
3486                 msg = log_only ? "ipfw: All logging counts reset.\n" :
3487                                 "ipfw: Accounting cleared.\n";
3488         } else {
3489                 int cleared = 0;
3490                 /*
3491                  * We can have multiple rules with the same number, so we
3492                  * need to clear them all.
3493                  */
3494                 for (rule = chain->rules; rule; rule = rule->next)
3495                         if (rule->rulenum == rulenum) {
3496                                 while (rule && rule->rulenum == rulenum) {
3497                                         clear_counters(rule, log_only);
3498                                         rule = rule->next;
3499                                 }
3500                                 cleared = 1;
3501                                 break;
3502                         }
3503                 if (!cleared) { /* we did not find any matching rules */
3504                         IPFW_WUNLOCK(chain);
3505                         return (EINVAL);
3506                 }
3507                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3508                                 "ipfw: Entry %d cleared.\n";
3509         }
3510         IPFW_WUNLOCK(chain);
3511
3512         if (fw_verbose)
3513                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3514         return (0);
3515 }
3516
3517 /*
3518  * Check validity of the structure before insert.
3519  * Fortunately rules are simple, so this mostly need to check rule sizes.
3520  */
3521 static int
3522 check_ipfw_struct(struct ip_fw *rule, int size)
3523 {
3524         int l, cmdlen = 0;
3525         int have_action=0;
3526         ipfw_insn *cmd;
3527
3528         if (size < sizeof(*rule)) {
3529                 printf("ipfw: rule too short\n");
3530                 return (EINVAL);
3531         }
3532         /* first, check for valid size */
3533         l = RULESIZE(rule);
3534         if (l != size) {
3535                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3536                 return (EINVAL);
3537         }
3538         if (rule->act_ofs >= rule->cmd_len) {
3539                 printf("ipfw: bogus action offset (%u > %u)\n",
3540                     rule->act_ofs, rule->cmd_len - 1);
3541                 return (EINVAL);
3542         }
3543         /*
3544          * Now go for the individual checks. Very simple ones, basically only
3545          * instruction sizes.
3546          */
3547         for (l = rule->cmd_len, cmd = rule->cmd ;
3548                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
3549                 cmdlen = F_LEN(cmd);
3550                 if (cmdlen > l) {
3551                         printf("ipfw: opcode %d size truncated\n",
3552                             cmd->opcode);
3553                         return EINVAL;
3554                 }
3555                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3556                 switch (cmd->opcode) {
3557                 case O_PROBE_STATE:
3558                 case O_KEEP_STATE:
3559                 case O_PROTO:
3560                 case O_IP_SRC_ME:
3561                 case O_IP_DST_ME:
3562                 case O_LAYER2:
3563                 case O_IN:
3564                 case O_FRAG:
3565                 case O_DIVERTED:
3566                 case O_IPOPT:
3567                 case O_IPTOS:
3568                 case O_IPPRECEDENCE:
3569                 case O_IPVER:
3570                 case O_TCPWIN:
3571                 case O_TCPFLAGS:
3572                 case O_TCPOPTS:
3573                 case O_ESTAB:
3574                 case O_VERREVPATH:
3575                 case O_VERSRCREACH:
3576                 case O_ANTISPOOF:
3577                 case O_IPSEC:
3578 #ifdef INET6
3579                 case O_IP6_SRC_ME:
3580                 case O_IP6_DST_ME:
3581                 case O_EXT_HDR:
3582                 case O_IP6:
3583 #endif
3584                 case O_IP4:
3585                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3586                                 goto bad_size;
3587                         break;
3588
3589                 case O_UID:
3590                 case O_GID:
3591                 case O_JAIL:
3592                 case O_IP_SRC:
3593                 case O_IP_DST:
3594                 case O_TCPSEQ:
3595                 case O_TCPACK:
3596                 case O_PROB:
3597                 case O_ICMPTYPE:
3598                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3599                                 goto bad_size;
3600                         break;
3601
3602                 case O_LIMIT:
3603                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3604                                 goto bad_size;
3605                         break;
3606
3607                 case O_LOG:
3608                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3609                                 goto bad_size;
3610
3611                         ((ipfw_insn_log *)cmd)->log_left =
3612                             ((ipfw_insn_log *)cmd)->max_log;
3613
3614                         break;
3615
3616                 case O_IP_SRC_MASK:
3617                 case O_IP_DST_MASK:
3618                         /* only odd command lengths */
3619                         if ( !(cmdlen & 1) || cmdlen > 31)
3620                                 goto bad_size;
3621                         break;
3622
3623                 case O_IP_SRC_SET:
3624                 case O_IP_DST_SET:
3625                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3626                                 printf("ipfw: invalid set size %d\n",
3627                                         cmd->arg1);
3628                                 return EINVAL;
3629                         }
3630                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3631                             (cmd->arg1+31)/32 )
3632                                 goto bad_size;
3633                         break;
3634
3635                 case O_IP_SRC_LOOKUP:
3636                 case O_IP_DST_LOOKUP:
3637                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
3638                                 printf("ipfw: invalid table number %d\n",
3639                                     cmd->arg1);
3640                                 return (EINVAL);
3641                         }
3642                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3643                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3644                                 goto bad_size;
3645                         break;
3646
3647                 case O_MACADDR2:
3648                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3649                                 goto bad_size;
3650                         break;
3651
3652                 case O_NOP:
3653                 case O_IPID:
3654                 case O_IPTTL:
3655                 case O_IPLEN:
3656                 case O_TCPDATALEN:
3657                         if (cmdlen < 1 || cmdlen > 31)
3658                                 goto bad_size;
3659                         break;
3660
3661                 case O_MAC_TYPE:
3662                 case O_IP_SRCPORT:
3663                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3664                         if (cmdlen < 2 || cmdlen > 31)
3665                                 goto bad_size;
3666                         break;
3667
3668                 case O_RECV:
3669                 case O_XMIT:
3670                 case O_VIA:
3671                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3672                                 goto bad_size;
3673                         break;
3674
3675                 case O_ALTQ:
3676                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3677                                 goto bad_size;
3678                         break;
3679
3680                 case O_PIPE:
3681                 case O_QUEUE:
3682                         if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
3683                                 goto bad_size;
3684                         goto check_action;
3685
3686                 case O_FORWARD_IP:
3687 #ifdef  IPFIREWALL_FORWARD
3688                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3689                                 goto bad_size;
3690                         goto check_action;
3691 #else
3692                         return EINVAL;
3693 #endif
3694
3695                 case O_DIVERT:
3696                 case O_TEE:
3697                         if (ip_divert_ptr == NULL)
3698                                 return EINVAL;
3699                         else
3700                                 goto check_size;
3701                 case O_NETGRAPH:
3702                 case O_NGTEE:
3703                         if (!NG_IPFW_LOADED)
3704                                 return EINVAL;
3705                         else
3706                                 goto check_size;
3707                 case O_FORWARD_MAC: /* XXX not implemented yet */
3708                 case O_CHECK_STATE:
3709                 case O_COUNT:
3710                 case O_ACCEPT:
3711                 case O_DENY:
3712                 case O_REJECT:
3713 #ifdef INET6
3714                 case O_UNREACH6:
3715 #endif
3716                 case O_SKIPTO:
3717 check_size:
3718                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3719                                 goto bad_size;
3720 check_action:
3721                         if (have_action) {
3722                                 printf("ipfw: opcode %d, multiple actions"
3723                                         " not allowed\n",
3724                                         cmd->opcode);
3725                                 return EINVAL;
3726                         }
3727                         have_action = 1;
3728                         if (l != cmdlen) {
3729                                 printf("ipfw: opcode %d, action must be"
3730                                         " last opcode\n",
3731                                         cmd->opcode);
3732                                 return EINVAL;
3733                         }
3734                         break;
3735 #ifdef INET6
3736                 case O_IP6_SRC:
3737                 case O_IP6_DST:
3738                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3739                             F_INSN_SIZE(ipfw_insn))
3740                                 goto bad_size;
3741                         break;
3742
3743                 case O_FLOW6ID:
3744                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3745                             ((ipfw_insn_u32 *)cmd)->o.arg1)
3746                                 goto bad_size;
3747                         break;
3748
3749                 case O_IP6_SRC_MASK:
3750                 case O_IP6_DST_MASK:
3751                         if ( !(cmdlen & 1) || cmdlen > 127)
3752                                 goto bad_size;
3753                         break;
3754                 case O_ICMP6TYPE:
3755                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3756                                 goto bad_size;
3757                         break;
3758 #endif
3759
3760                 default:
3761                         switch (cmd->opcode) {
3762 #ifndef INET6
3763                         case O_IP6_SRC_ME:
3764                         case O_IP6_DST_ME:
3765                         case O_EXT_HDR:
3766                         case O_IP6:
3767                         case O_UNREACH6:
3768                         case O_IP6_SRC:
3769                         case O_IP6_DST:
3770                         case O_FLOW6ID:
3771                         case O_IP6_SRC_MASK:
3772                         case O_IP6_DST_MASK:
3773                         case O_ICMP6TYPE:
3774                                 printf("ipfw: no IPv6 support in kernel\n");
3775                                 return EPROTONOSUPPORT;
3776 #endif
3777                         default:
3778                                 printf("ipfw: opcode %d, unknown opcode\n",
3779                                         cmd->opcode);
3780                                 return EINVAL;
3781                         }
3782                 }
3783         }
3784         if (have_action == 0) {
3785                 printf("ipfw: missing action\n");
3786                 return EINVAL;
3787         }
3788         return 0;
3789
3790 bad_size:
3791         printf("ipfw: opcode %d size %d wrong\n",
3792                 cmd->opcode, cmdlen);
3793         return EINVAL;
3794 }
3795
3796 /*
3797  * Copy the static and dynamic rules to the supplied buffer
3798  * and return the amount of space actually used.
3799  */
3800 static size_t
3801 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3802 {
3803         char *bp = buf;
3804         char *ep = bp + space;
3805         struct ip_fw *rule;
3806         int i;
3807
3808         /* XXX this can take a long time and locking will block packet flow */
3809         IPFW_RLOCK(chain);
3810         for (rule = chain->rules; rule ; rule = rule->next) {
3811                 /*
3812                  * Verify the entry fits in the buffer in case the
3813                  * rules changed between calculating buffer space and
3814                  * now.  This would be better done using a generation
3815                  * number but should suffice for now.
3816                  */
3817                 i = RULESIZE(rule);
3818                 if (bp + i <= ep) {
3819                         bcopy(rule, bp, i);
3820                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3821                             sizeof(set_disable));
3822                         bp += i;
3823                 }
3824         }
3825         IPFW_RUNLOCK(chain);
3826         if (ipfw_dyn_v) {
3827                 ipfw_dyn_rule *p, *last = NULL;
3828
3829                 IPFW_DYN_LOCK();
3830                 for (i = 0 ; i < curr_dyn_buckets; i++)
3831                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3832                                 if (bp + sizeof *p <= ep) {
3833                                         ipfw_dyn_rule *dst =
3834                                                 (ipfw_dyn_rule *)bp;
3835                                         bcopy(p, dst, sizeof *p);
3836                                         bcopy(&(p->rule->rulenum), &(dst->rule),
3837                                             sizeof(p->rule->rulenum));
3838                                         /*
3839                                          * store a non-null value in "next".
3840                                          * The userland code will interpret a
3841                                          * NULL here as a marker
3842                                          * for the last dynamic rule.
3843                                          */
3844                                         bcopy(&dst, &dst->next, sizeof(dst));
3845                                         last = dst;
3846                                         dst->expire =
3847                                             TIME_LEQ(dst->expire, time_uptime) ?
3848                                                 0 : dst->expire - time_uptime ;
3849                                         bp += sizeof(ipfw_dyn_rule);
3850                                 }
3851                         }
3852                 IPFW_DYN_UNLOCK();
3853                 if (last != NULL) /* mark last dynamic rule */
3854                         bzero(&last->next, sizeof(last));
3855         }
3856         return (bp - (char *)buf);
3857 }
3858
3859
3860 /**
3861  * {set|get}sockopt parser.
3862  */
3863 static int
3864 ipfw_ctl(struct sockopt *sopt)
3865 {
3866 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
3867         int error, rule_num;
3868         size_t size;
3869         struct ip_fw *buf, *rule;
3870         u_int32_t rulenum[2];
3871
3872         error = suser(sopt->sopt_td);
3873         if (error)
3874                 return (error);
3875
3876         /*
3877          * Disallow modifications in really-really secure mode, but still allow
3878          * the logging counters to be reset.
3879          */
3880         if (sopt->sopt_name == IP_FW_ADD ||
3881             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3882 #if __FreeBSD_version >= 500034
3883                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3884                 if (error)
3885                         return (error);
3886 #else /* FreeBSD 4.x */
3887                 if (securelevel >= 3)
3888                         return (EPERM);
3889 #endif
3890         }
3891
3892         error = 0;
3893
3894         switch (sopt->sopt_name) {
3895         case IP_FW_GET:
3896                 /*
3897                  * pass up a copy of the current rules. Static rules
3898                  * come first (the last of which has number IPFW_DEFAULT_RULE),
3899                  * followed by a possibly empty list of dynamic rule.
3900                  * The last dynamic rule has NULL in the "next" field.
3901                  *
3902                  * Note that the calculated size is used to bound the
3903                  * amount of data returned to the user.  The rule set may
3904                  * change between calculating the size and returning the
3905                  * data in which case we'll just return what fits.
3906                  */
3907                 size = static_len;      /* size of static rules */
3908                 if (ipfw_dyn_v)         /* add size of dyn.rules */
3909                         size += (dyn_count * sizeof(ipfw_dyn_rule));
3910
3911                 /*
3912                  * XXX todo: if the user passes a short length just to know
3913                  * how much room is needed, do not bother filling up the
3914                  * buffer, just jump to the sooptcopyout.
3915                  */
3916                 buf = malloc(size, M_TEMP, M_WAITOK);
3917                 error = sooptcopyout(sopt, buf,
3918                                 ipfw_getrules(&layer3_chain, buf, size));
3919                 free(buf, M_TEMP);
3920                 break;
3921
3922         case IP_FW_FLUSH:
3923                 /*
3924                  * Normally we cannot release the lock on each iteration.
3925                  * We could do it here only because we start from the head all
3926                  * the times so there is no risk of missing some entries.
3927                  * On the other hand, the risk is that we end up with
3928                  * a very inconsistent ruleset, so better keep the lock
3929                  * around the whole cycle.
3930                  *
3931                  * XXX this code can be improved by resetting the head of
3932                  * the list to point to the default rule, and then freeing
3933                  * the old list without the need for a lock.
3934                  */
3935
3936                 IPFW_WLOCK(&layer3_chain);
3937                 layer3_chain.reap = NULL;
3938                 free_chain(&layer3_chain, 0 /* keep default rule */);
3939                 rule = layer3_chain.reap, layer3_chain.reap = NULL;
3940                 IPFW_WUNLOCK(&layer3_chain);
3941                 if (layer3_chain.reap != NULL)
3942                         reap_rules(rule);
3943                 break;
3944
3945         case IP_FW_ADD:
3946                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3947                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3948                         sizeof(struct ip_fw) );
3949                 if (error == 0)
3950                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
3951                 if (error == 0) {
3952                         error = add_rule(&layer3_chain, rule);
3953                         size = RULESIZE(rule);
3954                         if (!error && sopt->sopt_dir == SOPT_GET)
3955                                 error = sooptcopyout(sopt, rule, size);
3956                 }
3957                 free(rule, M_TEMP);
3958                 break;
3959
3960         case IP_FW_DEL:
3961                 /*
3962                  * IP_FW_DEL is used for deleting single rules or sets,
3963                  * and (ab)used to atomically manipulate sets. Argument size
3964                  * is used to distinguish between the two:
3965                  *    sizeof(u_int32_t)
3966                  *      delete single rule or set of rules,
3967                  *      or reassign rules (or sets) to a different set.
3968                  *    2*sizeof(u_int32_t)
3969                  *      atomic disable/enable sets.
3970                  *      first u_int32_t contains sets to be disabled,
3971                  *      second u_int32_t contains sets to be enabled.
3972                  */
3973                 error = sooptcopyin(sopt, rulenum,
3974                         2*sizeof(u_int32_t), sizeof(u_int32_t));
3975                 if (error)
3976                         break;
3977                 size = sopt->sopt_valsize;
3978                 if (size == sizeof(u_int32_t))  /* delete or reassign */
3979                         error = del_entry(&layer3_chain, rulenum[0]);
3980                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3981                         set_disable =
3982                             (set_disable | rulenum[0]) & ~rulenum[1] &
3983                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3984                 else
3985                         error = EINVAL;
3986                 break;
3987
3988         case IP_FW_ZERO:
3989         case IP_FW_RESETLOG: /* argument is an int, the rule number */
3990                 rule_num = 0;
3991                 if (sopt->sopt_val != 0) {
3992                     error = sooptcopyin(sopt, &rule_num,
3993                             sizeof(int), sizeof(int));
3994                     if (error)
3995                         break;
3996                 }
3997                 error = zero_entry(&layer3_chain, rule_num,
3998                         sopt->sopt_name == IP_FW_RESETLOG);
3999                 break;
4000
4001         case IP_FW_TABLE_ADD:
4002                 {
4003                         ipfw_table_entry ent;
4004
4005                         error = sooptcopyin(sopt, &ent,
4006                             sizeof(ent), sizeof(ent));
4007                         if (error)
4008                                 break;
4009                         error = add_table_entry(ent.tbl, ent.addr,
4010                             ent.masklen, ent.value);
4011                 }
4012                 break;
4013
4014         case IP_FW_TABLE_DEL:
4015                 {
4016                         ipfw_table_entry ent;
4017
4018                         error = sooptcopyin(sopt, &ent,
4019                             sizeof(ent), sizeof(ent));
4020                         if (error)
4021                                 break;
4022                         error = del_table_entry(ent.tbl, ent.addr, ent.masklen);
4023                 }
4024                 break;
4025
4026         case IP_FW_TABLE_FLUSH:
4027                 {
4028                         u_int16_t tbl;
4029
4030                         error = sooptcopyin(sopt, &tbl,
4031                             sizeof(tbl), sizeof(tbl));
4032                         if (error)
4033                                 break;
4034                         error = flush_table(tbl);
4035                 }
4036                 break;
4037
4038         case IP_FW_TABLE_GETSIZE:
4039                 {
4040                         u_int32_t tbl, cnt;
4041
4042                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4043                             sizeof(tbl))))
4044                                 break;
4045                         if ((error = count_table(tbl, &cnt)))
4046                                 break;
4047                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4048                 }
4049                 break;
4050
4051         case IP_FW_TABLE_LIST:
4052                 {
4053                         ipfw_table *tbl;
4054
4055                         if (sopt->sopt_valsize < sizeof(*tbl)) {
4056                                 error = EINVAL;
4057                                 break;
4058                         }
4059                         size = sopt->sopt_valsize;
4060                         tbl = malloc(size, M_TEMP, M_WAITOK);
4061                         if (tbl == NULL) {
4062                                 error = ENOMEM;
4063                                 break;
4064                         }
4065                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4066                         if (error) {
4067                                 free(tbl, M_TEMP);
4068                                 break;
4069                         }
4070                         tbl->size = (size - sizeof(*tbl)) /
4071                             sizeof(ipfw_table_entry);
4072                         error = dump_table(tbl);
4073                         if (error) {
4074                                 free(tbl, M_TEMP);
4075                                 break;
4076                         }
4077                         error = sooptcopyout(sopt, tbl, size);
4078                         free(tbl, M_TEMP);
4079                 }
4080                 break;
4081
4082         default:
4083                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4084                 error = EINVAL;
4085         }
4086
4087         return (error);
4088 #undef RULE_MAXSIZE
4089 }
4090
4091 /**
4092  * dummynet needs a reference to the default rule, because rules can be
4093  * deleted while packets hold a reference to them. When this happens,
4094  * dummynet changes the reference to the default rule (it could well be a
4095  * NULL pointer, but this way we do not need to check for the special
4096  * case, plus here he have info on the default behaviour).
4097  */
4098 struct ip_fw *ip_fw_default_rule;
4099
4100 /*
4101  * This procedure is only used to handle keepalives. It is invoked
4102  * every dyn_keepalive_period
4103  */
4104 static void
4105 ipfw_tick(void * __unused unused)
4106 {
4107         struct mbuf *m0, *m, *mnext, **mtailp;
4108         int i;
4109         ipfw_dyn_rule *q;
4110
4111         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4112                 goto done;
4113
4114         /*
4115          * We make a chain of packets to go out here -- not deferring
4116          * until after we drop the IPFW dynamic rule lock would result
4117          * in a lock order reversal with the normal packet input -> ipfw
4118          * call stack.
4119          */
4120         m0 = NULL;
4121         mtailp = &m0;
4122         IPFW_DYN_LOCK();
4123         for (i = 0 ; i < curr_dyn_buckets ; i++) {
4124                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4125                         if (q->dyn_type == O_LIMIT_PARENT)
4126                                 continue;
4127                         if (q->id.proto != IPPROTO_TCP)
4128                                 continue;
4129                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
4130                                 continue;
4131                         if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4132                             q->expire))
4133                                 continue;       /* too early */
4134                         if (TIME_LEQ(q->expire, time_uptime))
4135                                 continue;       /* too late, rule expired */
4136
4137                         *mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4138                                 q->ack_fwd, TH_SYN);
4139                         if (*mtailp != NULL)
4140                                 mtailp = &(*mtailp)->m_nextpkt;
4141                         *mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4142                                 q->ack_rev, 0);
4143                         if (*mtailp != NULL)
4144                                 mtailp = &(*mtailp)->m_nextpkt;
4145                 }
4146         }
4147         IPFW_DYN_UNLOCK();
4148         for (m = mnext = m0; m != NULL; m = mnext) {
4149                 mnext = m->m_nextpkt;
4150                 m->m_nextpkt = NULL;
4151                 ip_output(m, NULL, NULL, 0, NULL, NULL);
4152         }
4153 done:
4154         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4155 }
4156
4157 int
4158 ipfw_init(void)
4159 {
4160         struct ip_fw default_rule;
4161         int error;
4162
4163 #ifdef INET6
4164         /* Setup IPv6 fw sysctl tree. */
4165         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4166         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4167                 SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4168                 CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4169         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4170                 OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4171                 &fw_deny_unknown_exthdrs, 0,
4172                 "Deny packets with unknown IPv6 Extension Headers");
4173 #endif
4174
4175         layer3_chain.rules = NULL;
4176         layer3_chain.want_write = 0;
4177         layer3_chain.busy_count = 0;
4178         cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
4179         IPFW_LOCK_INIT(&layer3_chain);
4180         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4181             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4182             UMA_ALIGN_PTR, 0);
4183         IPFW_DYN_LOCK_INIT();
4184         callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4185
4186         bzero(&default_rule, sizeof default_rule);
4187
4188         default_rule.act_ofs = 0;
4189         default_rule.rulenum = IPFW_DEFAULT_RULE;
4190         default_rule.cmd_len = 1;
4191         default_rule.set = RESVD_SET;
4192
4193         default_rule.cmd[0].len = 1;
4194         default_rule.cmd[0].opcode =
4195 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4196                                 1 ? O_ACCEPT :
4197 #endif
4198                                 O_DENY;
4199
4200         error = add_rule(&layer3_chain, &default_rule);
4201         if (error != 0) {
4202                 printf("ipfw2: error %u initializing default rule "
4203                         "(support disabled)\n", error);
4204                 IPFW_DYN_LOCK_DESTROY();
4205                 IPFW_LOCK_DESTROY(&layer3_chain);
4206                 return (error);
4207         }
4208
4209         ip_fw_default_rule = layer3_chain.rules;
4210         printf("ipfw2 (+ipv6) initialized, divert %s, "
4211                 "rule-based forwarding "
4212 #ifdef IPFIREWALL_FORWARD
4213                 "enabled, "
4214 #else
4215                 "disabled, "
4216 #endif
4217                 "default to %s, logging ",
4218 #ifdef IPDIVERT
4219                 "enabled",
4220 #else
4221                 "loadable",
4222 #endif
4223                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4224
4225 #ifdef IPFIREWALL_VERBOSE
4226         fw_verbose = 1;
4227 #endif
4228 #ifdef IPFIREWALL_VERBOSE_LIMIT
4229         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4230 #endif
4231         if (fw_verbose == 0)
4232                 printf("disabled\n");
4233         else if (verbose_limit == 0)
4234                 printf("unlimited\n");
4235         else
4236                 printf("limited to %d packets/entry by default\n",
4237                     verbose_limit);
4238
4239         init_tables();
4240         ip_fw_ctl_ptr = ipfw_ctl;
4241         ip_fw_chk_ptr = ipfw_chk;
4242         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4243
4244         return (0);
4245 }
4246
4247 void
4248 ipfw_destroy(void)
4249 {
4250         struct ip_fw *reap;
4251
4252         ip_fw_chk_ptr = NULL;
4253         ip_fw_ctl_ptr = NULL;
4254         callout_drain(&ipfw_timeout);
4255         IPFW_WLOCK(&layer3_chain);
4256         layer3_chain.reap = NULL;
4257         free_chain(&layer3_chain, 1 /* kill default rule */);
4258         reap = layer3_chain.reap, layer3_chain.reap = NULL;
4259         IPFW_WUNLOCK(&layer3_chain);
4260         if (reap != NULL)
4261                 reap_rules(reap);
4262         flush_tables();
4263         IPFW_DYN_LOCK_DESTROY();
4264         uma_zdestroy(ipfw_dyn_rule_zone);
4265         IPFW_LOCK_DESTROY(&layer3_chain);
4266
4267 #ifdef INET6
4268         /* Free IPv6 fw sysctl tree. */
4269         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4270 #endif
4271
4272         printf("IP firewall unloaded\n");
4273 }