]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/ip_fw2.c
Eliminate the offset argument from send_reject. It's not been
[FreeBSD/FreeBSD.git] / sys / netinet / ip_fw2.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27
28 #define        DEB(x)
29 #define        DDB(x) x
30
31 /*
32  * Implement IP packet firewall (new version)
33  */
34
35 #if !defined(KLD_MODULE)
36 #include "opt_ipfw.h"
37 #include "opt_ipdn.h"
38 #include "opt_inet.h"
39 #ifndef INET
40 #error IPFIREWALL requires INET.
41 #endif /* INET */
42 #endif
43 #include "opt_inet6.h"
44 #include "opt_ipsec.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/condvar.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/jail.h>
54 #include <sys/module.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/if.h>
63 #include <net/radix.h>
64 #include <net/route.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_icmp.h>
72 #include <netinet/ip_fw.h>
73 #include <netinet/ip_divert.h>
74 #include <netinet/ip_dummynet.h>
75 #include <netinet/tcp.h>
76 #include <netinet/tcp_timer.h>
77 #include <netinet/tcp_var.h>
78 #include <netinet/tcpip.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81
82 #include <netgraph/ng_ipfw.h>
83
84 #include <altq/if_altq.h>
85
86 #ifdef IPSEC
87 #include <netinet6/ipsec.h>
88 #endif
89
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #ifdef INET6
93 #include <netinet6/scope6_var.h>
94 #endif
95
96 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
97
98 #include <machine/in_cksum.h>   /* XXX for in_cksum */
99
100 /*
101  * set_disable contains one bit per set value (0..31).
102  * If the bit is set, all rules with the corresponding set
103  * are disabled. Set RESVD_SET(31) is reserved for the default rule
104  * and rules that are not deleted by the flush command,
105  * and CANNOT be disabled.
106  * Rules in set RESVD_SET can only be deleted explicitly.
107  */
108 static u_int32_t set_disable;
109
110 static int fw_verbose;
111 static int verbose_limit;
112
113 static struct callout ipfw_timeout;
114 static uma_zone_t ipfw_dyn_rule_zone;
115 #define IPFW_DEFAULT_RULE       65535
116
117 /*
118  * Data structure to cache our ucred related
119  * information. This structure only gets used if
120  * the user specified UID/GID based constraints in
121  * a firewall rule.
122  */
123 struct ip_fw_ugid {
124         gid_t           fw_groups[NGROUPS];
125         int             fw_ngroups;
126         uid_t           fw_uid;
127         int             fw_prid;
128 };
129
130 #define IPFW_TABLES_MAX         128
131 struct ip_fw_chain {
132         struct ip_fw    *rules;         /* list of rules */
133         struct ip_fw    *reap;          /* list of rules to reap */
134         struct radix_node_head *tables[IPFW_TABLES_MAX];
135         struct rwlock   rwmtx;
136 };
137 #define IPFW_LOCK_INIT(_chain) \
138         rw_init(&(_chain)->rwmtx, "IPFW static rules")
139 #define IPFW_LOCK_DESTROY(_chain)       rw_destroy(&(_chain)->rwmtx)
140 #define IPFW_WLOCK_ASSERT(_chain)       do {                            \
141         rw_assert(&(_chain)->rwmtx, RA_WLOCKED);                                        \
142         NET_ASSERT_GIANT();                                             \
143 } while (0)
144
145 #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
146 #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
147 #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
148 #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
149
150 /*
151  * list of rules for layer 3
152  */
153 static struct ip_fw_chain layer3_chain;
154
155 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
156 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
157
158 struct table_entry {
159         struct radix_node       rn[2];
160         struct sockaddr_in      addr, mask;
161         u_int32_t               value;
162 };
163
164 static int fw_debug = 1;
165 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
166
167 extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
168
169 #ifdef SYSCTL_NODE
170 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
171 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
172     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
173     ipfw_chg_hook, "I", "Enable ipfw");
174 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
175     &autoinc_step, 0, "Rule number autincrement step");
176 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
177     CTLFLAG_RW | CTLFLAG_SECURE3,
178     &fw_one_pass, 0,
179     "Only do a single pass through ipfw when using dummynet(4)");
180 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
181     &fw_debug, 0, "Enable printing of debug ip_fw statements");
182 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
183     CTLFLAG_RW | CTLFLAG_SECURE3,
184     &fw_verbose, 0, "Log matches to ipfw rules");
185 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
186     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
187
188 /*
189  * Description of dynamic rules.
190  *
191  * Dynamic rules are stored in lists accessed through a hash table
192  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
193  * be modified through the sysctl variable dyn_buckets which is
194  * updated when the table becomes empty.
195  *
196  * XXX currently there is only one list, ipfw_dyn.
197  *
198  * When a packet is received, its address fields are first masked
199  * with the mask defined for the rule, then hashed, then matched
200  * against the entries in the corresponding list.
201  * Dynamic rules can be used for different purposes:
202  *  + stateful rules;
203  *  + enforcing limits on the number of sessions;
204  *  + in-kernel NAT (not implemented yet)
205  *
206  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
207  * measured in seconds and depending on the flags.
208  *
209  * The total number of dynamic rules is stored in dyn_count.
210  * The max number of dynamic rules is dyn_max. When we reach
211  * the maximum number of rules we do not create anymore. This is
212  * done to avoid consuming too much memory, but also too much
213  * time when searching on each packet (ideally, we should try instead
214  * to put a limit on the length of the list on each bucket...).
215  *
216  * Each dynamic rule holds a pointer to the parent ipfw rule so
217  * we know what action to perform. Dynamic rules are removed when
218  * the parent rule is deleted. XXX we should make them survive.
219  *
220  * There are some limitations with dynamic rules -- we do not
221  * obey the 'randomized match', and we do not do multiple
222  * passes through the firewall. XXX check the latter!!!
223  */
224 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
225 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
226 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
227
228 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
229 #define IPFW_DYN_LOCK_INIT() \
230         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
231 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
232 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
233 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
234 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
235
236 /*
237  * Timeouts for various events in handing dynamic rules.
238  */
239 static u_int32_t dyn_ack_lifetime = 300;
240 static u_int32_t dyn_syn_lifetime = 20;
241 static u_int32_t dyn_fin_lifetime = 1;
242 static u_int32_t dyn_rst_lifetime = 1;
243 static u_int32_t dyn_udp_lifetime = 10;
244 static u_int32_t dyn_short_lifetime = 5;
245
246 /*
247  * Keepalives are sent if dyn_keepalive is set. They are sent every
248  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
249  * seconds of lifetime of a rule.
250  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
251  * than dyn_keepalive_period.
252  */
253
254 static u_int32_t dyn_keepalive_interval = 20;
255 static u_int32_t dyn_keepalive_period = 5;
256 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
257
258 static u_int32_t static_count;  /* # of static rules */
259 static u_int32_t static_len;    /* size in bytes of static rules */
260 static u_int32_t dyn_count;             /* # of dynamic rules */
261 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
262
263 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
264     &dyn_buckets, 0, "Number of dyn. buckets");
265 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
266     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
267 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
268     &dyn_count, 0, "Number of dyn. rules");
269 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
270     &dyn_max, 0, "Max number of dyn. rules");
271 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
272     &static_count, 0, "Number of static rules");
273 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
274     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
275 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
276     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
277 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
278     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
279 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
280     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
281 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
282     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
283 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
284     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
285 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
286     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
287
288 #ifdef INET6
289 /*
290  * IPv6 specific variables
291  */
292 SYSCTL_DECL(_net_inet6_ip6);
293
294 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
295 static struct sysctl_oid *ip6_fw_sysctl_tree;
296 #endif /* INET6 */
297 #endif /* SYSCTL_NODE */
298
299 static int fw_deny_unknown_exthdrs = 1;
300
301
302 /*
303  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
304  * Other macros just cast void * into the appropriate type
305  */
306 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
307 #define TCP(p)          ((struct tcphdr *)(p))
308 #define UDP(p)          ((struct udphdr *)(p))
309 #define ICMP(p)         ((struct icmphdr *)(p))
310 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
311
312 static __inline int
313 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
314 {
315         int type = icmp->icmp_type;
316
317         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
318 }
319
320 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
321     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
322
323 static int
324 is_icmp_query(struct icmphdr *icmp)
325 {
326         int type = icmp->icmp_type;
327
328         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
329 }
330 #undef TT
331
332 /*
333  * The following checks use two arrays of 8 or 16 bits to store the
334  * bits that we want set or clear, respectively. They are in the
335  * low and high half of cmd->arg1 or cmd->d[0].
336  *
337  * We scan options and store the bits we find set. We succeed if
338  *
339  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
340  *
341  * The code is sometimes optimized not to store additional variables.
342  */
343
344 static int
345 flags_match(ipfw_insn *cmd, u_int8_t bits)
346 {
347         u_char want_clear;
348         bits = ~bits;
349
350         if ( ((cmd->arg1 & 0xff) & bits) != 0)
351                 return 0; /* some bits we want set were clear */
352         want_clear = (cmd->arg1 >> 8) & 0xff;
353         if ( (want_clear & bits) != want_clear)
354                 return 0; /* some bits we want clear were set */
355         return 1;
356 }
357
358 static int
359 ipopts_match(struct ip *ip, ipfw_insn *cmd)
360 {
361         int optlen, bits = 0;
362         u_char *cp = (u_char *)(ip + 1);
363         int x = (ip->ip_hl << 2) - sizeof (struct ip);
364
365         for (; x > 0; x -= optlen, cp += optlen) {
366                 int opt = cp[IPOPT_OPTVAL];
367
368                 if (opt == IPOPT_EOL)
369                         break;
370                 if (opt == IPOPT_NOP)
371                         optlen = 1;
372                 else {
373                         optlen = cp[IPOPT_OLEN];
374                         if (optlen <= 0 || optlen > x)
375                                 return 0; /* invalid or truncated */
376                 }
377                 switch (opt) {
378
379                 default:
380                         break;
381
382                 case IPOPT_LSRR:
383                         bits |= IP_FW_IPOPT_LSRR;
384                         break;
385
386                 case IPOPT_SSRR:
387                         bits |= IP_FW_IPOPT_SSRR;
388                         break;
389
390                 case IPOPT_RR:
391                         bits |= IP_FW_IPOPT_RR;
392                         break;
393
394                 case IPOPT_TS:
395                         bits |= IP_FW_IPOPT_TS;
396                         break;
397                 }
398         }
399         return (flags_match(cmd, bits));
400 }
401
402 static int
403 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
404 {
405         int optlen, bits = 0;
406         u_char *cp = (u_char *)(tcp + 1);
407         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
408
409         for (; x > 0; x -= optlen, cp += optlen) {
410                 int opt = cp[0];
411                 if (opt == TCPOPT_EOL)
412                         break;
413                 if (opt == TCPOPT_NOP)
414                         optlen = 1;
415                 else {
416                         optlen = cp[1];
417                         if (optlen <= 0)
418                                 break;
419                 }
420
421                 switch (opt) {
422
423                 default:
424                         break;
425
426                 case TCPOPT_MAXSEG:
427                         bits |= IP_FW_TCPOPT_MSS;
428                         break;
429
430                 case TCPOPT_WINDOW:
431                         bits |= IP_FW_TCPOPT_WINDOW;
432                         break;
433
434                 case TCPOPT_SACK_PERMITTED:
435                 case TCPOPT_SACK:
436                         bits |= IP_FW_TCPOPT_SACK;
437                         break;
438
439                 case TCPOPT_TIMESTAMP:
440                         bits |= IP_FW_TCPOPT_TS;
441                         break;
442
443                 }
444         }
445         return (flags_match(cmd, bits));
446 }
447
448 static int
449 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
450 {
451         if (ifp == NULL)        /* no iface with this packet, match fails */
452                 return 0;
453         /* Check by name or by IP address */
454         if (cmd->name[0] != '\0') { /* match by name */
455                 /* Check name */
456                 if (cmd->p.glob) {
457                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
458                                 return(1);
459                 } else {
460                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
461                                 return(1);
462                 }
463         } else {
464                 struct ifaddr *ia;
465
466                 /* XXX lock? */
467                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
468                         if (ia->ifa_addr == NULL)
469                                 continue;
470                         if (ia->ifa_addr->sa_family != AF_INET)
471                                 continue;
472                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
473                             (ia->ifa_addr))->sin_addr.s_addr)
474                                 return(1);      /* match */
475                 }
476         }
477         return(0);      /* no match, fail ... */
478 }
479
480 /*
481  * The verify_path function checks if a route to the src exists and
482  * if it is reachable via ifp (when provided).
483  * 
484  * The 'verrevpath' option checks that the interface that an IP packet
485  * arrives on is the same interface that traffic destined for the
486  * packet's source address would be routed out of.  The 'versrcreach'
487  * option just checks that the source address is reachable via any route
488  * (except default) in the routing table.  These two are a measure to block
489  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
490  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
491  * is purposely reminiscent of the Cisco IOS command,
492  *
493  *   ip verify unicast reverse-path
494  *   ip verify unicast source reachable-via any
495  *
496  * which implements the same functionality. But note that syntax is
497  * misleading. The check may be performed on all IP packets whether unicast,
498  * multicast, or broadcast.
499  */
500 static int
501 verify_path(struct in_addr src, struct ifnet *ifp)
502 {
503         struct route ro;
504         struct sockaddr_in *dst;
505
506         bzero(&ro, sizeof(ro));
507
508         dst = (struct sockaddr_in *)&(ro.ro_dst);
509         dst->sin_family = AF_INET;
510         dst->sin_len = sizeof(*dst);
511         dst->sin_addr = src;
512         rtalloc_ign(&ro, RTF_CLONING);
513
514         if (ro.ro_rt == NULL)
515                 return 0;
516
517         /*
518          * If ifp is provided, check for equality with rtentry.
519          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
520          * in order to pass packets injected back by if_simloop():
521          * if useloopback == 1 routing entry (via lo0) for our own address
522          * may exist, so we need to handle routing assymetry.
523          */
524         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
525                 RTFREE(ro.ro_rt);
526                 return 0;
527         }
528
529         /* if no ifp provided, check if rtentry is not default route */
530         if (ifp == NULL &&
531              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
532                 RTFREE(ro.ro_rt);
533                 return 0;
534         }
535
536         /* or if this is a blackhole/reject route */
537         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
538                 RTFREE(ro.ro_rt);
539                 return 0;
540         }
541
542         /* found valid route */
543         RTFREE(ro.ro_rt);
544         return 1;
545 }
546
547 #ifdef INET6
548 /*
549  * ipv6 specific rules here...
550  */
551 static __inline int
552 icmp6type_match (int type, ipfw_insn_u32 *cmd)
553 {
554         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
555 }
556
557 static int
558 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
559 {
560         int i;
561         for (i=0; i <= cmd->o.arg1; ++i )
562                 if (curr_flow == cmd->d[i] )
563                         return 1;
564         return 0;
565 }
566
567 /* support for IP6_*_ME opcodes */
568 static int
569 search_ip6_addr_net (struct in6_addr * ip6_addr)
570 {
571         struct ifnet *mdc;
572         struct ifaddr *mdc2;
573         struct in6_ifaddr *fdm;
574         struct in6_addr copia;
575
576         TAILQ_FOREACH(mdc, &ifnet, if_link)
577                 for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
578                     mdc2 = mdc2->ifa_list.tqe_next) {
579                         if (!mdc2->ifa_addr)
580                                 continue;
581                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
582                                 fdm = (struct in6_ifaddr *)mdc2;
583                                 copia = fdm->ia_addr.sin6_addr;
584                                 /* need for leaving scope_id in the sock_addr */
585                                 in6_clearscope(&copia);
586                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
587                                         return 1;
588                         }
589                 }
590         return 0;
591 }
592
593 static int
594 verify_path6(struct in6_addr *src, struct ifnet *ifp)
595 {
596         struct route_in6 ro;
597         struct sockaddr_in6 *dst;
598
599         bzero(&ro, sizeof(ro));
600
601         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
602         dst->sin6_family = AF_INET6;
603         dst->sin6_len = sizeof(*dst);
604         dst->sin6_addr = *src;
605         rtalloc_ign((struct route *)&ro, RTF_CLONING);
606
607         if (ro.ro_rt == NULL)
608                 return 0;
609
610         /* 
611          * if ifp is provided, check for equality with rtentry
612          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
613          * to support the case of sending packets to an address of our own.
614          * (where the former interface is the first argument of if_simloop()
615          *  (=ifp), the latter is lo0)
616          */
617         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
618                 RTFREE(ro.ro_rt);
619                 return 0;
620         }
621
622         /* if no ifp provided, check if rtentry is not default route */
623         if (ifp == NULL &&
624             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
625                 RTFREE(ro.ro_rt);
626                 return 0;
627         }
628
629         /* or if this is a blackhole/reject route */
630         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
631                 RTFREE(ro.ro_rt);
632                 return 0;
633         }
634
635         /* found valid route */
636         RTFREE(ro.ro_rt);
637         return 1;
638
639 }
640 static __inline int
641 hash_packet6(struct ipfw_flow_id *id)
642 {
643         u_int32_t i;
644         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
645             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
646             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
647             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
648             (id->dst_port) ^ (id->src_port);
649         return i;
650 }
651
652 static int
653 is_icmp6_query(int icmp6_type)
654 {
655         if ((icmp6_type <= ICMP6_MAXTYPE) &&
656             (icmp6_type == ICMP6_ECHO_REQUEST ||
657             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
658             icmp6_type == ICMP6_WRUREQUEST ||
659             icmp6_type == ICMP6_FQDN_QUERY ||
660             icmp6_type == ICMP6_NI_QUERY))
661                 return (1);
662
663         return (0);
664 }
665
666 static void
667 send_reject6(struct ip_fw_args *args, int code, u_int hlen)
668 {
669         if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
670                 struct ip6_hdr *ip6;
671                 struct tcphdr *tcp;
672                 tcp_seq ack, seq;
673                 int flags;
674                 struct {
675                         struct ip6_hdr ip6;
676                         struct tcphdr th;
677                 } ti;
678
679                 if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
680                         args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
681                         if (args->m == NULL)
682                                 return;
683                 }
684
685                 ip6 = mtod(args->m, struct ip6_hdr *);
686                 tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
687
688                 if ((tcp->th_flags & TH_RST) != 0) {
689                         m_freem(args->m);
690                         return;
691                 }
692
693                 ti.ip6 = *ip6;
694                 ti.th = *tcp;
695                 ti.th.th_seq = ntohl(ti.th.th_seq);
696                 ti.th.th_ack = ntohl(ti.th.th_ack);
697                 ti.ip6.ip6_nxt = IPPROTO_TCP;
698
699                 if (ti.th.th_flags & TH_ACK) {
700                         ack = 0;
701                         seq = ti.th.th_ack;
702                         flags = TH_RST;
703                 } else {
704                         ack = ti.th.th_seq;
705                         if (((args->m)->m_flags & M_PKTHDR) != 0) {
706                                 ack += (args->m)->m_pkthdr.len - hlen
707                                         - (ti.th.th_off << 2);
708                         } else if (ip6->ip6_plen) {
709                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
710                                         - hlen - (ti.th.th_off << 2);
711                         } else {
712                                 m_freem(args->m);
713                                 return;
714                         }
715                         if (tcp->th_flags & TH_SYN)
716                                 ack++;
717                         seq = 0;
718                         flags = TH_RST|TH_ACK;
719                 }
720                 bcopy(&ti, ip6, sizeof(ti));
721                 tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
722                         args->m, ack, seq, flags);
723
724         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
725                 icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
726
727         } else
728                 m_freem(args->m);
729
730         args->m = NULL;
731 }
732
733 #endif /* INET6 */
734
735 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
736
737 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
738 #define SNP(buf) buf, sizeof(buf)
739
740 /*
741  * We enter here when we have a rule with O_LOG.
742  * XXX this function alone takes about 2Kbytes of code!
743  */
744 static void
745 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
746         struct mbuf *m, struct ifnet *oif, u_short offset)
747 {
748         struct ether_header *eh = args->eh;
749         char *action;
750         int limit_reached = 0;
751         char action2[40], proto[128], fragment[32];
752
753         fragment[0] = '\0';
754         proto[0] = '\0';
755
756         if (f == NULL) {        /* bogus pkt */
757                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
758                         return;
759                 norule_counter++;
760                 if (norule_counter == verbose_limit)
761                         limit_reached = verbose_limit;
762                 action = "Refuse";
763         } else {        /* O_LOG is the first action, find the real one */
764                 ipfw_insn *cmd = ACTION_PTR(f);
765                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
766
767                 if (l->max_log != 0 && l->log_left == 0)
768                         return;
769                 l->log_left--;
770                 if (l->log_left == 0)
771                         limit_reached = l->max_log;
772                 cmd += F_LEN(cmd);      /* point to first action */
773                 if (cmd->opcode == O_ALTQ) {
774                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
775
776                         snprintf(SNPARGS(action2, 0), "Altq %d",
777                                 altq->qid);
778                         cmd += F_LEN(cmd);
779                 }
780                 if (cmd->opcode == O_PROB)
781                         cmd += F_LEN(cmd);
782
783                 if (cmd->opcode == O_TAG)
784                         cmd += F_LEN(cmd);
785
786                 action = action2;
787                 switch (cmd->opcode) {
788                 case O_DENY:
789                         action = "Deny";
790                         break;
791
792                 case O_REJECT:
793                         if (cmd->arg1==ICMP_REJECT_RST)
794                                 action = "Reset";
795                         else if (cmd->arg1==ICMP_UNREACH_HOST)
796                                 action = "Reject";
797                         else
798                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
799                                         cmd->arg1);
800                         break;
801
802                 case O_UNREACH6:
803                         if (cmd->arg1==ICMP6_UNREACH_RST)
804                                 action = "Reset";
805                         else
806                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
807                                         cmd->arg1);
808                         break;
809
810                 case O_ACCEPT:
811                         action = "Accept";
812                         break;
813                 case O_COUNT:
814                         action = "Count";
815                         break;
816                 case O_DIVERT:
817                         snprintf(SNPARGS(action2, 0), "Divert %d",
818                                 cmd->arg1);
819                         break;
820                 case O_TEE:
821                         snprintf(SNPARGS(action2, 0), "Tee %d",
822                                 cmd->arg1);
823                         break;
824                 case O_SKIPTO:
825                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
826                                 cmd->arg1);
827                         break;
828                 case O_PIPE:
829                         snprintf(SNPARGS(action2, 0), "Pipe %d",
830                                 cmd->arg1);
831                         break;
832                 case O_QUEUE:
833                         snprintf(SNPARGS(action2, 0), "Queue %d",
834                                 cmd->arg1);
835                         break;
836                 case O_FORWARD_IP: {
837                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
838                         int len;
839
840                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
841                                 inet_ntoa(sa->sa.sin_addr));
842                         if (sa->sa.sin_port)
843                                 snprintf(SNPARGS(action2, len), ":%d",
844                                     sa->sa.sin_port);
845                         }
846                         break;
847                 case O_NETGRAPH:
848                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
849                                 cmd->arg1);
850                         break;
851                 case O_NGTEE:
852                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
853                                 cmd->arg1);
854                         break;
855                 default:
856                         action = "UNKNOWN";
857                         break;
858                 }
859         }
860
861         if (hlen == 0) {        /* non-ip */
862                 snprintf(SNPARGS(proto, 0), "MAC");
863
864         } else {
865                 int len;
866                 char src[48], dst[48];
867                 struct icmphdr *icmp;
868                 struct tcphdr *tcp;
869                 struct udphdr *udp;
870                 /* Initialize to make compiler happy. */
871                 struct ip *ip = NULL;
872 #ifdef INET6
873                 struct ip6_hdr *ip6 = NULL;
874                 struct icmp6_hdr *icmp6;
875 #endif
876                 src[0] = '\0';
877                 dst[0] = '\0';
878 #ifdef INET6
879                 if (args->f_id.addr_type == 6) {
880                         snprintf(src, sizeof(src), "[%s]",
881                             ip6_sprintf(&args->f_id.src_ip6));
882                         snprintf(dst, sizeof(dst), "[%s]",
883                             ip6_sprintf(&args->f_id.dst_ip6));
884
885                         ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
886                         tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
887                         udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
888                 } else
889 #endif
890                 {
891                         ip = mtod(m, struct ip *);
892                         tcp = L3HDR(struct tcphdr, ip);
893                         udp = L3HDR(struct udphdr, ip);
894
895                         inet_ntoa_r(ip->ip_src, src);
896                         inet_ntoa_r(ip->ip_dst, dst);
897                 }
898
899                 switch (args->f_id.proto) {
900                 case IPPROTO_TCP:
901                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
902                         if (offset == 0)
903                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
904                                     ntohs(tcp->th_sport),
905                                     dst,
906                                     ntohs(tcp->th_dport));
907                         else
908                                 snprintf(SNPARGS(proto, len), " %s", dst);
909                         break;
910
911                 case IPPROTO_UDP:
912                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
913                         if (offset == 0)
914                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
915                                     ntohs(udp->uh_sport),
916                                     dst,
917                                     ntohs(udp->uh_dport));
918                         else
919                                 snprintf(SNPARGS(proto, len), " %s", dst);
920                         break;
921
922                 case IPPROTO_ICMP:
923                         icmp = L3HDR(struct icmphdr, ip);
924                         if (offset == 0)
925                                 len = snprintf(SNPARGS(proto, 0),
926                                     "ICMP:%u.%u ",
927                                     icmp->icmp_type, icmp->icmp_code);
928                         else
929                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
930                         len += snprintf(SNPARGS(proto, len), "%s", src);
931                         snprintf(SNPARGS(proto, len), " %s", dst);
932                         break;
933 #ifdef INET6
934                 case IPPROTO_ICMPV6:
935                         icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
936                         if (offset == 0)
937                                 len = snprintf(SNPARGS(proto, 0),
938                                     "ICMPv6:%u.%u ",
939                                     icmp6->icmp6_type, icmp6->icmp6_code);
940                         else
941                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
942                         len += snprintf(SNPARGS(proto, len), "%s", src);
943                         snprintf(SNPARGS(proto, len), " %s", dst);
944                         break;
945 #endif
946                 default:
947                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
948                             args->f_id.proto, src);
949                         snprintf(SNPARGS(proto, len), " %s", dst);
950                         break;
951                 }
952
953 #ifdef INET6
954                 if (args->f_id.addr_type == 6) {
955                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
956                                 snprintf(SNPARGS(fragment, 0),
957                                     " (frag %08x:%d@%d%s)",
958                                     args->f_id.frag_id6,
959                                     ntohs(ip6->ip6_plen) - hlen,
960                                     ntohs(offset & IP6F_OFF_MASK) << 3,
961                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
962                 } else
963 #endif
964                 {
965                         int ip_off, ip_len;
966                         if (eh != NULL) { /* layer 2 packets are as on the wire */
967                                 ip_off = ntohs(ip->ip_off);
968                                 ip_len = ntohs(ip->ip_len);
969                         } else {
970                                 ip_off = ip->ip_off;
971                                 ip_len = ip->ip_len;
972                         }
973                         if (ip_off & (IP_MF | IP_OFFMASK))
974                                 snprintf(SNPARGS(fragment, 0),
975                                     " (frag %d:%d@%d%s)",
976                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
977                                     offset << 3,
978                                     (ip_off & IP_MF) ? "+" : "");
979                 }
980         }
981         if (oif || m->m_pkthdr.rcvif)
982                 log(LOG_SECURITY | LOG_INFO,
983                     "ipfw: %d %s %s %s via %s%s\n",
984                     f ? f->rulenum : -1,
985                     action, proto, oif ? "out" : "in",
986                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
987                     fragment);
988         else
989                 log(LOG_SECURITY | LOG_INFO,
990                     "ipfw: %d %s %s [no if info]%s\n",
991                     f ? f->rulenum : -1,
992                     action, proto, fragment);
993         if (limit_reached)
994                 log(LOG_SECURITY | LOG_NOTICE,
995                     "ipfw: limit %d reached on entry %d\n",
996                     limit_reached, f ? f->rulenum : -1);
997 }
998
999 /*
1000  * IMPORTANT: the hash function for dynamic rules must be commutative
1001  * in source and destination (ip,port), because rules are bidirectional
1002  * and we want to find both in the same bucket.
1003  */
1004 static __inline int
1005 hash_packet(struct ipfw_flow_id *id)
1006 {
1007         u_int32_t i;
1008
1009 #ifdef INET6
1010         if (IS_IP6_FLOW_ID(id)) 
1011                 i = hash_packet6(id);
1012         else
1013 #endif /* INET6 */
1014         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1015         i &= (curr_dyn_buckets - 1);
1016         return i;
1017 }
1018
1019 /**
1020  * unlink a dynamic rule from a chain. prev is a pointer to
1021  * the previous one, q is a pointer to the rule to delete,
1022  * head is a pointer to the head of the queue.
1023  * Modifies q and potentially also head.
1024  */
1025 #define UNLINK_DYN_RULE(prev, head, q) {                                \
1026         ipfw_dyn_rule *old_q = q;                                       \
1027                                                                         \
1028         /* remove a refcount to the parent */                           \
1029         if (q->dyn_type == O_LIMIT)                                     \
1030                 q->parent->count--;                                     \
1031         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1032                 (q->id.src_ip), (q->id.src_port),                       \
1033                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
1034         if (prev != NULL)                                               \
1035                 prev->next = q = q->next;                               \
1036         else                                                            \
1037                 head = q = q->next;                                     \
1038         dyn_count--;                                                    \
1039         uma_zfree(ipfw_dyn_rule_zone, old_q); }
1040
1041 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1042
1043 /**
1044  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1045  *
1046  * If keep_me == NULL, rules are deleted even if not expired,
1047  * otherwise only expired rules are removed.
1048  *
1049  * The value of the second parameter is also used to point to identify
1050  * a rule we absolutely do not want to remove (e.g. because we are
1051  * holding a reference to it -- this is the case with O_LIMIT_PARENT
1052  * rules). The pointer is only used for comparison, so any non-null
1053  * value will do.
1054  */
1055 static void
1056 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1057 {
1058         static u_int32_t last_remove = 0;
1059
1060 #define FORCE (keep_me == NULL)
1061
1062         ipfw_dyn_rule *prev, *q;
1063         int i, pass = 0, max_pass = 0;
1064
1065         IPFW_DYN_LOCK_ASSERT();
1066
1067         if (ipfw_dyn_v == NULL || dyn_count == 0)
1068                 return;
1069         /* do not expire more than once per second, it is useless */
1070         if (!FORCE && last_remove == time_uptime)
1071                 return;
1072         last_remove = time_uptime;
1073
1074         /*
1075          * because O_LIMIT refer to parent rules, during the first pass only
1076          * remove child and mark any pending LIMIT_PARENT, and remove
1077          * them in a second pass.
1078          */
1079 next_pass:
1080         for (i = 0 ; i < curr_dyn_buckets ; i++) {
1081                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1082                         /*
1083                          * Logic can become complex here, so we split tests.
1084                          */
1085                         if (q == keep_me)
1086                                 goto next;
1087                         if (rule != NULL && rule != q->rule)
1088                                 goto next; /* not the one we are looking for */
1089                         if (q->dyn_type == O_LIMIT_PARENT) {
1090                                 /*
1091                                  * handle parent in the second pass,
1092                                  * record we need one.
1093                                  */
1094                                 max_pass = 1;
1095                                 if (pass == 0)
1096                                         goto next;
1097                                 if (FORCE && q->count != 0 ) {
1098                                         /* XXX should not happen! */
1099                                         printf("ipfw: OUCH! cannot remove rule,"
1100                                              " count %d\n", q->count);
1101                                 }
1102                         } else {
1103                                 if (!FORCE &&
1104                                     !TIME_LEQ( q->expire, time_uptime ))
1105                                         goto next;
1106                         }
1107              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1108                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1109                      continue;
1110              }
1111 next:
1112                         prev=q;
1113                         q=q->next;
1114                 }
1115         }
1116         if (pass++ < max_pass)
1117                 goto next_pass;
1118 }
1119
1120
1121 /**
1122  * lookup a dynamic rule.
1123  */
1124 static ipfw_dyn_rule *
1125 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1126         struct tcphdr *tcp)
1127 {
1128         /*
1129          * stateful ipfw extensions.
1130          * Lookup into dynamic session queue
1131          */
1132 #define MATCH_REVERSE   0
1133 #define MATCH_FORWARD   1
1134 #define MATCH_NONE      2
1135 #define MATCH_UNKNOWN   3
1136         int i, dir = MATCH_NONE;
1137         ipfw_dyn_rule *prev, *q=NULL;
1138
1139         IPFW_DYN_LOCK_ASSERT();
1140
1141         if (ipfw_dyn_v == NULL)
1142                 goto done;      /* not found */
1143         i = hash_packet( pkt );
1144         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1145                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1146                         goto next;
1147                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1148                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1149                         continue;
1150                 }
1151                 if (pkt->proto == q->id.proto &&
1152                     q->dyn_type != O_LIMIT_PARENT) {
1153                         if (IS_IP6_FLOW_ID(pkt)) {
1154                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1155                                 &(q->id.src_ip6)) &&
1156                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1157                                 &(q->id.dst_ip6)) &&
1158                             pkt->src_port == q->id.src_port &&
1159                             pkt->dst_port == q->id.dst_port ) {
1160                                 dir = MATCH_FORWARD;
1161                                 break;
1162                             }
1163                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1164                                     &(q->id.dst_ip6)) &&
1165                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1166                                     &(q->id.src_ip6)) &&
1167                                 pkt->src_port == q->id.dst_port &&
1168                                 pkt->dst_port == q->id.src_port ) {
1169                                     dir = MATCH_REVERSE;
1170                                     break;
1171                             }
1172                         } else {
1173                             if (pkt->src_ip == q->id.src_ip &&
1174                                 pkt->dst_ip == q->id.dst_ip &&
1175                                 pkt->src_port == q->id.src_port &&
1176                                 pkt->dst_port == q->id.dst_port ) {
1177                                     dir = MATCH_FORWARD;
1178                                     break;
1179                             }
1180                             if (pkt->src_ip == q->id.dst_ip &&
1181                                 pkt->dst_ip == q->id.src_ip &&
1182                                 pkt->src_port == q->id.dst_port &&
1183                                 pkt->dst_port == q->id.src_port ) {
1184                                     dir = MATCH_REVERSE;
1185                                     break;
1186                             }
1187                         }
1188                 }
1189 next:
1190                 prev = q;
1191                 q = q->next;
1192         }
1193         if (q == NULL)
1194                 goto done; /* q = NULL, not found */
1195
1196         if ( prev != NULL) { /* found and not in front */
1197                 prev->next = q->next;
1198                 q->next = ipfw_dyn_v[i];
1199                 ipfw_dyn_v[i] = q;
1200         }
1201         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1202                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1203
1204 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
1205 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
1206                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1207                 switch (q->state) {
1208                 case TH_SYN:                            /* opening */
1209                         q->expire = time_uptime + dyn_syn_lifetime;
1210                         break;
1211
1212                 case BOTH_SYN:                  /* move to established */
1213                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
1214                 case BOTH_SYN | (TH_FIN << 8) :
1215                         if (tcp) {
1216 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1217                             u_int32_t ack = ntohl(tcp->th_ack);
1218                             if (dir == MATCH_FORWARD) {
1219                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1220                                     q->ack_fwd = ack;
1221                                 else { /* ignore out-of-sequence */
1222                                     break;
1223                                 }
1224                             } else {
1225                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1226                                     q->ack_rev = ack;
1227                                 else { /* ignore out-of-sequence */
1228                                     break;
1229                                 }
1230                             }
1231                         }
1232                         q->expire = time_uptime + dyn_ack_lifetime;
1233                         break;
1234
1235                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
1236                         if (dyn_fin_lifetime >= dyn_keepalive_period)
1237                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
1238                         q->expire = time_uptime + dyn_fin_lifetime;
1239                         break;
1240
1241                 default:
1242 #if 0
1243                         /*
1244                          * reset or some invalid combination, but can also
1245                          * occur if we use keep-state the wrong way.
1246                          */
1247                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1248                                 printf("invalid state: 0x%x\n", q->state);
1249 #endif
1250                         if (dyn_rst_lifetime >= dyn_keepalive_period)
1251                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
1252                         q->expire = time_uptime + dyn_rst_lifetime;
1253                         break;
1254                 }
1255         } else if (pkt->proto == IPPROTO_UDP) {
1256                 q->expire = time_uptime + dyn_udp_lifetime;
1257         } else {
1258                 /* other protocols */
1259                 q->expire = time_uptime + dyn_short_lifetime;
1260         }
1261 done:
1262         if (match_direction)
1263                 *match_direction = dir;
1264         return q;
1265 }
1266
1267 static ipfw_dyn_rule *
1268 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1269         struct tcphdr *tcp)
1270 {
1271         ipfw_dyn_rule *q;
1272
1273         IPFW_DYN_LOCK();
1274         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1275         if (q == NULL)
1276                 IPFW_DYN_UNLOCK();
1277         /* NB: return table locked when q is not NULL */
1278         return q;
1279 }
1280
1281 static void
1282 realloc_dynamic_table(void)
1283 {
1284         IPFW_DYN_LOCK_ASSERT();
1285
1286         /*
1287          * Try reallocation, make sure we have a power of 2 and do
1288          * not allow more than 64k entries. In case of overflow,
1289          * default to 1024.
1290          */
1291
1292         if (dyn_buckets > 65536)
1293                 dyn_buckets = 1024;
1294         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1295                 dyn_buckets = curr_dyn_buckets; /* reset */
1296                 return;
1297         }
1298         curr_dyn_buckets = dyn_buckets;
1299         if (ipfw_dyn_v != NULL)
1300                 free(ipfw_dyn_v, M_IPFW);
1301         for (;;) {
1302                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1303                        M_IPFW, M_NOWAIT | M_ZERO);
1304                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1305                         break;
1306                 curr_dyn_buckets /= 2;
1307         }
1308 }
1309
1310 /**
1311  * Install state of type 'type' for a dynamic session.
1312  * The hash table contains two type of rules:
1313  * - regular rules (O_KEEP_STATE)
1314  * - rules for sessions with limited number of sess per user
1315  *   (O_LIMIT). When they are created, the parent is
1316  *   increased by 1, and decreased on delete. In this case,
1317  *   the third parameter is the parent rule and not the chain.
1318  * - "parent" rules for the above (O_LIMIT_PARENT).
1319  */
1320 static ipfw_dyn_rule *
1321 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1322 {
1323         ipfw_dyn_rule *r;
1324         int i;
1325
1326         IPFW_DYN_LOCK_ASSERT();
1327
1328         if (ipfw_dyn_v == NULL ||
1329             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1330                 realloc_dynamic_table();
1331                 if (ipfw_dyn_v == NULL)
1332                         return NULL; /* failed ! */
1333         }
1334         i = hash_packet(id);
1335
1336         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1337         if (r == NULL) {
1338                 printf ("ipfw: sorry cannot allocate state\n");
1339                 return NULL;
1340         }
1341
1342         /* increase refcount on parent, and set pointer */
1343         if (dyn_type == O_LIMIT) {
1344                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1345                 if ( parent->dyn_type != O_LIMIT_PARENT)
1346                         panic("invalid parent");
1347                 parent->count++;
1348                 r->parent = parent;
1349                 rule = parent->rule;
1350         }
1351
1352         r->id = *id;
1353         r->expire = time_uptime + dyn_syn_lifetime;
1354         r->rule = rule;
1355         r->dyn_type = dyn_type;
1356         r->pcnt = r->bcnt = 0;
1357         r->count = 0;
1358
1359         r->bucket = i;
1360         r->next = ipfw_dyn_v[i];
1361         ipfw_dyn_v[i] = r;
1362         dyn_count++;
1363         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1364            dyn_type,
1365            (r->id.src_ip), (r->id.src_port),
1366            (r->id.dst_ip), (r->id.dst_port),
1367            dyn_count ); )
1368         return r;
1369 }
1370
1371 /**
1372  * lookup dynamic parent rule using pkt and rule as search keys.
1373  * If the lookup fails, then install one.
1374  */
1375 static ipfw_dyn_rule *
1376 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1377 {
1378         ipfw_dyn_rule *q;
1379         int i;
1380
1381         IPFW_DYN_LOCK_ASSERT();
1382
1383         if (ipfw_dyn_v) {
1384                 int is_v6 = IS_IP6_FLOW_ID(pkt);
1385                 i = hash_packet( pkt );
1386                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1387                         if (q->dyn_type == O_LIMIT_PARENT &&
1388                             rule== q->rule &&
1389                             pkt->proto == q->id.proto &&
1390                             pkt->src_port == q->id.src_port &&
1391                             pkt->dst_port == q->id.dst_port &&
1392                             (
1393                                 (is_v6 &&
1394                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1395                                         &(q->id.src_ip6)) &&
1396                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1397                                         &(q->id.dst_ip6))) ||
1398                                 (!is_v6 &&
1399                                  pkt->src_ip == q->id.src_ip &&
1400                                  pkt->dst_ip == q->id.dst_ip)
1401                             )
1402                         ) {
1403                                 q->expire = time_uptime + dyn_short_lifetime;
1404                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1405                                 return q;
1406                         }
1407         }
1408         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1409 }
1410
1411 /**
1412  * Install dynamic state for rule type cmd->o.opcode
1413  *
1414  * Returns 1 (failure) if state is not installed because of errors or because
1415  * session limitations are enforced.
1416  */
1417 static int
1418 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1419     struct ip_fw_args *args, uint32_t tablearg)
1420 {
1421         static int last_log;
1422
1423         ipfw_dyn_rule *q;
1424
1425         DEB(
1426         printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1427             __func__, cmd->o.opcode,
1428             (args->f_id.src_ip), (args->f_id.src_port),
1429             (args->f_id.dst_ip), (args->f_id.dst_port));
1430         )
1431
1432         IPFW_DYN_LOCK();
1433
1434         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1435
1436         if (q != NULL) {        /* should never occur */
1437                 if (last_log != time_uptime) {
1438                         last_log = time_uptime;
1439                         printf("ipfw: %s: entry already present, done\n",
1440                             __func__);
1441                 }
1442                 IPFW_DYN_UNLOCK();
1443                 return (0);
1444         }
1445
1446         if (dyn_count >= dyn_max)
1447                 /* Run out of slots, try to remove any expired rule. */
1448                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1449
1450         if (dyn_count >= dyn_max) {
1451                 if (last_log != time_uptime) {
1452                         last_log = time_uptime;
1453                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
1454                 }
1455                 IPFW_DYN_UNLOCK();
1456                 return (1);     /* cannot install, notify caller */
1457         }
1458
1459         switch (cmd->o.opcode) {
1460         case O_KEEP_STATE:      /* bidir rule */
1461                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1462                 break;
1463
1464         case O_LIMIT: {         /* limit number of sessions */
1465                 struct ipfw_flow_id id;
1466                 ipfw_dyn_rule *parent;
1467                 uint32_t conn_limit;
1468                 uint16_t limit_mask = cmd->limit_mask;
1469
1470                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1471                     tablearg : cmd->conn_limit;
1472                   
1473                 DEB(
1474                 if (cmd->conn_limit == IP_FW_TABLEARG)
1475                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1476                             "(tablearg)\n", __func__, conn_limit);
1477                 else
1478                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1479                             __func__, conn_limit);
1480                 )
1481
1482                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1483                 id.proto = args->f_id.proto;
1484                 id.addr_type = args->f_id.addr_type;
1485
1486                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
1487                         if (limit_mask & DYN_SRC_ADDR)
1488                                 id.src_ip6 = args->f_id.src_ip6;
1489                         if (limit_mask & DYN_DST_ADDR)
1490                                 id.dst_ip6 = args->f_id.dst_ip6;
1491                 } else {
1492                         if (limit_mask & DYN_SRC_ADDR)
1493                                 id.src_ip = args->f_id.src_ip;
1494                         if (limit_mask & DYN_DST_ADDR)
1495                                 id.dst_ip = args->f_id.dst_ip;
1496                 }
1497                 if (limit_mask & DYN_SRC_PORT)
1498                         id.src_port = args->f_id.src_port;
1499                 if (limit_mask & DYN_DST_PORT)
1500                         id.dst_port = args->f_id.dst_port;
1501                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1502                         printf("ipfw: %s: add parent failed\n", __func__);
1503                         IPFW_DYN_UNLOCK();
1504                         return (1);
1505                 }
1506
1507                 if (parent->count >= conn_limit) {
1508                         /* See if we can remove some expired rule. */
1509                         remove_dyn_rule(rule, parent);
1510                         if (parent->count >= conn_limit) {
1511                                 if (fw_verbose && last_log != time_uptime) {
1512                                         last_log = time_uptime;
1513                                         log(LOG_SECURITY | LOG_DEBUG,
1514                                             "drop session, too many entries\n");
1515                                 }
1516                                 IPFW_DYN_UNLOCK();
1517                                 return (1);
1518                         }
1519                 }
1520                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1521                 break;
1522         }
1523         default:
1524                 printf("ipfw: %s: unknown dynamic rule type %u\n",
1525                     __func__, cmd->o.opcode);
1526                 IPFW_DYN_UNLOCK();
1527                 return (1);
1528         }
1529
1530         /* XXX just set lifetime */
1531         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1532
1533         IPFW_DYN_UNLOCK();
1534         return (0);
1535 }
1536
1537 /*
1538  * Generate a TCP packet, containing either a RST or a keepalive.
1539  * When flags & TH_RST, we are sending a RST packet, because of a
1540  * "reset" action matched the packet.
1541  * Otherwise we are sending a keepalive, and flags & TH_
1542  */
1543 static struct mbuf *
1544 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1545 {
1546         struct mbuf *m;
1547         struct ip *ip;
1548         struct tcphdr *tcp;
1549
1550         MGETHDR(m, M_DONTWAIT, MT_DATA);
1551         if (m == 0)
1552                 return (NULL);
1553         m->m_pkthdr.rcvif = (struct ifnet *)0;
1554         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1555         m->m_data += max_linkhdr;
1556
1557         ip = mtod(m, struct ip *);
1558         bzero(ip, m->m_len);
1559         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1560         ip->ip_p = IPPROTO_TCP;
1561         tcp->th_off = 5;
1562         /*
1563          * Assume we are sending a RST (or a keepalive in the reverse
1564          * direction), swap src and destination addresses and ports.
1565          */
1566         ip->ip_src.s_addr = htonl(id->dst_ip);
1567         ip->ip_dst.s_addr = htonl(id->src_ip);
1568         tcp->th_sport = htons(id->dst_port);
1569         tcp->th_dport = htons(id->src_port);
1570         if (flags & TH_RST) {   /* we are sending a RST */
1571                 if (flags & TH_ACK) {
1572                         tcp->th_seq = htonl(ack);
1573                         tcp->th_ack = htonl(0);
1574                         tcp->th_flags = TH_RST;
1575                 } else {
1576                         if (flags & TH_SYN)
1577                                 seq++;
1578                         tcp->th_seq = htonl(0);
1579                         tcp->th_ack = htonl(seq);
1580                         tcp->th_flags = TH_RST | TH_ACK;
1581                 }
1582         } else {
1583                 /*
1584                  * We are sending a keepalive. flags & TH_SYN determines
1585                  * the direction, forward if set, reverse if clear.
1586                  * NOTE: seq and ack are always assumed to be correct
1587                  * as set by the caller. This may be confusing...
1588                  */
1589                 if (flags & TH_SYN) {
1590                         /*
1591                          * we have to rewrite the correct addresses!
1592                          */
1593                         ip->ip_dst.s_addr = htonl(id->dst_ip);
1594                         ip->ip_src.s_addr = htonl(id->src_ip);
1595                         tcp->th_dport = htons(id->dst_port);
1596                         tcp->th_sport = htons(id->src_port);
1597                 }
1598                 tcp->th_seq = htonl(seq);
1599                 tcp->th_ack = htonl(ack);
1600                 tcp->th_flags = TH_ACK;
1601         }
1602         /*
1603          * set ip_len to the payload size so we can compute
1604          * the tcp checksum on the pseudoheader
1605          * XXX check this, could save a couple of words ?
1606          */
1607         ip->ip_len = htons(sizeof(struct tcphdr));
1608         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1609         /*
1610          * now fill fields left out earlier
1611          */
1612         ip->ip_ttl = ip_defttl;
1613         ip->ip_len = m->m_pkthdr.len;
1614         m->m_flags |= M_SKIP_FIREWALL;
1615         return (m);
1616 }
1617
1618 /*
1619  * sends a reject message, consuming the mbuf passed as an argument.
1620  */
1621 static void
1622 send_reject(struct ip_fw_args *args, int code, int ip_len)
1623 {
1624
1625         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1626                 /* We need the IP header in host order for icmp_error(). */
1627                 if (args->eh != NULL) {
1628                         struct ip *ip = mtod(args->m, struct ip *);
1629                         ip->ip_len = ntohs(ip->ip_len);
1630                         ip->ip_off = ntohs(ip->ip_off);
1631                 }
1632                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1633         } else if (args->f_id.proto == IPPROTO_TCP) {
1634                 struct tcphdr *const tcp =
1635                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1636                 if ( (tcp->th_flags & TH_RST) == 0) {
1637                         struct mbuf *m;
1638                         m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1639                                 ntohl(tcp->th_ack),
1640                                 tcp->th_flags | TH_RST);
1641                         if (m != NULL)
1642                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1643                 }
1644                 m_freem(args->m);
1645         } else
1646                 m_freem(args->m);
1647         args->m = NULL;
1648 }
1649
1650 /**
1651  *
1652  * Given an ip_fw *, lookup_next_rule will return a pointer
1653  * to the next rule, which can be either the jump
1654  * target (for skipto instructions) or the next one in the list (in
1655  * all other cases including a missing jump target).
1656  * The result is also written in the "next_rule" field of the rule.
1657  * Backward jumps are not allowed, so start looking from the next
1658  * rule...
1659  *
1660  * This never returns NULL -- in case we do not have an exact match,
1661  * the next rule is returned. When the ruleset is changed,
1662  * pointers are flushed so we are always correct.
1663  */
1664
1665 static struct ip_fw *
1666 lookup_next_rule(struct ip_fw *me)
1667 {
1668         struct ip_fw *rule = NULL;
1669         ipfw_insn *cmd;
1670
1671         /* look for action, in case it is a skipto */
1672         cmd = ACTION_PTR(me);
1673         if (cmd->opcode == O_LOG)
1674                 cmd += F_LEN(cmd);
1675         if (cmd->opcode == O_ALTQ)
1676                 cmd += F_LEN(cmd);
1677         if (cmd->opcode == O_TAG)
1678                 cmd += F_LEN(cmd);
1679         if ( cmd->opcode == O_SKIPTO )
1680                 for (rule = me->next; rule ; rule = rule->next)
1681                         if (rule->rulenum >= cmd->arg1)
1682                                 break;
1683         if (rule == NULL)                       /* failure or not a skipto */
1684                 rule = me->next;
1685         me->next_rule = rule;
1686         return rule;
1687 }
1688
1689 static int
1690 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1691         uint8_t mlen, uint32_t value)
1692 {
1693         struct radix_node_head *rnh;
1694         struct table_entry *ent;
1695
1696         if (tbl >= IPFW_TABLES_MAX)
1697                 return (EINVAL);
1698         rnh = ch->tables[tbl];
1699         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1700         if (ent == NULL)
1701                 return (ENOMEM);
1702         ent->value = value;
1703         ent->addr.sin_len = ent->mask.sin_len = 8;
1704         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1705         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1706         IPFW_WLOCK(&layer3_chain);
1707         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1708             NULL) {
1709                 IPFW_WUNLOCK(&layer3_chain);
1710                 free(ent, M_IPFW_TBL);
1711                 return (EEXIST);
1712         }
1713         IPFW_WUNLOCK(&layer3_chain);
1714         return (0);
1715 }
1716
1717 static int
1718 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1719         uint8_t mlen)
1720 {
1721         struct radix_node_head *rnh;
1722         struct table_entry *ent;
1723         struct sockaddr_in sa, mask;
1724
1725         if (tbl >= IPFW_TABLES_MAX)
1726                 return (EINVAL);
1727         rnh = ch->tables[tbl];
1728         sa.sin_len = mask.sin_len = 8;
1729         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1730         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1731         IPFW_WLOCK(ch);
1732         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1733         if (ent == NULL) {
1734                 IPFW_WUNLOCK(ch);
1735                 return (ESRCH);
1736         }
1737         IPFW_WUNLOCK(ch);
1738         free(ent, M_IPFW_TBL);
1739         return (0);
1740 }
1741
1742 static int
1743 flush_table_entry(struct radix_node *rn, void *arg)
1744 {
1745         struct radix_node_head * const rnh = arg;
1746         struct table_entry *ent;
1747
1748         ent = (struct table_entry *)
1749             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1750         if (ent != NULL)
1751                 free(ent, M_IPFW_TBL);
1752         return (0);
1753 }
1754
1755 static int
1756 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1757 {
1758         struct radix_node_head *rnh;
1759
1760         IPFW_WLOCK_ASSERT(ch);
1761
1762         if (tbl >= IPFW_TABLES_MAX)
1763                 return (EINVAL);
1764         rnh = ch->tables[tbl];
1765         KASSERT(rnh != NULL, ("NULL IPFW table"));
1766         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1767         return (0);
1768 }
1769
1770 static void
1771 flush_tables(struct ip_fw_chain *ch)
1772 {
1773         uint16_t tbl;
1774
1775         IPFW_WLOCK_ASSERT(ch);
1776
1777         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1778                 flush_table(ch, tbl);
1779 }
1780
1781 static int
1782 init_tables(struct ip_fw_chain *ch)
1783
1784         int i;
1785         uint16_t j;
1786
1787         for (i = 0; i < IPFW_TABLES_MAX; i++) {
1788                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
1789                         for (j = 0; j < i; j++) {
1790                                 (void) flush_table(ch, j);
1791                         }
1792                         return (ENOMEM);
1793                 }
1794         }
1795         return (0);
1796 }
1797
1798 static int
1799 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1800         uint32_t *val)
1801 {
1802         struct radix_node_head *rnh;
1803         struct table_entry *ent;
1804         struct sockaddr_in sa;
1805
1806         if (tbl >= IPFW_TABLES_MAX)
1807                 return (0);
1808         rnh = ch->tables[tbl];
1809         sa.sin_len = 8;
1810         sa.sin_addr.s_addr = addr;
1811         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1812         if (ent != NULL) {
1813                 *val = ent->value;
1814                 return (1);
1815         }
1816         return (0);
1817 }
1818
1819 static int
1820 count_table_entry(struct radix_node *rn, void *arg)
1821 {
1822         u_int32_t * const cnt = arg;
1823
1824         (*cnt)++;
1825         return (0);
1826 }
1827
1828 static int
1829 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1830 {
1831         struct radix_node_head *rnh;
1832
1833         if (tbl >= IPFW_TABLES_MAX)
1834                 return (EINVAL);
1835         rnh = ch->tables[tbl];
1836         *cnt = 0;
1837         rnh->rnh_walktree(rnh, count_table_entry, cnt);
1838         return (0);
1839 }
1840
1841 static int
1842 dump_table_entry(struct radix_node *rn, void *arg)
1843 {
1844         struct table_entry * const n = (struct table_entry *)rn;
1845         ipfw_table * const tbl = arg;
1846         ipfw_table_entry *ent;
1847
1848         if (tbl->cnt == tbl->size)
1849                 return (1);
1850         ent = &tbl->ent[tbl->cnt];
1851         ent->tbl = tbl->tbl;
1852         if (in_nullhost(n->mask.sin_addr))
1853                 ent->masklen = 0;
1854         else
1855                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1856         ent->addr = n->addr.sin_addr.s_addr;
1857         ent->value = n->value;
1858         tbl->cnt++;
1859         return (0);
1860 }
1861
1862 static int
1863 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1864 {
1865         struct radix_node_head *rnh;
1866
1867         if (tbl->tbl >= IPFW_TABLES_MAX)
1868                 return (EINVAL);
1869         rnh = ch->tables[tbl->tbl];
1870         tbl->cnt = 0;
1871         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1872         return (0);
1873 }
1874
1875 static void
1876 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1877 {
1878         struct ucred *cr;
1879
1880         if (inp->inp_socket != NULL) {
1881                 cr = inp->inp_socket->so_cred;
1882                 ugp->fw_prid = jailed(cr) ?
1883                     cr->cr_prison->pr_id : -1;
1884                 ugp->fw_uid = cr->cr_uid;
1885                 ugp->fw_ngroups = cr->cr_ngroups;
1886                 bcopy(cr->cr_groups, ugp->fw_groups,
1887                     sizeof(ugp->fw_groups));
1888         }
1889 }
1890
1891 static int
1892 check_uidgid(ipfw_insn_u32 *insn,
1893         int proto, struct ifnet *oif,
1894         struct in_addr dst_ip, u_int16_t dst_port,
1895         struct in_addr src_ip, u_int16_t src_port,
1896         struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1897 {
1898         struct inpcbinfo *pi;
1899         int wildcard;
1900         struct inpcb *pcb;
1901         int match;
1902         gid_t *gp;
1903
1904         /*
1905          * Check to see if the UDP or TCP stack supplied us with
1906          * the PCB. If so, rather then holding a lock and looking
1907          * up the PCB, we can use the one that was supplied.
1908          */
1909         if (inp && *lookup == 0) {
1910                 INP_LOCK_ASSERT(inp);
1911                 if (inp->inp_socket != NULL) {
1912                         fill_ugid_cache(inp, ugp);
1913                         *lookup = 1;
1914                 }
1915         }
1916         /*
1917          * If we have already been here and the packet has no
1918          * PCB entry associated with it, then we can safely
1919          * assume that this is a no match.
1920          */
1921         if (*lookup == -1)
1922                 return (0);
1923         if (proto == IPPROTO_TCP) {
1924                 wildcard = 0;
1925                 pi = &tcbinfo;
1926         } else if (proto == IPPROTO_UDP) {
1927                 wildcard = INPLOOKUP_WILDCARD;
1928                 pi = &udbinfo;
1929         } else
1930                 return 0;
1931         match = 0;
1932         if (*lookup == 0) {
1933                 INP_INFO_RLOCK(pi);
1934                 pcb =  (oif) ?
1935                         in_pcblookup_hash(pi,
1936                                 dst_ip, htons(dst_port),
1937                                 src_ip, htons(src_port),
1938                                 wildcard, oif) :
1939                         in_pcblookup_hash(pi,
1940                                 src_ip, htons(src_port),
1941                                 dst_ip, htons(dst_port),
1942                                 wildcard, NULL);
1943                 if (pcb != NULL) {
1944                         INP_LOCK(pcb);
1945                         if (pcb->inp_socket != NULL) {
1946                                 fill_ugid_cache(pcb, ugp);
1947                                 *lookup = 1;
1948                         }
1949                         INP_UNLOCK(pcb);
1950                 }
1951                 INP_INFO_RUNLOCK(pi);
1952                 if (*lookup == 0) {
1953                         /*
1954                          * If the lookup did not yield any results, there
1955                          * is no sense in coming back and trying again. So
1956                          * we can set lookup to -1 and ensure that we wont
1957                          * bother the pcb system again.
1958                          */
1959                         *lookup = -1;
1960                         return (0);
1961                 }
1962         } 
1963         if (insn->o.opcode == O_UID)
1964                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
1965         else if (insn->o.opcode == O_GID) {
1966                 for (gp = ugp->fw_groups;
1967                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1968                         if (*gp == (gid_t)insn->d[0]) {
1969                                 match = 1;
1970                                 break;
1971                         }
1972         } else if (insn->o.opcode == O_JAIL)
1973                 match = (ugp->fw_prid == (int)insn->d[0]);
1974         return match;
1975 }
1976
1977 /*
1978  * The main check routine for the firewall.
1979  *
1980  * All arguments are in args so we can modify them and return them
1981  * back to the caller.
1982  *
1983  * Parameters:
1984  *
1985  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
1986  *              Starts with the IP header.
1987  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
1988  *      args->oif       Outgoing interface, or NULL if packet is incoming.
1989  *              The incoming interface is in the mbuf. (in)
1990  *      args->divert_rule (in/out)
1991  *              Skip up to the first rule past this rule number;
1992  *              upon return, non-zero port number for divert or tee.
1993  *
1994  *      args->rule      Pointer to the last matching rule (in/out)
1995  *      args->next_hop  Socket we are forwarding to (out).
1996  *      args->f_id      Addresses grabbed from the packet (out)
1997  *      args->cookie    a cookie depending on rule action
1998  *
1999  * Return value:
2000  *
2001  *      IP_FW_PASS      the packet must be accepted
2002  *      IP_FW_DENY      the packet must be dropped
2003  *      IP_FW_DIVERT    divert packet, port in m_tag
2004  *      IP_FW_TEE       tee packet, port in m_tag
2005  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
2006  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
2007  *
2008  */
2009
2010 int
2011 ipfw_chk(struct ip_fw_args *args)
2012 {
2013         /*
2014          * Local variables hold state during the processing of a packet.
2015          *
2016          * IMPORTANT NOTE: to speed up the processing of rules, there
2017          * are some assumption on the values of the variables, which
2018          * are documented here. Should you change them, please check
2019          * the implementation of the various instructions to make sure
2020          * that they still work.
2021          *
2022          * args->eh     The MAC header. It is non-null for a layer2
2023          *      packet, it is NULL for a layer-3 packet.
2024          *
2025          * m | args->m  Pointer to the mbuf, as received from the caller.
2026          *      It may change if ipfw_chk() does an m_pullup, or if it
2027          *      consumes the packet because it calls send_reject().
2028          *      XXX This has to change, so that ipfw_chk() never modifies
2029          *      or consumes the buffer.
2030          * ip   is simply an alias of the value of m, and it is kept
2031          *      in sync with it (the packet is  supposed to start with
2032          *      the ip header).
2033          */
2034         struct mbuf *m = args->m;
2035         struct ip *ip = mtod(m, struct ip *);
2036
2037         /*
2038          * For rules which contain uid/gid or jail constraints, cache
2039          * a copy of the users credentials after the pcb lookup has been
2040          * executed. This will speed up the processing of rules with
2041          * these types of constraints, as well as decrease contention
2042          * on pcb related locks.
2043          */
2044         struct ip_fw_ugid fw_ugid_cache;
2045         int ugid_lookup = 0;
2046
2047         /*
2048          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
2049          *      associated with a packet input on a divert socket.  This
2050          *      will allow to distinguish traffic and its direction when
2051          *      it originates from a divert socket.
2052          */
2053         u_int divinput_flags = 0;
2054
2055         /*
2056          * oif | args->oif      If NULL, ipfw_chk has been called on the
2057          *      inbound path (ether_input, ip_input).
2058          *      If non-NULL, ipfw_chk has been called on the outbound path
2059          *      (ether_output, ip_output).
2060          */
2061         struct ifnet *oif = args->oif;
2062
2063         struct ip_fw *f = NULL;         /* matching rule */
2064         int retval = 0;
2065
2066         /*
2067          * hlen The length of the IP header.
2068          */
2069         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
2070
2071         /*
2072          * offset       The offset of a fragment. offset != 0 means that
2073          *      we have a fragment at this offset of an IPv4 packet.
2074          *      offset == 0 means that (if this is an IPv4 packet)
2075          *      this is the first or only fragment.
2076          *      For IPv6 offset == 0 means there is no Fragment Header. 
2077          *      If offset != 0 for IPv6 always use correct mask to
2078          *      get the correct offset because we add IP6F_MORE_FRAG
2079          *      to be able to dectect the first fragment which would
2080          *      otherwise have offset = 0.
2081          */
2082         u_short offset = 0;
2083
2084         /*
2085          * Local copies of addresses. They are only valid if we have
2086          * an IP packet.
2087          *
2088          * proto        The protocol. Set to 0 for non-ip packets,
2089          *      or to the protocol read from the packet otherwise.
2090          *      proto != 0 means that we have an IPv4 packet.
2091          *
2092          * src_port, dst_port   port numbers, in HOST format. Only
2093          *      valid for TCP and UDP packets.
2094          *
2095          * src_ip, dst_ip       ip addresses, in NETWORK format.
2096          *      Only valid for IPv4 packets.
2097          */
2098         u_int8_t proto;
2099         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
2100         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
2101         u_int16_t ip_len=0;
2102         int pktlen;
2103
2104         /*
2105          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2106          *      MATCH_NONE when checked and not matched (q = NULL),
2107          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2108          */
2109         int dyn_dir = MATCH_UNKNOWN;
2110         ipfw_dyn_rule *q = NULL;
2111         struct ip_fw_chain *chain = &layer3_chain;
2112         struct m_tag *mtag;
2113
2114         /*
2115          * We store in ulp a pointer to the upper layer protocol header.
2116          * In the ipv4 case this is easy to determine from the header,
2117          * but for ipv6 we might have some additional headers in the middle.
2118          * ulp is NULL if not found.
2119          */
2120         void *ulp = NULL;               /* upper layer protocol pointer. */
2121         /* XXX ipv6 variables */
2122         int is_ipv6 = 0;
2123         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
2124         /* end of ipv6 variables */
2125         int is_ipv4 = 0;
2126
2127         if (m->m_flags & M_SKIP_FIREWALL)
2128                 return (IP_FW_PASS);    /* accept */
2129
2130         pktlen = m->m_pkthdr.len;
2131         proto = args->f_id.proto = 0;   /* mark f_id invalid */
2132                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2133
2134 /*
2135  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2136  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2137  * pointer might become stale after other pullups (but we never use it
2138  * this way).
2139  */
2140 #define PULLUP_TO(len, p, T)                                            \
2141 do {                                                                    \
2142         int x = (len) + sizeof(T);                                      \
2143         if ((m)->m_len < x) {                                           \
2144                 args->m = m = m_pullup(m, x);                           \
2145                 if (m == NULL)                                          \
2146                         goto pullup_failed;                             \
2147         }                                                               \
2148         p = (mtod(m, char *) + (len));                                  \
2149 } while (0)
2150
2151         /* Identify IP packets and fill up variables. */
2152         if (pktlen >= sizeof(struct ip6_hdr) &&
2153             (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2154             mtod(m, struct ip *)->ip_v == 6) {
2155                 is_ipv6 = 1;
2156                 args->f_id.addr_type = 6;
2157                 hlen = sizeof(struct ip6_hdr);
2158                 proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2159
2160                 /* Search extension headers to find upper layer protocols */
2161                 while (ulp == NULL) {
2162                         switch (proto) {
2163                         case IPPROTO_ICMPV6:
2164                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2165                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
2166                                 break;
2167
2168                         case IPPROTO_TCP:
2169                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2170                                 dst_port = TCP(ulp)->th_dport;
2171                                 src_port = TCP(ulp)->th_sport;
2172                                 args->f_id.flags = TCP(ulp)->th_flags;
2173                                 break;
2174
2175                         case IPPROTO_UDP:
2176                                 PULLUP_TO(hlen, ulp, struct udphdr);
2177                                 dst_port = UDP(ulp)->uh_dport;
2178                                 src_port = UDP(ulp)->uh_sport;
2179                                 break;
2180
2181                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
2182                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2183                                 ext_hd |= EXT_HOPOPTS;
2184                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2185                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2186                                 ulp = NULL;
2187                                 break;
2188
2189                         case IPPROTO_ROUTING:   /* RFC 2460 */
2190                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2191                                 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2192                                 case 0:
2193                                         break;
2194                                 default:
2195                                         printf("IPFW2: IPV6 - Unknown Routing "
2196                                             "Header type(%d)\n",
2197                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
2198                                         if (fw_deny_unknown_exthdrs)
2199                                             return (IP_FW_DENY);
2200                                         break;
2201                                 }
2202                                 ext_hd |= EXT_ROUTING;
2203                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2204                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2205                                 ulp = NULL;
2206                                 break;
2207
2208                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
2209                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
2210                                 ext_hd |= EXT_FRAGMENT;
2211                                 hlen += sizeof (struct ip6_frag);
2212                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2213                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2214                                         IP6F_OFF_MASK;
2215                                 /* Add IP6F_MORE_FRAG for offset of first
2216                                  * fragment to be != 0. */
2217                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2218                                         IP6F_MORE_FRAG;
2219                                 if (offset == 0) {
2220                                         printf("IPFW2: IPV6 - Invalid Fragment "
2221                                             "Header\n");
2222                                         if (fw_deny_unknown_exthdrs)
2223                                             return (IP_FW_DENY);
2224                                         break;
2225                                 }
2226                                 args->f_id.frag_id6 =
2227                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2228                                 ulp = NULL;
2229                                 break;
2230
2231                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
2232                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2233                                 ext_hd |= EXT_DSTOPTS;
2234                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2235                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2236                                 ulp = NULL;
2237                                 break;
2238
2239                         case IPPROTO_AH:        /* RFC 2402 */
2240                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2241                                 ext_hd |= EXT_AH;
2242                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2243                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2244                                 ulp = NULL;
2245                                 break;
2246
2247                         case IPPROTO_ESP:       /* RFC 2406 */
2248                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
2249                                 /* Anything past Seq# is variable length and
2250                                  * data past this ext. header is encrypted. */
2251                                 ext_hd |= EXT_ESP;
2252                                 break;
2253
2254                         case IPPROTO_NONE:      /* RFC 2460 */
2255                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2256                                 /* Packet ends here. if ip6e_len!=0 octets
2257                                  * must be ignored. */
2258                                 break;
2259
2260                         case IPPROTO_OSPFIGP:
2261                                 /* XXX OSPF header check? */
2262                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2263                                 break;
2264
2265                         case IPPROTO_IPV6:      /* RFC 2893 */
2266                                 PULLUP_TO(hlen, ulp, struct ip6_hdr);
2267                                 break;
2268
2269                         case IPPROTO_IPV4:      /* RFC 2893 */
2270                                 PULLUP_TO(hlen, ulp, struct ip);
2271                                 break;
2272
2273                         default:
2274                                 printf("IPFW2: IPV6 - Unknown Extension "
2275                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
2276                                 if (fw_deny_unknown_exthdrs)
2277                                     return (IP_FW_DENY);
2278                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2279                                 break;
2280                         } /*switch */
2281                 }
2282                 args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2283                 args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2284                 args->f_id.src_ip = 0;
2285                 args->f_id.dst_ip = 0;
2286                 args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2287         } else if (pktlen >= sizeof(struct ip) &&
2288             (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2289             mtod(m, struct ip *)->ip_v == 4) {
2290                 is_ipv4 = 1;
2291                 ip = mtod(m, struct ip *);
2292                 hlen = ip->ip_hl << 2;
2293                 args->f_id.addr_type = 4;
2294
2295                 /*
2296                  * Collect parameters into local variables for faster matching.
2297                  */
2298                 proto = ip->ip_p;
2299                 src_ip = ip->ip_src;
2300                 dst_ip = ip->ip_dst;
2301                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2302                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
2303                         ip_len = ntohs(ip->ip_len);
2304                 } else {
2305                         offset = ip->ip_off & IP_OFFMASK;
2306                         ip_len = ip->ip_len;
2307                 }
2308                 pktlen = ip_len < pktlen ? ip_len : pktlen;
2309
2310                 if (offset == 0) {
2311                         switch (proto) {
2312                         case IPPROTO_TCP:
2313                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2314                                 dst_port = TCP(ulp)->th_dport;
2315                                 src_port = TCP(ulp)->th_sport;
2316                                 args->f_id.flags = TCP(ulp)->th_flags;
2317                                 break;
2318
2319                         case IPPROTO_UDP:
2320                                 PULLUP_TO(hlen, ulp, struct udphdr);
2321                                 dst_port = UDP(ulp)->uh_dport;
2322                                 src_port = UDP(ulp)->uh_sport;
2323                                 break;
2324
2325                         case IPPROTO_ICMP:
2326                                 PULLUP_TO(hlen, ulp, struct icmphdr);
2327                                 args->f_id.flags = ICMP(ulp)->icmp_type;
2328                                 break;
2329
2330                         default:
2331                                 break;
2332                         }
2333                 }
2334
2335                 args->f_id.src_ip = ntohl(src_ip.s_addr);
2336                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2337         }
2338 #undef PULLUP_TO
2339         if (proto) { /* we may have port numbers, store them */
2340                 args->f_id.proto = proto;
2341                 args->f_id.src_port = src_port = ntohs(src_port);
2342                 args->f_id.dst_port = dst_port = ntohs(dst_port);
2343         }
2344
2345         IPFW_RLOCK(chain);
2346         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2347         if (args->rule) {
2348                 /*
2349                  * Packet has already been tagged. Look for the next rule
2350                  * to restart processing.
2351                  *
2352                  * If fw_one_pass != 0 then just accept it.
2353                  * XXX should not happen here, but optimized out in
2354                  * the caller.
2355                  */
2356                 if (fw_one_pass) {
2357                         IPFW_RUNLOCK(chain);
2358                         return (IP_FW_PASS);
2359                 }
2360
2361                 f = args->rule->next_rule;
2362                 if (f == NULL)
2363                         f = lookup_next_rule(args->rule);
2364         } else {
2365                 /*
2366                  * Find the starting rule. It can be either the first
2367                  * one, or the one after divert_rule if asked so.
2368                  */
2369                 int skipto = mtag ? divert_cookie(mtag) : 0;
2370
2371                 f = chain->rules;
2372                 if (args->eh == NULL && skipto != 0) {
2373                         if (skipto >= IPFW_DEFAULT_RULE) {
2374                                 IPFW_RUNLOCK(chain);
2375                                 return (IP_FW_DENY); /* invalid */
2376                         }
2377                         while (f && f->rulenum <= skipto)
2378                                 f = f->next;
2379                         if (f == NULL) {        /* drop packet */
2380                                 IPFW_RUNLOCK(chain);
2381                                 return (IP_FW_DENY);
2382                         }
2383                 }
2384         }
2385         /* reset divert rule to avoid confusion later */
2386         if (mtag) {
2387                 divinput_flags = divert_info(mtag) &
2388                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2389                 m_tag_delete(m, mtag);
2390         }
2391
2392         /*
2393          * Now scan the rules, and parse microinstructions for each rule.
2394          */
2395         for (; f; f = f->next) {
2396                 ipfw_insn *cmd;
2397                 uint32_t tablearg = 0;
2398                 int l, cmdlen, skip_or; /* skip rest of OR block */
2399
2400 again:
2401                 if (set_disable & (1 << f->set) )
2402                         continue;
2403
2404                 skip_or = 0;
2405                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2406                     l -= cmdlen, cmd += cmdlen) {
2407                         int match;
2408
2409                         /*
2410                          * check_body is a jump target used when we find a
2411                          * CHECK_STATE, and need to jump to the body of
2412                          * the target rule.
2413                          */
2414
2415 check_body:
2416                         cmdlen = F_LEN(cmd);
2417                         /*
2418                          * An OR block (insn_1 || .. || insn_n) has the
2419                          * F_OR bit set in all but the last instruction.
2420                          * The first match will set "skip_or", and cause
2421                          * the following instructions to be skipped until
2422                          * past the one with the F_OR bit clear.
2423                          */
2424                         if (skip_or) {          /* skip this instruction */
2425                                 if ((cmd->len & F_OR) == 0)
2426                                         skip_or = 0;    /* next one is good */
2427                                 continue;
2428                         }
2429                         match = 0; /* set to 1 if we succeed */
2430
2431                         switch (cmd->opcode) {
2432                         /*
2433                          * The first set of opcodes compares the packet's
2434                          * fields with some pattern, setting 'match' if a
2435                          * match is found. At the end of the loop there is
2436                          * logic to deal with F_NOT and F_OR flags associated
2437                          * with the opcode.
2438                          */
2439                         case O_NOP:
2440                                 match = 1;
2441                                 break;
2442
2443                         case O_FORWARD_MAC:
2444                                 printf("ipfw: opcode %d unimplemented\n",
2445                                     cmd->opcode);
2446                                 break;
2447
2448                         case O_GID:
2449                         case O_UID:
2450                         case O_JAIL:
2451                                 /*
2452                                  * We only check offset == 0 && proto != 0,
2453                                  * as this ensures that we have a
2454                                  * packet with the ports info.
2455                                  */
2456                                 if (offset!=0)
2457                                         break;
2458                                 if (is_ipv6) /* XXX to be fixed later */
2459                                         break;
2460                                 if (proto == IPPROTO_TCP ||
2461                                     proto == IPPROTO_UDP)
2462                                         match = check_uidgid(
2463                                                     (ipfw_insn_u32 *)cmd,
2464                                                     proto, oif,
2465                                                     dst_ip, dst_port,
2466                                                     src_ip, src_port, &fw_ugid_cache,
2467                                                     &ugid_lookup, args->inp);
2468                                 break;
2469
2470                         case O_RECV:
2471                                 match = iface_match(m->m_pkthdr.rcvif,
2472                                     (ipfw_insn_if *)cmd);
2473                                 break;
2474
2475                         case O_XMIT:
2476                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
2477                                 break;
2478
2479                         case O_VIA:
2480                                 match = iface_match(oif ? oif :
2481                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2482                                 break;
2483
2484                         case O_MACADDR2:
2485                                 if (args->eh != NULL) { /* have MAC header */
2486                                         u_int32_t *want = (u_int32_t *)
2487                                                 ((ipfw_insn_mac *)cmd)->addr;
2488                                         u_int32_t *mask = (u_int32_t *)
2489                                                 ((ipfw_insn_mac *)cmd)->mask;
2490                                         u_int32_t *hdr = (u_int32_t *)args->eh;
2491
2492                                         match =
2493                                             ( want[0] == (hdr[0] & mask[0]) &&
2494                                               want[1] == (hdr[1] & mask[1]) &&
2495                                               want[2] == (hdr[2] & mask[2]) );
2496                                 }
2497                                 break;
2498
2499                         case O_MAC_TYPE:
2500                                 if (args->eh != NULL) {
2501                                         u_int16_t t =
2502                                             ntohs(args->eh->ether_type);
2503                                         u_int16_t *p =
2504                                             ((ipfw_insn_u16 *)cmd)->ports;
2505                                         int i;
2506
2507                                         for (i = cmdlen - 1; !match && i>0;
2508                                             i--, p += 2)
2509                                                 match = (t>=p[0] && t<=p[1]);
2510                                 }
2511                                 break;
2512
2513                         case O_FRAG:
2514                                 match = (offset != 0);
2515                                 break;
2516
2517                         case O_IN:      /* "out" is "not in" */
2518                                 match = (oif == NULL);
2519                                 break;
2520
2521                         case O_LAYER2:
2522                                 match = (args->eh != NULL);
2523                                 break;
2524
2525                         case O_DIVERTED:
2526                                 match = (cmd->arg1 & 1 && divinput_flags &
2527                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
2528                                         (cmd->arg1 & 2 && divinput_flags &
2529                                     IP_FW_DIVERT_OUTPUT_FLAG);
2530                                 break;
2531
2532                         case O_PROTO:
2533                                 /*
2534                                  * We do not allow an arg of 0 so the
2535                                  * check of "proto" only suffices.
2536                                  */
2537                                 match = (proto == cmd->arg1);
2538                                 break;
2539
2540                         case O_IP_SRC:
2541                                 match = is_ipv4 &&
2542                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2543                                     src_ip.s_addr);
2544                                 break;
2545
2546                         case O_IP_SRC_LOOKUP:
2547                         case O_IP_DST_LOOKUP:
2548                                 if (is_ipv4) {
2549                                     uint32_t a =
2550                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
2551                                             dst_ip.s_addr : src_ip.s_addr;
2552                                     uint32_t v;
2553
2554                                     match = lookup_table(chain, cmd->arg1, a,
2555                                         &v);
2556                                     if (!match)
2557                                         break;
2558                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2559                                         match =
2560                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
2561                                     else
2562                                         tablearg = v;
2563                                 }
2564                                 break;
2565
2566                         case O_IP_SRC_MASK:
2567                         case O_IP_DST_MASK:
2568                                 if (is_ipv4) {
2569                                     uint32_t a =
2570                                         (cmd->opcode == O_IP_DST_MASK) ?
2571                                             dst_ip.s_addr : src_ip.s_addr;
2572                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2573                                     int i = cmdlen-1;
2574
2575                                     for (; !match && i>0; i-= 2, p+= 2)
2576                                         match = (p[0] == (a & p[1]));
2577                                 }
2578                                 break;
2579
2580                         case O_IP_SRC_ME:
2581                                 if (is_ipv4) {
2582                                         struct ifnet *tif;
2583
2584                                         INADDR_TO_IFP(src_ip, tif);
2585                                         match = (tif != NULL);
2586                                 }
2587                                 break;
2588
2589                         case O_IP_DST_SET:
2590                         case O_IP_SRC_SET:
2591                                 if (is_ipv4) {
2592                                         u_int32_t *d = (u_int32_t *)(cmd+1);
2593                                         u_int32_t addr =
2594                                             cmd->opcode == O_IP_DST_SET ?
2595                                                 args->f_id.dst_ip :
2596                                                 args->f_id.src_ip;
2597
2598                                             if (addr < d[0])
2599                                                     break;
2600                                             addr -= d[0]; /* subtract base */
2601                                             match = (addr < cmd->arg1) &&
2602                                                 ( d[ 1 + (addr>>5)] &
2603                                                   (1<<(addr & 0x1f)) );
2604                                 }
2605                                 break;
2606
2607                         case O_IP_DST:
2608                                 match = is_ipv4 &&
2609                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2610                                     dst_ip.s_addr);
2611                                 break;
2612
2613                         case O_IP_DST_ME:
2614                                 if (is_ipv4) {
2615                                         struct ifnet *tif;
2616
2617                                         INADDR_TO_IFP(dst_ip, tif);
2618                                         match = (tif != NULL);
2619                                 }
2620                                 break;
2621
2622                         case O_IP_SRCPORT:
2623                         case O_IP_DSTPORT:
2624                                 /*
2625                                  * offset == 0 && proto != 0 is enough
2626                                  * to guarantee that we have a
2627                                  * packet with port info.
2628                                  */
2629                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2630                                     && offset == 0) {
2631                                         u_int16_t x =
2632                                             (cmd->opcode == O_IP_SRCPORT) ?
2633                                                 src_port : dst_port ;
2634                                         u_int16_t *p =
2635                                             ((ipfw_insn_u16 *)cmd)->ports;
2636                                         int i;
2637
2638                                         for (i = cmdlen - 1; !match && i>0;
2639                                             i--, p += 2)
2640                                                 match = (x>=p[0] && x<=p[1]);
2641                                 }
2642                                 break;
2643
2644                         case O_ICMPTYPE:
2645                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
2646                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2647                                 break;
2648
2649 #ifdef INET6
2650                         case O_ICMP6TYPE:
2651                                 match = is_ipv6 && offset == 0 &&
2652                                     proto==IPPROTO_ICMPV6 &&
2653                                     icmp6type_match(
2654                                         ICMP6(ulp)->icmp6_type,
2655                                         (ipfw_insn_u32 *)cmd);
2656                                 break;
2657 #endif /* INET6 */
2658
2659                         case O_IPOPT:
2660                                 match = (is_ipv4 &&
2661                                     ipopts_match(mtod(m, struct ip *), cmd) );
2662                                 break;
2663
2664                         case O_IPVER:
2665                                 match = (is_ipv4 &&
2666                                     cmd->arg1 == mtod(m, struct ip *)->ip_v);
2667                                 break;
2668
2669                         case O_IPID:
2670                         case O_IPLEN:
2671                         case O_IPTTL:
2672                                 if (is_ipv4) {  /* only for IP packets */
2673                                     uint16_t x;
2674                                     uint16_t *p;
2675                                     int i;
2676
2677                                     if (cmd->opcode == O_IPLEN)
2678                                         x = ip_len;
2679                                     else if (cmd->opcode == O_IPTTL)
2680                                         x = mtod(m, struct ip *)->ip_ttl;
2681                                     else /* must be IPID */
2682                                         x = ntohs(mtod(m, struct ip *)->ip_id);
2683                                     if (cmdlen == 1) {
2684                                         match = (cmd->arg1 == x);
2685                                         break;
2686                                     }
2687                                     /* otherwise we have ranges */
2688                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2689                                     i = cmdlen - 1;
2690                                     for (; !match && i>0; i--, p += 2)
2691                                         match = (x >= p[0] && x <= p[1]);
2692                                 }
2693                                 break;
2694
2695                         case O_IPPRECEDENCE:
2696                                 match = (is_ipv4 &&
2697                                     (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2698                                 break;
2699
2700                         case O_IPTOS:
2701                                 match = (is_ipv4 &&
2702                                     flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2703                                 break;
2704
2705                         case O_TCPDATALEN:
2706                                 if (proto == IPPROTO_TCP && offset == 0) {
2707                                     struct tcphdr *tcp;
2708                                     uint16_t x;
2709                                     uint16_t *p;
2710                                     int i;
2711
2712                                     tcp = TCP(ulp);
2713                                     x = ip_len -
2714                                         ((ip->ip_hl + tcp->th_off) << 2);
2715                                     if (cmdlen == 1) {
2716                                         match = (cmd->arg1 == x);
2717                                         break;
2718                                     }
2719                                     /* otherwise we have ranges */
2720                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2721                                     i = cmdlen - 1;
2722                                     for (; !match && i>0; i--, p += 2)
2723                                         match = (x >= p[0] && x <= p[1]);
2724                                 }
2725                                 break;
2726
2727                         case O_TCPFLAGS:
2728                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2729                                     flags_match(cmd, TCP(ulp)->th_flags));
2730                                 break;
2731
2732                         case O_TCPOPTS:
2733                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2734                                     tcpopts_match(TCP(ulp), cmd));
2735                                 break;
2736
2737                         case O_TCPSEQ:
2738                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2739                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2740                                         TCP(ulp)->th_seq);
2741                                 break;
2742
2743                         case O_TCPACK:
2744                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2745                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2746                                         TCP(ulp)->th_ack);
2747                                 break;
2748
2749                         case O_TCPWIN:
2750                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2751                                     cmd->arg1 == TCP(ulp)->th_win);
2752                                 break;
2753
2754                         case O_ESTAB:
2755                                 /* reject packets which have SYN only */
2756                                 /* XXX should i also check for TH_ACK ? */
2757                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2758                                     (TCP(ulp)->th_flags &
2759                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2760                                 break;
2761
2762                         case O_ALTQ: {
2763                                 struct altq_tag *at;
2764                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2765
2766                                 match = 1;
2767                                 mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2768                                 if (mtag != NULL)
2769                                         break;
2770                                 mtag = m_tag_get(PACKET_TAG_PF_QID,
2771                                                 sizeof(struct altq_tag),
2772                                                 M_NOWAIT);
2773                                 if (mtag == NULL) {
2774                                         /*
2775                                          * Let the packet fall back to the
2776                                          * default ALTQ.
2777                                          */
2778                                         break;
2779                                 }
2780                                 at = (struct altq_tag *)(mtag+1);
2781                                 at->qid = altq->qid;
2782                                 if (is_ipv4)
2783                                         at->af = AF_INET;
2784                                 else
2785                                         at->af = AF_LINK;
2786                                 at->hdr = ip;
2787                                 m_tag_prepend(m, mtag);
2788                                 break;
2789                         }
2790
2791                         case O_LOG:
2792                                 if (fw_verbose)
2793                                         ipfw_log(f, hlen, args, m, oif, offset);
2794                                 match = 1;
2795                                 break;
2796
2797                         case O_PROB:
2798                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2799                                 break;
2800
2801                         case O_VERREVPATH:
2802                                 /* Outgoing packets automatically pass/match */
2803                                 match = ((oif != NULL) ||
2804                                     (m->m_pkthdr.rcvif == NULL) ||
2805                                     (
2806 #ifdef INET6
2807                                     is_ipv6 ?
2808                                         verify_path6(&(args->f_id.src_ip6),
2809                                             m->m_pkthdr.rcvif) :
2810 #endif
2811                                     verify_path(src_ip, m->m_pkthdr.rcvif)));
2812                                 break;
2813
2814                         case O_VERSRCREACH:
2815                                 /* Outgoing packets automatically pass/match */
2816                                 match = (hlen > 0 && ((oif != NULL) ||
2817 #ifdef INET6
2818                                     is_ipv6 ?
2819                                         verify_path6(&(args->f_id.src_ip6),
2820                                             NULL) :
2821 #endif
2822                                     verify_path(src_ip, NULL)));
2823                                 break;
2824
2825                         case O_ANTISPOOF:
2826                                 /* Outgoing packets automatically pass/match */
2827                                 if (oif == NULL && hlen > 0 &&
2828                                     (  (is_ipv4 && in_localaddr(src_ip))
2829 #ifdef INET6
2830                                     || (is_ipv6 &&
2831                                         in6_localaddr(&(args->f_id.src_ip6)))
2832 #endif
2833                                     ))
2834                                         match =
2835 #ifdef INET6
2836                                             is_ipv6 ? verify_path6(
2837                                                 &(args->f_id.src_ip6),
2838                                                 m->m_pkthdr.rcvif) :
2839 #endif
2840                                             verify_path(src_ip,
2841                                                 m->m_pkthdr.rcvif);
2842                                 else
2843                                         match = 1;
2844                                 break;
2845
2846                         case O_IPSEC:
2847 #ifdef FAST_IPSEC
2848                                 match = (m_tag_find(m,
2849                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2850 #endif
2851 #ifdef IPSEC
2852                                 match = (ipsec_getnhist(m) != 0);
2853 #endif
2854                                 /* otherwise no match */
2855                                 break;
2856
2857 #ifdef INET6
2858                         case O_IP6_SRC:
2859                                 match = is_ipv6 &&
2860                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2861                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2862                                 break;
2863
2864                         case O_IP6_DST:
2865                                 match = is_ipv6 &&
2866                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2867                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2868                                 break;
2869                         case O_IP6_SRC_MASK:
2870                                 if (is_ipv6) {
2871                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2872                                         struct in6_addr p = args->f_id.src_ip6;
2873
2874                                         APPLY_MASK(&p, &te->mask6);
2875                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2876                                 }
2877                                 break;
2878
2879                         case O_IP6_DST_MASK:
2880                                 if (is_ipv6) {
2881                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2882                                         struct in6_addr p = args->f_id.dst_ip6;
2883
2884                                         APPLY_MASK(&p, &te->mask6);
2885                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2886                                 }
2887                                 break;
2888
2889                         case O_IP6_SRC_ME:
2890                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2891                                 break;
2892
2893                         case O_IP6_DST_ME:
2894                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2895                                 break;
2896
2897                         case O_FLOW6ID:
2898                                 match = is_ipv6 &&
2899                                     flow6id_match(args->f_id.flow_id6,
2900                                     (ipfw_insn_u32 *) cmd);
2901                                 break;
2902
2903                         case O_EXT_HDR:
2904                                 match = is_ipv6 &&
2905                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
2906                                 break;
2907
2908                         case O_IP6:
2909                                 match = is_ipv6;
2910                                 break;
2911 #endif
2912
2913                         case O_IP4:
2914                                 match = is_ipv4;
2915                                 break;
2916
2917                         case O_TAG: {
2918                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
2919                                     tablearg : cmd->arg1;
2920
2921                                 /* Packet is already tagged with this tag? */
2922                                 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2923
2924                                 /* We have `untag' action when F_NOT flag is
2925                                  * present. And we must remove this mtag from
2926                                  * mbuf and reset `match' to zero (`match' will
2927                                  * be inversed later).
2928                                  * Otherwise we should allocate new mtag and
2929                                  * push it into mbuf.
2930                                  */
2931                                 if (cmd->len & F_NOT) { /* `untag' action */
2932                                         if (mtag != NULL)
2933                                                 m_tag_delete(m, mtag);
2934                                 } else if (mtag == NULL) {
2935                                         if ((mtag = m_tag_alloc(MTAG_IPFW,
2936                                             tag, 0, M_NOWAIT)) != NULL)
2937                                                 m_tag_prepend(m, mtag);
2938                                 }
2939                                 match = (cmd->len & F_NOT) ? 0: 1;
2940                                 break;
2941                         }
2942
2943                         case O_TAGGED: {
2944                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
2945                                     tablearg : cmd->arg1;
2946
2947                                 if (cmdlen == 1) {
2948                                         match = m_tag_locate(m, MTAG_IPFW,
2949                                             tag, NULL) != NULL;
2950                                         break;
2951                                 }
2952
2953                                 /* we have ranges */
2954                                 for (mtag = m_tag_first(m);
2955                                     mtag != NULL && !match;
2956                                     mtag = m_tag_next(m, mtag)) {
2957                                         uint16_t *p;
2958                                         int i;
2959
2960                                         if (mtag->m_tag_cookie != MTAG_IPFW)
2961                                                 continue;
2962
2963                                         p = ((ipfw_insn_u16 *)cmd)->ports;
2964                                         i = cmdlen - 1;
2965                                         for(; !match && i > 0; i--, p += 2)
2966                                                 match =
2967                                                     mtag->m_tag_id >= p[0] &&
2968                                                     mtag->m_tag_id <= p[1];
2969                                 }
2970                                 break;
2971                         }
2972                                 
2973                         /*
2974                          * The second set of opcodes represents 'actions',
2975                          * i.e. the terminal part of a rule once the packet
2976                          * matches all previous patterns.
2977                          * Typically there is only one action for each rule,
2978                          * and the opcode is stored at the end of the rule
2979                          * (but there are exceptions -- see below).
2980                          *
2981                          * In general, here we set retval and terminate the
2982                          * outer loop (would be a 'break 3' in some language,
2983                          * but we need to do a 'goto done').
2984                          *
2985                          * Exceptions:
2986                          * O_COUNT and O_SKIPTO actions:
2987                          *   instead of terminating, we jump to the next rule
2988                          *   ('goto next_rule', equivalent to a 'break 2'),
2989                          *   or to the SKIPTO target ('goto again' after
2990                          *   having set f, cmd and l), respectively.
2991                          *
2992                          * O_TAG, O_LOG and O_ALTQ action parameters:
2993                          *   perform some action and set match = 1;
2994                          *
2995                          * O_LIMIT and O_KEEP_STATE: these opcodes are
2996                          *   not real 'actions', and are stored right
2997                          *   before the 'action' part of the rule.
2998                          *   These opcodes try to install an entry in the
2999                          *   state tables; if successful, we continue with
3000                          *   the next opcode (match=1; break;), otherwise
3001                          *   the packet *   must be dropped
3002                          *   ('goto done' after setting retval);
3003                          *
3004                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3005                          *   cause a lookup of the state table, and a jump
3006                          *   to the 'action' part of the parent rule
3007                          *   ('goto check_body') if an entry is found, or
3008                          *   (CHECK_STATE only) a jump to the next rule if
3009                          *   the entry is not found ('goto next_rule').
3010                          *   The result of the lookup is cached to make
3011                          *   further instances of these opcodes are
3012                          *   effectively NOPs.
3013                          */
3014                         case O_LIMIT:
3015                         case O_KEEP_STATE:
3016                                 if (install_state(f,
3017                                     (ipfw_insn_limit *)cmd, args, tablearg)) {
3018                                         retval = IP_FW_DENY;
3019                                         goto done; /* error/limit violation */
3020                                 }
3021                                 match = 1;
3022                                 break;
3023
3024                         case O_PROBE_STATE:
3025                         case O_CHECK_STATE:
3026                                 /*
3027                                  * dynamic rules are checked at the first
3028                                  * keep-state or check-state occurrence,
3029                                  * with the result being stored in dyn_dir.
3030                                  * The compiler introduces a PROBE_STATE
3031                                  * instruction for us when we have a
3032                                  * KEEP_STATE (because PROBE_STATE needs
3033                                  * to be run first).
3034                                  */
3035                                 if (dyn_dir == MATCH_UNKNOWN &&
3036                                     (q = lookup_dyn_rule(&args->f_id,
3037                                      &dyn_dir, proto == IPPROTO_TCP ?
3038                                         TCP(ulp) : NULL))
3039                                         != NULL) {
3040                                         /*
3041                                          * Found dynamic entry, update stats
3042                                          * and jump to the 'action' part of
3043                                          * the parent rule.
3044                                          */
3045                                         q->pcnt++;
3046                                         q->bcnt += pktlen;
3047                                         f = q->rule;
3048                                         cmd = ACTION_PTR(f);
3049                                         l = f->cmd_len - f->act_ofs;
3050                                         IPFW_DYN_UNLOCK();
3051                                         goto check_body;
3052                                 }
3053                                 /*
3054                                  * Dynamic entry not found. If CHECK_STATE,
3055                                  * skip to next rule, if PROBE_STATE just
3056                                  * ignore and continue with next opcode.
3057                                  */
3058                                 if (cmd->opcode == O_CHECK_STATE)
3059                                         goto next_rule;
3060                                 match = 1;
3061                                 break;
3062
3063                         case O_ACCEPT:
3064                                 retval = 0;     /* accept */
3065                                 goto done;
3066
3067                         case O_PIPE:
3068                         case O_QUEUE:
3069                                 args->rule = f; /* report matching rule */
3070                                 if (cmd->arg1 == IP_FW_TABLEARG)
3071                                         args->cookie = tablearg;
3072                                 else
3073                                         args->cookie = cmd->arg1;
3074                                 retval = IP_FW_DUMMYNET;
3075                                 goto done;
3076
3077                         case O_DIVERT:
3078                         case O_TEE: {
3079                                 struct divert_tag *dt;
3080
3081                                 if (args->eh) /* not on layer 2 */
3082                                         break;
3083                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
3084                                                 sizeof(struct divert_tag),
3085                                                 M_NOWAIT);
3086                                 if (mtag == NULL) {
3087                                         /* XXX statistic */
3088                                         /* drop packet */
3089                                         IPFW_RUNLOCK(chain);
3090                                         return (IP_FW_DENY);
3091                                 }
3092                                 dt = (struct divert_tag *)(mtag+1);
3093                                 dt->cookie = f->rulenum;
3094                                 if (cmd->arg1 == IP_FW_TABLEARG)
3095                                         dt->info = tablearg;
3096                                 else
3097                                         dt->info = cmd->arg1;
3098                                 m_tag_prepend(m, mtag);
3099                                 retval = (cmd->opcode == O_DIVERT) ?
3100                                     IP_FW_DIVERT : IP_FW_TEE;
3101                                 goto done;
3102                         }
3103
3104                         case O_COUNT:
3105                         case O_SKIPTO:
3106                                 f->pcnt++;      /* update stats */
3107                                 f->bcnt += pktlen;
3108                                 f->timestamp = time_uptime;
3109                                 if (cmd->opcode == O_COUNT)
3110                                         goto next_rule;
3111                                 /* handle skipto */
3112                                 if (f->next_rule == NULL)
3113                                         lookup_next_rule(f);
3114                                 f = f->next_rule;
3115                                 goto again;
3116
3117                         case O_REJECT:
3118                                 /*
3119                                  * Drop the packet and send a reject notice
3120                                  * if the packet is not ICMP (or is an ICMP
3121                                  * query), and it is not multicast/broadcast.
3122                                  */
3123                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
3124                                     (proto != IPPROTO_ICMP ||
3125                                      is_icmp_query(ICMP(ulp))) &&
3126                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3127                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3128                                         send_reject(args, cmd->arg1, ip_len);
3129                                         m = args->m;
3130                                 }
3131                                 /* FALLTHROUGH */
3132 #ifdef INET6
3133                         case O_UNREACH6:
3134                                 if (hlen > 0 && is_ipv6 &&
3135                                     ((offset & IP6F_OFF_MASK) == 0) &&
3136                                     (proto != IPPROTO_ICMPV6 ||
3137                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
3138                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3139                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3140                                         send_reject6(args, cmd->arg1, hlen);
3141                                         m = args->m;
3142                                 }
3143                                 /* FALLTHROUGH */
3144 #endif
3145                         case O_DENY:
3146                                 retval = IP_FW_DENY;
3147                                 goto done;
3148
3149                         case O_FORWARD_IP:
3150                                 if (args->eh)   /* not valid on layer2 pkts */
3151                                         break;
3152                                 if (!q || dyn_dir == MATCH_FORWARD)
3153                                         args->next_hop =
3154                                             &((ipfw_insn_sa *)cmd)->sa;
3155                                 retval = IP_FW_PASS;
3156                                 goto done;
3157
3158                         case O_NETGRAPH:
3159                         case O_NGTEE:
3160                                 args->rule = f; /* report matching rule */
3161                                 if (cmd->arg1 == IP_FW_TABLEARG)
3162                                         args->cookie = tablearg;
3163                                 else
3164                                         args->cookie = cmd->arg1;
3165                                 retval = (cmd->opcode == O_NETGRAPH) ?
3166                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
3167                                 goto done;
3168
3169                         default:
3170                                 panic("-- unknown opcode %d\n", cmd->opcode);
3171                         } /* end of switch() on opcodes */
3172
3173                         if (cmd->len & F_NOT)
3174                                 match = !match;
3175
3176                         if (match) {
3177                                 if (cmd->len & F_OR)
3178                                         skip_or = 1;
3179                         } else {
3180                                 if (!(cmd->len & F_OR)) /* not an OR block, */
3181                                         break;          /* try next rule    */
3182                         }
3183
3184                 }       /* end of inner for, scan opcodes */
3185
3186 next_rule:;             /* try next rule                */
3187
3188         }               /* end of outer for, scan rules */
3189         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3190         IPFW_RUNLOCK(chain);
3191         return (IP_FW_DENY);
3192
3193 done:
3194         /* Update statistics */
3195         f->pcnt++;
3196         f->bcnt += pktlen;
3197         f->timestamp = time_uptime;
3198         IPFW_RUNLOCK(chain);
3199         return (retval);
3200
3201 pullup_failed:
3202         if (fw_verbose)
3203                 printf("ipfw: pullup failed\n");
3204         return (IP_FW_DENY);
3205 }
3206
3207 /*
3208  * When a rule is added/deleted, clear the next_rule pointers in all rules.
3209  * These will be reconstructed on the fly as packets are matched.
3210  */
3211 static void
3212 flush_rule_ptrs(struct ip_fw_chain *chain)
3213 {
3214         struct ip_fw *rule;
3215
3216         IPFW_WLOCK_ASSERT(chain);
3217
3218         for (rule = chain->rules; rule; rule = rule->next)
3219                 rule->next_rule = NULL;
3220 }
3221
3222 /*
3223  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3224  * possibly create a rule number and add the rule to the list.
3225  * Update the rule_number in the input struct so the caller knows it as well.
3226  */
3227 static int
3228 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3229 {
3230         struct ip_fw *rule, *f, *prev;
3231         int l = RULESIZE(input_rule);
3232
3233         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3234                 return (EINVAL);
3235
3236         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3237         if (rule == NULL)
3238                 return (ENOSPC);
3239
3240         bcopy(input_rule, rule, l);
3241
3242         rule->next = NULL;
3243         rule->next_rule = NULL;
3244
3245         rule->pcnt = 0;
3246         rule->bcnt = 0;
3247         rule->timestamp = 0;
3248
3249         IPFW_WLOCK(chain);
3250
3251         if (chain->rules == NULL) {     /* default rule */
3252                 chain->rules = rule;
3253                 goto done;
3254         }
3255
3256         /*
3257          * If rulenum is 0, find highest numbered rule before the
3258          * default rule, and add autoinc_step
3259          */
3260         if (autoinc_step < 1)
3261                 autoinc_step = 1;
3262         else if (autoinc_step > 1000)
3263                 autoinc_step = 1000;
3264         if (rule->rulenum == 0) {
3265                 /*
3266                  * locate the highest numbered rule before default
3267                  */
3268                 for (f = chain->rules; f; f = f->next) {
3269                         if (f->rulenum == IPFW_DEFAULT_RULE)
3270                                 break;
3271                         rule->rulenum = f->rulenum;
3272                 }
3273                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3274                         rule->rulenum += autoinc_step;
3275                 input_rule->rulenum = rule->rulenum;
3276         }
3277
3278         /*
3279          * Now insert the new rule in the right place in the sorted list.
3280          */
3281         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3282                 if (f->rulenum > rule->rulenum) { /* found the location */
3283                         if (prev) {
3284                                 rule->next = f;
3285                                 prev->next = rule;
3286                         } else { /* head insert */
3287                                 rule->next = chain->rules;
3288                                 chain->rules = rule;
3289                         }
3290                         break;
3291                 }
3292         }
3293         flush_rule_ptrs(chain);
3294 done:
3295         static_count++;
3296         static_len += l;
3297         IPFW_WUNLOCK(chain);
3298         DEB(printf("ipfw: installed rule %d, static count now %d\n",
3299                 rule->rulenum, static_count);)
3300         return (0);
3301 }
3302
3303 /**
3304  * Remove a static rule (including derived * dynamic rules)
3305  * and place it on the ``reap list'' for later reclamation.
3306  * The caller is in charge of clearing rule pointers to avoid
3307  * dangling pointers.
3308  * @return a pointer to the next entry.
3309  * Arguments are not checked, so they better be correct.
3310  */
3311 static struct ip_fw *
3312 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3313 {
3314         struct ip_fw *n;
3315         int l = RULESIZE(rule);
3316
3317         IPFW_WLOCK_ASSERT(chain);
3318
3319         n = rule->next;
3320         IPFW_DYN_LOCK();
3321         remove_dyn_rule(rule, NULL /* force removal */);
3322         IPFW_DYN_UNLOCK();
3323         if (prev == NULL)
3324                 chain->rules = n;
3325         else
3326                 prev->next = n;
3327         static_count--;
3328         static_len -= l;
3329
3330         rule->next = chain->reap;
3331         chain->reap = rule;
3332
3333         return n;
3334 }
3335
3336 /**
3337  * Reclaim storage associated with a list of rules.  This is
3338  * typically the list created using remove_rule.
3339  */
3340 static void
3341 reap_rules(struct ip_fw *head)
3342 {
3343         struct ip_fw *rule;
3344
3345         while ((rule = head) != NULL) {
3346                 head = head->next;
3347                 if (DUMMYNET_LOADED)
3348                         ip_dn_ruledel_ptr(rule);
3349                 free(rule, M_IPFW);
3350         }
3351 }
3352
3353 /*
3354  * Remove all rules from a chain (except rules in set RESVD_SET
3355  * unless kill_default = 1).  The caller is responsible for
3356  * reclaiming storage for the rules left in chain->reap.
3357  */
3358 static void
3359 free_chain(struct ip_fw_chain *chain, int kill_default)
3360 {
3361         struct ip_fw *prev, *rule;
3362
3363         IPFW_WLOCK_ASSERT(chain);
3364
3365         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3366         for (prev = NULL, rule = chain->rules; rule ; )
3367                 if (kill_default || rule->set != RESVD_SET)
3368                         rule = remove_rule(chain, rule, prev);
3369                 else {
3370                         prev = rule;
3371                         rule = rule->next;
3372                 }
3373 }
3374
3375 /**
3376  * Remove all rules with given number, and also do set manipulation.
3377  * Assumes chain != NULL && *chain != NULL.
3378  *
3379  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3380  * the next 8 bits are the new set, the top 8 bits are the command:
3381  *
3382  *      0       delete rules with given number
3383  *      1       delete rules with given set number
3384  *      2       move rules with given number to new set
3385  *      3       move rules with given set number to new set
3386  *      4       swap sets with given numbers
3387  */
3388 static int
3389 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3390 {
3391         struct ip_fw *prev = NULL, *rule;
3392         u_int16_t rulenum;      /* rule or old_set */
3393         u_int8_t cmd, new_set;
3394
3395         rulenum = arg & 0xffff;
3396         cmd = (arg >> 24) & 0xff;
3397         new_set = (arg >> 16) & 0xff;
3398
3399         if (cmd > 4)
3400                 return EINVAL;
3401         if (new_set > RESVD_SET)
3402                 return EINVAL;
3403         if (cmd == 0 || cmd == 2) {
3404                 if (rulenum >= IPFW_DEFAULT_RULE)
3405                         return EINVAL;
3406         } else {
3407                 if (rulenum > RESVD_SET)        /* old_set */
3408                         return EINVAL;
3409         }
3410
3411         IPFW_WLOCK(chain);
3412         rule = chain->rules;
3413         chain->reap = NULL;
3414         switch (cmd) {
3415         case 0: /* delete rules with given number */
3416                 /*
3417                  * locate first rule to delete
3418                  */
3419                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3420                         ;
3421                 if (rule->rulenum != rulenum) {
3422                         IPFW_WUNLOCK(chain);
3423                         return EINVAL;
3424                 }
3425
3426                 /*
3427                  * flush pointers outside the loop, then delete all matching
3428                  * rules. prev remains the same throughout the cycle.
3429                  */
3430                 flush_rule_ptrs(chain);
3431                 while (rule->rulenum == rulenum)
3432                         rule = remove_rule(chain, rule, prev);
3433                 break;
3434
3435         case 1: /* delete all rules with given set number */
3436                 flush_rule_ptrs(chain);
3437                 rule = chain->rules;
3438                 while (rule->rulenum < IPFW_DEFAULT_RULE)
3439                         if (rule->set == rulenum)
3440                                 rule = remove_rule(chain, rule, prev);
3441                         else {
3442                                 prev = rule;
3443                                 rule = rule->next;
3444                         }
3445                 break;
3446
3447         case 2: /* move rules with given number to new set */
3448                 rule = chain->rules;
3449                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3450                         if (rule->rulenum == rulenum)
3451                                 rule->set = new_set;
3452                 break;
3453
3454         case 3: /* move rules with given set number to new set */
3455                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3456                         if (rule->set == rulenum)
3457                                 rule->set = new_set;
3458                 break;
3459
3460         case 4: /* swap two sets */
3461                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3462                         if (rule->set == rulenum)
3463                                 rule->set = new_set;
3464                         else if (rule->set == new_set)
3465                                 rule->set = rulenum;
3466                 break;
3467         }
3468         /*
3469          * Look for rules to reclaim.  We grab the list before
3470          * releasing the lock then reclaim them w/o the lock to
3471          * avoid a LOR with dummynet.
3472          */
3473         rule = chain->reap;
3474         chain->reap = NULL;
3475         IPFW_WUNLOCK(chain);
3476         if (rule)
3477                 reap_rules(rule);
3478         return 0;
3479 }
3480
3481 /*
3482  * Clear counters for a specific rule.
3483  * The enclosing "table" is assumed locked.
3484  */
3485 static void
3486 clear_counters(struct ip_fw *rule, int log_only)
3487 {
3488         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3489
3490         if (log_only == 0) {
3491                 rule->bcnt = rule->pcnt = 0;
3492                 rule->timestamp = 0;
3493         }
3494         if (l->o.opcode == O_LOG)
3495                 l->log_left = l->max_log;
3496 }
3497
3498 /**
3499  * Reset some or all counters on firewall rules.
3500  * @arg frwl is null to clear all entries, or contains a specific
3501  * rule number.
3502  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3503  */
3504 static int
3505 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3506 {
3507         struct ip_fw *rule;
3508         char *msg;
3509
3510         IPFW_WLOCK(chain);
3511         if (rulenum == 0) {
3512                 norule_counter = 0;
3513                 for (rule = chain->rules; rule; rule = rule->next)
3514                         clear_counters(rule, log_only);
3515                 msg = log_only ? "ipfw: All logging counts reset.\n" :
3516                                 "ipfw: Accounting cleared.\n";
3517         } else {
3518                 int cleared = 0;
3519                 /*
3520                  * We can have multiple rules with the same number, so we
3521                  * need to clear them all.
3522                  */
3523                 for (rule = chain->rules; rule; rule = rule->next)
3524                         if (rule->rulenum == rulenum) {
3525                                 while (rule && rule->rulenum == rulenum) {
3526                                         clear_counters(rule, log_only);
3527                                         rule = rule->next;
3528                                 }
3529                                 cleared = 1;
3530                                 break;
3531                         }
3532                 if (!cleared) { /* we did not find any matching rules */
3533                         IPFW_WUNLOCK(chain);
3534                         return (EINVAL);
3535                 }
3536                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3537                                 "ipfw: Entry %d cleared.\n";
3538         }
3539         IPFW_WUNLOCK(chain);
3540
3541         if (fw_verbose)
3542                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3543         return (0);
3544 }
3545
3546 /*
3547  * Check validity of the structure before insert.
3548  * Fortunately rules are simple, so this mostly need to check rule sizes.
3549  */
3550 static int
3551 check_ipfw_struct(struct ip_fw *rule, int size)
3552 {
3553         int l, cmdlen = 0;
3554         int have_action=0;
3555         ipfw_insn *cmd;
3556
3557         if (size < sizeof(*rule)) {
3558                 printf("ipfw: rule too short\n");
3559                 return (EINVAL);
3560         }
3561         /* first, check for valid size */
3562         l = RULESIZE(rule);
3563         if (l != size) {
3564                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3565                 return (EINVAL);
3566         }
3567         if (rule->act_ofs >= rule->cmd_len) {
3568                 printf("ipfw: bogus action offset (%u > %u)\n",
3569                     rule->act_ofs, rule->cmd_len - 1);
3570                 return (EINVAL);
3571         }
3572         /*
3573          * Now go for the individual checks. Very simple ones, basically only
3574          * instruction sizes.
3575          */
3576         for (l = rule->cmd_len, cmd = rule->cmd ;
3577                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
3578                 cmdlen = F_LEN(cmd);
3579                 if (cmdlen > l) {
3580                         printf("ipfw: opcode %d size truncated\n",
3581                             cmd->opcode);
3582                         return EINVAL;
3583                 }
3584                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3585                 switch (cmd->opcode) {
3586                 case O_PROBE_STATE:
3587                 case O_KEEP_STATE:
3588                 case O_PROTO:
3589                 case O_IP_SRC_ME:
3590                 case O_IP_DST_ME:
3591                 case O_LAYER2:
3592                 case O_IN:
3593                 case O_FRAG:
3594                 case O_DIVERTED:
3595                 case O_IPOPT:
3596                 case O_IPTOS:
3597                 case O_IPPRECEDENCE:
3598                 case O_IPVER:
3599                 case O_TCPWIN:
3600                 case O_TCPFLAGS:
3601                 case O_TCPOPTS:
3602                 case O_ESTAB:
3603                 case O_VERREVPATH:
3604                 case O_VERSRCREACH:
3605                 case O_ANTISPOOF:
3606                 case O_IPSEC:
3607 #ifdef INET6
3608                 case O_IP6_SRC_ME:
3609                 case O_IP6_DST_ME:
3610                 case O_EXT_HDR:
3611                 case O_IP6:
3612 #endif
3613                 case O_IP4:
3614                 case O_TAG:
3615                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3616                                 goto bad_size;
3617                         break;
3618
3619                 case O_UID:
3620                 case O_GID:
3621                 case O_JAIL:
3622                 case O_IP_SRC:
3623                 case O_IP_DST:
3624                 case O_TCPSEQ:
3625                 case O_TCPACK:
3626                 case O_PROB:
3627                 case O_ICMPTYPE:
3628                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3629                                 goto bad_size;
3630                         break;
3631
3632                 case O_LIMIT:
3633                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3634                                 goto bad_size;
3635                         break;
3636
3637                 case O_LOG:
3638                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3639                                 goto bad_size;
3640
3641                         ((ipfw_insn_log *)cmd)->log_left =
3642                             ((ipfw_insn_log *)cmd)->max_log;
3643
3644                         break;
3645
3646                 case O_IP_SRC_MASK:
3647                 case O_IP_DST_MASK:
3648                         /* only odd command lengths */
3649                         if ( !(cmdlen & 1) || cmdlen > 31)
3650                                 goto bad_size;
3651                         break;
3652
3653                 case O_IP_SRC_SET:
3654                 case O_IP_DST_SET:
3655                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3656                                 printf("ipfw: invalid set size %d\n",
3657                                         cmd->arg1);
3658                                 return EINVAL;
3659                         }
3660                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3661                             (cmd->arg1+31)/32 )
3662                                 goto bad_size;
3663                         break;
3664
3665                 case O_IP_SRC_LOOKUP:
3666                 case O_IP_DST_LOOKUP:
3667                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
3668                                 printf("ipfw: invalid table number %d\n",
3669                                     cmd->arg1);
3670                                 return (EINVAL);
3671                         }
3672                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3673                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3674                                 goto bad_size;
3675                         break;
3676
3677                 case O_MACADDR2:
3678                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3679                                 goto bad_size;
3680                         break;
3681
3682                 case O_NOP:
3683                 case O_IPID:
3684                 case O_IPTTL:
3685                 case O_IPLEN:
3686                 case O_TCPDATALEN:
3687                 case O_TAGGED:
3688                         if (cmdlen < 1 || cmdlen > 31)
3689                                 goto bad_size;
3690                         break;
3691
3692                 case O_MAC_TYPE:
3693                 case O_IP_SRCPORT:
3694                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3695                         if (cmdlen < 2 || cmdlen > 31)
3696                                 goto bad_size;
3697                         break;
3698
3699                 case O_RECV:
3700                 case O_XMIT:
3701                 case O_VIA:
3702                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3703                                 goto bad_size;
3704                         break;
3705
3706                 case O_ALTQ:
3707                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3708                                 goto bad_size;
3709                         break;
3710
3711                 case O_PIPE:
3712                 case O_QUEUE:
3713                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3714                                 goto bad_size;
3715                         goto check_action;
3716
3717                 case O_FORWARD_IP:
3718 #ifdef  IPFIREWALL_FORWARD
3719                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3720                                 goto bad_size;
3721                         goto check_action;
3722 #else
3723                         return EINVAL;
3724 #endif
3725
3726                 case O_DIVERT:
3727                 case O_TEE:
3728                         if (ip_divert_ptr == NULL)
3729                                 return EINVAL;
3730                         else
3731                                 goto check_size;
3732                 case O_NETGRAPH:
3733                 case O_NGTEE:
3734                         if (!NG_IPFW_LOADED)
3735                                 return EINVAL;
3736                         else
3737                                 goto check_size;
3738                 case O_FORWARD_MAC: /* XXX not implemented yet */
3739                 case O_CHECK_STATE:
3740                 case O_COUNT:
3741                 case O_ACCEPT:
3742                 case O_DENY:
3743                 case O_REJECT:
3744 #ifdef INET6
3745                 case O_UNREACH6:
3746 #endif
3747                 case O_SKIPTO:
3748 check_size:
3749                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3750                                 goto bad_size;
3751 check_action:
3752                         if (have_action) {
3753                                 printf("ipfw: opcode %d, multiple actions"
3754                                         " not allowed\n",
3755                                         cmd->opcode);
3756                                 return EINVAL;
3757                         }
3758                         have_action = 1;
3759                         if (l != cmdlen) {
3760                                 printf("ipfw: opcode %d, action must be"
3761                                         " last opcode\n",
3762                                         cmd->opcode);
3763                                 return EINVAL;
3764                         }
3765                         break;
3766 #ifdef INET6
3767                 case O_IP6_SRC:
3768                 case O_IP6_DST:
3769                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3770                             F_INSN_SIZE(ipfw_insn))
3771                                 goto bad_size;
3772                         break;
3773
3774                 case O_FLOW6ID:
3775                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3776                             ((ipfw_insn_u32 *)cmd)->o.arg1)
3777                                 goto bad_size;
3778                         break;
3779
3780                 case O_IP6_SRC_MASK:
3781                 case O_IP6_DST_MASK:
3782                         if ( !(cmdlen & 1) || cmdlen > 127)
3783                                 goto bad_size;
3784                         break;
3785                 case O_ICMP6TYPE:
3786                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3787                                 goto bad_size;
3788                         break;
3789 #endif
3790
3791                 default:
3792                         switch (cmd->opcode) {
3793 #ifndef INET6
3794                         case O_IP6_SRC_ME:
3795                         case O_IP6_DST_ME:
3796                         case O_EXT_HDR:
3797                         case O_IP6:
3798                         case O_UNREACH6:
3799                         case O_IP6_SRC:
3800                         case O_IP6_DST:
3801                         case O_FLOW6ID:
3802                         case O_IP6_SRC_MASK:
3803                         case O_IP6_DST_MASK:
3804                         case O_ICMP6TYPE:
3805                                 printf("ipfw: no IPv6 support in kernel\n");
3806                                 return EPROTONOSUPPORT;
3807 #endif
3808                         default:
3809                                 printf("ipfw: opcode %d, unknown opcode\n",
3810                                         cmd->opcode);
3811                                 return EINVAL;
3812                         }
3813                 }
3814         }
3815         if (have_action == 0) {
3816                 printf("ipfw: missing action\n");
3817                 return EINVAL;
3818         }
3819         return 0;
3820
3821 bad_size:
3822         printf("ipfw: opcode %d size %d wrong\n",
3823                 cmd->opcode, cmdlen);
3824         return EINVAL;
3825 }
3826
3827 /*
3828  * Copy the static and dynamic rules to the supplied buffer
3829  * and return the amount of space actually used.
3830  */
3831 static size_t
3832 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3833 {
3834         char *bp = buf;
3835         char *ep = bp + space;
3836         struct ip_fw *rule;
3837         int i;
3838
3839         /* XXX this can take a long time and locking will block packet flow */
3840         IPFW_RLOCK(chain);
3841         for (rule = chain->rules; rule ; rule = rule->next) {
3842                 /*
3843                  * Verify the entry fits in the buffer in case the
3844                  * rules changed between calculating buffer space and
3845                  * now.  This would be better done using a generation
3846                  * number but should suffice for now.
3847                  */
3848                 i = RULESIZE(rule);
3849                 if (bp + i <= ep) {
3850                         bcopy(rule, bp, i);
3851                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3852                             sizeof(set_disable));
3853                         bp += i;
3854                 }
3855         }
3856         IPFW_RUNLOCK(chain);
3857         if (ipfw_dyn_v) {
3858                 ipfw_dyn_rule *p, *last = NULL;
3859
3860                 IPFW_DYN_LOCK();
3861                 for (i = 0 ; i < curr_dyn_buckets; i++)
3862                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3863                                 if (bp + sizeof *p <= ep) {
3864                                         ipfw_dyn_rule *dst =
3865                                                 (ipfw_dyn_rule *)bp;
3866                                         bcopy(p, dst, sizeof *p);
3867                                         bcopy(&(p->rule->rulenum), &(dst->rule),
3868                                             sizeof(p->rule->rulenum));
3869                                         /*
3870                                          * store a non-null value in "next".
3871                                          * The userland code will interpret a
3872                                          * NULL here as a marker
3873                                          * for the last dynamic rule.
3874                                          */
3875                                         bcopy(&dst, &dst->next, sizeof(dst));
3876                                         last = dst;
3877                                         dst->expire =
3878                                             TIME_LEQ(dst->expire, time_uptime) ?
3879                                                 0 : dst->expire - time_uptime ;
3880                                         bp += sizeof(ipfw_dyn_rule);
3881                                 }
3882                         }
3883                 IPFW_DYN_UNLOCK();
3884                 if (last != NULL) /* mark last dynamic rule */
3885                         bzero(&last->next, sizeof(last));
3886         }
3887         return (bp - (char *)buf);
3888 }
3889
3890
3891 /**
3892  * {set|get}sockopt parser.
3893  */
3894 static int
3895 ipfw_ctl(struct sockopt *sopt)
3896 {
3897 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
3898         int error, rule_num;
3899         size_t size;
3900         struct ip_fw *buf, *rule;
3901         u_int32_t rulenum[2];
3902
3903         error = suser(sopt->sopt_td);
3904         if (error)
3905                 return (error);
3906
3907         /*
3908          * Disallow modifications in really-really secure mode, but still allow
3909          * the logging counters to be reset.
3910          */
3911         if (sopt->sopt_name == IP_FW_ADD ||
3912             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3913                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3914                 if (error)
3915                         return (error);
3916         }
3917
3918         error = 0;
3919
3920         switch (sopt->sopt_name) {
3921         case IP_FW_GET:
3922                 /*
3923                  * pass up a copy of the current rules. Static rules
3924                  * come first (the last of which has number IPFW_DEFAULT_RULE),
3925                  * followed by a possibly empty list of dynamic rule.
3926                  * The last dynamic rule has NULL in the "next" field.
3927                  *
3928                  * Note that the calculated size is used to bound the
3929                  * amount of data returned to the user.  The rule set may
3930                  * change between calculating the size and returning the
3931                  * data in which case we'll just return what fits.
3932                  */
3933                 size = static_len;      /* size of static rules */
3934                 if (ipfw_dyn_v)         /* add size of dyn.rules */
3935                         size += (dyn_count * sizeof(ipfw_dyn_rule));
3936
3937                 /*
3938                  * XXX todo: if the user passes a short length just to know
3939                  * how much room is needed, do not bother filling up the
3940                  * buffer, just jump to the sooptcopyout.
3941                  */
3942                 buf = malloc(size, M_TEMP, M_WAITOK);
3943                 error = sooptcopyout(sopt, buf,
3944                                 ipfw_getrules(&layer3_chain, buf, size));
3945                 free(buf, M_TEMP);
3946                 break;
3947
3948         case IP_FW_FLUSH:
3949                 /*
3950                  * Normally we cannot release the lock on each iteration.
3951                  * We could do it here only because we start from the head all
3952                  * the times so there is no risk of missing some entries.
3953                  * On the other hand, the risk is that we end up with
3954                  * a very inconsistent ruleset, so better keep the lock
3955                  * around the whole cycle.
3956                  *
3957                  * XXX this code can be improved by resetting the head of
3958                  * the list to point to the default rule, and then freeing
3959                  * the old list without the need for a lock.
3960                  */
3961
3962                 IPFW_WLOCK(&layer3_chain);
3963                 layer3_chain.reap = NULL;
3964                 free_chain(&layer3_chain, 0 /* keep default rule */);
3965                 rule = layer3_chain.reap, layer3_chain.reap = NULL;
3966                 IPFW_WUNLOCK(&layer3_chain);
3967                 if (layer3_chain.reap != NULL)
3968                         reap_rules(rule);
3969                 break;
3970
3971         case IP_FW_ADD:
3972                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3973                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3974                         sizeof(struct ip_fw) );
3975                 if (error == 0)
3976                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
3977                 if (error == 0) {
3978                         error = add_rule(&layer3_chain, rule);
3979                         size = RULESIZE(rule);
3980                         if (!error && sopt->sopt_dir == SOPT_GET)
3981                                 error = sooptcopyout(sopt, rule, size);
3982                 }
3983                 free(rule, M_TEMP);
3984                 break;
3985
3986         case IP_FW_DEL:
3987                 /*
3988                  * IP_FW_DEL is used for deleting single rules or sets,
3989                  * and (ab)used to atomically manipulate sets. Argument size
3990                  * is used to distinguish between the two:
3991                  *    sizeof(u_int32_t)
3992                  *      delete single rule or set of rules,
3993                  *      or reassign rules (or sets) to a different set.
3994                  *    2*sizeof(u_int32_t)
3995                  *      atomic disable/enable sets.
3996                  *      first u_int32_t contains sets to be disabled,
3997                  *      second u_int32_t contains sets to be enabled.
3998                  */
3999                 error = sooptcopyin(sopt, rulenum,
4000                         2*sizeof(u_int32_t), sizeof(u_int32_t));
4001                 if (error)
4002                         break;
4003                 size = sopt->sopt_valsize;
4004                 if (size == sizeof(u_int32_t))  /* delete or reassign */
4005                         error = del_entry(&layer3_chain, rulenum[0]);
4006                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4007                         set_disable =
4008                             (set_disable | rulenum[0]) & ~rulenum[1] &
4009                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4010                 else
4011                         error = EINVAL;
4012                 break;
4013
4014         case IP_FW_ZERO:
4015         case IP_FW_RESETLOG: /* argument is an int, the rule number */
4016                 rule_num = 0;
4017                 if (sopt->sopt_val != 0) {
4018                     error = sooptcopyin(sopt, &rule_num,
4019                             sizeof(int), sizeof(int));
4020                     if (error)
4021                         break;
4022                 }
4023                 error = zero_entry(&layer3_chain, rule_num,
4024                         sopt->sopt_name == IP_FW_RESETLOG);
4025                 break;
4026
4027         case IP_FW_TABLE_ADD:
4028                 {
4029                         ipfw_table_entry ent;
4030
4031                         error = sooptcopyin(sopt, &ent,
4032                             sizeof(ent), sizeof(ent));
4033                         if (error)
4034                                 break;
4035                         error = add_table_entry(&layer3_chain, ent.tbl,
4036                             ent.addr, ent.masklen, ent.value);
4037                 }
4038                 break;
4039
4040         case IP_FW_TABLE_DEL:
4041                 {
4042                         ipfw_table_entry ent;
4043
4044                         error = sooptcopyin(sopt, &ent,
4045                             sizeof(ent), sizeof(ent));
4046                         if (error)
4047                                 break;
4048                         error = del_table_entry(&layer3_chain, ent.tbl,
4049                             ent.addr, ent.masklen);
4050                 }
4051                 break;
4052
4053         case IP_FW_TABLE_FLUSH:
4054                 {
4055                         u_int16_t tbl;
4056
4057                         error = sooptcopyin(sopt, &tbl,
4058                             sizeof(tbl), sizeof(tbl));
4059                         if (error)
4060                                 break;
4061                         IPFW_WLOCK(&layer3_chain);
4062                         error = flush_table(&layer3_chain, tbl);
4063                         IPFW_WUNLOCK(&layer3_chain);
4064                 }
4065                 break;
4066
4067         case IP_FW_TABLE_GETSIZE:
4068                 {
4069                         u_int32_t tbl, cnt;
4070
4071                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4072                             sizeof(tbl))))
4073                                 break;
4074                         IPFW_RLOCK(&layer3_chain);
4075                         error = count_table(&layer3_chain, tbl, &cnt);
4076                         IPFW_RUNLOCK(&layer3_chain);
4077                         if (error)
4078                                 break;
4079                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4080                 }
4081                 break;
4082
4083         case IP_FW_TABLE_LIST:
4084                 {
4085                         ipfw_table *tbl;
4086
4087                         if (sopt->sopt_valsize < sizeof(*tbl)) {
4088                                 error = EINVAL;
4089                                 break;
4090                         }
4091                         size = sopt->sopt_valsize;
4092                         tbl = malloc(size, M_TEMP, M_WAITOK);
4093                         if (tbl == NULL) {
4094                                 error = ENOMEM;
4095                                 break;
4096                         }
4097                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4098                         if (error) {
4099                                 free(tbl, M_TEMP);
4100                                 break;
4101                         }
4102                         tbl->size = (size - sizeof(*tbl)) /
4103                             sizeof(ipfw_table_entry);
4104                         IPFW_RLOCK(&layer3_chain);
4105                         error = dump_table(&layer3_chain, tbl);
4106                         IPFW_RUNLOCK(&layer3_chain);
4107                         if (error) {
4108                                 free(tbl, M_TEMP);
4109                                 break;
4110                         }
4111                         error = sooptcopyout(sopt, tbl, size);
4112                         free(tbl, M_TEMP);
4113                 }
4114                 break;
4115
4116         default:
4117                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4118                 error = EINVAL;
4119         }
4120
4121         return (error);
4122 #undef RULE_MAXSIZE
4123 }
4124
4125 /**
4126  * dummynet needs a reference to the default rule, because rules can be
4127  * deleted while packets hold a reference to them. When this happens,
4128  * dummynet changes the reference to the default rule (it could well be a
4129  * NULL pointer, but this way we do not need to check for the special
4130  * case, plus here he have info on the default behaviour).
4131  */
4132 struct ip_fw *ip_fw_default_rule;
4133
4134 /*
4135  * This procedure is only used to handle keepalives. It is invoked
4136  * every dyn_keepalive_period
4137  */
4138 static void
4139 ipfw_tick(void * __unused unused)
4140 {
4141         struct mbuf *m0, *m, *mnext, **mtailp;
4142         int i;
4143         ipfw_dyn_rule *q;
4144
4145         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4146                 goto done;
4147
4148         /*
4149          * We make a chain of packets to go out here -- not deferring
4150          * until after we drop the IPFW dynamic rule lock would result
4151          * in a lock order reversal with the normal packet input -> ipfw
4152          * call stack.
4153          */
4154         m0 = NULL;
4155         mtailp = &m0;
4156         IPFW_DYN_LOCK();
4157         for (i = 0 ; i < curr_dyn_buckets ; i++) {
4158                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4159                         if (q->dyn_type == O_LIMIT_PARENT)
4160                                 continue;
4161                         if (q->id.proto != IPPROTO_TCP)
4162                                 continue;
4163                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
4164                                 continue;
4165                         if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4166                             q->expire))
4167                                 continue;       /* too early */
4168                         if (TIME_LEQ(q->expire, time_uptime))
4169                                 continue;       /* too late, rule expired */
4170
4171                         *mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4172                                 q->ack_fwd, TH_SYN);
4173                         if (*mtailp != NULL)
4174                                 mtailp = &(*mtailp)->m_nextpkt;
4175                         *mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4176                                 q->ack_rev, 0);
4177                         if (*mtailp != NULL)
4178                                 mtailp = &(*mtailp)->m_nextpkt;
4179                 }
4180         }
4181         IPFW_DYN_UNLOCK();
4182         for (m = mnext = m0; m != NULL; m = mnext) {
4183                 mnext = m->m_nextpkt;
4184                 m->m_nextpkt = NULL;
4185                 ip_output(m, NULL, NULL, 0, NULL, NULL);
4186         }
4187 done:
4188         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4189 }
4190
4191 int
4192 ipfw_init(void)
4193 {
4194         struct ip_fw default_rule;
4195         int error;
4196
4197 #ifdef INET6
4198         /* Setup IPv6 fw sysctl tree. */
4199         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4200         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4201             SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4202             CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4203         SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4204             OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4205             &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4206         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4207             OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4208             &fw_deny_unknown_exthdrs, 0,
4209             "Deny packets with unknown IPv6 Extension Headers");
4210 #endif
4211
4212         layer3_chain.rules = NULL;
4213         IPFW_LOCK_INIT(&layer3_chain);
4214         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4215             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4216             UMA_ALIGN_PTR, 0);
4217         IPFW_DYN_LOCK_INIT();
4218         callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4219
4220         bzero(&default_rule, sizeof default_rule);
4221
4222         default_rule.act_ofs = 0;
4223         default_rule.rulenum = IPFW_DEFAULT_RULE;
4224         default_rule.cmd_len = 1;
4225         default_rule.set = RESVD_SET;
4226
4227         default_rule.cmd[0].len = 1;
4228         default_rule.cmd[0].opcode =
4229 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4230                                 1 ? O_ACCEPT :
4231 #endif
4232                                 O_DENY;
4233
4234         error = add_rule(&layer3_chain, &default_rule);
4235         if (error != 0) {
4236                 printf("ipfw2: error %u initializing default rule "
4237                         "(support disabled)\n", error);
4238                 IPFW_DYN_LOCK_DESTROY();
4239                 IPFW_LOCK_DESTROY(&layer3_chain);
4240                 uma_zdestroy(ipfw_dyn_rule_zone);
4241                 return (error);
4242         }
4243
4244         ip_fw_default_rule = layer3_chain.rules;
4245         printf("ipfw2 "
4246 #ifdef INET6
4247                 "(+ipv6) "
4248 #endif
4249                 "initialized, divert %s, "
4250                 "rule-based forwarding "
4251 #ifdef IPFIREWALL_FORWARD
4252                 "enabled, "
4253 #else
4254                 "disabled, "
4255 #endif
4256                 "default to %s, logging ",
4257 #ifdef IPDIVERT
4258                 "enabled",
4259 #else
4260                 "loadable",
4261 #endif
4262                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4263
4264 #ifdef IPFIREWALL_VERBOSE
4265         fw_verbose = 1;
4266 #endif
4267 #ifdef IPFIREWALL_VERBOSE_LIMIT
4268         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4269 #endif
4270         if (fw_verbose == 0)
4271                 printf("disabled\n");
4272         else if (verbose_limit == 0)
4273                 printf("unlimited\n");
4274         else
4275                 printf("limited to %d packets/entry by default\n",
4276                     verbose_limit);
4277
4278         error = init_tables(&layer3_chain);
4279         if (error) {
4280                 IPFW_DYN_LOCK_DESTROY();
4281                 IPFW_LOCK_DESTROY(&layer3_chain);
4282                 uma_zdestroy(ipfw_dyn_rule_zone);
4283                 return (error);
4284         }
4285         ip_fw_ctl_ptr = ipfw_ctl;
4286         ip_fw_chk_ptr = ipfw_chk;
4287         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4288
4289         return (0);
4290 }
4291
4292 void
4293 ipfw_destroy(void)
4294 {
4295         struct ip_fw *reap;
4296
4297         ip_fw_chk_ptr = NULL;
4298         ip_fw_ctl_ptr = NULL;
4299         callout_drain(&ipfw_timeout);
4300         IPFW_WLOCK(&layer3_chain);
4301         flush_tables(&layer3_chain);
4302         layer3_chain.reap = NULL;
4303         free_chain(&layer3_chain, 1 /* kill default rule */);
4304         reap = layer3_chain.reap, layer3_chain.reap = NULL;
4305         IPFW_WUNLOCK(&layer3_chain);
4306         if (reap != NULL)
4307                 reap_rules(reap);
4308         IPFW_DYN_LOCK_DESTROY();
4309         uma_zdestroy(ipfw_dyn_rule_zone);
4310         IPFW_LOCK_DESTROY(&layer3_chain);
4311
4312 #ifdef INET6
4313         /* Free IPv6 fw sysctl tree. */
4314         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4315 #endif
4316
4317         printf("IP firewall unloaded\n");
4318 }