]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/ip_fw2.c
This commit was generated by cvs2svn to compensate for changes in r159609,
[FreeBSD/FreeBSD.git] / sys / netinet / ip_fw2.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27
28 #define        DEB(x)
29 #define        DDB(x) x
30
31 /*
32  * Implement IP packet firewall (new version)
33  */
34
35 #if !defined(KLD_MODULE)
36 #include "opt_ipfw.h"
37 #include "opt_ipdn.h"
38 #include "opt_inet.h"
39 #ifndef INET
40 #error IPFIREWALL requires INET.
41 #endif /* INET */
42 #endif
43 #include "opt_inet6.h"
44 #include "opt_ipsec.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/condvar.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/jail.h>
54 #include <sys/module.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/if.h>
63 #include <net/radix.h>
64 #include <net/route.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_icmp.h>
72 #include <netinet/ip_fw.h>
73 #include <netinet/ip_divert.h>
74 #include <netinet/ip_dummynet.h>
75 #include <netinet/tcp.h>
76 #include <netinet/tcp_timer.h>
77 #include <netinet/tcp_var.h>
78 #include <netinet/tcpip.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81
82 #include <netgraph/ng_ipfw.h>
83
84 #include <altq/if_altq.h>
85
86 #ifdef IPSEC
87 #include <netinet6/ipsec.h>
88 #endif
89
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #ifdef INET6
93 #include <netinet6/scope6_var.h>
94 #endif
95
96 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
97
98 #include <machine/in_cksum.h>   /* XXX for in_cksum */
99
100 /*
101  * set_disable contains one bit per set value (0..31).
102  * If the bit is set, all rules with the corresponding set
103  * are disabled. Set RESVD_SET(31) is reserved for the default rule
104  * and rules that are not deleted by the flush command,
105  * and CANNOT be disabled.
106  * Rules in set RESVD_SET can only be deleted explicitly.
107  */
108 static u_int32_t set_disable;
109
110 static int fw_verbose;
111 static int verbose_limit;
112
113 static struct callout ipfw_timeout;
114 static uma_zone_t ipfw_dyn_rule_zone;
115 #define IPFW_DEFAULT_RULE       65535
116
117 /*
118  * Data structure to cache our ucred related
119  * information. This structure only gets used if
120  * the user specified UID/GID based constraints in
121  * a firewall rule.
122  */
123 struct ip_fw_ugid {
124         gid_t           fw_groups[NGROUPS];
125         int             fw_ngroups;
126         uid_t           fw_uid;
127         int             fw_prid;
128 };
129
130 #define IPFW_TABLES_MAX         128
131 struct ip_fw_chain {
132         struct ip_fw    *rules;         /* list of rules */
133         struct ip_fw    *reap;          /* list of rules to reap */
134         struct radix_node_head *tables[IPFW_TABLES_MAX];
135         struct rwlock   rwmtx;
136 };
137 #define IPFW_LOCK_INIT(_chain) \
138         rw_init(&(_chain)->rwmtx, "IPFW static rules")
139 #define IPFW_LOCK_DESTROY(_chain)       rw_destroy(&(_chain)->rwmtx)
140 #define IPFW_WLOCK_ASSERT(_chain)       do {                            \
141         rw_assert(&(_chain)->rwmtx, RA_WLOCKED);                                        \
142         NET_ASSERT_GIANT();                                             \
143 } while (0)
144
145 #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
146 #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
147 #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
148 #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
149
150 /*
151  * list of rules for layer 3
152  */
153 static struct ip_fw_chain layer3_chain;
154
155 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
156 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
157
158 struct table_entry {
159         struct radix_node       rn[2];
160         struct sockaddr_in      addr, mask;
161         u_int32_t               value;
162 };
163
164 static int fw_debug = 1;
165 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
166
167 extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
168
169 #ifdef SYSCTL_NODE
170 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
171 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
172     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
173     ipfw_chg_hook, "I", "Enable ipfw");
174 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
175     &autoinc_step, 0, "Rule number autincrement step");
176 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
177     CTLFLAG_RW | CTLFLAG_SECURE3,
178     &fw_one_pass, 0,
179     "Only do a single pass through ipfw when using dummynet(4)");
180 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
181     &fw_debug, 0, "Enable printing of debug ip_fw statements");
182 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
183     CTLFLAG_RW | CTLFLAG_SECURE3,
184     &fw_verbose, 0, "Log matches to ipfw rules");
185 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
186     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
187
188 /*
189  * Description of dynamic rules.
190  *
191  * Dynamic rules are stored in lists accessed through a hash table
192  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
193  * be modified through the sysctl variable dyn_buckets which is
194  * updated when the table becomes empty.
195  *
196  * XXX currently there is only one list, ipfw_dyn.
197  *
198  * When a packet is received, its address fields are first masked
199  * with the mask defined for the rule, then hashed, then matched
200  * against the entries in the corresponding list.
201  * Dynamic rules can be used for different purposes:
202  *  + stateful rules;
203  *  + enforcing limits on the number of sessions;
204  *  + in-kernel NAT (not implemented yet)
205  *
206  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
207  * measured in seconds and depending on the flags.
208  *
209  * The total number of dynamic rules is stored in dyn_count.
210  * The max number of dynamic rules is dyn_max. When we reach
211  * the maximum number of rules we do not create anymore. This is
212  * done to avoid consuming too much memory, but also too much
213  * time when searching on each packet (ideally, we should try instead
214  * to put a limit on the length of the list on each bucket...).
215  *
216  * Each dynamic rule holds a pointer to the parent ipfw rule so
217  * we know what action to perform. Dynamic rules are removed when
218  * the parent rule is deleted. XXX we should make them survive.
219  *
220  * There are some limitations with dynamic rules -- we do not
221  * obey the 'randomized match', and we do not do multiple
222  * passes through the firewall. XXX check the latter!!!
223  */
224 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
225 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
226 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
227
228 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
229 #define IPFW_DYN_LOCK_INIT() \
230         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
231 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
232 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
233 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
234 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
235
236 /*
237  * Timeouts for various events in handing dynamic rules.
238  */
239 static u_int32_t dyn_ack_lifetime = 300;
240 static u_int32_t dyn_syn_lifetime = 20;
241 static u_int32_t dyn_fin_lifetime = 1;
242 static u_int32_t dyn_rst_lifetime = 1;
243 static u_int32_t dyn_udp_lifetime = 10;
244 static u_int32_t dyn_short_lifetime = 5;
245
246 /*
247  * Keepalives are sent if dyn_keepalive is set. They are sent every
248  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
249  * seconds of lifetime of a rule.
250  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
251  * than dyn_keepalive_period.
252  */
253
254 static u_int32_t dyn_keepalive_interval = 20;
255 static u_int32_t dyn_keepalive_period = 5;
256 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
257
258 static u_int32_t static_count;  /* # of static rules */
259 static u_int32_t static_len;    /* size in bytes of static rules */
260 static u_int32_t dyn_count;             /* # of dynamic rules */
261 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
262
263 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
264     &dyn_buckets, 0, "Number of dyn. buckets");
265 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
266     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
267 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
268     &dyn_count, 0, "Number of dyn. rules");
269 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
270     &dyn_max, 0, "Max number of dyn. rules");
271 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
272     &static_count, 0, "Number of static rules");
273 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
274     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
275 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
276     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
277 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
278     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
279 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
280     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
281 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
282     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
283 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
284     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
285 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
286     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
287
288 #ifdef INET6
289 /*
290  * IPv6 specific variables
291  */
292 SYSCTL_DECL(_net_inet6_ip6);
293
294 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
295 static struct sysctl_oid *ip6_fw_sysctl_tree;
296 #endif /* INET6 */
297 #endif /* SYSCTL_NODE */
298
299 static int fw_deny_unknown_exthdrs = 1;
300
301
302 /*
303  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
304  * Other macros just cast void * into the appropriate type
305  */
306 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
307 #define TCP(p)          ((struct tcphdr *)(p))
308 #define UDP(p)          ((struct udphdr *)(p))
309 #define ICMP(p)         ((struct icmphdr *)(p))
310 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
311
312 static __inline int
313 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
314 {
315         int type = icmp->icmp_type;
316
317         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
318 }
319
320 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
321     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
322
323 static int
324 is_icmp_query(struct icmphdr *icmp)
325 {
326         int type = icmp->icmp_type;
327
328         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
329 }
330 #undef TT
331
332 /*
333  * The following checks use two arrays of 8 or 16 bits to store the
334  * bits that we want set or clear, respectively. They are in the
335  * low and high half of cmd->arg1 or cmd->d[0].
336  *
337  * We scan options and store the bits we find set. We succeed if
338  *
339  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
340  *
341  * The code is sometimes optimized not to store additional variables.
342  */
343
344 static int
345 flags_match(ipfw_insn *cmd, u_int8_t bits)
346 {
347         u_char want_clear;
348         bits = ~bits;
349
350         if ( ((cmd->arg1 & 0xff) & bits) != 0)
351                 return 0; /* some bits we want set were clear */
352         want_clear = (cmd->arg1 >> 8) & 0xff;
353         if ( (want_clear & bits) != want_clear)
354                 return 0; /* some bits we want clear were set */
355         return 1;
356 }
357
358 static int
359 ipopts_match(struct ip *ip, ipfw_insn *cmd)
360 {
361         int optlen, bits = 0;
362         u_char *cp = (u_char *)(ip + 1);
363         int x = (ip->ip_hl << 2) - sizeof (struct ip);
364
365         for (; x > 0; x -= optlen, cp += optlen) {
366                 int opt = cp[IPOPT_OPTVAL];
367
368                 if (opt == IPOPT_EOL)
369                         break;
370                 if (opt == IPOPT_NOP)
371                         optlen = 1;
372                 else {
373                         optlen = cp[IPOPT_OLEN];
374                         if (optlen <= 0 || optlen > x)
375                                 return 0; /* invalid or truncated */
376                 }
377                 switch (opt) {
378
379                 default:
380                         break;
381
382                 case IPOPT_LSRR:
383                         bits |= IP_FW_IPOPT_LSRR;
384                         break;
385
386                 case IPOPT_SSRR:
387                         bits |= IP_FW_IPOPT_SSRR;
388                         break;
389
390                 case IPOPT_RR:
391                         bits |= IP_FW_IPOPT_RR;
392                         break;
393
394                 case IPOPT_TS:
395                         bits |= IP_FW_IPOPT_TS;
396                         break;
397                 }
398         }
399         return (flags_match(cmd, bits));
400 }
401
402 static int
403 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
404 {
405         int optlen, bits = 0;
406         u_char *cp = (u_char *)(tcp + 1);
407         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
408
409         for (; x > 0; x -= optlen, cp += optlen) {
410                 int opt = cp[0];
411                 if (opt == TCPOPT_EOL)
412                         break;
413                 if (opt == TCPOPT_NOP)
414                         optlen = 1;
415                 else {
416                         optlen = cp[1];
417                         if (optlen <= 0)
418                                 break;
419                 }
420
421                 switch (opt) {
422
423                 default:
424                         break;
425
426                 case TCPOPT_MAXSEG:
427                         bits |= IP_FW_TCPOPT_MSS;
428                         break;
429
430                 case TCPOPT_WINDOW:
431                         bits |= IP_FW_TCPOPT_WINDOW;
432                         break;
433
434                 case TCPOPT_SACK_PERMITTED:
435                 case TCPOPT_SACK:
436                         bits |= IP_FW_TCPOPT_SACK;
437                         break;
438
439                 case TCPOPT_TIMESTAMP:
440                         bits |= IP_FW_TCPOPT_TS;
441                         break;
442
443                 }
444         }
445         return (flags_match(cmd, bits));
446 }
447
448 static int
449 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
450 {
451         if (ifp == NULL)        /* no iface with this packet, match fails */
452                 return 0;
453         /* Check by name or by IP address */
454         if (cmd->name[0] != '\0') { /* match by name */
455                 /* Check name */
456                 if (cmd->p.glob) {
457                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
458                                 return(1);
459                 } else {
460                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
461                                 return(1);
462                 }
463         } else {
464                 struct ifaddr *ia;
465
466                 /* XXX lock? */
467                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
468                         if (ia->ifa_addr == NULL)
469                                 continue;
470                         if (ia->ifa_addr->sa_family != AF_INET)
471                                 continue;
472                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
473                             (ia->ifa_addr))->sin_addr.s_addr)
474                                 return(1);      /* match */
475                 }
476         }
477         return(0);      /* no match, fail ... */
478 }
479
480 /*
481  * The verify_path function checks if a route to the src exists and
482  * if it is reachable via ifp (when provided).
483  * 
484  * The 'verrevpath' option checks that the interface that an IP packet
485  * arrives on is the same interface that traffic destined for the
486  * packet's source address would be routed out of.  The 'versrcreach'
487  * option just checks that the source address is reachable via any route
488  * (except default) in the routing table.  These two are a measure to block
489  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
490  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
491  * is purposely reminiscent of the Cisco IOS command,
492  *
493  *   ip verify unicast reverse-path
494  *   ip verify unicast source reachable-via any
495  *
496  * which implements the same functionality. But note that syntax is
497  * misleading. The check may be performed on all IP packets whether unicast,
498  * multicast, or broadcast.
499  */
500 static int
501 verify_path(struct in_addr src, struct ifnet *ifp)
502 {
503         struct route ro;
504         struct sockaddr_in *dst;
505
506         bzero(&ro, sizeof(ro));
507
508         dst = (struct sockaddr_in *)&(ro.ro_dst);
509         dst->sin_family = AF_INET;
510         dst->sin_len = sizeof(*dst);
511         dst->sin_addr = src;
512         rtalloc_ign(&ro, RTF_CLONING);
513
514         if (ro.ro_rt == NULL)
515                 return 0;
516
517         /*
518          * If ifp is provided, check for equality with rtentry.
519          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
520          * in order to pass packets injected back by if_simloop():
521          * if useloopback == 1 routing entry (via lo0) for our own address
522          * may exist, so we need to handle routing assymetry.
523          */
524         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
525                 RTFREE(ro.ro_rt);
526                 return 0;
527         }
528
529         /* if no ifp provided, check if rtentry is not default route */
530         if (ifp == NULL &&
531              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
532                 RTFREE(ro.ro_rt);
533                 return 0;
534         }
535
536         /* or if this is a blackhole/reject route */
537         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
538                 RTFREE(ro.ro_rt);
539                 return 0;
540         }
541
542         /* found valid route */
543         RTFREE(ro.ro_rt);
544         return 1;
545 }
546
547 #ifdef INET6
548 /*
549  * ipv6 specific rules here...
550  */
551 static __inline int
552 icmp6type_match (int type, ipfw_insn_u32 *cmd)
553 {
554         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
555 }
556
557 static int
558 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
559 {
560         int i;
561         for (i=0; i <= cmd->o.arg1; ++i )
562                 if (curr_flow == cmd->d[i] )
563                         return 1;
564         return 0;
565 }
566
567 /* support for IP6_*_ME opcodes */
568 static int
569 search_ip6_addr_net (struct in6_addr * ip6_addr)
570 {
571         struct ifnet *mdc;
572         struct ifaddr *mdc2;
573         struct in6_ifaddr *fdm;
574         struct in6_addr copia;
575
576         TAILQ_FOREACH(mdc, &ifnet, if_link)
577                 for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
578                     mdc2 = mdc2->ifa_list.tqe_next) {
579                         if (!mdc2->ifa_addr)
580                                 continue;
581                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
582                                 fdm = (struct in6_ifaddr *)mdc2;
583                                 copia = fdm->ia_addr.sin6_addr;
584                                 /* need for leaving scope_id in the sock_addr */
585                                 in6_clearscope(&copia);
586                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
587                                         return 1;
588                         }
589                 }
590         return 0;
591 }
592
593 static int
594 verify_path6(struct in6_addr *src, struct ifnet *ifp)
595 {
596         struct route_in6 ro;
597         struct sockaddr_in6 *dst;
598
599         bzero(&ro, sizeof(ro));
600
601         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
602         dst->sin6_family = AF_INET6;
603         dst->sin6_len = sizeof(*dst);
604         dst->sin6_addr = *src;
605         rtalloc_ign((struct route *)&ro, RTF_CLONING);
606
607         if (ro.ro_rt == NULL)
608                 return 0;
609
610         /* 
611          * if ifp is provided, check for equality with rtentry
612          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
613          * to support the case of sending packets to an address of our own.
614          * (where the former interface is the first argument of if_simloop()
615          *  (=ifp), the latter is lo0)
616          */
617         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
618                 RTFREE(ro.ro_rt);
619                 return 0;
620         }
621
622         /* if no ifp provided, check if rtentry is not default route */
623         if (ifp == NULL &&
624             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
625                 RTFREE(ro.ro_rt);
626                 return 0;
627         }
628
629         /* or if this is a blackhole/reject route */
630         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
631                 RTFREE(ro.ro_rt);
632                 return 0;
633         }
634
635         /* found valid route */
636         RTFREE(ro.ro_rt);
637         return 1;
638
639 }
640 static __inline int
641 hash_packet6(struct ipfw_flow_id *id)
642 {
643         u_int32_t i;
644         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
645             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
646             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
647             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
648             (id->dst_port) ^ (id->src_port);
649         return i;
650 }
651
652 static int
653 is_icmp6_query(int icmp6_type)
654 {
655         if ((icmp6_type <= ICMP6_MAXTYPE) &&
656             (icmp6_type == ICMP6_ECHO_REQUEST ||
657             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
658             icmp6_type == ICMP6_WRUREQUEST ||
659             icmp6_type == ICMP6_FQDN_QUERY ||
660             icmp6_type == ICMP6_NI_QUERY))
661                 return (1);
662
663         return (0);
664 }
665
666 static void
667 send_reject6(struct ip_fw_args *args, int code, u_short offset, u_int hlen)
668 {
669         if (code == ICMP6_UNREACH_RST && offset == 0 &&
670             args->f_id.proto == IPPROTO_TCP) {
671                 struct ip6_hdr *ip6;
672                 struct tcphdr *tcp;
673                 tcp_seq ack, seq;
674                 int flags;
675                 struct {
676                         struct ip6_hdr ip6;
677                         struct tcphdr th;
678                 } ti;
679
680                 if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
681                         args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
682                         if (args->m == NULL)
683                                 return;
684                 }
685
686                 ip6 = mtod(args->m, struct ip6_hdr *);
687                 tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
688
689                 if ((tcp->th_flags & TH_RST) != 0) {
690                         m_freem(args->m);
691                         return;
692                 }
693
694                 ti.ip6 = *ip6;
695                 ti.th = *tcp;
696                 ti.th.th_seq = ntohl(ti.th.th_seq);
697                 ti.th.th_ack = ntohl(ti.th.th_ack);
698                 ti.ip6.ip6_nxt = IPPROTO_TCP;
699
700                 if (ti.th.th_flags & TH_ACK) {
701                         ack = 0;
702                         seq = ti.th.th_ack;
703                         flags = TH_RST;
704                 } else {
705                         ack = ti.th.th_seq;
706                         if (((args->m)->m_flags & M_PKTHDR) != 0) {
707                                 ack += (args->m)->m_pkthdr.len - hlen
708                                         - (ti.th.th_off << 2);
709                         } else if (ip6->ip6_plen) {
710                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
711                                         - hlen - (ti.th.th_off << 2);
712                         } else {
713                                 m_freem(args->m);
714                                 return;
715                         }
716                         if (tcp->th_flags & TH_SYN)
717                                 ack++;
718                         seq = 0;
719                         flags = TH_RST|TH_ACK;
720                 }
721                 bcopy(&ti, ip6, sizeof(ti));
722                 tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
723                         args->m, ack, seq, flags);
724
725         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
726                 icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
727
728         } else
729                 m_freem(args->m);
730
731         args->m = NULL;
732 }
733
734 #endif /* INET6 */
735
736 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
737
738 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
739 #define SNP(buf) buf, sizeof(buf)
740
741 /*
742  * We enter here when we have a rule with O_LOG.
743  * XXX this function alone takes about 2Kbytes of code!
744  */
745 static void
746 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
747         struct mbuf *m, struct ifnet *oif, u_short offset)
748 {
749         struct ether_header *eh = args->eh;
750         char *action;
751         int limit_reached = 0;
752         char action2[40], proto[128], fragment[32];
753
754         fragment[0] = '\0';
755         proto[0] = '\0';
756
757         if (f == NULL) {        /* bogus pkt */
758                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
759                         return;
760                 norule_counter++;
761                 if (norule_counter == verbose_limit)
762                         limit_reached = verbose_limit;
763                 action = "Refuse";
764         } else {        /* O_LOG is the first action, find the real one */
765                 ipfw_insn *cmd = ACTION_PTR(f);
766                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
767
768                 if (l->max_log != 0 && l->log_left == 0)
769                         return;
770                 l->log_left--;
771                 if (l->log_left == 0)
772                         limit_reached = l->max_log;
773                 cmd += F_LEN(cmd);      /* point to first action */
774                 if (cmd->opcode == O_ALTQ) {
775                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
776
777                         snprintf(SNPARGS(action2, 0), "Altq %d",
778                                 altq->qid);
779                         cmd += F_LEN(cmd);
780                 }
781                 if (cmd->opcode == O_PROB)
782                         cmd += F_LEN(cmd);
783
784                 if (cmd->opcode == O_TAG)
785                         cmd += F_LEN(cmd);
786
787                 action = action2;
788                 switch (cmd->opcode) {
789                 case O_DENY:
790                         action = "Deny";
791                         break;
792
793                 case O_REJECT:
794                         if (cmd->arg1==ICMP_REJECT_RST)
795                                 action = "Reset";
796                         else if (cmd->arg1==ICMP_UNREACH_HOST)
797                                 action = "Reject";
798                         else
799                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
800                                         cmd->arg1);
801                         break;
802
803                 case O_UNREACH6:
804                         if (cmd->arg1==ICMP6_UNREACH_RST)
805                                 action = "Reset";
806                         else
807                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
808                                         cmd->arg1);
809                         break;
810
811                 case O_ACCEPT:
812                         action = "Accept";
813                         break;
814                 case O_COUNT:
815                         action = "Count";
816                         break;
817                 case O_DIVERT:
818                         snprintf(SNPARGS(action2, 0), "Divert %d",
819                                 cmd->arg1);
820                         break;
821                 case O_TEE:
822                         snprintf(SNPARGS(action2, 0), "Tee %d",
823                                 cmd->arg1);
824                         break;
825                 case O_SKIPTO:
826                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
827                                 cmd->arg1);
828                         break;
829                 case O_PIPE:
830                         snprintf(SNPARGS(action2, 0), "Pipe %d",
831                                 cmd->arg1);
832                         break;
833                 case O_QUEUE:
834                         snprintf(SNPARGS(action2, 0), "Queue %d",
835                                 cmd->arg1);
836                         break;
837                 case O_FORWARD_IP: {
838                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
839                         int len;
840
841                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
842                                 inet_ntoa(sa->sa.sin_addr));
843                         if (sa->sa.sin_port)
844                                 snprintf(SNPARGS(action2, len), ":%d",
845                                     sa->sa.sin_port);
846                         }
847                         break;
848                 case O_NETGRAPH:
849                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
850                                 cmd->arg1);
851                         break;
852                 case O_NGTEE:
853                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
854                                 cmd->arg1);
855                         break;
856                 default:
857                         action = "UNKNOWN";
858                         break;
859                 }
860         }
861
862         if (hlen == 0) {        /* non-ip */
863                 snprintf(SNPARGS(proto, 0), "MAC");
864
865         } else {
866                 int len;
867                 char src[48], dst[48];
868                 struct icmphdr *icmp;
869                 struct tcphdr *tcp;
870                 struct udphdr *udp;
871                 /* Initialize to make compiler happy. */
872                 struct ip *ip = NULL;
873 #ifdef INET6
874                 struct ip6_hdr *ip6 = NULL;
875                 struct icmp6_hdr *icmp6;
876 #endif
877                 src[0] = '\0';
878                 dst[0] = '\0';
879 #ifdef INET6
880                 if (args->f_id.addr_type == 6) {
881                         snprintf(src, sizeof(src), "[%s]",
882                             ip6_sprintf(&args->f_id.src_ip6));
883                         snprintf(dst, sizeof(dst), "[%s]",
884                             ip6_sprintf(&args->f_id.dst_ip6));
885
886                         ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
887                         tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
888                         udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
889                 } else
890 #endif
891                 {
892                         ip = mtod(m, struct ip *);
893                         tcp = L3HDR(struct tcphdr, ip);
894                         udp = L3HDR(struct udphdr, ip);
895
896                         inet_ntoa_r(ip->ip_src, src);
897                         inet_ntoa_r(ip->ip_dst, dst);
898                 }
899
900                 switch (args->f_id.proto) {
901                 case IPPROTO_TCP:
902                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
903                         if (offset == 0)
904                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
905                                     ntohs(tcp->th_sport),
906                                     dst,
907                                     ntohs(tcp->th_dport));
908                         else
909                                 snprintf(SNPARGS(proto, len), " %s", dst);
910                         break;
911
912                 case IPPROTO_UDP:
913                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
914                         if (offset == 0)
915                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
916                                     ntohs(udp->uh_sport),
917                                     dst,
918                                     ntohs(udp->uh_dport));
919                         else
920                                 snprintf(SNPARGS(proto, len), " %s", dst);
921                         break;
922
923                 case IPPROTO_ICMP:
924                         icmp = L3HDR(struct icmphdr, ip);
925                         if (offset == 0)
926                                 len = snprintf(SNPARGS(proto, 0),
927                                     "ICMP:%u.%u ",
928                                     icmp->icmp_type, icmp->icmp_code);
929                         else
930                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
931                         len += snprintf(SNPARGS(proto, len), "%s", src);
932                         snprintf(SNPARGS(proto, len), " %s", dst);
933                         break;
934 #ifdef INET6
935                 case IPPROTO_ICMPV6:
936                         icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
937                         if (offset == 0)
938                                 len = snprintf(SNPARGS(proto, 0),
939                                     "ICMPv6:%u.%u ",
940                                     icmp6->icmp6_type, icmp6->icmp6_code);
941                         else
942                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
943                         len += snprintf(SNPARGS(proto, len), "%s", src);
944                         snprintf(SNPARGS(proto, len), " %s", dst);
945                         break;
946 #endif
947                 default:
948                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
949                             args->f_id.proto, src);
950                         snprintf(SNPARGS(proto, len), " %s", dst);
951                         break;
952                 }
953
954 #ifdef INET6
955                 if (args->f_id.addr_type == 6) {
956                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
957                                 snprintf(SNPARGS(fragment, 0),
958                                     " (frag %08x:%d@%d%s)",
959                                     args->f_id.frag_id6,
960                                     ntohs(ip6->ip6_plen) - hlen,
961                                     ntohs(offset & IP6F_OFF_MASK) << 3,
962                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
963                 } else
964 #endif
965                 {
966                         int ip_off, ip_len;
967                         if (eh != NULL) { /* layer 2 packets are as on the wire */
968                                 ip_off = ntohs(ip->ip_off);
969                                 ip_len = ntohs(ip->ip_len);
970                         } else {
971                                 ip_off = ip->ip_off;
972                                 ip_len = ip->ip_len;
973                         }
974                         if (ip_off & (IP_MF | IP_OFFMASK))
975                                 snprintf(SNPARGS(fragment, 0),
976                                     " (frag %d:%d@%d%s)",
977                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
978                                     offset << 3,
979                                     (ip_off & IP_MF) ? "+" : "");
980                 }
981         }
982         if (oif || m->m_pkthdr.rcvif)
983                 log(LOG_SECURITY | LOG_INFO,
984                     "ipfw: %d %s %s %s via %s%s\n",
985                     f ? f->rulenum : -1,
986                     action, proto, oif ? "out" : "in",
987                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
988                     fragment);
989         else
990                 log(LOG_SECURITY | LOG_INFO,
991                     "ipfw: %d %s %s [no if info]%s\n",
992                     f ? f->rulenum : -1,
993                     action, proto, fragment);
994         if (limit_reached)
995                 log(LOG_SECURITY | LOG_NOTICE,
996                     "ipfw: limit %d reached on entry %d\n",
997                     limit_reached, f ? f->rulenum : -1);
998 }
999
1000 /*
1001  * IMPORTANT: the hash function for dynamic rules must be commutative
1002  * in source and destination (ip,port), because rules are bidirectional
1003  * and we want to find both in the same bucket.
1004  */
1005 static __inline int
1006 hash_packet(struct ipfw_flow_id *id)
1007 {
1008         u_int32_t i;
1009
1010 #ifdef INET6
1011         if (IS_IP6_FLOW_ID(id)) 
1012                 i = hash_packet6(id);
1013         else
1014 #endif /* INET6 */
1015         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1016         i &= (curr_dyn_buckets - 1);
1017         return i;
1018 }
1019
1020 /**
1021  * unlink a dynamic rule from a chain. prev is a pointer to
1022  * the previous one, q is a pointer to the rule to delete,
1023  * head is a pointer to the head of the queue.
1024  * Modifies q and potentially also head.
1025  */
1026 #define UNLINK_DYN_RULE(prev, head, q) {                                \
1027         ipfw_dyn_rule *old_q = q;                                       \
1028                                                                         \
1029         /* remove a refcount to the parent */                           \
1030         if (q->dyn_type == O_LIMIT)                                     \
1031                 q->parent->count--;                                     \
1032         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1033                 (q->id.src_ip), (q->id.src_port),                       \
1034                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
1035         if (prev != NULL)                                               \
1036                 prev->next = q = q->next;                               \
1037         else                                                            \
1038                 head = q = q->next;                                     \
1039         dyn_count--;                                                    \
1040         uma_zfree(ipfw_dyn_rule_zone, old_q); }
1041
1042 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1043
1044 /**
1045  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1046  *
1047  * If keep_me == NULL, rules are deleted even if not expired,
1048  * otherwise only expired rules are removed.
1049  *
1050  * The value of the second parameter is also used to point to identify
1051  * a rule we absolutely do not want to remove (e.g. because we are
1052  * holding a reference to it -- this is the case with O_LIMIT_PARENT
1053  * rules). The pointer is only used for comparison, so any non-null
1054  * value will do.
1055  */
1056 static void
1057 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1058 {
1059         static u_int32_t last_remove = 0;
1060
1061 #define FORCE (keep_me == NULL)
1062
1063         ipfw_dyn_rule *prev, *q;
1064         int i, pass = 0, max_pass = 0;
1065
1066         IPFW_DYN_LOCK_ASSERT();
1067
1068         if (ipfw_dyn_v == NULL || dyn_count == 0)
1069                 return;
1070         /* do not expire more than once per second, it is useless */
1071         if (!FORCE && last_remove == time_uptime)
1072                 return;
1073         last_remove = time_uptime;
1074
1075         /*
1076          * because O_LIMIT refer to parent rules, during the first pass only
1077          * remove child and mark any pending LIMIT_PARENT, and remove
1078          * them in a second pass.
1079          */
1080 next_pass:
1081         for (i = 0 ; i < curr_dyn_buckets ; i++) {
1082                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1083                         /*
1084                          * Logic can become complex here, so we split tests.
1085                          */
1086                         if (q == keep_me)
1087                                 goto next;
1088                         if (rule != NULL && rule != q->rule)
1089                                 goto next; /* not the one we are looking for */
1090                         if (q->dyn_type == O_LIMIT_PARENT) {
1091                                 /*
1092                                  * handle parent in the second pass,
1093                                  * record we need one.
1094                                  */
1095                                 max_pass = 1;
1096                                 if (pass == 0)
1097                                         goto next;
1098                                 if (FORCE && q->count != 0 ) {
1099                                         /* XXX should not happen! */
1100                                         printf("ipfw: OUCH! cannot remove rule,"
1101                                              " count %d\n", q->count);
1102                                 }
1103                         } else {
1104                                 if (!FORCE &&
1105                                     !TIME_LEQ( q->expire, time_uptime ))
1106                                         goto next;
1107                         }
1108              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1109                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1110                      continue;
1111              }
1112 next:
1113                         prev=q;
1114                         q=q->next;
1115                 }
1116         }
1117         if (pass++ < max_pass)
1118                 goto next_pass;
1119 }
1120
1121
1122 /**
1123  * lookup a dynamic rule.
1124  */
1125 static ipfw_dyn_rule *
1126 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1127         struct tcphdr *tcp)
1128 {
1129         /*
1130          * stateful ipfw extensions.
1131          * Lookup into dynamic session queue
1132          */
1133 #define MATCH_REVERSE   0
1134 #define MATCH_FORWARD   1
1135 #define MATCH_NONE      2
1136 #define MATCH_UNKNOWN   3
1137         int i, dir = MATCH_NONE;
1138         ipfw_dyn_rule *prev, *q=NULL;
1139
1140         IPFW_DYN_LOCK_ASSERT();
1141
1142         if (ipfw_dyn_v == NULL)
1143                 goto done;      /* not found */
1144         i = hash_packet( pkt );
1145         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1146                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1147                         goto next;
1148                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1149                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1150                         continue;
1151                 }
1152                 if (pkt->proto == q->id.proto &&
1153                     q->dyn_type != O_LIMIT_PARENT) {
1154                         if (IS_IP6_FLOW_ID(pkt)) {
1155                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1156                                 &(q->id.src_ip6)) &&
1157                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1158                                 &(q->id.dst_ip6)) &&
1159                             pkt->src_port == q->id.src_port &&
1160                             pkt->dst_port == q->id.dst_port ) {
1161                                 dir = MATCH_FORWARD;
1162                                 break;
1163                             }
1164                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1165                                     &(q->id.dst_ip6)) &&
1166                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1167                                     &(q->id.src_ip6)) &&
1168                                 pkt->src_port == q->id.dst_port &&
1169                                 pkt->dst_port == q->id.src_port ) {
1170                                     dir = MATCH_REVERSE;
1171                                     break;
1172                             }
1173                         } else {
1174                             if (pkt->src_ip == q->id.src_ip &&
1175                                 pkt->dst_ip == q->id.dst_ip &&
1176                                 pkt->src_port == q->id.src_port &&
1177                                 pkt->dst_port == q->id.dst_port ) {
1178                                     dir = MATCH_FORWARD;
1179                                     break;
1180                             }
1181                             if (pkt->src_ip == q->id.dst_ip &&
1182                                 pkt->dst_ip == q->id.src_ip &&
1183                                 pkt->src_port == q->id.dst_port &&
1184                                 pkt->dst_port == q->id.src_port ) {
1185                                     dir = MATCH_REVERSE;
1186                                     break;
1187                             }
1188                         }
1189                 }
1190 next:
1191                 prev = q;
1192                 q = q->next;
1193         }
1194         if (q == NULL)
1195                 goto done; /* q = NULL, not found */
1196
1197         if ( prev != NULL) { /* found and not in front */
1198                 prev->next = q->next;
1199                 q->next = ipfw_dyn_v[i];
1200                 ipfw_dyn_v[i] = q;
1201         }
1202         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1203                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1204
1205 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
1206 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
1207                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1208                 switch (q->state) {
1209                 case TH_SYN:                            /* opening */
1210                         q->expire = time_uptime + dyn_syn_lifetime;
1211                         break;
1212
1213                 case BOTH_SYN:                  /* move to established */
1214                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
1215                 case BOTH_SYN | (TH_FIN << 8) :
1216                         if (tcp) {
1217 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1218                             u_int32_t ack = ntohl(tcp->th_ack);
1219                             if (dir == MATCH_FORWARD) {
1220                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1221                                     q->ack_fwd = ack;
1222                                 else { /* ignore out-of-sequence */
1223                                     break;
1224                                 }
1225                             } else {
1226                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1227                                     q->ack_rev = ack;
1228                                 else { /* ignore out-of-sequence */
1229                                     break;
1230                                 }
1231                             }
1232                         }
1233                         q->expire = time_uptime + dyn_ack_lifetime;
1234                         break;
1235
1236                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
1237                         if (dyn_fin_lifetime >= dyn_keepalive_period)
1238                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
1239                         q->expire = time_uptime + dyn_fin_lifetime;
1240                         break;
1241
1242                 default:
1243 #if 0
1244                         /*
1245                          * reset or some invalid combination, but can also
1246                          * occur if we use keep-state the wrong way.
1247                          */
1248                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1249                                 printf("invalid state: 0x%x\n", q->state);
1250 #endif
1251                         if (dyn_rst_lifetime >= dyn_keepalive_period)
1252                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
1253                         q->expire = time_uptime + dyn_rst_lifetime;
1254                         break;
1255                 }
1256         } else if (pkt->proto == IPPROTO_UDP) {
1257                 q->expire = time_uptime + dyn_udp_lifetime;
1258         } else {
1259                 /* other protocols */
1260                 q->expire = time_uptime + dyn_short_lifetime;
1261         }
1262 done:
1263         if (match_direction)
1264                 *match_direction = dir;
1265         return q;
1266 }
1267
1268 static ipfw_dyn_rule *
1269 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1270         struct tcphdr *tcp)
1271 {
1272         ipfw_dyn_rule *q;
1273
1274         IPFW_DYN_LOCK();
1275         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1276         if (q == NULL)
1277                 IPFW_DYN_UNLOCK();
1278         /* NB: return table locked when q is not NULL */
1279         return q;
1280 }
1281
1282 static void
1283 realloc_dynamic_table(void)
1284 {
1285         IPFW_DYN_LOCK_ASSERT();
1286
1287         /*
1288          * Try reallocation, make sure we have a power of 2 and do
1289          * not allow more than 64k entries. In case of overflow,
1290          * default to 1024.
1291          */
1292
1293         if (dyn_buckets > 65536)
1294                 dyn_buckets = 1024;
1295         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1296                 dyn_buckets = curr_dyn_buckets; /* reset */
1297                 return;
1298         }
1299         curr_dyn_buckets = dyn_buckets;
1300         if (ipfw_dyn_v != NULL)
1301                 free(ipfw_dyn_v, M_IPFW);
1302         for (;;) {
1303                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1304                        M_IPFW, M_NOWAIT | M_ZERO);
1305                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1306                         break;
1307                 curr_dyn_buckets /= 2;
1308         }
1309 }
1310
1311 /**
1312  * Install state of type 'type' for a dynamic session.
1313  * The hash table contains two type of rules:
1314  * - regular rules (O_KEEP_STATE)
1315  * - rules for sessions with limited number of sess per user
1316  *   (O_LIMIT). When they are created, the parent is
1317  *   increased by 1, and decreased on delete. In this case,
1318  *   the third parameter is the parent rule and not the chain.
1319  * - "parent" rules for the above (O_LIMIT_PARENT).
1320  */
1321 static ipfw_dyn_rule *
1322 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1323 {
1324         ipfw_dyn_rule *r;
1325         int i;
1326
1327         IPFW_DYN_LOCK_ASSERT();
1328
1329         if (ipfw_dyn_v == NULL ||
1330             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1331                 realloc_dynamic_table();
1332                 if (ipfw_dyn_v == NULL)
1333                         return NULL; /* failed ! */
1334         }
1335         i = hash_packet(id);
1336
1337         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1338         if (r == NULL) {
1339                 printf ("ipfw: sorry cannot allocate state\n");
1340                 return NULL;
1341         }
1342
1343         /* increase refcount on parent, and set pointer */
1344         if (dyn_type == O_LIMIT) {
1345                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1346                 if ( parent->dyn_type != O_LIMIT_PARENT)
1347                         panic("invalid parent");
1348                 parent->count++;
1349                 r->parent = parent;
1350                 rule = parent->rule;
1351         }
1352
1353         r->id = *id;
1354         r->expire = time_uptime + dyn_syn_lifetime;
1355         r->rule = rule;
1356         r->dyn_type = dyn_type;
1357         r->pcnt = r->bcnt = 0;
1358         r->count = 0;
1359
1360         r->bucket = i;
1361         r->next = ipfw_dyn_v[i];
1362         ipfw_dyn_v[i] = r;
1363         dyn_count++;
1364         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1365            dyn_type,
1366            (r->id.src_ip), (r->id.src_port),
1367            (r->id.dst_ip), (r->id.dst_port),
1368            dyn_count ); )
1369         return r;
1370 }
1371
1372 /**
1373  * lookup dynamic parent rule using pkt and rule as search keys.
1374  * If the lookup fails, then install one.
1375  */
1376 static ipfw_dyn_rule *
1377 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1378 {
1379         ipfw_dyn_rule *q;
1380         int i;
1381
1382         IPFW_DYN_LOCK_ASSERT();
1383
1384         if (ipfw_dyn_v) {
1385                 int is_v6 = IS_IP6_FLOW_ID(pkt);
1386                 i = hash_packet( pkt );
1387                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1388                         if (q->dyn_type == O_LIMIT_PARENT &&
1389                             rule== q->rule &&
1390                             pkt->proto == q->id.proto &&
1391                             pkt->src_port == q->id.src_port &&
1392                             pkt->dst_port == q->id.dst_port &&
1393                             (
1394                                 (is_v6 &&
1395                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1396                                         &(q->id.src_ip6)) &&
1397                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1398                                         &(q->id.dst_ip6))) ||
1399                                 (!is_v6 &&
1400                                  pkt->src_ip == q->id.src_ip &&
1401                                  pkt->dst_ip == q->id.dst_ip)
1402                             )
1403                         ) {
1404                                 q->expire = time_uptime + dyn_short_lifetime;
1405                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1406                                 return q;
1407                         }
1408         }
1409         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1410 }
1411
1412 /**
1413  * Install dynamic state for rule type cmd->o.opcode
1414  *
1415  * Returns 1 (failure) if state is not installed because of errors or because
1416  * session limitations are enforced.
1417  */
1418 static int
1419 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1420         struct ip_fw_args *args)
1421 {
1422         static int last_log;
1423
1424         ipfw_dyn_rule *q;
1425
1426         DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1427             cmd->o.opcode,
1428             (args->f_id.src_ip), (args->f_id.src_port),
1429             (args->f_id.dst_ip), (args->f_id.dst_port) );)
1430
1431         IPFW_DYN_LOCK();
1432
1433         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1434
1435         if (q != NULL) { /* should never occur */
1436                 if (last_log != time_uptime) {
1437                         last_log = time_uptime;
1438                         printf("ipfw: install_state: entry already present, done\n");
1439                 }
1440                 IPFW_DYN_UNLOCK();
1441                 return 0;
1442         }
1443
1444         if (dyn_count >= dyn_max)
1445                 /*
1446                  * Run out of slots, try to remove any expired rule.
1447                  */
1448                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1449
1450         if (dyn_count >= dyn_max) {
1451                 if (last_log != time_uptime) {
1452                         last_log = time_uptime;
1453                         printf("ipfw: install_state: Too many dynamic rules\n");
1454                 }
1455                 IPFW_DYN_UNLOCK();
1456                 return 1; /* cannot install, notify caller */
1457         }
1458
1459         switch (cmd->o.opcode) {
1460         case O_KEEP_STATE: /* bidir rule */
1461                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1462                 break;
1463
1464         case O_LIMIT: /* limit number of sessions */
1465             {
1466                 u_int16_t limit_mask = cmd->limit_mask;
1467                 struct ipfw_flow_id id;
1468                 ipfw_dyn_rule *parent;
1469
1470                 DEB(printf("ipfw: installing dyn-limit rule %d\n",
1471                     cmd->conn_limit);)
1472
1473                 id.dst_ip = id.src_ip = 0;
1474                 id.dst_port = id.src_port = 0;
1475                 id.proto = args->f_id.proto;
1476                 id.addr_type = args->f_id.addr_type;
1477
1478                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
1479                         if (limit_mask & DYN_SRC_ADDR)
1480                                 id.src_ip6 = args->f_id.src_ip6;
1481                         if (limit_mask & DYN_DST_ADDR)
1482                                 id.dst_ip6 = args->f_id.dst_ip6;
1483                 } else {
1484                         if (limit_mask & DYN_SRC_ADDR)
1485                                 id.src_ip = args->f_id.src_ip;
1486                         if (limit_mask & DYN_DST_ADDR)
1487                                 id.dst_ip = args->f_id.dst_ip;
1488                 }
1489                 if (limit_mask & DYN_SRC_PORT)
1490                         id.src_port = args->f_id.src_port;
1491                 if (limit_mask & DYN_DST_PORT)
1492                         id.dst_port = args->f_id.dst_port;
1493                 parent = lookup_dyn_parent(&id, rule);
1494                 if (parent == NULL) {
1495                         printf("ipfw: add parent failed\n");
1496                         IPFW_DYN_UNLOCK();
1497                         return 1;
1498                 }
1499                 if (parent->count >= cmd->conn_limit) {
1500                         /*
1501                          * See if we can remove some expired rule.
1502                          */
1503                         remove_dyn_rule(rule, parent);
1504                         if (parent->count >= cmd->conn_limit) {
1505                                 if (fw_verbose && last_log != time_uptime) {
1506                                         last_log = time_uptime;
1507                                         log(LOG_SECURITY | LOG_DEBUG,
1508                                             "drop session, too many entries\n");
1509                                 }
1510                                 IPFW_DYN_UNLOCK();
1511                                 return 1;
1512                         }
1513                 }
1514                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1515             }
1516                 break;
1517         default:
1518                 printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1519                 IPFW_DYN_UNLOCK();
1520                 return 1;
1521         }
1522         lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1523         IPFW_DYN_UNLOCK();
1524         return 0;
1525 }
1526
1527 /*
1528  * Generate a TCP packet, containing either a RST or a keepalive.
1529  * When flags & TH_RST, we are sending a RST packet, because of a
1530  * "reset" action matched the packet.
1531  * Otherwise we are sending a keepalive, and flags & TH_
1532  */
1533 static struct mbuf *
1534 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1535 {
1536         struct mbuf *m;
1537         struct ip *ip;
1538         struct tcphdr *tcp;
1539
1540         MGETHDR(m, M_DONTWAIT, MT_DATA);
1541         if (m == 0)
1542                 return (NULL);
1543         m->m_pkthdr.rcvif = (struct ifnet *)0;
1544         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1545         m->m_data += max_linkhdr;
1546
1547         ip = mtod(m, struct ip *);
1548         bzero(ip, m->m_len);
1549         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1550         ip->ip_p = IPPROTO_TCP;
1551         tcp->th_off = 5;
1552         /*
1553          * Assume we are sending a RST (or a keepalive in the reverse
1554          * direction), swap src and destination addresses and ports.
1555          */
1556         ip->ip_src.s_addr = htonl(id->dst_ip);
1557         ip->ip_dst.s_addr = htonl(id->src_ip);
1558         tcp->th_sport = htons(id->dst_port);
1559         tcp->th_dport = htons(id->src_port);
1560         if (flags & TH_RST) {   /* we are sending a RST */
1561                 if (flags & TH_ACK) {
1562                         tcp->th_seq = htonl(ack);
1563                         tcp->th_ack = htonl(0);
1564                         tcp->th_flags = TH_RST;
1565                 } else {
1566                         if (flags & TH_SYN)
1567                                 seq++;
1568                         tcp->th_seq = htonl(0);
1569                         tcp->th_ack = htonl(seq);
1570                         tcp->th_flags = TH_RST | TH_ACK;
1571                 }
1572         } else {
1573                 /*
1574                  * We are sending a keepalive. flags & TH_SYN determines
1575                  * the direction, forward if set, reverse if clear.
1576                  * NOTE: seq and ack are always assumed to be correct
1577                  * as set by the caller. This may be confusing...
1578                  */
1579                 if (flags & TH_SYN) {
1580                         /*
1581                          * we have to rewrite the correct addresses!
1582                          */
1583                         ip->ip_dst.s_addr = htonl(id->dst_ip);
1584                         ip->ip_src.s_addr = htonl(id->src_ip);
1585                         tcp->th_dport = htons(id->dst_port);
1586                         tcp->th_sport = htons(id->src_port);
1587                 }
1588                 tcp->th_seq = htonl(seq);
1589                 tcp->th_ack = htonl(ack);
1590                 tcp->th_flags = TH_ACK;
1591         }
1592         /*
1593          * set ip_len to the payload size so we can compute
1594          * the tcp checksum on the pseudoheader
1595          * XXX check this, could save a couple of words ?
1596          */
1597         ip->ip_len = htons(sizeof(struct tcphdr));
1598         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1599         /*
1600          * now fill fields left out earlier
1601          */
1602         ip->ip_ttl = ip_defttl;
1603         ip->ip_len = m->m_pkthdr.len;
1604         m->m_flags |= M_SKIP_FIREWALL;
1605         return (m);
1606 }
1607
1608 /*
1609  * sends a reject message, consuming the mbuf passed as an argument.
1610  */
1611 static void
1612 send_reject(struct ip_fw_args *args, int code, u_short offset, int ip_len)
1613 {
1614
1615         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1616                 /* We need the IP header in host order for icmp_error(). */
1617                 if (args->eh != NULL) {
1618                         struct ip *ip = mtod(args->m, struct ip *);
1619                         ip->ip_len = ntohs(ip->ip_len);
1620                         ip->ip_off = ntohs(ip->ip_off);
1621                 }
1622                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1623         } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1624                 struct tcphdr *const tcp =
1625                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1626                 if ( (tcp->th_flags & TH_RST) == 0) {
1627                         struct mbuf *m;
1628                         m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1629                                 ntohl(tcp->th_ack),
1630                                 tcp->th_flags | TH_RST);
1631                         if (m != NULL)
1632                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1633                 }
1634                 m_freem(args->m);
1635         } else
1636                 m_freem(args->m);
1637         args->m = NULL;
1638 }
1639
1640 /**
1641  *
1642  * Given an ip_fw *, lookup_next_rule will return a pointer
1643  * to the next rule, which can be either the jump
1644  * target (for skipto instructions) or the next one in the list (in
1645  * all other cases including a missing jump target).
1646  * The result is also written in the "next_rule" field of the rule.
1647  * Backward jumps are not allowed, so start looking from the next
1648  * rule...
1649  *
1650  * This never returns NULL -- in case we do not have an exact match,
1651  * the next rule is returned. When the ruleset is changed,
1652  * pointers are flushed so we are always correct.
1653  */
1654
1655 static struct ip_fw *
1656 lookup_next_rule(struct ip_fw *me)
1657 {
1658         struct ip_fw *rule = NULL;
1659         ipfw_insn *cmd;
1660
1661         /* look for action, in case it is a skipto */
1662         cmd = ACTION_PTR(me);
1663         if (cmd->opcode == O_LOG)
1664                 cmd += F_LEN(cmd);
1665         if (cmd->opcode == O_ALTQ)
1666                 cmd += F_LEN(cmd);
1667         if (cmd->opcode == O_TAG)
1668                 cmd += F_LEN(cmd);
1669         if ( cmd->opcode == O_SKIPTO )
1670                 for (rule = me->next; rule ; rule = rule->next)
1671                         if (rule->rulenum >= cmd->arg1)
1672                                 break;
1673         if (rule == NULL)                       /* failure or not a skipto */
1674                 rule = me->next;
1675         me->next_rule = rule;
1676         return rule;
1677 }
1678
1679 static int
1680 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1681         uint8_t mlen, uint32_t value)
1682 {
1683         struct radix_node_head *rnh;
1684         struct table_entry *ent;
1685
1686         if (tbl >= IPFW_TABLES_MAX)
1687                 return (EINVAL);
1688         rnh = ch->tables[tbl];
1689         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1690         if (ent == NULL)
1691                 return (ENOMEM);
1692         ent->value = value;
1693         ent->addr.sin_len = ent->mask.sin_len = 8;
1694         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1695         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1696         IPFW_WLOCK(&layer3_chain);
1697         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1698             NULL) {
1699                 IPFW_WUNLOCK(&layer3_chain);
1700                 free(ent, M_IPFW_TBL);
1701                 return (EEXIST);
1702         }
1703         IPFW_WUNLOCK(&layer3_chain);
1704         return (0);
1705 }
1706
1707 static int
1708 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1709         uint8_t mlen)
1710 {
1711         struct radix_node_head *rnh;
1712         struct table_entry *ent;
1713         struct sockaddr_in sa, mask;
1714
1715         if (tbl >= IPFW_TABLES_MAX)
1716                 return (EINVAL);
1717         rnh = ch->tables[tbl];
1718         sa.sin_len = mask.sin_len = 8;
1719         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1720         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1721         IPFW_WLOCK(ch);
1722         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1723         if (ent == NULL) {
1724                 IPFW_WUNLOCK(ch);
1725                 return (ESRCH);
1726         }
1727         IPFW_WUNLOCK(ch);
1728         free(ent, M_IPFW_TBL);
1729         return (0);
1730 }
1731
1732 static int
1733 flush_table_entry(struct radix_node *rn, void *arg)
1734 {
1735         struct radix_node_head * const rnh = arg;
1736         struct table_entry *ent;
1737
1738         ent = (struct table_entry *)
1739             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1740         if (ent != NULL)
1741                 free(ent, M_IPFW_TBL);
1742         return (0);
1743 }
1744
1745 static int
1746 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1747 {
1748         struct radix_node_head *rnh;
1749
1750         IPFW_WLOCK_ASSERT(ch);
1751
1752         if (tbl >= IPFW_TABLES_MAX)
1753                 return (EINVAL);
1754         rnh = ch->tables[tbl];
1755         KASSERT(rnh != NULL, ("NULL IPFW table"));
1756         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1757         return (0);
1758 }
1759
1760 static void
1761 flush_tables(struct ip_fw_chain *ch)
1762 {
1763         uint16_t tbl;
1764
1765         IPFW_WLOCK_ASSERT(ch);
1766
1767         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1768                 flush_table(ch, tbl);
1769 }
1770
1771 static int
1772 init_tables(struct ip_fw_chain *ch)
1773
1774         int i;
1775         uint16_t j;
1776
1777         for (i = 0; i < IPFW_TABLES_MAX; i++) {
1778                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
1779                         for (j = 0; j < i; j++) {
1780                                 (void) flush_table(ch, j);
1781                         }
1782                         return (ENOMEM);
1783                 }
1784         }
1785         return (0);
1786 }
1787
1788 static int
1789 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1790         uint32_t *val)
1791 {
1792         struct radix_node_head *rnh;
1793         struct table_entry *ent;
1794         struct sockaddr_in sa;
1795
1796         if (tbl >= IPFW_TABLES_MAX)
1797                 return (0);
1798         rnh = ch->tables[tbl];
1799         sa.sin_len = 8;
1800         sa.sin_addr.s_addr = addr;
1801         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1802         if (ent != NULL) {
1803                 *val = ent->value;
1804                 return (1);
1805         }
1806         return (0);
1807 }
1808
1809 static int
1810 count_table_entry(struct radix_node *rn, void *arg)
1811 {
1812         u_int32_t * const cnt = arg;
1813
1814         (*cnt)++;
1815         return (0);
1816 }
1817
1818 static int
1819 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1820 {
1821         struct radix_node_head *rnh;
1822
1823         if (tbl >= IPFW_TABLES_MAX)
1824                 return (EINVAL);
1825         rnh = ch->tables[tbl];
1826         *cnt = 0;
1827         rnh->rnh_walktree(rnh, count_table_entry, cnt);
1828         return (0);
1829 }
1830
1831 static int
1832 dump_table_entry(struct radix_node *rn, void *arg)
1833 {
1834         struct table_entry * const n = (struct table_entry *)rn;
1835         ipfw_table * const tbl = arg;
1836         ipfw_table_entry *ent;
1837
1838         if (tbl->cnt == tbl->size)
1839                 return (1);
1840         ent = &tbl->ent[tbl->cnt];
1841         ent->tbl = tbl->tbl;
1842         if (in_nullhost(n->mask.sin_addr))
1843                 ent->masklen = 0;
1844         else
1845                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1846         ent->addr = n->addr.sin_addr.s_addr;
1847         ent->value = n->value;
1848         tbl->cnt++;
1849         return (0);
1850 }
1851
1852 static int
1853 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1854 {
1855         struct radix_node_head *rnh;
1856
1857         if (tbl->tbl >= IPFW_TABLES_MAX)
1858                 return (EINVAL);
1859         rnh = ch->tables[tbl->tbl];
1860         tbl->cnt = 0;
1861         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1862         return (0);
1863 }
1864
1865 static void
1866 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1867 {
1868         struct ucred *cr;
1869
1870         if (inp->inp_socket != NULL) {
1871                 cr = inp->inp_socket->so_cred;
1872                 ugp->fw_prid = jailed(cr) ?
1873                     cr->cr_prison->pr_id : -1;
1874                 ugp->fw_uid = cr->cr_uid;
1875                 ugp->fw_ngroups = cr->cr_ngroups;
1876                 bcopy(cr->cr_groups, ugp->fw_groups,
1877                     sizeof(ugp->fw_groups));
1878         }
1879 }
1880
1881 static int
1882 check_uidgid(ipfw_insn_u32 *insn,
1883         int proto, struct ifnet *oif,
1884         struct in_addr dst_ip, u_int16_t dst_port,
1885         struct in_addr src_ip, u_int16_t src_port,
1886         struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1887 {
1888         struct inpcbinfo *pi;
1889         int wildcard;
1890         struct inpcb *pcb;
1891         int match;
1892         gid_t *gp;
1893
1894         /*
1895          * Check to see if the UDP or TCP stack supplied us with
1896          * the PCB. If so, rather then holding a lock and looking
1897          * up the PCB, we can use the one that was supplied.
1898          */
1899         if (inp && *lookup == 0) {
1900                 INP_LOCK_ASSERT(inp);
1901                 if (inp->inp_socket != NULL) {
1902                         fill_ugid_cache(inp, ugp);
1903                         *lookup = 1;
1904                 }
1905         }
1906         /*
1907          * If we have already been here and the packet has no
1908          * PCB entry associated with it, then we can safely
1909          * assume that this is a no match.
1910          */
1911         if (*lookup == -1)
1912                 return (0);
1913         if (proto == IPPROTO_TCP) {
1914                 wildcard = 0;
1915                 pi = &tcbinfo;
1916         } else if (proto == IPPROTO_UDP) {
1917                 wildcard = 1;
1918                 pi = &udbinfo;
1919         } else
1920                 return 0;
1921         match = 0;
1922         if (*lookup == 0) {
1923                 INP_INFO_RLOCK(pi);
1924                 pcb =  (oif) ?
1925                         in_pcblookup_hash(pi,
1926                                 dst_ip, htons(dst_port),
1927                                 src_ip, htons(src_port),
1928                                 wildcard, oif) :
1929                         in_pcblookup_hash(pi,
1930                                 src_ip, htons(src_port),
1931                                 dst_ip, htons(dst_port),
1932                                 wildcard, NULL);
1933                 if (pcb != NULL) {
1934                         INP_LOCK(pcb);
1935                         if (pcb->inp_socket != NULL) {
1936                                 fill_ugid_cache(pcb, ugp);
1937                                 *lookup = 1;
1938                         }
1939                         INP_UNLOCK(pcb);
1940                 }
1941                 INP_INFO_RUNLOCK(pi);
1942                 if (*lookup == 0) {
1943                         /*
1944                          * If the lookup did not yield any results, there
1945                          * is no sense in coming back and trying again. So
1946                          * we can set lookup to -1 and ensure that we wont
1947                          * bother the pcb system again.
1948                          */
1949                         *lookup = -1;
1950                         return (0);
1951                 }
1952         } 
1953         if (insn->o.opcode == O_UID)
1954                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
1955         else if (insn->o.opcode == O_GID) {
1956                 for (gp = ugp->fw_groups;
1957                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1958                         if (*gp == (gid_t)insn->d[0]) {
1959                                 match = 1;
1960                                 break;
1961                         }
1962         } else if (insn->o.opcode == O_JAIL)
1963                 match = (ugp->fw_prid == (int)insn->d[0]);
1964         return match;
1965 }
1966
1967 /*
1968  * The main check routine for the firewall.
1969  *
1970  * All arguments are in args so we can modify them and return them
1971  * back to the caller.
1972  *
1973  * Parameters:
1974  *
1975  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
1976  *              Starts with the IP header.
1977  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
1978  *      args->oif       Outgoing interface, or NULL if packet is incoming.
1979  *              The incoming interface is in the mbuf. (in)
1980  *      args->divert_rule (in/out)
1981  *              Skip up to the first rule past this rule number;
1982  *              upon return, non-zero port number for divert or tee.
1983  *
1984  *      args->rule      Pointer to the last matching rule (in/out)
1985  *      args->next_hop  Socket we are forwarding to (out).
1986  *      args->f_id      Addresses grabbed from the packet (out)
1987  *      args->cookie    a cookie depending on rule action
1988  *
1989  * Return value:
1990  *
1991  *      IP_FW_PASS      the packet must be accepted
1992  *      IP_FW_DENY      the packet must be dropped
1993  *      IP_FW_DIVERT    divert packet, port in m_tag
1994  *      IP_FW_TEE       tee packet, port in m_tag
1995  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
1996  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
1997  *
1998  */
1999
2000 int
2001 ipfw_chk(struct ip_fw_args *args)
2002 {
2003         /*
2004          * Local variables hold state during the processing of a packet.
2005          *
2006          * IMPORTANT NOTE: to speed up the processing of rules, there
2007          * are some assumption on the values of the variables, which
2008          * are documented here. Should you change them, please check
2009          * the implementation of the various instructions to make sure
2010          * that they still work.
2011          *
2012          * args->eh     The MAC header. It is non-null for a layer2
2013          *      packet, it is NULL for a layer-3 packet.
2014          *
2015          * m | args->m  Pointer to the mbuf, as received from the caller.
2016          *      It may change if ipfw_chk() does an m_pullup, or if it
2017          *      consumes the packet because it calls send_reject().
2018          *      XXX This has to change, so that ipfw_chk() never modifies
2019          *      or consumes the buffer.
2020          * ip   is simply an alias of the value of m, and it is kept
2021          *      in sync with it (the packet is  supposed to start with
2022          *      the ip header).
2023          */
2024         struct mbuf *m = args->m;
2025         struct ip *ip = mtod(m, struct ip *);
2026
2027         /*
2028          * For rules which contain uid/gid or jail constraints, cache
2029          * a copy of the users credentials after the pcb lookup has been
2030          * executed. This will speed up the processing of rules with
2031          * these types of constraints, as well as decrease contention
2032          * on pcb related locks.
2033          */
2034         struct ip_fw_ugid fw_ugid_cache;
2035         int ugid_lookup = 0;
2036
2037         /*
2038          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
2039          *      associated with a packet input on a divert socket.  This
2040          *      will allow to distinguish traffic and its direction when
2041          *      it originates from a divert socket.
2042          */
2043         u_int divinput_flags = 0;
2044
2045         /*
2046          * oif | args->oif      If NULL, ipfw_chk has been called on the
2047          *      inbound path (ether_input, ip_input).
2048          *      If non-NULL, ipfw_chk has been called on the outbound path
2049          *      (ether_output, ip_output).
2050          */
2051         struct ifnet *oif = args->oif;
2052
2053         struct ip_fw *f = NULL;         /* matching rule */
2054         int retval = 0;
2055
2056         /*
2057          * hlen The length of the IP header.
2058          */
2059         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
2060
2061         /*
2062          * offset       The offset of a fragment. offset != 0 means that
2063          *      we have a fragment at this offset of an IPv4 packet.
2064          *      offset == 0 means that (if this is an IPv4 packet)
2065          *      this is the first or only fragment.
2066          *      For IPv6 offset == 0 means there is no Fragment Header. 
2067          *      If offset != 0 for IPv6 always use correct mask to
2068          *      get the correct offset because we add IP6F_MORE_FRAG
2069          *      to be able to dectect the first fragment which would
2070          *      otherwise have offset = 0.
2071          */
2072         u_short offset = 0;
2073
2074         /*
2075          * Local copies of addresses. They are only valid if we have
2076          * an IP packet.
2077          *
2078          * proto        The protocol. Set to 0 for non-ip packets,
2079          *      or to the protocol read from the packet otherwise.
2080          *      proto != 0 means that we have an IPv4 packet.
2081          *
2082          * src_port, dst_port   port numbers, in HOST format. Only
2083          *      valid for TCP and UDP packets.
2084          *
2085          * src_ip, dst_ip       ip addresses, in NETWORK format.
2086          *      Only valid for IPv4 packets.
2087          */
2088         u_int8_t proto;
2089         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
2090         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
2091         u_int16_t ip_len=0;
2092         int pktlen;
2093
2094         /*
2095          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2096          *      MATCH_NONE when checked and not matched (q = NULL),
2097          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2098          */
2099         int dyn_dir = MATCH_UNKNOWN;
2100         ipfw_dyn_rule *q = NULL;
2101         struct ip_fw_chain *chain = &layer3_chain;
2102         struct m_tag *mtag;
2103
2104         /*
2105          * We store in ulp a pointer to the upper layer protocol header.
2106          * In the ipv4 case this is easy to determine from the header,
2107          * but for ipv6 we might have some additional headers in the middle.
2108          * ulp is NULL if not found.
2109          */
2110         void *ulp = NULL;               /* upper layer protocol pointer. */
2111         /* XXX ipv6 variables */
2112         int is_ipv6 = 0;
2113         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
2114         /* end of ipv6 variables */
2115         int is_ipv4 = 0;
2116
2117         if (m->m_flags & M_SKIP_FIREWALL)
2118                 return (IP_FW_PASS);    /* accept */
2119
2120         pktlen = m->m_pkthdr.len;
2121         proto = args->f_id.proto = 0;   /* mark f_id invalid */
2122                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2123
2124 /*
2125  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2126  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2127  * pointer might become stale after other pullups (but we never use it
2128  * this way).
2129  */
2130 #define PULLUP_TO(len, p, T)                                            \
2131 do {                                                                    \
2132         int x = (len) + sizeof(T);                                      \
2133         if ((m)->m_len < x) {                                           \
2134                 args->m = m = m_pullup(m, x);                           \
2135                 if (m == NULL)                                          \
2136                         goto pullup_failed;                             \
2137         }                                                               \
2138         p = (mtod(m, char *) + (len));                                  \
2139 } while (0)
2140
2141         /* Identify IP packets and fill up variables. */
2142         if (pktlen >= sizeof(struct ip6_hdr) &&
2143             (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2144             mtod(m, struct ip *)->ip_v == 6) {
2145                 is_ipv6 = 1;
2146                 args->f_id.addr_type = 6;
2147                 hlen = sizeof(struct ip6_hdr);
2148                 proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2149
2150                 /* Search extension headers to find upper layer protocols */
2151                 while (ulp == NULL) {
2152                         switch (proto) {
2153                         case IPPROTO_ICMPV6:
2154                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2155                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
2156                                 break;
2157
2158                         case IPPROTO_TCP:
2159                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2160                                 dst_port = TCP(ulp)->th_dport;
2161                                 src_port = TCP(ulp)->th_sport;
2162                                 args->f_id.flags = TCP(ulp)->th_flags;
2163                                 break;
2164
2165                         case IPPROTO_UDP:
2166                                 PULLUP_TO(hlen, ulp, struct udphdr);
2167                                 dst_port = UDP(ulp)->uh_dport;
2168                                 src_port = UDP(ulp)->uh_sport;
2169                                 break;
2170
2171                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
2172                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2173                                 ext_hd |= EXT_HOPOPTS;
2174                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2175                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2176                                 ulp = NULL;
2177                                 break;
2178
2179                         case IPPROTO_ROUTING:   /* RFC 2460 */
2180                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2181                                 if (((struct ip6_rthdr *)ulp)->ip6r_type != 0) {
2182                                         printf("IPFW2: IPV6 - Unknown Routing "
2183                                             "Header type(%d)\n",
2184                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
2185                                         if (fw_deny_unknown_exthdrs)
2186                                             return (IP_FW_DENY);
2187                                         break;
2188                                 }
2189                                 ext_hd |= EXT_ROUTING;
2190                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2191                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2192                                 ulp = NULL;
2193                                 break;
2194
2195                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
2196                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
2197                                 ext_hd |= EXT_FRAGMENT;
2198                                 hlen += sizeof (struct ip6_frag);
2199                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2200                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2201                                         IP6F_OFF_MASK;
2202                                 /* Add IP6F_MORE_FRAG for offset of first
2203                                  * fragment to be != 0. */
2204                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2205                                         IP6F_MORE_FRAG;
2206                                 if (offset == 0) {
2207                                         printf("IPFW2: IPV6 - Invalid Fragment "
2208                                             "Header\n");
2209                                         if (fw_deny_unknown_exthdrs)
2210                                             return (IP_FW_DENY);
2211                                         break;
2212                                 }
2213                                 args->f_id.frag_id6 =
2214                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2215                                 ulp = NULL;
2216                                 break;
2217
2218                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
2219                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2220                                 ext_hd |= EXT_DSTOPTS;
2221                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2222                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2223                                 ulp = NULL;
2224                                 break;
2225
2226                         case IPPROTO_AH:        /* RFC 2402 */
2227                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2228                                 ext_hd |= EXT_AH;
2229                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2230                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2231                                 ulp = NULL;
2232                                 break;
2233
2234                         case IPPROTO_ESP:       /* RFC 2406 */
2235                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
2236                                 /* Anything past Seq# is variable length and
2237                                  * data past this ext. header is encrypted. */
2238                                 ext_hd |= EXT_ESP;
2239                                 break;
2240
2241                         case IPPROTO_NONE:      /* RFC 2460 */
2242                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2243                                 /* Packet ends here. if ip6e_len!=0 octets
2244                                  * must be ignored. */
2245                                 break;
2246
2247                         case IPPROTO_OSPFIGP:
2248                                 /* XXX OSPF header check? */
2249                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2250                                 break;
2251
2252                         default:
2253                                 printf("IPFW2: IPV6 - Unknown Extension "
2254                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
2255                                 if (fw_deny_unknown_exthdrs)
2256                                     return (IP_FW_DENY);
2257                                 break;
2258                         } /*switch */
2259                 }
2260                 args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2261                 args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2262                 args->f_id.src_ip = 0;
2263                 args->f_id.dst_ip = 0;
2264                 args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2265         } else if (pktlen >= sizeof(struct ip) &&
2266             (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2267             mtod(m, struct ip *)->ip_v == 4) {
2268                 is_ipv4 = 1;
2269                 ip = mtod(m, struct ip *);
2270                 hlen = ip->ip_hl << 2;
2271                 args->f_id.addr_type = 4;
2272
2273                 /*
2274                  * Collect parameters into local variables for faster matching.
2275                  */
2276                 proto = ip->ip_p;
2277                 src_ip = ip->ip_src;
2278                 dst_ip = ip->ip_dst;
2279                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2280                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
2281                         ip_len = ntohs(ip->ip_len);
2282                 } else {
2283                         offset = ip->ip_off & IP_OFFMASK;
2284                         ip_len = ip->ip_len;
2285                 }
2286                 pktlen = ip_len < pktlen ? ip_len : pktlen;
2287
2288                 if (offset == 0) {
2289                         switch (proto) {
2290                         case IPPROTO_TCP:
2291                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2292                                 dst_port = TCP(ulp)->th_dport;
2293                                 src_port = TCP(ulp)->th_sport;
2294                                 args->f_id.flags = TCP(ulp)->th_flags;
2295                                 break;
2296
2297                         case IPPROTO_UDP:
2298                                 PULLUP_TO(hlen, ulp, struct udphdr);
2299                                 dst_port = UDP(ulp)->uh_dport;
2300                                 src_port = UDP(ulp)->uh_sport;
2301                                 break;
2302
2303                         case IPPROTO_ICMP:
2304                                 PULLUP_TO(hlen, ulp, struct icmphdr);
2305                                 args->f_id.flags = ICMP(ulp)->icmp_type;
2306                                 break;
2307
2308                         default:
2309                                 break;
2310                         }
2311                 }
2312
2313                 args->f_id.src_ip = ntohl(src_ip.s_addr);
2314                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2315         }
2316 #undef PULLUP_TO
2317         if (proto) { /* we may have port numbers, store them */
2318                 args->f_id.proto = proto;
2319                 args->f_id.src_port = src_port = ntohs(src_port);
2320                 args->f_id.dst_port = dst_port = ntohs(dst_port);
2321         }
2322
2323         IPFW_RLOCK(chain);
2324         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2325         if (args->rule) {
2326                 /*
2327                  * Packet has already been tagged. Look for the next rule
2328                  * to restart processing.
2329                  *
2330                  * If fw_one_pass != 0 then just accept it.
2331                  * XXX should not happen here, but optimized out in
2332                  * the caller.
2333                  */
2334                 if (fw_one_pass) {
2335                         IPFW_RUNLOCK(chain);
2336                         return (IP_FW_PASS);
2337                 }
2338
2339                 f = args->rule->next_rule;
2340                 if (f == NULL)
2341                         f = lookup_next_rule(args->rule);
2342         } else {
2343                 /*
2344                  * Find the starting rule. It can be either the first
2345                  * one, or the one after divert_rule if asked so.
2346                  */
2347                 int skipto = mtag ? divert_cookie(mtag) : 0;
2348
2349                 f = chain->rules;
2350                 if (args->eh == NULL && skipto != 0) {
2351                         if (skipto >= IPFW_DEFAULT_RULE) {
2352                                 IPFW_RUNLOCK(chain);
2353                                 return (IP_FW_DENY); /* invalid */
2354                         }
2355                         while (f && f->rulenum <= skipto)
2356                                 f = f->next;
2357                         if (f == NULL) {        /* drop packet */
2358                                 IPFW_RUNLOCK(chain);
2359                                 return (IP_FW_DENY);
2360                         }
2361                 }
2362         }
2363         /* reset divert rule to avoid confusion later */
2364         if (mtag) {
2365                 divinput_flags = divert_info(mtag) &
2366                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2367                 m_tag_delete(m, mtag);
2368         }
2369
2370         /*
2371          * Now scan the rules, and parse microinstructions for each rule.
2372          */
2373         for (; f; f = f->next) {
2374                 ipfw_insn *cmd;
2375                 uint32_t tablearg = 0;
2376                 int l, cmdlen, skip_or; /* skip rest of OR block */
2377
2378 again:
2379                 if (set_disable & (1 << f->set) )
2380                         continue;
2381
2382                 skip_or = 0;
2383                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2384                     l -= cmdlen, cmd += cmdlen) {
2385                         int match;
2386
2387                         /*
2388                          * check_body is a jump target used when we find a
2389                          * CHECK_STATE, and need to jump to the body of
2390                          * the target rule.
2391                          */
2392
2393 check_body:
2394                         cmdlen = F_LEN(cmd);
2395                         /*
2396                          * An OR block (insn_1 || .. || insn_n) has the
2397                          * F_OR bit set in all but the last instruction.
2398                          * The first match will set "skip_or", and cause
2399                          * the following instructions to be skipped until
2400                          * past the one with the F_OR bit clear.
2401                          */
2402                         if (skip_or) {          /* skip this instruction */
2403                                 if ((cmd->len & F_OR) == 0)
2404                                         skip_or = 0;    /* next one is good */
2405                                 continue;
2406                         }
2407                         match = 0; /* set to 1 if we succeed */
2408
2409                         switch (cmd->opcode) {
2410                         /*
2411                          * The first set of opcodes compares the packet's
2412                          * fields with some pattern, setting 'match' if a
2413                          * match is found. At the end of the loop there is
2414                          * logic to deal with F_NOT and F_OR flags associated
2415                          * with the opcode.
2416                          */
2417                         case O_NOP:
2418                                 match = 1;
2419                                 break;
2420
2421                         case O_FORWARD_MAC:
2422                                 printf("ipfw: opcode %d unimplemented\n",
2423                                     cmd->opcode);
2424                                 break;
2425
2426                         case O_GID:
2427                         case O_UID:
2428                         case O_JAIL:
2429                                 /*
2430                                  * We only check offset == 0 && proto != 0,
2431                                  * as this ensures that we have a
2432                                  * packet with the ports info.
2433                                  */
2434                                 if (offset!=0)
2435                                         break;
2436                                 if (is_ipv6) /* XXX to be fixed later */
2437                                         break;
2438                                 if (proto == IPPROTO_TCP ||
2439                                     proto == IPPROTO_UDP)
2440                                         match = check_uidgid(
2441                                                     (ipfw_insn_u32 *)cmd,
2442                                                     proto, oif,
2443                                                     dst_ip, dst_port,
2444                                                     src_ip, src_port, &fw_ugid_cache,
2445                                                     &ugid_lookup, args->inp);
2446                                 break;
2447
2448                         case O_RECV:
2449                                 match = iface_match(m->m_pkthdr.rcvif,
2450                                     (ipfw_insn_if *)cmd);
2451                                 break;
2452
2453                         case O_XMIT:
2454                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
2455                                 break;
2456
2457                         case O_VIA:
2458                                 match = iface_match(oif ? oif :
2459                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2460                                 break;
2461
2462                         case O_MACADDR2:
2463                                 if (args->eh != NULL) { /* have MAC header */
2464                                         u_int32_t *want = (u_int32_t *)
2465                                                 ((ipfw_insn_mac *)cmd)->addr;
2466                                         u_int32_t *mask = (u_int32_t *)
2467                                                 ((ipfw_insn_mac *)cmd)->mask;
2468                                         u_int32_t *hdr = (u_int32_t *)args->eh;
2469
2470                                         match =
2471                                             ( want[0] == (hdr[0] & mask[0]) &&
2472                                               want[1] == (hdr[1] & mask[1]) &&
2473                                               want[2] == (hdr[2] & mask[2]) );
2474                                 }
2475                                 break;
2476
2477                         case O_MAC_TYPE:
2478                                 if (args->eh != NULL) {
2479                                         u_int16_t t =
2480                                             ntohs(args->eh->ether_type);
2481                                         u_int16_t *p =
2482                                             ((ipfw_insn_u16 *)cmd)->ports;
2483                                         int i;
2484
2485                                         for (i = cmdlen - 1; !match && i>0;
2486                                             i--, p += 2)
2487                                                 match = (t>=p[0] && t<=p[1]);
2488                                 }
2489                                 break;
2490
2491                         case O_FRAG:
2492                                 match = (offset != 0);
2493                                 break;
2494
2495                         case O_IN:      /* "out" is "not in" */
2496                                 match = (oif == NULL);
2497                                 break;
2498
2499                         case O_LAYER2:
2500                                 match = (args->eh != NULL);
2501                                 break;
2502
2503                         case O_DIVERTED:
2504                                 match = (cmd->arg1 & 1 && divinput_flags &
2505                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
2506                                         (cmd->arg1 & 2 && divinput_flags &
2507                                     IP_FW_DIVERT_OUTPUT_FLAG);
2508                                 break;
2509
2510                         case O_PROTO:
2511                                 /*
2512                                  * We do not allow an arg of 0 so the
2513                                  * check of "proto" only suffices.
2514                                  */
2515                                 match = (proto == cmd->arg1);
2516                                 break;
2517
2518                         case O_IP_SRC:
2519                                 match = is_ipv4 &&
2520                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2521                                     src_ip.s_addr);
2522                                 break;
2523
2524                         case O_IP_SRC_LOOKUP:
2525                         case O_IP_DST_LOOKUP:
2526                                 if (is_ipv4) {
2527                                     uint32_t a =
2528                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
2529                                             dst_ip.s_addr : src_ip.s_addr;
2530                                     uint32_t v;
2531
2532                                     match = lookup_table(chain, cmd->arg1, a,
2533                                         &v);
2534                                     if (!match)
2535                                         break;
2536                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2537                                         match =
2538                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
2539                                     else
2540                                         tablearg = v;
2541                                 }
2542                                 break;
2543
2544                         case O_IP_SRC_MASK:
2545                         case O_IP_DST_MASK:
2546                                 if (is_ipv4) {
2547                                     uint32_t a =
2548                                         (cmd->opcode == O_IP_DST_MASK) ?
2549                                             dst_ip.s_addr : src_ip.s_addr;
2550                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2551                                     int i = cmdlen-1;
2552
2553                                     for (; !match && i>0; i-= 2, p+= 2)
2554                                         match = (p[0] == (a & p[1]));
2555                                 }
2556                                 break;
2557
2558                         case O_IP_SRC_ME:
2559                                 if (is_ipv4) {
2560                                         struct ifnet *tif;
2561
2562                                         INADDR_TO_IFP(src_ip, tif);
2563                                         match = (tif != NULL);
2564                                 }
2565                                 break;
2566
2567                         case O_IP_DST_SET:
2568                         case O_IP_SRC_SET:
2569                                 if (is_ipv4) {
2570                                         u_int32_t *d = (u_int32_t *)(cmd+1);
2571                                         u_int32_t addr =
2572                                             cmd->opcode == O_IP_DST_SET ?
2573                                                 args->f_id.dst_ip :
2574                                                 args->f_id.src_ip;
2575
2576                                             if (addr < d[0])
2577                                                     break;
2578                                             addr -= d[0]; /* subtract base */
2579                                             match = (addr < cmd->arg1) &&
2580                                                 ( d[ 1 + (addr>>5)] &
2581                                                   (1<<(addr & 0x1f)) );
2582                                 }
2583                                 break;
2584
2585                         case O_IP_DST:
2586                                 match = is_ipv4 &&
2587                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2588                                     dst_ip.s_addr);
2589                                 break;
2590
2591                         case O_IP_DST_ME:
2592                                 if (is_ipv4) {
2593                                         struct ifnet *tif;
2594
2595                                         INADDR_TO_IFP(dst_ip, tif);
2596                                         match = (tif != NULL);
2597                                 }
2598                                 break;
2599
2600                         case O_IP_SRCPORT:
2601                         case O_IP_DSTPORT:
2602                                 /*
2603                                  * offset == 0 && proto != 0 is enough
2604                                  * to guarantee that we have a
2605                                  * packet with port info.
2606                                  */
2607                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2608                                     && offset == 0) {
2609                                         u_int16_t x =
2610                                             (cmd->opcode == O_IP_SRCPORT) ?
2611                                                 src_port : dst_port ;
2612                                         u_int16_t *p =
2613                                             ((ipfw_insn_u16 *)cmd)->ports;
2614                                         int i;
2615
2616                                         for (i = cmdlen - 1; !match && i>0;
2617                                             i--, p += 2)
2618                                                 match = (x>=p[0] && x<=p[1]);
2619                                 }
2620                                 break;
2621
2622                         case O_ICMPTYPE:
2623                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
2624                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2625                                 break;
2626
2627 #ifdef INET6
2628                         case O_ICMP6TYPE:
2629                                 match = is_ipv6 && offset == 0 &&
2630                                     proto==IPPROTO_ICMPV6 &&
2631                                     icmp6type_match(
2632                                         ICMP6(ulp)->icmp6_type,
2633                                         (ipfw_insn_u32 *)cmd);
2634                                 break;
2635 #endif /* INET6 */
2636
2637                         case O_IPOPT:
2638                                 match = (is_ipv4 &&
2639                                     ipopts_match(mtod(m, struct ip *), cmd) );
2640                                 break;
2641
2642                         case O_IPVER:
2643                                 match = (is_ipv4 &&
2644                                     cmd->arg1 == mtod(m, struct ip *)->ip_v);
2645                                 break;
2646
2647                         case O_IPID:
2648                         case O_IPLEN:
2649                         case O_IPTTL:
2650                                 if (is_ipv4) {  /* only for IP packets */
2651                                     uint16_t x;
2652                                     uint16_t *p;
2653                                     int i;
2654
2655                                     if (cmd->opcode == O_IPLEN)
2656                                         x = ip_len;
2657                                     else if (cmd->opcode == O_IPTTL)
2658                                         x = mtod(m, struct ip *)->ip_ttl;
2659                                     else /* must be IPID */
2660                                         x = ntohs(mtod(m, struct ip *)->ip_id);
2661                                     if (cmdlen == 1) {
2662                                         match = (cmd->arg1 == x);
2663                                         break;
2664                                     }
2665                                     /* otherwise we have ranges */
2666                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2667                                     i = cmdlen - 1;
2668                                     for (; !match && i>0; i--, p += 2)
2669                                         match = (x >= p[0] && x <= p[1]);
2670                                 }
2671                                 break;
2672
2673                         case O_IPPRECEDENCE:
2674                                 match = (is_ipv4 &&
2675                                     (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2676                                 break;
2677
2678                         case O_IPTOS:
2679                                 match = (is_ipv4 &&
2680                                     flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2681                                 break;
2682
2683                         case O_TCPDATALEN:
2684                                 if (proto == IPPROTO_TCP && offset == 0) {
2685                                     struct tcphdr *tcp;
2686                                     uint16_t x;
2687                                     uint16_t *p;
2688                                     int i;
2689
2690                                     tcp = TCP(ulp);
2691                                     x = ip_len -
2692                                         ((ip->ip_hl + tcp->th_off) << 2);
2693                                     if (cmdlen == 1) {
2694                                         match = (cmd->arg1 == x);
2695                                         break;
2696                                     }
2697                                     /* otherwise we have ranges */
2698                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2699                                     i = cmdlen - 1;
2700                                     for (; !match && i>0; i--, p += 2)
2701                                         match = (x >= p[0] && x <= p[1]);
2702                                 }
2703                                 break;
2704
2705                         case O_TCPFLAGS:
2706                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2707                                     flags_match(cmd, TCP(ulp)->th_flags));
2708                                 break;
2709
2710                         case O_TCPOPTS:
2711                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2712                                     tcpopts_match(TCP(ulp), cmd));
2713                                 break;
2714
2715                         case O_TCPSEQ:
2716                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2717                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2718                                         TCP(ulp)->th_seq);
2719                                 break;
2720
2721                         case O_TCPACK:
2722                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2723                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2724                                         TCP(ulp)->th_ack);
2725                                 break;
2726
2727                         case O_TCPWIN:
2728                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2729                                     cmd->arg1 == TCP(ulp)->th_win);
2730                                 break;
2731
2732                         case O_ESTAB:
2733                                 /* reject packets which have SYN only */
2734                                 /* XXX should i also check for TH_ACK ? */
2735                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2736                                     (TCP(ulp)->th_flags &
2737                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2738                                 break;
2739
2740                         case O_ALTQ: {
2741                                 struct altq_tag *at;
2742                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2743
2744                                 match = 1;
2745                                 mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2746                                 if (mtag != NULL)
2747                                         break;
2748                                 mtag = m_tag_get(PACKET_TAG_PF_QID,
2749                                                 sizeof(struct altq_tag),
2750                                                 M_NOWAIT);
2751                                 if (mtag == NULL) {
2752                                         /*
2753                                          * Let the packet fall back to the
2754                                          * default ALTQ.
2755                                          */
2756                                         break;
2757                                 }
2758                                 at = (struct altq_tag *)(mtag+1);
2759                                 at->qid = altq->qid;
2760                                 if (is_ipv4)
2761                                         at->af = AF_INET;
2762                                 else
2763                                         at->af = AF_LINK;
2764                                 at->hdr = ip;
2765                                 m_tag_prepend(m, mtag);
2766                                 break;
2767                         }
2768
2769                         case O_LOG:
2770                                 if (fw_verbose)
2771                                         ipfw_log(f, hlen, args, m, oif, offset);
2772                                 match = 1;
2773                                 break;
2774
2775                         case O_PROB:
2776                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2777                                 break;
2778
2779                         case O_VERREVPATH:
2780                                 /* Outgoing packets automatically pass/match */
2781                                 match = ((oif != NULL) ||
2782                                     (m->m_pkthdr.rcvif == NULL) ||
2783                                     (
2784 #ifdef INET6
2785                                     is_ipv6 ?
2786                                         verify_path6(&(args->f_id.src_ip6),
2787                                             m->m_pkthdr.rcvif) :
2788 #endif
2789                                     verify_path(src_ip, m->m_pkthdr.rcvif)));
2790                                 break;
2791
2792                         case O_VERSRCREACH:
2793                                 /* Outgoing packets automatically pass/match */
2794                                 match = (hlen > 0 && ((oif != NULL) ||
2795 #ifdef INET6
2796                                     is_ipv6 ?
2797                                         verify_path6(&(args->f_id.src_ip6),
2798                                             NULL) :
2799 #endif
2800                                     verify_path(src_ip, NULL)));
2801                                 break;
2802
2803                         case O_ANTISPOOF:
2804                                 /* Outgoing packets automatically pass/match */
2805                                 if (oif == NULL && hlen > 0 &&
2806                                     (  (is_ipv4 && in_localaddr(src_ip))
2807 #ifdef INET6
2808                                     || (is_ipv6 &&
2809                                         in6_localaddr(&(args->f_id.src_ip6)))
2810 #endif
2811                                     ))
2812                                         match =
2813 #ifdef INET6
2814                                             is_ipv6 ? verify_path6(
2815                                                 &(args->f_id.src_ip6),
2816                                                 m->m_pkthdr.rcvif) :
2817 #endif
2818                                             verify_path(src_ip,
2819                                                 m->m_pkthdr.rcvif);
2820                                 else
2821                                         match = 1;
2822                                 break;
2823
2824                         case O_IPSEC:
2825 #ifdef FAST_IPSEC
2826                                 match = (m_tag_find(m,
2827                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2828 #endif
2829 #ifdef IPSEC
2830                                 match = (ipsec_getnhist(m) != 0);
2831 #endif
2832                                 /* otherwise no match */
2833                                 break;
2834
2835 #ifdef INET6
2836                         case O_IP6_SRC:
2837                                 match = is_ipv6 &&
2838                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2839                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2840                                 break;
2841
2842                         case O_IP6_DST:
2843                                 match = is_ipv6 &&
2844                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2845                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2846                                 break;
2847                         case O_IP6_SRC_MASK:
2848                                 if (is_ipv6) {
2849                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2850                                         struct in6_addr p = args->f_id.src_ip6;
2851
2852                                         APPLY_MASK(&p, &te->mask6);
2853                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2854                                 }
2855                                 break;
2856
2857                         case O_IP6_DST_MASK:
2858                                 if (is_ipv6) {
2859                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2860                                         struct in6_addr p = args->f_id.dst_ip6;
2861
2862                                         APPLY_MASK(&p, &te->mask6);
2863                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2864                                 }
2865                                 break;
2866
2867                         case O_IP6_SRC_ME:
2868                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2869                                 break;
2870
2871                         case O_IP6_DST_ME:
2872                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2873                                 break;
2874
2875                         case O_FLOW6ID:
2876                                 match = is_ipv6 &&
2877                                     flow6id_match(args->f_id.flow_id6,
2878                                     (ipfw_insn_u32 *) cmd);
2879                                 break;
2880
2881                         case O_EXT_HDR:
2882                                 match = is_ipv6 &&
2883                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
2884                                 break;
2885
2886                         case O_IP6:
2887                                 match = is_ipv6;
2888                                 break;
2889 #endif
2890
2891                         case O_IP4:
2892                                 match = is_ipv4;
2893                                 break;
2894
2895                         case O_TAG:
2896                                 /* Packet is already tagged with this tag? */
2897                                 mtag = m_tag_locate(m, MTAG_IPFW,
2898                                                 ((ipfw_insn *) cmd)->arg1, NULL);
2899                                 /* We have `untag' action when F_NOT flag is
2900                                  * present. And we must remove this mtag from
2901                                  * mbuf and reset `match' to zero (`match' will
2902                                  * be inversed later).
2903                                  * Otherwise we should allocate new mtag and
2904                                  * push it into mbuf.
2905                                  */
2906                                 if (cmd->len & F_NOT) { /* `untag' action */
2907                                         if (mtag != NULL)
2908                                                 m_tag_delete(m, mtag);
2909                                 } else if (mtag == NULL) {
2910                                         mtag = m_tag_alloc(MTAG_IPFW,
2911                                                 ((ipfw_insn *) cmd)->arg1, 0, M_NOWAIT);
2912                                         if (mtag != NULL)
2913                                                 m_tag_prepend(m, mtag);
2914                                 }
2915                                 match = (cmd->len & F_NOT) ? 0: 1;
2916                                 break;
2917
2918                         case O_TAGGED: 
2919                                 if (cmdlen == 1) {
2920                                         match = (m_tag_locate(m, MTAG_IPFW, 
2921                                                 ((ipfw_insn *) cmd)->arg1, NULL) != NULL);
2922                                         break;
2923                                 }
2924
2925                                 /* we have ranges */
2926                                 for (mtag = m_tag_first(m);
2927                                     mtag != NULL && !match;
2928                                     mtag = m_tag_next(m, mtag)) {
2929                                         uint16_t *p;
2930                                         int i;
2931
2932                                         if (mtag->m_tag_cookie != MTAG_IPFW)
2933                                                 continue;
2934
2935                                         p = ((ipfw_insn_u16 *)cmd)->ports;
2936                                         i = cmdlen - 1;
2937                                         for(; !match && i > 0; i--, p += 2)
2938                                                 match =
2939                                                     mtag->m_tag_id >= p[0] &&
2940                                                     mtag->m_tag_id <= p[1];
2941                                 }
2942                                 break;
2943                                 
2944                         /*
2945                          * The second set of opcodes represents 'actions',
2946                          * i.e. the terminal part of a rule once the packet
2947                          * matches all previous patterns.
2948                          * Typically there is only one action for each rule,
2949                          * and the opcode is stored at the end of the rule
2950                          * (but there are exceptions -- see below).
2951                          *
2952                          * In general, here we set retval and terminate the
2953                          * outer loop (would be a 'break 3' in some language,
2954                          * but we need to do a 'goto done').
2955                          *
2956                          * Exceptions:
2957                          * O_COUNT and O_SKIPTO actions:
2958                          *   instead of terminating, we jump to the next rule
2959                          *   ('goto next_rule', equivalent to a 'break 2'),
2960                          *   or to the SKIPTO target ('goto again' after
2961                          *   having set f, cmd and l), respectively.
2962                          *
2963                          * O_TAG, O_LOG and O_ALTQ action parameters:
2964                          *   perform some action and set match = 1;
2965                          *
2966                          * O_LIMIT and O_KEEP_STATE: these opcodes are
2967                          *   not real 'actions', and are stored right
2968                          *   before the 'action' part of the rule.
2969                          *   These opcodes try to install an entry in the
2970                          *   state tables; if successful, we continue with
2971                          *   the next opcode (match=1; break;), otherwise
2972                          *   the packet *   must be dropped
2973                          *   ('goto done' after setting retval);
2974                          *
2975                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2976                          *   cause a lookup of the state table, and a jump
2977                          *   to the 'action' part of the parent rule
2978                          *   ('goto check_body') if an entry is found, or
2979                          *   (CHECK_STATE only) a jump to the next rule if
2980                          *   the entry is not found ('goto next_rule').
2981                          *   The result of the lookup is cached to make
2982                          *   further instances of these opcodes are
2983                          *   effectively NOPs.
2984                          */
2985                         case O_LIMIT:
2986                         case O_KEEP_STATE:
2987                                 if (install_state(f,
2988                                     (ipfw_insn_limit *)cmd, args)) {
2989                                         retval = IP_FW_DENY;
2990                                         goto done; /* error/limit violation */
2991                                 }
2992                                 match = 1;
2993                                 break;
2994
2995                         case O_PROBE_STATE:
2996                         case O_CHECK_STATE:
2997                                 /*
2998                                  * dynamic rules are checked at the first
2999                                  * keep-state or check-state occurrence,
3000                                  * with the result being stored in dyn_dir.
3001                                  * The compiler introduces a PROBE_STATE
3002                                  * instruction for us when we have a
3003                                  * KEEP_STATE (because PROBE_STATE needs
3004                                  * to be run first).
3005                                  */
3006                                 if (dyn_dir == MATCH_UNKNOWN &&
3007                                     (q = lookup_dyn_rule(&args->f_id,
3008                                      &dyn_dir, proto == IPPROTO_TCP ?
3009                                         TCP(ulp) : NULL))
3010                                         != NULL) {
3011                                         /*
3012                                          * Found dynamic entry, update stats
3013                                          * and jump to the 'action' part of
3014                                          * the parent rule.
3015                                          */
3016                                         q->pcnt++;
3017                                         q->bcnt += pktlen;
3018                                         f = q->rule;
3019                                         cmd = ACTION_PTR(f);
3020                                         l = f->cmd_len - f->act_ofs;
3021                                         IPFW_DYN_UNLOCK();
3022                                         goto check_body;
3023                                 }
3024                                 /*
3025                                  * Dynamic entry not found. If CHECK_STATE,
3026                                  * skip to next rule, if PROBE_STATE just
3027                                  * ignore and continue with next opcode.
3028                                  */
3029                                 if (cmd->opcode == O_CHECK_STATE)
3030                                         goto next_rule;
3031                                 match = 1;
3032                                 break;
3033
3034                         case O_ACCEPT:
3035                                 retval = 0;     /* accept */
3036                                 goto done;
3037
3038                         case O_PIPE:
3039                         case O_QUEUE:
3040                                 args->rule = f; /* report matching rule */
3041                                 if (cmd->arg1 == IP_FW_TABLEARG)
3042                                         args->cookie = tablearg;
3043                                 else
3044                                         args->cookie = cmd->arg1;
3045                                 retval = IP_FW_DUMMYNET;
3046                                 goto done;
3047
3048                         case O_DIVERT:
3049                         case O_TEE: {
3050                                 struct divert_tag *dt;
3051
3052                                 if (args->eh) /* not on layer 2 */
3053                                         break;
3054                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
3055                                                 sizeof(struct divert_tag),
3056                                                 M_NOWAIT);
3057                                 if (mtag == NULL) {
3058                                         /* XXX statistic */
3059                                         /* drop packet */
3060                                         IPFW_RUNLOCK(chain);
3061                                         return (IP_FW_DENY);
3062                                 }
3063                                 dt = (struct divert_tag *)(mtag+1);
3064                                 dt->cookie = f->rulenum;
3065                                 if (cmd->arg1 == IP_FW_TABLEARG)
3066                                         dt->info = tablearg;
3067                                 else
3068                                         dt->info = cmd->arg1;
3069                                 m_tag_prepend(m, mtag);
3070                                 retval = (cmd->opcode == O_DIVERT) ?
3071                                     IP_FW_DIVERT : IP_FW_TEE;
3072                                 goto done;
3073                         }
3074
3075                         case O_COUNT:
3076                         case O_SKIPTO:
3077                                 f->pcnt++;      /* update stats */
3078                                 f->bcnt += pktlen;
3079                                 f->timestamp = time_uptime;
3080                                 if (cmd->opcode == O_COUNT)
3081                                         goto next_rule;
3082                                 /* handle skipto */
3083                                 if (f->next_rule == NULL)
3084                                         lookup_next_rule(f);
3085                                 f = f->next_rule;
3086                                 goto again;
3087
3088                         case O_REJECT:
3089                                 /*
3090                                  * Drop the packet and send a reject notice
3091                                  * if the packet is not ICMP (or is an ICMP
3092                                  * query), and it is not multicast/broadcast.
3093                                  */
3094                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
3095                                     (proto != IPPROTO_ICMP ||
3096                                      is_icmp_query(ICMP(ulp))) &&
3097                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3098                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3099                                         send_reject(args, cmd->arg1,
3100                                             offset,ip_len);
3101                                         m = args->m;
3102                                 }
3103                                 /* FALLTHROUGH */
3104 #ifdef INET6
3105                         case O_UNREACH6:
3106                                 if (hlen > 0 && is_ipv6 &&
3107                                     (proto != IPPROTO_ICMPV6 ||
3108                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
3109                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3110                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3111                                         send_reject6(args, cmd->arg1,
3112                                             offset, hlen);
3113                                         m = args->m;
3114                                 }
3115                                 /* FALLTHROUGH */
3116 #endif
3117                         case O_DENY:
3118                                 retval = IP_FW_DENY;
3119                                 goto done;
3120
3121                         case O_FORWARD_IP:
3122                                 if (args->eh)   /* not valid on layer2 pkts */
3123                                         break;
3124                                 if (!q || dyn_dir == MATCH_FORWARD)
3125                                         args->next_hop =
3126                                             &((ipfw_insn_sa *)cmd)->sa;
3127                                 retval = IP_FW_PASS;
3128                                 goto done;
3129
3130                         case O_NETGRAPH:
3131                         case O_NGTEE:
3132                                 args->rule = f; /* report matching rule */
3133                                 if (cmd->arg1 == IP_FW_TABLEARG)
3134                                         args->cookie = tablearg;
3135                                 else
3136                                         args->cookie = cmd->arg1;
3137                                 retval = (cmd->opcode == O_NETGRAPH) ?
3138                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
3139                                 goto done;
3140
3141                         default:
3142                                 panic("-- unknown opcode %d\n", cmd->opcode);
3143                         } /* end of switch() on opcodes */
3144
3145                         if (cmd->len & F_NOT)
3146                                 match = !match;
3147
3148                         if (match) {
3149                                 if (cmd->len & F_OR)
3150                                         skip_or = 1;
3151                         } else {
3152                                 if (!(cmd->len & F_OR)) /* not an OR block, */
3153                                         break;          /* try next rule    */
3154                         }
3155
3156                 }       /* end of inner for, scan opcodes */
3157
3158 next_rule:;             /* try next rule                */
3159
3160         }               /* end of outer for, scan rules */
3161         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3162         IPFW_RUNLOCK(chain);
3163         return (IP_FW_DENY);
3164
3165 done:
3166         /* Update statistics */
3167         f->pcnt++;
3168         f->bcnt += pktlen;
3169         f->timestamp = time_uptime;
3170         IPFW_RUNLOCK(chain);
3171         return (retval);
3172
3173 pullup_failed:
3174         if (fw_verbose)
3175                 printf("ipfw: pullup failed\n");
3176         return (IP_FW_DENY);
3177 }
3178
3179 /*
3180  * When a rule is added/deleted, clear the next_rule pointers in all rules.
3181  * These will be reconstructed on the fly as packets are matched.
3182  */
3183 static void
3184 flush_rule_ptrs(struct ip_fw_chain *chain)
3185 {
3186         struct ip_fw *rule;
3187
3188         IPFW_WLOCK_ASSERT(chain);
3189
3190         for (rule = chain->rules; rule; rule = rule->next)
3191                 rule->next_rule = NULL;
3192 }
3193
3194 /*
3195  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3196  * possibly create a rule number and add the rule to the list.
3197  * Update the rule_number in the input struct so the caller knows it as well.
3198  */
3199 static int
3200 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3201 {
3202         struct ip_fw *rule, *f, *prev;
3203         int l = RULESIZE(input_rule);
3204
3205         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3206                 return (EINVAL);
3207
3208         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3209         if (rule == NULL)
3210                 return (ENOSPC);
3211
3212         bcopy(input_rule, rule, l);
3213
3214         rule->next = NULL;
3215         rule->next_rule = NULL;
3216
3217         rule->pcnt = 0;
3218         rule->bcnt = 0;
3219         rule->timestamp = 0;
3220
3221         IPFW_WLOCK(chain);
3222
3223         if (chain->rules == NULL) {     /* default rule */
3224                 chain->rules = rule;
3225                 goto done;
3226         }
3227
3228         /*
3229          * If rulenum is 0, find highest numbered rule before the
3230          * default rule, and add autoinc_step
3231          */
3232         if (autoinc_step < 1)
3233                 autoinc_step = 1;
3234         else if (autoinc_step > 1000)
3235                 autoinc_step = 1000;
3236         if (rule->rulenum == 0) {
3237                 /*
3238                  * locate the highest numbered rule before default
3239                  */
3240                 for (f = chain->rules; f; f = f->next) {
3241                         if (f->rulenum == IPFW_DEFAULT_RULE)
3242                                 break;
3243                         rule->rulenum = f->rulenum;
3244                 }
3245                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3246                         rule->rulenum += autoinc_step;
3247                 input_rule->rulenum = rule->rulenum;
3248         }
3249
3250         /*
3251          * Now insert the new rule in the right place in the sorted list.
3252          */
3253         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3254                 if (f->rulenum > rule->rulenum) { /* found the location */
3255                         if (prev) {
3256                                 rule->next = f;
3257                                 prev->next = rule;
3258                         } else { /* head insert */
3259                                 rule->next = chain->rules;
3260                                 chain->rules = rule;
3261                         }
3262                         break;
3263                 }
3264         }
3265         flush_rule_ptrs(chain);
3266 done:
3267         static_count++;
3268         static_len += l;
3269         IPFW_WUNLOCK(chain);
3270         DEB(printf("ipfw: installed rule %d, static count now %d\n",
3271                 rule->rulenum, static_count);)
3272         return (0);
3273 }
3274
3275 /**
3276  * Remove a static rule (including derived * dynamic rules)
3277  * and place it on the ``reap list'' for later reclamation.
3278  * The caller is in charge of clearing rule pointers to avoid
3279  * dangling pointers.
3280  * @return a pointer to the next entry.
3281  * Arguments are not checked, so they better be correct.
3282  */
3283 static struct ip_fw *
3284 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3285 {
3286         struct ip_fw *n;
3287         int l = RULESIZE(rule);
3288
3289         IPFW_WLOCK_ASSERT(chain);
3290
3291         n = rule->next;
3292         IPFW_DYN_LOCK();
3293         remove_dyn_rule(rule, NULL /* force removal */);
3294         IPFW_DYN_UNLOCK();
3295         if (prev == NULL)
3296                 chain->rules = n;
3297         else
3298                 prev->next = n;
3299         static_count--;
3300         static_len -= l;
3301
3302         rule->next = chain->reap;
3303         chain->reap = rule;
3304
3305         return n;
3306 }
3307
3308 /**
3309  * Reclaim storage associated with a list of rules.  This is
3310  * typically the list created using remove_rule.
3311  */
3312 static void
3313 reap_rules(struct ip_fw *head)
3314 {
3315         struct ip_fw *rule;
3316
3317         while ((rule = head) != NULL) {
3318                 head = head->next;
3319                 if (DUMMYNET_LOADED)
3320                         ip_dn_ruledel_ptr(rule);
3321                 free(rule, M_IPFW);
3322         }
3323 }
3324
3325 /*
3326  * Remove all rules from a chain (except rules in set RESVD_SET
3327  * unless kill_default = 1).  The caller is responsible for
3328  * reclaiming storage for the rules left in chain->reap.
3329  */
3330 static void
3331 free_chain(struct ip_fw_chain *chain, int kill_default)
3332 {
3333         struct ip_fw *prev, *rule;
3334
3335         IPFW_WLOCK_ASSERT(chain);
3336
3337         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3338         for (prev = NULL, rule = chain->rules; rule ; )
3339                 if (kill_default || rule->set != RESVD_SET)
3340                         rule = remove_rule(chain, rule, prev);
3341                 else {
3342                         prev = rule;
3343                         rule = rule->next;
3344                 }
3345 }
3346
3347 /**
3348  * Remove all rules with given number, and also do set manipulation.
3349  * Assumes chain != NULL && *chain != NULL.
3350  *
3351  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3352  * the next 8 bits are the new set, the top 8 bits are the command:
3353  *
3354  *      0       delete rules with given number
3355  *      1       delete rules with given set number
3356  *      2       move rules with given number to new set
3357  *      3       move rules with given set number to new set
3358  *      4       swap sets with given numbers
3359  */
3360 static int
3361 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3362 {
3363         struct ip_fw *prev = NULL, *rule;
3364         u_int16_t rulenum;      /* rule or old_set */
3365         u_int8_t cmd, new_set;
3366
3367         rulenum = arg & 0xffff;
3368         cmd = (arg >> 24) & 0xff;
3369         new_set = (arg >> 16) & 0xff;
3370
3371         if (cmd > 4)
3372                 return EINVAL;
3373         if (new_set > RESVD_SET)
3374                 return EINVAL;
3375         if (cmd == 0 || cmd == 2) {
3376                 if (rulenum >= IPFW_DEFAULT_RULE)
3377                         return EINVAL;
3378         } else {
3379                 if (rulenum > RESVD_SET)        /* old_set */
3380                         return EINVAL;
3381         }
3382
3383         IPFW_WLOCK(chain);
3384         rule = chain->rules;
3385         chain->reap = NULL;
3386         switch (cmd) {
3387         case 0: /* delete rules with given number */
3388                 /*
3389                  * locate first rule to delete
3390                  */
3391                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3392                         ;
3393                 if (rule->rulenum != rulenum) {
3394                         IPFW_WUNLOCK(chain);
3395                         return EINVAL;
3396                 }
3397
3398                 /*
3399                  * flush pointers outside the loop, then delete all matching
3400                  * rules. prev remains the same throughout the cycle.
3401                  */
3402                 flush_rule_ptrs(chain);
3403                 while (rule->rulenum == rulenum)
3404                         rule = remove_rule(chain, rule, prev);
3405                 break;
3406
3407         case 1: /* delete all rules with given set number */
3408                 flush_rule_ptrs(chain);
3409                 rule = chain->rules;
3410                 while (rule->rulenum < IPFW_DEFAULT_RULE)
3411                         if (rule->set == rulenum)
3412                                 rule = remove_rule(chain, rule, prev);
3413                         else {
3414                                 prev = rule;
3415                                 rule = rule->next;
3416                         }
3417                 break;
3418
3419         case 2: /* move rules with given number to new set */
3420                 rule = chain->rules;
3421                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3422                         if (rule->rulenum == rulenum)
3423                                 rule->set = new_set;
3424                 break;
3425
3426         case 3: /* move rules with given set number to new set */
3427                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3428                         if (rule->set == rulenum)
3429                                 rule->set = new_set;
3430                 break;
3431
3432         case 4: /* swap two sets */
3433                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3434                         if (rule->set == rulenum)
3435                                 rule->set = new_set;
3436                         else if (rule->set == new_set)
3437                                 rule->set = rulenum;
3438                 break;
3439         }
3440         /*
3441          * Look for rules to reclaim.  We grab the list before
3442          * releasing the lock then reclaim them w/o the lock to
3443          * avoid a LOR with dummynet.
3444          */
3445         rule = chain->reap;
3446         chain->reap = NULL;
3447         IPFW_WUNLOCK(chain);
3448         if (rule)
3449                 reap_rules(rule);
3450         return 0;
3451 }
3452
3453 /*
3454  * Clear counters for a specific rule.
3455  * The enclosing "table" is assumed locked.
3456  */
3457 static void
3458 clear_counters(struct ip_fw *rule, int log_only)
3459 {
3460         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3461
3462         if (log_only == 0) {
3463                 rule->bcnt = rule->pcnt = 0;
3464                 rule->timestamp = 0;
3465         }
3466         if (l->o.opcode == O_LOG)
3467                 l->log_left = l->max_log;
3468 }
3469
3470 /**
3471  * Reset some or all counters on firewall rules.
3472  * @arg frwl is null to clear all entries, or contains a specific
3473  * rule number.
3474  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3475  */
3476 static int
3477 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3478 {
3479         struct ip_fw *rule;
3480         char *msg;
3481
3482         IPFW_WLOCK(chain);
3483         if (rulenum == 0) {
3484                 norule_counter = 0;
3485                 for (rule = chain->rules; rule; rule = rule->next)
3486                         clear_counters(rule, log_only);
3487                 msg = log_only ? "ipfw: All logging counts reset.\n" :
3488                                 "ipfw: Accounting cleared.\n";
3489         } else {
3490                 int cleared = 0;
3491                 /*
3492                  * We can have multiple rules with the same number, so we
3493                  * need to clear them all.
3494                  */
3495                 for (rule = chain->rules; rule; rule = rule->next)
3496                         if (rule->rulenum == rulenum) {
3497                                 while (rule && rule->rulenum == rulenum) {
3498                                         clear_counters(rule, log_only);
3499                                         rule = rule->next;
3500                                 }
3501                                 cleared = 1;
3502                                 break;
3503                         }
3504                 if (!cleared) { /* we did not find any matching rules */
3505                         IPFW_WUNLOCK(chain);
3506                         return (EINVAL);
3507                 }
3508                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3509                                 "ipfw: Entry %d cleared.\n";
3510         }
3511         IPFW_WUNLOCK(chain);
3512
3513         if (fw_verbose)
3514                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3515         return (0);
3516 }
3517
3518 /*
3519  * Check validity of the structure before insert.
3520  * Fortunately rules are simple, so this mostly need to check rule sizes.
3521  */
3522 static int
3523 check_ipfw_struct(struct ip_fw *rule, int size)
3524 {
3525         int l, cmdlen = 0;
3526         int have_action=0;
3527         ipfw_insn *cmd;
3528
3529         if (size < sizeof(*rule)) {
3530                 printf("ipfw: rule too short\n");
3531                 return (EINVAL);
3532         }
3533         /* first, check for valid size */
3534         l = RULESIZE(rule);
3535         if (l != size) {
3536                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3537                 return (EINVAL);
3538         }
3539         if (rule->act_ofs >= rule->cmd_len) {
3540                 printf("ipfw: bogus action offset (%u > %u)\n",
3541                     rule->act_ofs, rule->cmd_len - 1);
3542                 return (EINVAL);
3543         }
3544         /*
3545          * Now go for the individual checks. Very simple ones, basically only
3546          * instruction sizes.
3547          */
3548         for (l = rule->cmd_len, cmd = rule->cmd ;
3549                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
3550                 cmdlen = F_LEN(cmd);
3551                 if (cmdlen > l) {
3552                         printf("ipfw: opcode %d size truncated\n",
3553                             cmd->opcode);
3554                         return EINVAL;
3555                 }
3556                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3557                 switch (cmd->opcode) {
3558                 case O_PROBE_STATE:
3559                 case O_KEEP_STATE:
3560                 case O_PROTO:
3561                 case O_IP_SRC_ME:
3562                 case O_IP_DST_ME:
3563                 case O_LAYER2:
3564                 case O_IN:
3565                 case O_FRAG:
3566                 case O_DIVERTED:
3567                 case O_IPOPT:
3568                 case O_IPTOS:
3569                 case O_IPPRECEDENCE:
3570                 case O_IPVER:
3571                 case O_TCPWIN:
3572                 case O_TCPFLAGS:
3573                 case O_TCPOPTS:
3574                 case O_ESTAB:
3575                 case O_VERREVPATH:
3576                 case O_VERSRCREACH:
3577                 case O_ANTISPOOF:
3578                 case O_IPSEC:
3579 #ifdef INET6
3580                 case O_IP6_SRC_ME:
3581                 case O_IP6_DST_ME:
3582                 case O_EXT_HDR:
3583                 case O_IP6:
3584 #endif
3585                 case O_IP4:
3586                 case O_TAG:
3587                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3588                                 goto bad_size;
3589                         break;
3590
3591                 case O_UID:
3592                 case O_GID:
3593                 case O_JAIL:
3594                 case O_IP_SRC:
3595                 case O_IP_DST:
3596                 case O_TCPSEQ:
3597                 case O_TCPACK:
3598                 case O_PROB:
3599                 case O_ICMPTYPE:
3600                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3601                                 goto bad_size;
3602                         break;
3603
3604                 case O_LIMIT:
3605                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3606                                 goto bad_size;
3607                         break;
3608
3609                 case O_LOG:
3610                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3611                                 goto bad_size;
3612
3613                         ((ipfw_insn_log *)cmd)->log_left =
3614                             ((ipfw_insn_log *)cmd)->max_log;
3615
3616                         break;
3617
3618                 case O_IP_SRC_MASK:
3619                 case O_IP_DST_MASK:
3620                         /* only odd command lengths */
3621                         if ( !(cmdlen & 1) || cmdlen > 31)
3622                                 goto bad_size;
3623                         break;
3624
3625                 case O_IP_SRC_SET:
3626                 case O_IP_DST_SET:
3627                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3628                                 printf("ipfw: invalid set size %d\n",
3629                                         cmd->arg1);
3630                                 return EINVAL;
3631                         }
3632                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3633                             (cmd->arg1+31)/32 )
3634                                 goto bad_size;
3635                         break;
3636
3637                 case O_IP_SRC_LOOKUP:
3638                 case O_IP_DST_LOOKUP:
3639                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
3640                                 printf("ipfw: invalid table number %d\n",
3641                                     cmd->arg1);
3642                                 return (EINVAL);
3643                         }
3644                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3645                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3646                                 goto bad_size;
3647                         break;
3648
3649                 case O_MACADDR2:
3650                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3651                                 goto bad_size;
3652                         break;
3653
3654                 case O_NOP:
3655                 case O_IPID:
3656                 case O_IPTTL:
3657                 case O_IPLEN:
3658                 case O_TCPDATALEN:
3659                 case O_TAGGED:
3660                         if (cmdlen < 1 || cmdlen > 31)
3661                                 goto bad_size;
3662                         break;
3663
3664                 case O_MAC_TYPE:
3665                 case O_IP_SRCPORT:
3666                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3667                         if (cmdlen < 2 || cmdlen > 31)
3668                                 goto bad_size;
3669                         break;
3670
3671                 case O_RECV:
3672                 case O_XMIT:
3673                 case O_VIA:
3674                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3675                                 goto bad_size;
3676                         break;
3677
3678                 case O_ALTQ:
3679                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3680                                 goto bad_size;
3681                         break;
3682
3683                 case O_PIPE:
3684                 case O_QUEUE:
3685                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3686                                 goto bad_size;
3687                         goto check_action;
3688
3689                 case O_FORWARD_IP:
3690 #ifdef  IPFIREWALL_FORWARD
3691                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3692                                 goto bad_size;
3693                         goto check_action;
3694 #else
3695                         return EINVAL;
3696 #endif
3697
3698                 case O_DIVERT:
3699                 case O_TEE:
3700                         if (ip_divert_ptr == NULL)
3701                                 return EINVAL;
3702                         else
3703                                 goto check_size;
3704                 case O_NETGRAPH:
3705                 case O_NGTEE:
3706                         if (!NG_IPFW_LOADED)
3707                                 return EINVAL;
3708                         else
3709                                 goto check_size;
3710                 case O_FORWARD_MAC: /* XXX not implemented yet */
3711                 case O_CHECK_STATE:
3712                 case O_COUNT:
3713                 case O_ACCEPT:
3714                 case O_DENY:
3715                 case O_REJECT:
3716 #ifdef INET6
3717                 case O_UNREACH6:
3718 #endif
3719                 case O_SKIPTO:
3720 check_size:
3721                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3722                                 goto bad_size;
3723 check_action:
3724                         if (have_action) {
3725                                 printf("ipfw: opcode %d, multiple actions"
3726                                         " not allowed\n",
3727                                         cmd->opcode);
3728                                 return EINVAL;
3729                         }
3730                         have_action = 1;
3731                         if (l != cmdlen) {
3732                                 printf("ipfw: opcode %d, action must be"
3733                                         " last opcode\n",
3734                                         cmd->opcode);
3735                                 return EINVAL;
3736                         }
3737                         break;
3738 #ifdef INET6
3739                 case O_IP6_SRC:
3740                 case O_IP6_DST:
3741                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3742                             F_INSN_SIZE(ipfw_insn))
3743                                 goto bad_size;
3744                         break;
3745
3746                 case O_FLOW6ID:
3747                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3748                             ((ipfw_insn_u32 *)cmd)->o.arg1)
3749                                 goto bad_size;
3750                         break;
3751
3752                 case O_IP6_SRC_MASK:
3753                 case O_IP6_DST_MASK:
3754                         if ( !(cmdlen & 1) || cmdlen > 127)
3755                                 goto bad_size;
3756                         break;
3757                 case O_ICMP6TYPE:
3758                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3759                                 goto bad_size;
3760                         break;
3761 #endif
3762
3763                 default:
3764                         switch (cmd->opcode) {
3765 #ifndef INET6
3766                         case O_IP6_SRC_ME:
3767                         case O_IP6_DST_ME:
3768                         case O_EXT_HDR:
3769                         case O_IP6:
3770                         case O_UNREACH6:
3771                         case O_IP6_SRC:
3772                         case O_IP6_DST:
3773                         case O_FLOW6ID:
3774                         case O_IP6_SRC_MASK:
3775                         case O_IP6_DST_MASK:
3776                         case O_ICMP6TYPE:
3777                                 printf("ipfw: no IPv6 support in kernel\n");
3778                                 return EPROTONOSUPPORT;
3779 #endif
3780                         default:
3781                                 printf("ipfw: opcode %d, unknown opcode\n",
3782                                         cmd->opcode);
3783                                 return EINVAL;
3784                         }
3785                 }
3786         }
3787         if (have_action == 0) {
3788                 printf("ipfw: missing action\n");
3789                 return EINVAL;
3790         }
3791         return 0;
3792
3793 bad_size:
3794         printf("ipfw: opcode %d size %d wrong\n",
3795                 cmd->opcode, cmdlen);
3796         return EINVAL;
3797 }
3798
3799 /*
3800  * Copy the static and dynamic rules to the supplied buffer
3801  * and return the amount of space actually used.
3802  */
3803 static size_t
3804 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3805 {
3806         char *bp = buf;
3807         char *ep = bp + space;
3808         struct ip_fw *rule;
3809         int i;
3810
3811         /* XXX this can take a long time and locking will block packet flow */
3812         IPFW_RLOCK(chain);
3813         for (rule = chain->rules; rule ; rule = rule->next) {
3814                 /*
3815                  * Verify the entry fits in the buffer in case the
3816                  * rules changed between calculating buffer space and
3817                  * now.  This would be better done using a generation
3818                  * number but should suffice for now.
3819                  */
3820                 i = RULESIZE(rule);
3821                 if (bp + i <= ep) {
3822                         bcopy(rule, bp, i);
3823                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3824                             sizeof(set_disable));
3825                         bp += i;
3826                 }
3827         }
3828         IPFW_RUNLOCK(chain);
3829         if (ipfw_dyn_v) {
3830                 ipfw_dyn_rule *p, *last = NULL;
3831
3832                 IPFW_DYN_LOCK();
3833                 for (i = 0 ; i < curr_dyn_buckets; i++)
3834                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3835                                 if (bp + sizeof *p <= ep) {
3836                                         ipfw_dyn_rule *dst =
3837                                                 (ipfw_dyn_rule *)bp;
3838                                         bcopy(p, dst, sizeof *p);
3839                                         bcopy(&(p->rule->rulenum), &(dst->rule),
3840                                             sizeof(p->rule->rulenum));
3841                                         /*
3842                                          * store a non-null value in "next".
3843                                          * The userland code will interpret a
3844                                          * NULL here as a marker
3845                                          * for the last dynamic rule.
3846                                          */
3847                                         bcopy(&dst, &dst->next, sizeof(dst));
3848                                         last = dst;
3849                                         dst->expire =
3850                                             TIME_LEQ(dst->expire, time_uptime) ?
3851                                                 0 : dst->expire - time_uptime ;
3852                                         bp += sizeof(ipfw_dyn_rule);
3853                                 }
3854                         }
3855                 IPFW_DYN_UNLOCK();
3856                 if (last != NULL) /* mark last dynamic rule */
3857                         bzero(&last->next, sizeof(last));
3858         }
3859         return (bp - (char *)buf);
3860 }
3861
3862
3863 /**
3864  * {set|get}sockopt parser.
3865  */
3866 static int
3867 ipfw_ctl(struct sockopt *sopt)
3868 {
3869 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
3870         int error, rule_num;
3871         size_t size;
3872         struct ip_fw *buf, *rule;
3873         u_int32_t rulenum[2];
3874
3875         error = suser(sopt->sopt_td);
3876         if (error)
3877                 return (error);
3878
3879         /*
3880          * Disallow modifications in really-really secure mode, but still allow
3881          * the logging counters to be reset.
3882          */
3883         if (sopt->sopt_name == IP_FW_ADD ||
3884             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3885                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3886                 if (error)
3887                         return (error);
3888         }
3889
3890         error = 0;
3891
3892         switch (sopt->sopt_name) {
3893         case IP_FW_GET:
3894                 /*
3895                  * pass up a copy of the current rules. Static rules
3896                  * come first (the last of which has number IPFW_DEFAULT_RULE),
3897                  * followed by a possibly empty list of dynamic rule.
3898                  * The last dynamic rule has NULL in the "next" field.
3899                  *
3900                  * Note that the calculated size is used to bound the
3901                  * amount of data returned to the user.  The rule set may
3902                  * change between calculating the size and returning the
3903                  * data in which case we'll just return what fits.
3904                  */
3905                 size = static_len;      /* size of static rules */
3906                 if (ipfw_dyn_v)         /* add size of dyn.rules */
3907                         size += (dyn_count * sizeof(ipfw_dyn_rule));
3908
3909                 /*
3910                  * XXX todo: if the user passes a short length just to know
3911                  * how much room is needed, do not bother filling up the
3912                  * buffer, just jump to the sooptcopyout.
3913                  */
3914                 buf = malloc(size, M_TEMP, M_WAITOK);
3915                 error = sooptcopyout(sopt, buf,
3916                                 ipfw_getrules(&layer3_chain, buf, size));
3917                 free(buf, M_TEMP);
3918                 break;
3919
3920         case IP_FW_FLUSH:
3921                 /*
3922                  * Normally we cannot release the lock on each iteration.
3923                  * We could do it here only because we start from the head all
3924                  * the times so there is no risk of missing some entries.
3925                  * On the other hand, the risk is that we end up with
3926                  * a very inconsistent ruleset, so better keep the lock
3927                  * around the whole cycle.
3928                  *
3929                  * XXX this code can be improved by resetting the head of
3930                  * the list to point to the default rule, and then freeing
3931                  * the old list without the need for a lock.
3932                  */
3933
3934                 IPFW_WLOCK(&layer3_chain);
3935                 layer3_chain.reap = NULL;
3936                 free_chain(&layer3_chain, 0 /* keep default rule */);
3937                 rule = layer3_chain.reap, layer3_chain.reap = NULL;
3938                 IPFW_WUNLOCK(&layer3_chain);
3939                 if (layer3_chain.reap != NULL)
3940                         reap_rules(rule);
3941                 break;
3942
3943         case IP_FW_ADD:
3944                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3945                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3946                         sizeof(struct ip_fw) );
3947                 if (error == 0)
3948                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
3949                 if (error == 0) {
3950                         error = add_rule(&layer3_chain, rule);
3951                         size = RULESIZE(rule);
3952                         if (!error && sopt->sopt_dir == SOPT_GET)
3953                                 error = sooptcopyout(sopt, rule, size);
3954                 }
3955                 free(rule, M_TEMP);
3956                 break;
3957
3958         case IP_FW_DEL:
3959                 /*
3960                  * IP_FW_DEL is used for deleting single rules or sets,
3961                  * and (ab)used to atomically manipulate sets. Argument size
3962                  * is used to distinguish between the two:
3963                  *    sizeof(u_int32_t)
3964                  *      delete single rule or set of rules,
3965                  *      or reassign rules (or sets) to a different set.
3966                  *    2*sizeof(u_int32_t)
3967                  *      atomic disable/enable sets.
3968                  *      first u_int32_t contains sets to be disabled,
3969                  *      second u_int32_t contains sets to be enabled.
3970                  */
3971                 error = sooptcopyin(sopt, rulenum,
3972                         2*sizeof(u_int32_t), sizeof(u_int32_t));
3973                 if (error)
3974                         break;
3975                 size = sopt->sopt_valsize;
3976                 if (size == sizeof(u_int32_t))  /* delete or reassign */
3977                         error = del_entry(&layer3_chain, rulenum[0]);
3978                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3979                         set_disable =
3980                             (set_disable | rulenum[0]) & ~rulenum[1] &
3981                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3982                 else
3983                         error = EINVAL;
3984                 break;
3985
3986         case IP_FW_ZERO:
3987         case IP_FW_RESETLOG: /* argument is an int, the rule number */
3988                 rule_num = 0;
3989                 if (sopt->sopt_val != 0) {
3990                     error = sooptcopyin(sopt, &rule_num,
3991                             sizeof(int), sizeof(int));
3992                     if (error)
3993                         break;
3994                 }
3995                 error = zero_entry(&layer3_chain, rule_num,
3996                         sopt->sopt_name == IP_FW_RESETLOG);
3997                 break;
3998
3999         case IP_FW_TABLE_ADD:
4000                 {
4001                         ipfw_table_entry ent;
4002
4003                         error = sooptcopyin(sopt, &ent,
4004                             sizeof(ent), sizeof(ent));
4005                         if (error)
4006                                 break;
4007                         error = add_table_entry(&layer3_chain, ent.tbl,
4008                             ent.addr, ent.masklen, ent.value);
4009                 }
4010                 break;
4011
4012         case IP_FW_TABLE_DEL:
4013                 {
4014                         ipfw_table_entry ent;
4015
4016                         error = sooptcopyin(sopt, &ent,
4017                             sizeof(ent), sizeof(ent));
4018                         if (error)
4019                                 break;
4020                         error = del_table_entry(&layer3_chain, ent.tbl,
4021                             ent.addr, ent.masklen);
4022                 }
4023                 break;
4024
4025         case IP_FW_TABLE_FLUSH:
4026                 {
4027                         u_int16_t tbl;
4028
4029                         error = sooptcopyin(sopt, &tbl,
4030                             sizeof(tbl), sizeof(tbl));
4031                         if (error)
4032                                 break;
4033                         IPFW_WLOCK(&layer3_chain);
4034                         error = flush_table(&layer3_chain, tbl);
4035                         IPFW_WUNLOCK(&layer3_chain);
4036                 }
4037                 break;
4038
4039         case IP_FW_TABLE_GETSIZE:
4040                 {
4041                         u_int32_t tbl, cnt;
4042
4043                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4044                             sizeof(tbl))))
4045                                 break;
4046                         IPFW_RLOCK(&layer3_chain);
4047                         error = count_table(&layer3_chain, tbl, &cnt);
4048                         IPFW_RUNLOCK(&layer3_chain);
4049                         if (error)
4050                                 break;
4051                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4052                 }
4053                 break;
4054
4055         case IP_FW_TABLE_LIST:
4056                 {
4057                         ipfw_table *tbl;
4058
4059                         if (sopt->sopt_valsize < sizeof(*tbl)) {
4060                                 error = EINVAL;
4061                                 break;
4062                         }
4063                         size = sopt->sopt_valsize;
4064                         tbl = malloc(size, M_TEMP, M_WAITOK);
4065                         if (tbl == NULL) {
4066                                 error = ENOMEM;
4067                                 break;
4068                         }
4069                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4070                         if (error) {
4071                                 free(tbl, M_TEMP);
4072                                 break;
4073                         }
4074                         tbl->size = (size - sizeof(*tbl)) /
4075                             sizeof(ipfw_table_entry);
4076                         IPFW_RLOCK(&layer3_chain);
4077                         error = dump_table(&layer3_chain, tbl);
4078                         IPFW_RUNLOCK(&layer3_chain);
4079                         if (error) {
4080                                 free(tbl, M_TEMP);
4081                                 break;
4082                         }
4083                         error = sooptcopyout(sopt, tbl, size);
4084                         free(tbl, M_TEMP);
4085                 }
4086                 break;
4087
4088         default:
4089                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4090                 error = EINVAL;
4091         }
4092
4093         return (error);
4094 #undef RULE_MAXSIZE
4095 }
4096
4097 /**
4098  * dummynet needs a reference to the default rule, because rules can be
4099  * deleted while packets hold a reference to them. When this happens,
4100  * dummynet changes the reference to the default rule (it could well be a
4101  * NULL pointer, but this way we do not need to check for the special
4102  * case, plus here he have info on the default behaviour).
4103  */
4104 struct ip_fw *ip_fw_default_rule;
4105
4106 /*
4107  * This procedure is only used to handle keepalives. It is invoked
4108  * every dyn_keepalive_period
4109  */
4110 static void
4111 ipfw_tick(void * __unused unused)
4112 {
4113         struct mbuf *m0, *m, *mnext, **mtailp;
4114         int i;
4115         ipfw_dyn_rule *q;
4116
4117         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4118                 goto done;
4119
4120         /*
4121          * We make a chain of packets to go out here -- not deferring
4122          * until after we drop the IPFW dynamic rule lock would result
4123          * in a lock order reversal with the normal packet input -> ipfw
4124          * call stack.
4125          */
4126         m0 = NULL;
4127         mtailp = &m0;
4128         IPFW_DYN_LOCK();
4129         for (i = 0 ; i < curr_dyn_buckets ; i++) {
4130                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4131                         if (q->dyn_type == O_LIMIT_PARENT)
4132                                 continue;
4133                         if (q->id.proto != IPPROTO_TCP)
4134                                 continue;
4135                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
4136                                 continue;
4137                         if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4138                             q->expire))
4139                                 continue;       /* too early */
4140                         if (TIME_LEQ(q->expire, time_uptime))
4141                                 continue;       /* too late, rule expired */
4142
4143                         *mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4144                                 q->ack_fwd, TH_SYN);
4145                         if (*mtailp != NULL)
4146                                 mtailp = &(*mtailp)->m_nextpkt;
4147                         *mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4148                                 q->ack_rev, 0);
4149                         if (*mtailp != NULL)
4150                                 mtailp = &(*mtailp)->m_nextpkt;
4151                 }
4152         }
4153         IPFW_DYN_UNLOCK();
4154         for (m = mnext = m0; m != NULL; m = mnext) {
4155                 mnext = m->m_nextpkt;
4156                 m->m_nextpkt = NULL;
4157                 ip_output(m, NULL, NULL, 0, NULL, NULL);
4158         }
4159 done:
4160         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4161 }
4162
4163 int
4164 ipfw_init(void)
4165 {
4166         struct ip_fw default_rule;
4167         int error;
4168
4169 #ifdef INET6
4170         /* Setup IPv6 fw sysctl tree. */
4171         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4172         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4173             SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4174             CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4175         SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4176             OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4177             &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4178         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4179             OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4180             &fw_deny_unknown_exthdrs, 0,
4181             "Deny packets with unknown IPv6 Extension Headers");
4182 #endif
4183
4184         layer3_chain.rules = NULL;
4185         IPFW_LOCK_INIT(&layer3_chain);
4186         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4187             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4188             UMA_ALIGN_PTR, 0);
4189         IPFW_DYN_LOCK_INIT();
4190         callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4191
4192         bzero(&default_rule, sizeof default_rule);
4193
4194         default_rule.act_ofs = 0;
4195         default_rule.rulenum = IPFW_DEFAULT_RULE;
4196         default_rule.cmd_len = 1;
4197         default_rule.set = RESVD_SET;
4198
4199         default_rule.cmd[0].len = 1;
4200         default_rule.cmd[0].opcode =
4201 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4202                                 1 ? O_ACCEPT :
4203 #endif
4204                                 O_DENY;
4205
4206         error = add_rule(&layer3_chain, &default_rule);
4207         if (error != 0) {
4208                 printf("ipfw2: error %u initializing default rule "
4209                         "(support disabled)\n", error);
4210                 IPFW_DYN_LOCK_DESTROY();
4211                 IPFW_LOCK_DESTROY(&layer3_chain);
4212                 uma_zdestroy(ipfw_dyn_rule_zone);
4213                 return (error);
4214         }
4215
4216         ip_fw_default_rule = layer3_chain.rules;
4217         printf("ipfw2 "
4218 #ifdef INET6
4219                 "(+ipv6) "
4220 #endif
4221                 "initialized, divert %s, "
4222                 "rule-based forwarding "
4223 #ifdef IPFIREWALL_FORWARD
4224                 "enabled, "
4225 #else
4226                 "disabled, "
4227 #endif
4228                 "default to %s, logging ",
4229 #ifdef IPDIVERT
4230                 "enabled",
4231 #else
4232                 "loadable",
4233 #endif
4234                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4235
4236 #ifdef IPFIREWALL_VERBOSE
4237         fw_verbose = 1;
4238 #endif
4239 #ifdef IPFIREWALL_VERBOSE_LIMIT
4240         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4241 #endif
4242         if (fw_verbose == 0)
4243                 printf("disabled\n");
4244         else if (verbose_limit == 0)
4245                 printf("unlimited\n");
4246         else
4247                 printf("limited to %d packets/entry by default\n",
4248                     verbose_limit);
4249
4250         error = init_tables(&layer3_chain);
4251         if (error) {
4252                 IPFW_DYN_LOCK_DESTROY();
4253                 IPFW_LOCK_DESTROY(&layer3_chain);
4254                 uma_zdestroy(ipfw_dyn_rule_zone);
4255                 return (error);
4256         }
4257         ip_fw_ctl_ptr = ipfw_ctl;
4258         ip_fw_chk_ptr = ipfw_chk;
4259         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4260
4261         return (0);
4262 }
4263
4264 void
4265 ipfw_destroy(void)
4266 {
4267         struct ip_fw *reap;
4268
4269         ip_fw_chk_ptr = NULL;
4270         ip_fw_ctl_ptr = NULL;
4271         callout_drain(&ipfw_timeout);
4272         IPFW_WLOCK(&layer3_chain);
4273         flush_tables(&layer3_chain);
4274         layer3_chain.reap = NULL;
4275         free_chain(&layer3_chain, 1 /* kill default rule */);
4276         reap = layer3_chain.reap, layer3_chain.reap = NULL;
4277         IPFW_WUNLOCK(&layer3_chain);
4278         if (reap != NULL)
4279                 reap_rules(reap);
4280         IPFW_DYN_LOCK_DESTROY();
4281         uma_zdestroy(ipfw_dyn_rule_zone);
4282         IPFW_LOCK_DESTROY(&layer3_chain);
4283
4284 #ifdef INET6
4285         /* Free IPv6 fw sysctl tree. */
4286         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4287 #endif
4288
4289         printf("IP firewall unloaded\n");
4290 }