]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/ip_fw2.c
This commit was generated by cvs2svn to compensate for changes in r161863,
[FreeBSD/FreeBSD.git] / sys / netinet / ip_fw2.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27
28 #define        DEB(x)
29 #define        DDB(x) x
30
31 /*
32  * Implement IP packet firewall (new version)
33  */
34
35 #if !defined(KLD_MODULE)
36 #include "opt_ipfw.h"
37 #include "opt_ipdn.h"
38 #include "opt_inet.h"
39 #ifndef INET
40 #error IPFIREWALL requires INET.
41 #endif /* INET */
42 #endif
43 #include "opt_inet6.h"
44 #include "opt_ipsec.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/condvar.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/jail.h>
54 #include <sys/module.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/if.h>
63 #include <net/radix.h>
64 #include <net/route.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_icmp.h>
72 #include <netinet/ip_fw.h>
73 #include <netinet/ip_divert.h>
74 #include <netinet/ip_dummynet.h>
75 #include <netinet/pim.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_timer.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/tcpip.h>
80 #include <netinet/udp.h>
81 #include <netinet/udp_var.h>
82
83 #include <netgraph/ng_ipfw.h>
84
85 #include <altq/if_altq.h>
86
87 #ifdef IPSEC
88 #include <netinet6/ipsec.h>
89 #endif
90
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #ifdef INET6
94 #include <netinet6/scope6_var.h>
95 #endif
96
97 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
98
99 #include <machine/in_cksum.h>   /* XXX for in_cksum */
100
101 /*
102  * set_disable contains one bit per set value (0..31).
103  * If the bit is set, all rules with the corresponding set
104  * are disabled. Set RESVD_SET(31) is reserved for the default rule
105  * and rules that are not deleted by the flush command,
106  * and CANNOT be disabled.
107  * Rules in set RESVD_SET can only be deleted explicitly.
108  */
109 static u_int32_t set_disable;
110
111 static int fw_verbose;
112 static int verbose_limit;
113
114 static struct callout ipfw_timeout;
115 static uma_zone_t ipfw_dyn_rule_zone;
116 #define IPFW_DEFAULT_RULE       65535
117
118 /*
119  * Data structure to cache our ucred related
120  * information. This structure only gets used if
121  * the user specified UID/GID based constraints in
122  * a firewall rule.
123  */
124 struct ip_fw_ugid {
125         gid_t           fw_groups[NGROUPS];
126         int             fw_ngroups;
127         uid_t           fw_uid;
128         int             fw_prid;
129 };
130
131 #define IPFW_TABLES_MAX         128
132 struct ip_fw_chain {
133         struct ip_fw    *rules;         /* list of rules */
134         struct ip_fw    *reap;          /* list of rules to reap */
135         struct radix_node_head *tables[IPFW_TABLES_MAX];
136         struct rwlock   rwmtx;
137 };
138 #define IPFW_LOCK_INIT(_chain) \
139         rw_init(&(_chain)->rwmtx, "IPFW static rules")
140 #define IPFW_LOCK_DESTROY(_chain)       rw_destroy(&(_chain)->rwmtx)
141 #define IPFW_WLOCK_ASSERT(_chain)       do {                            \
142         rw_assert(&(_chain)->rwmtx, RA_WLOCKED);                                        \
143         NET_ASSERT_GIANT();                                             \
144 } while (0)
145
146 #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
147 #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
148 #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
149 #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
150
151 /*
152  * list of rules for layer 3
153  */
154 static struct ip_fw_chain layer3_chain;
155
156 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
157 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
158
159 struct table_entry {
160         struct radix_node       rn[2];
161         struct sockaddr_in      addr, mask;
162         u_int32_t               value;
163 };
164
165 static int fw_debug = 1;
166 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
167
168 extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
169
170 #ifdef SYSCTL_NODE
171 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
172 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
173     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
174     ipfw_chg_hook, "I", "Enable ipfw");
175 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
176     &autoinc_step, 0, "Rule number autincrement step");
177 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
178     CTLFLAG_RW | CTLFLAG_SECURE3,
179     &fw_one_pass, 0,
180     "Only do a single pass through ipfw when using dummynet(4)");
181 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
182     &fw_debug, 0, "Enable printing of debug ip_fw statements");
183 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
184     CTLFLAG_RW | CTLFLAG_SECURE3,
185     &fw_verbose, 0, "Log matches to ipfw rules");
186 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
187     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
188
189 /*
190  * Description of dynamic rules.
191  *
192  * Dynamic rules are stored in lists accessed through a hash table
193  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
194  * be modified through the sysctl variable dyn_buckets which is
195  * updated when the table becomes empty.
196  *
197  * XXX currently there is only one list, ipfw_dyn.
198  *
199  * When a packet is received, its address fields are first masked
200  * with the mask defined for the rule, then hashed, then matched
201  * against the entries in the corresponding list.
202  * Dynamic rules can be used for different purposes:
203  *  + stateful rules;
204  *  + enforcing limits on the number of sessions;
205  *  + in-kernel NAT (not implemented yet)
206  *
207  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
208  * measured in seconds and depending on the flags.
209  *
210  * The total number of dynamic rules is stored in dyn_count.
211  * The max number of dynamic rules is dyn_max. When we reach
212  * the maximum number of rules we do not create anymore. This is
213  * done to avoid consuming too much memory, but also too much
214  * time when searching on each packet (ideally, we should try instead
215  * to put a limit on the length of the list on each bucket...).
216  *
217  * Each dynamic rule holds a pointer to the parent ipfw rule so
218  * we know what action to perform. Dynamic rules are removed when
219  * the parent rule is deleted. XXX we should make them survive.
220  *
221  * There are some limitations with dynamic rules -- we do not
222  * obey the 'randomized match', and we do not do multiple
223  * passes through the firewall. XXX check the latter!!!
224  */
225 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
226 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
227 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
228
229 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
230 #define IPFW_DYN_LOCK_INIT() \
231         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
232 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
233 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
234 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
235 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
236
237 /*
238  * Timeouts for various events in handing dynamic rules.
239  */
240 static u_int32_t dyn_ack_lifetime = 300;
241 static u_int32_t dyn_syn_lifetime = 20;
242 static u_int32_t dyn_fin_lifetime = 1;
243 static u_int32_t dyn_rst_lifetime = 1;
244 static u_int32_t dyn_udp_lifetime = 10;
245 static u_int32_t dyn_short_lifetime = 5;
246
247 /*
248  * Keepalives are sent if dyn_keepalive is set. They are sent every
249  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
250  * seconds of lifetime of a rule.
251  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
252  * than dyn_keepalive_period.
253  */
254
255 static u_int32_t dyn_keepalive_interval = 20;
256 static u_int32_t dyn_keepalive_period = 5;
257 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
258
259 static u_int32_t static_count;  /* # of static rules */
260 static u_int32_t static_len;    /* size in bytes of static rules */
261 static u_int32_t dyn_count;             /* # of dynamic rules */
262 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
263
264 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
265     &dyn_buckets, 0, "Number of dyn. buckets");
266 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
267     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
268 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
269     &dyn_count, 0, "Number of dyn. rules");
270 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
271     &dyn_max, 0, "Max number of dyn. rules");
272 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
273     &static_count, 0, "Number of static rules");
274 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
275     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
276 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
277     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
278 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
279     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
280 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
281     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
282 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
283     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
284 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
285     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
286 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
287     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
288
289 #ifdef INET6
290 /*
291  * IPv6 specific variables
292  */
293 SYSCTL_DECL(_net_inet6_ip6);
294
295 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
296 static struct sysctl_oid *ip6_fw_sysctl_tree;
297 #endif /* INET6 */
298 #endif /* SYSCTL_NODE */
299
300 static int fw_deny_unknown_exthdrs = 1;
301
302
303 /*
304  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
305  * Other macros just cast void * into the appropriate type
306  */
307 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
308 #define TCP(p)          ((struct tcphdr *)(p))
309 #define UDP(p)          ((struct udphdr *)(p))
310 #define ICMP(p)         ((struct icmphdr *)(p))
311 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
312
313 static __inline int
314 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
315 {
316         int type = icmp->icmp_type;
317
318         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
319 }
320
321 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
322     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
323
324 static int
325 is_icmp_query(struct icmphdr *icmp)
326 {
327         int type = icmp->icmp_type;
328
329         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
330 }
331 #undef TT
332
333 /*
334  * The following checks use two arrays of 8 or 16 bits to store the
335  * bits that we want set or clear, respectively. They are in the
336  * low and high half of cmd->arg1 or cmd->d[0].
337  *
338  * We scan options and store the bits we find set. We succeed if
339  *
340  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
341  *
342  * The code is sometimes optimized not to store additional variables.
343  */
344
345 static int
346 flags_match(ipfw_insn *cmd, u_int8_t bits)
347 {
348         u_char want_clear;
349         bits = ~bits;
350
351         if ( ((cmd->arg1 & 0xff) & bits) != 0)
352                 return 0; /* some bits we want set were clear */
353         want_clear = (cmd->arg1 >> 8) & 0xff;
354         if ( (want_clear & bits) != want_clear)
355                 return 0; /* some bits we want clear were set */
356         return 1;
357 }
358
359 static int
360 ipopts_match(struct ip *ip, ipfw_insn *cmd)
361 {
362         int optlen, bits = 0;
363         u_char *cp = (u_char *)(ip + 1);
364         int x = (ip->ip_hl << 2) - sizeof (struct ip);
365
366         for (; x > 0; x -= optlen, cp += optlen) {
367                 int opt = cp[IPOPT_OPTVAL];
368
369                 if (opt == IPOPT_EOL)
370                         break;
371                 if (opt == IPOPT_NOP)
372                         optlen = 1;
373                 else {
374                         optlen = cp[IPOPT_OLEN];
375                         if (optlen <= 0 || optlen > x)
376                                 return 0; /* invalid or truncated */
377                 }
378                 switch (opt) {
379
380                 default:
381                         break;
382
383                 case IPOPT_LSRR:
384                         bits |= IP_FW_IPOPT_LSRR;
385                         break;
386
387                 case IPOPT_SSRR:
388                         bits |= IP_FW_IPOPT_SSRR;
389                         break;
390
391                 case IPOPT_RR:
392                         bits |= IP_FW_IPOPT_RR;
393                         break;
394
395                 case IPOPT_TS:
396                         bits |= IP_FW_IPOPT_TS;
397                         break;
398                 }
399         }
400         return (flags_match(cmd, bits));
401 }
402
403 static int
404 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
405 {
406         int optlen, bits = 0;
407         u_char *cp = (u_char *)(tcp + 1);
408         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
409
410         for (; x > 0; x -= optlen, cp += optlen) {
411                 int opt = cp[0];
412                 if (opt == TCPOPT_EOL)
413                         break;
414                 if (opt == TCPOPT_NOP)
415                         optlen = 1;
416                 else {
417                         optlen = cp[1];
418                         if (optlen <= 0)
419                                 break;
420                 }
421
422                 switch (opt) {
423
424                 default:
425                         break;
426
427                 case TCPOPT_MAXSEG:
428                         bits |= IP_FW_TCPOPT_MSS;
429                         break;
430
431                 case TCPOPT_WINDOW:
432                         bits |= IP_FW_TCPOPT_WINDOW;
433                         break;
434
435                 case TCPOPT_SACK_PERMITTED:
436                 case TCPOPT_SACK:
437                         bits |= IP_FW_TCPOPT_SACK;
438                         break;
439
440                 case TCPOPT_TIMESTAMP:
441                         bits |= IP_FW_TCPOPT_TS;
442                         break;
443
444                 }
445         }
446         return (flags_match(cmd, bits));
447 }
448
449 static int
450 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
451 {
452         if (ifp == NULL)        /* no iface with this packet, match fails */
453                 return 0;
454         /* Check by name or by IP address */
455         if (cmd->name[0] != '\0') { /* match by name */
456                 /* Check name */
457                 if (cmd->p.glob) {
458                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
459                                 return(1);
460                 } else {
461                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
462                                 return(1);
463                 }
464         } else {
465                 struct ifaddr *ia;
466
467                 /* XXX lock? */
468                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
469                         if (ia->ifa_addr->sa_family != AF_INET)
470                                 continue;
471                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
472                             (ia->ifa_addr))->sin_addr.s_addr)
473                                 return(1);      /* match */
474                 }
475         }
476         return(0);      /* no match, fail ... */
477 }
478
479 /*
480  * The verify_path function checks if a route to the src exists and
481  * if it is reachable via ifp (when provided).
482  * 
483  * The 'verrevpath' option checks that the interface that an IP packet
484  * arrives on is the same interface that traffic destined for the
485  * packet's source address would be routed out of.  The 'versrcreach'
486  * option just checks that the source address is reachable via any route
487  * (except default) in the routing table.  These two are a measure to block
488  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
489  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
490  * is purposely reminiscent of the Cisco IOS command,
491  *
492  *   ip verify unicast reverse-path
493  *   ip verify unicast source reachable-via any
494  *
495  * which implements the same functionality. But note that syntax is
496  * misleading. The check may be performed on all IP packets whether unicast,
497  * multicast, or broadcast.
498  */
499 static int
500 verify_path(struct in_addr src, struct ifnet *ifp)
501 {
502         struct route ro;
503         struct sockaddr_in *dst;
504
505         bzero(&ro, sizeof(ro));
506
507         dst = (struct sockaddr_in *)&(ro.ro_dst);
508         dst->sin_family = AF_INET;
509         dst->sin_len = sizeof(*dst);
510         dst->sin_addr = src;
511         rtalloc_ign(&ro, RTF_CLONING);
512
513         if (ro.ro_rt == NULL)
514                 return 0;
515
516         /*
517          * If ifp is provided, check for equality with rtentry.
518          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
519          * in order to pass packets injected back by if_simloop():
520          * if useloopback == 1 routing entry (via lo0) for our own address
521          * may exist, so we need to handle routing assymetry.
522          */
523         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
524                 RTFREE(ro.ro_rt);
525                 return 0;
526         }
527
528         /* if no ifp provided, check if rtentry is not default route */
529         if (ifp == NULL &&
530              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
531                 RTFREE(ro.ro_rt);
532                 return 0;
533         }
534
535         /* or if this is a blackhole/reject route */
536         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
537                 RTFREE(ro.ro_rt);
538                 return 0;
539         }
540
541         /* found valid route */
542         RTFREE(ro.ro_rt);
543         return 1;
544 }
545
546 #ifdef INET6
547 /*
548  * ipv6 specific rules here...
549  */
550 static __inline int
551 icmp6type_match (int type, ipfw_insn_u32 *cmd)
552 {
553         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
554 }
555
556 static int
557 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
558 {
559         int i;
560         for (i=0; i <= cmd->o.arg1; ++i )
561                 if (curr_flow == cmd->d[i] )
562                         return 1;
563         return 0;
564 }
565
566 /* support for IP6_*_ME opcodes */
567 static int
568 search_ip6_addr_net (struct in6_addr * ip6_addr)
569 {
570         struct ifnet *mdc;
571         struct ifaddr *mdc2;
572         struct in6_ifaddr *fdm;
573         struct in6_addr copia;
574
575         TAILQ_FOREACH(mdc, &ifnet, if_link)
576                 TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
577                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
578                                 fdm = (struct in6_ifaddr *)mdc2;
579                                 copia = fdm->ia_addr.sin6_addr;
580                                 /* need for leaving scope_id in the sock_addr */
581                                 in6_clearscope(&copia);
582                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
583                                         return 1;
584                         }
585                 }
586         return 0;
587 }
588
589 static int
590 verify_path6(struct in6_addr *src, struct ifnet *ifp)
591 {
592         struct route_in6 ro;
593         struct sockaddr_in6 *dst;
594
595         bzero(&ro, sizeof(ro));
596
597         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
598         dst->sin6_family = AF_INET6;
599         dst->sin6_len = sizeof(*dst);
600         dst->sin6_addr = *src;
601         rtalloc_ign((struct route *)&ro, RTF_CLONING);
602
603         if (ro.ro_rt == NULL)
604                 return 0;
605
606         /* 
607          * if ifp is provided, check for equality with rtentry
608          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
609          * to support the case of sending packets to an address of our own.
610          * (where the former interface is the first argument of if_simloop()
611          *  (=ifp), the latter is lo0)
612          */
613         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
614                 RTFREE(ro.ro_rt);
615                 return 0;
616         }
617
618         /* if no ifp provided, check if rtentry is not default route */
619         if (ifp == NULL &&
620             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
621                 RTFREE(ro.ro_rt);
622                 return 0;
623         }
624
625         /* or if this is a blackhole/reject route */
626         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
627                 RTFREE(ro.ro_rt);
628                 return 0;
629         }
630
631         /* found valid route */
632         RTFREE(ro.ro_rt);
633         return 1;
634
635 }
636 static __inline int
637 hash_packet6(struct ipfw_flow_id *id)
638 {
639         u_int32_t i;
640         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
641             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
642             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
643             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
644             (id->dst_port) ^ (id->src_port);
645         return i;
646 }
647
648 static int
649 is_icmp6_query(int icmp6_type)
650 {
651         if ((icmp6_type <= ICMP6_MAXTYPE) &&
652             (icmp6_type == ICMP6_ECHO_REQUEST ||
653             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
654             icmp6_type == ICMP6_WRUREQUEST ||
655             icmp6_type == ICMP6_FQDN_QUERY ||
656             icmp6_type == ICMP6_NI_QUERY))
657                 return (1);
658
659         return (0);
660 }
661
662 static void
663 send_reject6(struct ip_fw_args *args, int code, u_int hlen)
664 {
665         if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
666                 struct ip6_hdr *ip6;
667                 struct tcphdr *tcp;
668                 tcp_seq ack, seq;
669                 int flags;
670                 struct {
671                         struct ip6_hdr ip6;
672                         struct tcphdr th;
673                 } ti;
674
675                 if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
676                         args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
677                         if (args->m == NULL)
678                                 return;
679                 }
680
681                 ip6 = mtod(args->m, struct ip6_hdr *);
682                 tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
683
684                 if ((tcp->th_flags & TH_RST) != 0) {
685                         m_freem(args->m);
686                         return;
687                 }
688
689                 ti.ip6 = *ip6;
690                 ti.th = *tcp;
691                 ti.th.th_seq = ntohl(ti.th.th_seq);
692                 ti.th.th_ack = ntohl(ti.th.th_ack);
693                 ti.ip6.ip6_nxt = IPPROTO_TCP;
694
695                 if (ti.th.th_flags & TH_ACK) {
696                         ack = 0;
697                         seq = ti.th.th_ack;
698                         flags = TH_RST;
699                 } else {
700                         ack = ti.th.th_seq;
701                         if (((args->m)->m_flags & M_PKTHDR) != 0) {
702                                 ack += (args->m)->m_pkthdr.len - hlen
703                                         - (ti.th.th_off << 2);
704                         } else if (ip6->ip6_plen) {
705                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
706                                         - hlen - (ti.th.th_off << 2);
707                         } else {
708                                 m_freem(args->m);
709                                 return;
710                         }
711                         if (tcp->th_flags & TH_SYN)
712                                 ack++;
713                         seq = 0;
714                         flags = TH_RST|TH_ACK;
715                 }
716                 bcopy(&ti, ip6, sizeof(ti));
717                 tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
718                         args->m, ack, seq, flags);
719
720         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
721                 icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
722
723         } else
724                 m_freem(args->m);
725
726         args->m = NULL;
727 }
728
729 #endif /* INET6 */
730
731 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
732
733 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
734 #define SNP(buf) buf, sizeof(buf)
735
736 /*
737  * We enter here when we have a rule with O_LOG.
738  * XXX this function alone takes about 2Kbytes of code!
739  */
740 static void
741 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
742         struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg)
743 {
744         struct ether_header *eh = args->eh;
745         char *action;
746         int limit_reached = 0;
747         char action2[40], proto[128], fragment[32];
748
749         fragment[0] = '\0';
750         proto[0] = '\0';
751
752         if (f == NULL) {        /* bogus pkt */
753                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
754                         return;
755                 norule_counter++;
756                 if (norule_counter == verbose_limit)
757                         limit_reached = verbose_limit;
758                 action = "Refuse";
759         } else {        /* O_LOG is the first action, find the real one */
760                 ipfw_insn *cmd = ACTION_PTR(f);
761                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
762
763                 if (l->max_log != 0 && l->log_left == 0)
764                         return;
765                 l->log_left--;
766                 if (l->log_left == 0)
767                         limit_reached = l->max_log;
768                 cmd += F_LEN(cmd);      /* point to first action */
769                 if (cmd->opcode == O_ALTQ) {
770                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
771
772                         snprintf(SNPARGS(action2, 0), "Altq %d",
773                                 altq->qid);
774                         cmd += F_LEN(cmd);
775                 }
776                 if (cmd->opcode == O_PROB)
777                         cmd += F_LEN(cmd);
778
779                 if (cmd->opcode == O_TAG)
780                         cmd += F_LEN(cmd);
781
782                 action = action2;
783                 switch (cmd->opcode) {
784                 case O_DENY:
785                         action = "Deny";
786                         break;
787
788                 case O_REJECT:
789                         if (cmd->arg1==ICMP_REJECT_RST)
790                                 action = "Reset";
791                         else if (cmd->arg1==ICMP_UNREACH_HOST)
792                                 action = "Reject";
793                         else
794                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
795                                         cmd->arg1);
796                         break;
797
798                 case O_UNREACH6:
799                         if (cmd->arg1==ICMP6_UNREACH_RST)
800                                 action = "Reset";
801                         else
802                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
803                                         cmd->arg1);
804                         break;
805
806                 case O_ACCEPT:
807                         action = "Accept";
808                         break;
809                 case O_COUNT:
810                         action = "Count";
811                         break;
812                 case O_DIVERT:
813                         snprintf(SNPARGS(action2, 0), "Divert %d",
814                                 cmd->arg1);
815                         break;
816                 case O_TEE:
817                         snprintf(SNPARGS(action2, 0), "Tee %d",
818                                 cmd->arg1);
819                         break;
820                 case O_SKIPTO:
821                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
822                                 cmd->arg1);
823                         break;
824                 case O_PIPE:
825                         snprintf(SNPARGS(action2, 0), "Pipe %d",
826                                 cmd->arg1);
827                         break;
828                 case O_QUEUE:
829                         snprintf(SNPARGS(action2, 0), "Queue %d",
830                                 cmd->arg1);
831                         break;
832                 case O_FORWARD_IP: {
833                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
834                         int len;
835                         struct in_addr dummyaddr;
836                         if (sa->sa.sin_addr.s_addr == INADDR_ANY)
837                                 dummyaddr.s_addr = htonl(tablearg);
838                         else
839                                 dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
840
841                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
842                                 inet_ntoa(dummyaddr));
843
844                         if (sa->sa.sin_port)
845                                 snprintf(SNPARGS(action2, len), ":%d",
846                                     sa->sa.sin_port);
847                         }
848                         break;
849                 case O_NETGRAPH:
850                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
851                                 cmd->arg1);
852                         break;
853                 case O_NGTEE:
854                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
855                                 cmd->arg1);
856                         break;
857                 default:
858                         action = "UNKNOWN";
859                         break;
860                 }
861         }
862
863         if (hlen == 0) {        /* non-ip */
864                 snprintf(SNPARGS(proto, 0), "MAC");
865
866         } else {
867                 int len;
868                 char src[48], dst[48];
869                 struct icmphdr *icmp;
870                 struct tcphdr *tcp;
871                 struct udphdr *udp;
872                 /* Initialize to make compiler happy. */
873                 struct ip *ip = NULL;
874 #ifdef INET6
875                 struct ip6_hdr *ip6 = NULL;
876                 struct icmp6_hdr *icmp6;
877 #endif
878                 src[0] = '\0';
879                 dst[0] = '\0';
880 #ifdef INET6
881                 if (args->f_id.addr_type == 6) {
882                         snprintf(src, sizeof(src), "[%s]",
883                             ip6_sprintf(&args->f_id.src_ip6));
884                         snprintf(dst, sizeof(dst), "[%s]",
885                             ip6_sprintf(&args->f_id.dst_ip6));
886
887                         ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
888                         tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
889                         udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
890                 } else
891 #endif
892                 {
893                         ip = mtod(m, struct ip *);
894                         tcp = L3HDR(struct tcphdr, ip);
895                         udp = L3HDR(struct udphdr, ip);
896
897                         inet_ntoa_r(ip->ip_src, src);
898                         inet_ntoa_r(ip->ip_dst, dst);
899                 }
900
901                 switch (args->f_id.proto) {
902                 case IPPROTO_TCP:
903                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
904                         if (offset == 0)
905                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
906                                     ntohs(tcp->th_sport),
907                                     dst,
908                                     ntohs(tcp->th_dport));
909                         else
910                                 snprintf(SNPARGS(proto, len), " %s", dst);
911                         break;
912
913                 case IPPROTO_UDP:
914                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
915                         if (offset == 0)
916                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
917                                     ntohs(udp->uh_sport),
918                                     dst,
919                                     ntohs(udp->uh_dport));
920                         else
921                                 snprintf(SNPARGS(proto, len), " %s", dst);
922                         break;
923
924                 case IPPROTO_ICMP:
925                         icmp = L3HDR(struct icmphdr, ip);
926                         if (offset == 0)
927                                 len = snprintf(SNPARGS(proto, 0),
928                                     "ICMP:%u.%u ",
929                                     icmp->icmp_type, icmp->icmp_code);
930                         else
931                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
932                         len += snprintf(SNPARGS(proto, len), "%s", src);
933                         snprintf(SNPARGS(proto, len), " %s", dst);
934                         break;
935 #ifdef INET6
936                 case IPPROTO_ICMPV6:
937                         icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
938                         if (offset == 0)
939                                 len = snprintf(SNPARGS(proto, 0),
940                                     "ICMPv6:%u.%u ",
941                                     icmp6->icmp6_type, icmp6->icmp6_code);
942                         else
943                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
944                         len += snprintf(SNPARGS(proto, len), "%s", src);
945                         snprintf(SNPARGS(proto, len), " %s", dst);
946                         break;
947 #endif
948                 default:
949                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
950                             args->f_id.proto, src);
951                         snprintf(SNPARGS(proto, len), " %s", dst);
952                         break;
953                 }
954
955 #ifdef INET6
956                 if (args->f_id.addr_type == 6) {
957                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
958                                 snprintf(SNPARGS(fragment, 0),
959                                     " (frag %08x:%d@%d%s)",
960                                     args->f_id.frag_id6,
961                                     ntohs(ip6->ip6_plen) - hlen,
962                                     ntohs(offset & IP6F_OFF_MASK) << 3,
963                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
964                 } else
965 #endif
966                 {
967                         int ip_off, ip_len;
968                         if (eh != NULL) { /* layer 2 packets are as on the wire */
969                                 ip_off = ntohs(ip->ip_off);
970                                 ip_len = ntohs(ip->ip_len);
971                         } else {
972                                 ip_off = ip->ip_off;
973                                 ip_len = ip->ip_len;
974                         }
975                         if (ip_off & (IP_MF | IP_OFFMASK))
976                                 snprintf(SNPARGS(fragment, 0),
977                                     " (frag %d:%d@%d%s)",
978                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
979                                     offset << 3,
980                                     (ip_off & IP_MF) ? "+" : "");
981                 }
982         }
983         if (oif || m->m_pkthdr.rcvif)
984                 log(LOG_SECURITY | LOG_INFO,
985                     "ipfw: %d %s %s %s via %s%s\n",
986                     f ? f->rulenum : -1,
987                     action, proto, oif ? "out" : "in",
988                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
989                     fragment);
990         else
991                 log(LOG_SECURITY | LOG_INFO,
992                     "ipfw: %d %s %s [no if info]%s\n",
993                     f ? f->rulenum : -1,
994                     action, proto, fragment);
995         if (limit_reached)
996                 log(LOG_SECURITY | LOG_NOTICE,
997                     "ipfw: limit %d reached on entry %d\n",
998                     limit_reached, f ? f->rulenum : -1);
999 }
1000
1001 /*
1002  * IMPORTANT: the hash function for dynamic rules must be commutative
1003  * in source and destination (ip,port), because rules are bidirectional
1004  * and we want to find both in the same bucket.
1005  */
1006 static __inline int
1007 hash_packet(struct ipfw_flow_id *id)
1008 {
1009         u_int32_t i;
1010
1011 #ifdef INET6
1012         if (IS_IP6_FLOW_ID(id)) 
1013                 i = hash_packet6(id);
1014         else
1015 #endif /* INET6 */
1016         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1017         i &= (curr_dyn_buckets - 1);
1018         return i;
1019 }
1020
1021 /**
1022  * unlink a dynamic rule from a chain. prev is a pointer to
1023  * the previous one, q is a pointer to the rule to delete,
1024  * head is a pointer to the head of the queue.
1025  * Modifies q and potentially also head.
1026  */
1027 #define UNLINK_DYN_RULE(prev, head, q) {                                \
1028         ipfw_dyn_rule *old_q = q;                                       \
1029                                                                         \
1030         /* remove a refcount to the parent */                           \
1031         if (q->dyn_type == O_LIMIT)                                     \
1032                 q->parent->count--;                                     \
1033         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1034                 (q->id.src_ip), (q->id.src_port),                       \
1035                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
1036         if (prev != NULL)                                               \
1037                 prev->next = q = q->next;                               \
1038         else                                                            \
1039                 head = q = q->next;                                     \
1040         dyn_count--;                                                    \
1041         uma_zfree(ipfw_dyn_rule_zone, old_q); }
1042
1043 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1044
1045 /**
1046  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1047  *
1048  * If keep_me == NULL, rules are deleted even if not expired,
1049  * otherwise only expired rules are removed.
1050  *
1051  * The value of the second parameter is also used to point to identify
1052  * a rule we absolutely do not want to remove (e.g. because we are
1053  * holding a reference to it -- this is the case with O_LIMIT_PARENT
1054  * rules). The pointer is only used for comparison, so any non-null
1055  * value will do.
1056  */
1057 static void
1058 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1059 {
1060         static u_int32_t last_remove = 0;
1061
1062 #define FORCE (keep_me == NULL)
1063
1064         ipfw_dyn_rule *prev, *q;
1065         int i, pass = 0, max_pass = 0;
1066
1067         IPFW_DYN_LOCK_ASSERT();
1068
1069         if (ipfw_dyn_v == NULL || dyn_count == 0)
1070                 return;
1071         /* do not expire more than once per second, it is useless */
1072         if (!FORCE && last_remove == time_uptime)
1073                 return;
1074         last_remove = time_uptime;
1075
1076         /*
1077          * because O_LIMIT refer to parent rules, during the first pass only
1078          * remove child and mark any pending LIMIT_PARENT, and remove
1079          * them in a second pass.
1080          */
1081 next_pass:
1082         for (i = 0 ; i < curr_dyn_buckets ; i++) {
1083                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1084                         /*
1085                          * Logic can become complex here, so we split tests.
1086                          */
1087                         if (q == keep_me)
1088                                 goto next;
1089                         if (rule != NULL && rule != q->rule)
1090                                 goto next; /* not the one we are looking for */
1091                         if (q->dyn_type == O_LIMIT_PARENT) {
1092                                 /*
1093                                  * handle parent in the second pass,
1094                                  * record we need one.
1095                                  */
1096                                 max_pass = 1;
1097                                 if (pass == 0)
1098                                         goto next;
1099                                 if (FORCE && q->count != 0 ) {
1100                                         /* XXX should not happen! */
1101                                         printf("ipfw: OUCH! cannot remove rule,"
1102                                              " count %d\n", q->count);
1103                                 }
1104                         } else {
1105                                 if (!FORCE &&
1106                                     !TIME_LEQ( q->expire, time_uptime ))
1107                                         goto next;
1108                         }
1109              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1110                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1111                      continue;
1112              }
1113 next:
1114                         prev=q;
1115                         q=q->next;
1116                 }
1117         }
1118         if (pass++ < max_pass)
1119                 goto next_pass;
1120 }
1121
1122
1123 /**
1124  * lookup a dynamic rule.
1125  */
1126 static ipfw_dyn_rule *
1127 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1128         struct tcphdr *tcp)
1129 {
1130         /*
1131          * stateful ipfw extensions.
1132          * Lookup into dynamic session queue
1133          */
1134 #define MATCH_REVERSE   0
1135 #define MATCH_FORWARD   1
1136 #define MATCH_NONE      2
1137 #define MATCH_UNKNOWN   3
1138         int i, dir = MATCH_NONE;
1139         ipfw_dyn_rule *prev, *q=NULL;
1140
1141         IPFW_DYN_LOCK_ASSERT();
1142
1143         if (ipfw_dyn_v == NULL)
1144                 goto done;      /* not found */
1145         i = hash_packet( pkt );
1146         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1147                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1148                         goto next;
1149                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1150                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1151                         continue;
1152                 }
1153                 if (pkt->proto == q->id.proto &&
1154                     q->dyn_type != O_LIMIT_PARENT) {
1155                         if (IS_IP6_FLOW_ID(pkt)) {
1156                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1157                                 &(q->id.src_ip6)) &&
1158                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1159                                 &(q->id.dst_ip6)) &&
1160                             pkt->src_port == q->id.src_port &&
1161                             pkt->dst_port == q->id.dst_port ) {
1162                                 dir = MATCH_FORWARD;
1163                                 break;
1164                             }
1165                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1166                                     &(q->id.dst_ip6)) &&
1167                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1168                                     &(q->id.src_ip6)) &&
1169                                 pkt->src_port == q->id.dst_port &&
1170                                 pkt->dst_port == q->id.src_port ) {
1171                                     dir = MATCH_REVERSE;
1172                                     break;
1173                             }
1174                         } else {
1175                             if (pkt->src_ip == q->id.src_ip &&
1176                                 pkt->dst_ip == q->id.dst_ip &&
1177                                 pkt->src_port == q->id.src_port &&
1178                                 pkt->dst_port == q->id.dst_port ) {
1179                                     dir = MATCH_FORWARD;
1180                                     break;
1181                             }
1182                             if (pkt->src_ip == q->id.dst_ip &&
1183                                 pkt->dst_ip == q->id.src_ip &&
1184                                 pkt->src_port == q->id.dst_port &&
1185                                 pkt->dst_port == q->id.src_port ) {
1186                                     dir = MATCH_REVERSE;
1187                                     break;
1188                             }
1189                         }
1190                 }
1191 next:
1192                 prev = q;
1193                 q = q->next;
1194         }
1195         if (q == NULL)
1196                 goto done; /* q = NULL, not found */
1197
1198         if ( prev != NULL) { /* found and not in front */
1199                 prev->next = q->next;
1200                 q->next = ipfw_dyn_v[i];
1201                 ipfw_dyn_v[i] = q;
1202         }
1203         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1204                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1205
1206 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
1207 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
1208                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1209                 switch (q->state) {
1210                 case TH_SYN:                            /* opening */
1211                         q->expire = time_uptime + dyn_syn_lifetime;
1212                         break;
1213
1214                 case BOTH_SYN:                  /* move to established */
1215                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
1216                 case BOTH_SYN | (TH_FIN << 8) :
1217                         if (tcp) {
1218 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1219                             u_int32_t ack = ntohl(tcp->th_ack);
1220                             if (dir == MATCH_FORWARD) {
1221                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1222                                     q->ack_fwd = ack;
1223                                 else { /* ignore out-of-sequence */
1224                                     break;
1225                                 }
1226                             } else {
1227                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1228                                     q->ack_rev = ack;
1229                                 else { /* ignore out-of-sequence */
1230                                     break;
1231                                 }
1232                             }
1233                         }
1234                         q->expire = time_uptime + dyn_ack_lifetime;
1235                         break;
1236
1237                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
1238                         if (dyn_fin_lifetime >= dyn_keepalive_period)
1239                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
1240                         q->expire = time_uptime + dyn_fin_lifetime;
1241                         break;
1242
1243                 default:
1244 #if 0
1245                         /*
1246                          * reset or some invalid combination, but can also
1247                          * occur if we use keep-state the wrong way.
1248                          */
1249                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1250                                 printf("invalid state: 0x%x\n", q->state);
1251 #endif
1252                         if (dyn_rst_lifetime >= dyn_keepalive_period)
1253                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
1254                         q->expire = time_uptime + dyn_rst_lifetime;
1255                         break;
1256                 }
1257         } else if (pkt->proto == IPPROTO_UDP) {
1258                 q->expire = time_uptime + dyn_udp_lifetime;
1259         } else {
1260                 /* other protocols */
1261                 q->expire = time_uptime + dyn_short_lifetime;
1262         }
1263 done:
1264         if (match_direction)
1265                 *match_direction = dir;
1266         return q;
1267 }
1268
1269 static ipfw_dyn_rule *
1270 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1271         struct tcphdr *tcp)
1272 {
1273         ipfw_dyn_rule *q;
1274
1275         IPFW_DYN_LOCK();
1276         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1277         if (q == NULL)
1278                 IPFW_DYN_UNLOCK();
1279         /* NB: return table locked when q is not NULL */
1280         return q;
1281 }
1282
1283 static void
1284 realloc_dynamic_table(void)
1285 {
1286         IPFW_DYN_LOCK_ASSERT();
1287
1288         /*
1289          * Try reallocation, make sure we have a power of 2 and do
1290          * not allow more than 64k entries. In case of overflow,
1291          * default to 1024.
1292          */
1293
1294         if (dyn_buckets > 65536)
1295                 dyn_buckets = 1024;
1296         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1297                 dyn_buckets = curr_dyn_buckets; /* reset */
1298                 return;
1299         }
1300         curr_dyn_buckets = dyn_buckets;
1301         if (ipfw_dyn_v != NULL)
1302                 free(ipfw_dyn_v, M_IPFW);
1303         for (;;) {
1304                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1305                        M_IPFW, M_NOWAIT | M_ZERO);
1306                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1307                         break;
1308                 curr_dyn_buckets /= 2;
1309         }
1310 }
1311
1312 /**
1313  * Install state of type 'type' for a dynamic session.
1314  * The hash table contains two type of rules:
1315  * - regular rules (O_KEEP_STATE)
1316  * - rules for sessions with limited number of sess per user
1317  *   (O_LIMIT). When they are created, the parent is
1318  *   increased by 1, and decreased on delete. In this case,
1319  *   the third parameter is the parent rule and not the chain.
1320  * - "parent" rules for the above (O_LIMIT_PARENT).
1321  */
1322 static ipfw_dyn_rule *
1323 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1324 {
1325         ipfw_dyn_rule *r;
1326         int i;
1327
1328         IPFW_DYN_LOCK_ASSERT();
1329
1330         if (ipfw_dyn_v == NULL ||
1331             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1332                 realloc_dynamic_table();
1333                 if (ipfw_dyn_v == NULL)
1334                         return NULL; /* failed ! */
1335         }
1336         i = hash_packet(id);
1337
1338         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1339         if (r == NULL) {
1340                 printf ("ipfw: sorry cannot allocate state\n");
1341                 return NULL;
1342         }
1343
1344         /* increase refcount on parent, and set pointer */
1345         if (dyn_type == O_LIMIT) {
1346                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1347                 if ( parent->dyn_type != O_LIMIT_PARENT)
1348                         panic("invalid parent");
1349                 parent->count++;
1350                 r->parent = parent;
1351                 rule = parent->rule;
1352         }
1353
1354         r->id = *id;
1355         r->expire = time_uptime + dyn_syn_lifetime;
1356         r->rule = rule;
1357         r->dyn_type = dyn_type;
1358         r->pcnt = r->bcnt = 0;
1359         r->count = 0;
1360
1361         r->bucket = i;
1362         r->next = ipfw_dyn_v[i];
1363         ipfw_dyn_v[i] = r;
1364         dyn_count++;
1365         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1366            dyn_type,
1367            (r->id.src_ip), (r->id.src_port),
1368            (r->id.dst_ip), (r->id.dst_port),
1369            dyn_count ); )
1370         return r;
1371 }
1372
1373 /**
1374  * lookup dynamic parent rule using pkt and rule as search keys.
1375  * If the lookup fails, then install one.
1376  */
1377 static ipfw_dyn_rule *
1378 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1379 {
1380         ipfw_dyn_rule *q;
1381         int i;
1382
1383         IPFW_DYN_LOCK_ASSERT();
1384
1385         if (ipfw_dyn_v) {
1386                 int is_v6 = IS_IP6_FLOW_ID(pkt);
1387                 i = hash_packet( pkt );
1388                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1389                         if (q->dyn_type == O_LIMIT_PARENT &&
1390                             rule== q->rule &&
1391                             pkt->proto == q->id.proto &&
1392                             pkt->src_port == q->id.src_port &&
1393                             pkt->dst_port == q->id.dst_port &&
1394                             (
1395                                 (is_v6 &&
1396                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1397                                         &(q->id.src_ip6)) &&
1398                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1399                                         &(q->id.dst_ip6))) ||
1400                                 (!is_v6 &&
1401                                  pkt->src_ip == q->id.src_ip &&
1402                                  pkt->dst_ip == q->id.dst_ip)
1403                             )
1404                         ) {
1405                                 q->expire = time_uptime + dyn_short_lifetime;
1406                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1407                                 return q;
1408                         }
1409         }
1410         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1411 }
1412
1413 /**
1414  * Install dynamic state for rule type cmd->o.opcode
1415  *
1416  * Returns 1 (failure) if state is not installed because of errors or because
1417  * session limitations are enforced.
1418  */
1419 static int
1420 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1421     struct ip_fw_args *args, uint32_t tablearg)
1422 {
1423         static int last_log;
1424
1425         ipfw_dyn_rule *q;
1426
1427         DEB(
1428         printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1429             __func__, cmd->o.opcode,
1430             (args->f_id.src_ip), (args->f_id.src_port),
1431             (args->f_id.dst_ip), (args->f_id.dst_port));
1432         )
1433
1434         IPFW_DYN_LOCK();
1435
1436         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1437
1438         if (q != NULL) {        /* should never occur */
1439                 if (last_log != time_uptime) {
1440                         last_log = time_uptime;
1441                         printf("ipfw: %s: entry already present, done\n",
1442                             __func__);
1443                 }
1444                 IPFW_DYN_UNLOCK();
1445                 return (0);
1446         }
1447
1448         if (dyn_count >= dyn_max)
1449                 /* Run out of slots, try to remove any expired rule. */
1450                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1451
1452         if (dyn_count >= dyn_max) {
1453                 if (last_log != time_uptime) {
1454                         last_log = time_uptime;
1455                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
1456                 }
1457                 IPFW_DYN_UNLOCK();
1458                 return (1);     /* cannot install, notify caller */
1459         }
1460
1461         switch (cmd->o.opcode) {
1462         case O_KEEP_STATE:      /* bidir rule */
1463                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1464                 break;
1465
1466         case O_LIMIT: {         /* limit number of sessions */
1467                 struct ipfw_flow_id id;
1468                 ipfw_dyn_rule *parent;
1469                 uint32_t conn_limit;
1470                 uint16_t limit_mask = cmd->limit_mask;
1471
1472                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1473                     tablearg : cmd->conn_limit;
1474                   
1475                 DEB(
1476                 if (cmd->conn_limit == IP_FW_TABLEARG)
1477                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1478                             "(tablearg)\n", __func__, conn_limit);
1479                 else
1480                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1481                             __func__, conn_limit);
1482                 )
1483
1484                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1485                 id.proto = args->f_id.proto;
1486                 id.addr_type = args->f_id.addr_type;
1487
1488                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
1489                         if (limit_mask & DYN_SRC_ADDR)
1490                                 id.src_ip6 = args->f_id.src_ip6;
1491                         if (limit_mask & DYN_DST_ADDR)
1492                                 id.dst_ip6 = args->f_id.dst_ip6;
1493                 } else {
1494                         if (limit_mask & DYN_SRC_ADDR)
1495                                 id.src_ip = args->f_id.src_ip;
1496                         if (limit_mask & DYN_DST_ADDR)
1497                                 id.dst_ip = args->f_id.dst_ip;
1498                 }
1499                 if (limit_mask & DYN_SRC_PORT)
1500                         id.src_port = args->f_id.src_port;
1501                 if (limit_mask & DYN_DST_PORT)
1502                         id.dst_port = args->f_id.dst_port;
1503                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1504                         printf("ipfw: %s: add parent failed\n", __func__);
1505                         IPFW_DYN_UNLOCK();
1506                         return (1);
1507                 }
1508
1509                 if (parent->count >= conn_limit) {
1510                         /* See if we can remove some expired rule. */
1511                         remove_dyn_rule(rule, parent);
1512                         if (parent->count >= conn_limit) {
1513                                 if (fw_verbose && last_log != time_uptime) {
1514                                         last_log = time_uptime;
1515                                         log(LOG_SECURITY | LOG_DEBUG,
1516                                             "drop session, too many entries\n");
1517                                 }
1518                                 IPFW_DYN_UNLOCK();
1519                                 return (1);
1520                         }
1521                 }
1522                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1523                 break;
1524         }
1525         default:
1526                 printf("ipfw: %s: unknown dynamic rule type %u\n",
1527                     __func__, cmd->o.opcode);
1528                 IPFW_DYN_UNLOCK();
1529                 return (1);
1530         }
1531
1532         /* XXX just set lifetime */
1533         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1534
1535         IPFW_DYN_UNLOCK();
1536         return (0);
1537 }
1538
1539 /*
1540  * Generate a TCP packet, containing either a RST or a keepalive.
1541  * When flags & TH_RST, we are sending a RST packet, because of a
1542  * "reset" action matched the packet.
1543  * Otherwise we are sending a keepalive, and flags & TH_
1544  */
1545 static struct mbuf *
1546 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1547 {
1548         struct mbuf *m;
1549         struct ip *ip;
1550         struct tcphdr *tcp;
1551
1552         MGETHDR(m, M_DONTWAIT, MT_DATA);
1553         if (m == 0)
1554                 return (NULL);
1555         m->m_pkthdr.rcvif = (struct ifnet *)0;
1556         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1557         m->m_data += max_linkhdr;
1558
1559         ip = mtod(m, struct ip *);
1560         bzero(ip, m->m_len);
1561         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1562         ip->ip_p = IPPROTO_TCP;
1563         tcp->th_off = 5;
1564         /*
1565          * Assume we are sending a RST (or a keepalive in the reverse
1566          * direction), swap src and destination addresses and ports.
1567          */
1568         ip->ip_src.s_addr = htonl(id->dst_ip);
1569         ip->ip_dst.s_addr = htonl(id->src_ip);
1570         tcp->th_sport = htons(id->dst_port);
1571         tcp->th_dport = htons(id->src_port);
1572         if (flags & TH_RST) {   /* we are sending a RST */
1573                 if (flags & TH_ACK) {
1574                         tcp->th_seq = htonl(ack);
1575                         tcp->th_ack = htonl(0);
1576                         tcp->th_flags = TH_RST;
1577                 } else {
1578                         if (flags & TH_SYN)
1579                                 seq++;
1580                         tcp->th_seq = htonl(0);
1581                         tcp->th_ack = htonl(seq);
1582                         tcp->th_flags = TH_RST | TH_ACK;
1583                 }
1584         } else {
1585                 /*
1586                  * We are sending a keepalive. flags & TH_SYN determines
1587                  * the direction, forward if set, reverse if clear.
1588                  * NOTE: seq and ack are always assumed to be correct
1589                  * as set by the caller. This may be confusing...
1590                  */
1591                 if (flags & TH_SYN) {
1592                         /*
1593                          * we have to rewrite the correct addresses!
1594                          */
1595                         ip->ip_dst.s_addr = htonl(id->dst_ip);
1596                         ip->ip_src.s_addr = htonl(id->src_ip);
1597                         tcp->th_dport = htons(id->dst_port);
1598                         tcp->th_sport = htons(id->src_port);
1599                 }
1600                 tcp->th_seq = htonl(seq);
1601                 tcp->th_ack = htonl(ack);
1602                 tcp->th_flags = TH_ACK;
1603         }
1604         /*
1605          * set ip_len to the payload size so we can compute
1606          * the tcp checksum on the pseudoheader
1607          * XXX check this, could save a couple of words ?
1608          */
1609         ip->ip_len = htons(sizeof(struct tcphdr));
1610         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1611         /*
1612          * now fill fields left out earlier
1613          */
1614         ip->ip_ttl = ip_defttl;
1615         ip->ip_len = m->m_pkthdr.len;
1616         m->m_flags |= M_SKIP_FIREWALL;
1617         return (m);
1618 }
1619
1620 /*
1621  * sends a reject message, consuming the mbuf passed as an argument.
1622  */
1623 static void
1624 send_reject(struct ip_fw_args *args, int code, int ip_len)
1625 {
1626
1627         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1628                 /* We need the IP header in host order for icmp_error(). */
1629                 if (args->eh != NULL) {
1630                         struct ip *ip = mtod(args->m, struct ip *);
1631                         ip->ip_len = ntohs(ip->ip_len);
1632                         ip->ip_off = ntohs(ip->ip_off);
1633                 }
1634                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1635         } else if (args->f_id.proto == IPPROTO_TCP) {
1636                 struct tcphdr *const tcp =
1637                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1638                 if ( (tcp->th_flags & TH_RST) == 0) {
1639                         struct mbuf *m;
1640                         m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1641                                 ntohl(tcp->th_ack),
1642                                 tcp->th_flags | TH_RST);
1643                         if (m != NULL)
1644                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1645                 }
1646                 m_freem(args->m);
1647         } else
1648                 m_freem(args->m);
1649         args->m = NULL;
1650 }
1651
1652 /**
1653  *
1654  * Given an ip_fw *, lookup_next_rule will return a pointer
1655  * to the next rule, which can be either the jump
1656  * target (for skipto instructions) or the next one in the list (in
1657  * all other cases including a missing jump target).
1658  * The result is also written in the "next_rule" field of the rule.
1659  * Backward jumps are not allowed, so start looking from the next
1660  * rule...
1661  *
1662  * This never returns NULL -- in case we do not have an exact match,
1663  * the next rule is returned. When the ruleset is changed,
1664  * pointers are flushed so we are always correct.
1665  */
1666
1667 static struct ip_fw *
1668 lookup_next_rule(struct ip_fw *me)
1669 {
1670         struct ip_fw *rule = NULL;
1671         ipfw_insn *cmd;
1672
1673         /* look for action, in case it is a skipto */
1674         cmd = ACTION_PTR(me);
1675         if (cmd->opcode == O_LOG)
1676                 cmd += F_LEN(cmd);
1677         if (cmd->opcode == O_ALTQ)
1678                 cmd += F_LEN(cmd);
1679         if (cmd->opcode == O_TAG)
1680                 cmd += F_LEN(cmd);
1681         if ( cmd->opcode == O_SKIPTO )
1682                 for (rule = me->next; rule ; rule = rule->next)
1683                         if (rule->rulenum >= cmd->arg1)
1684                                 break;
1685         if (rule == NULL)                       /* failure or not a skipto */
1686                 rule = me->next;
1687         me->next_rule = rule;
1688         return rule;
1689 }
1690
1691 static int
1692 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1693         uint8_t mlen, uint32_t value)
1694 {
1695         struct radix_node_head *rnh;
1696         struct table_entry *ent;
1697
1698         if (tbl >= IPFW_TABLES_MAX)
1699                 return (EINVAL);
1700         rnh = ch->tables[tbl];
1701         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1702         if (ent == NULL)
1703                 return (ENOMEM);
1704         ent->value = value;
1705         ent->addr.sin_len = ent->mask.sin_len = 8;
1706         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1707         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1708         IPFW_WLOCK(&layer3_chain);
1709         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1710             NULL) {
1711                 IPFW_WUNLOCK(&layer3_chain);
1712                 free(ent, M_IPFW_TBL);
1713                 return (EEXIST);
1714         }
1715         IPFW_WUNLOCK(&layer3_chain);
1716         return (0);
1717 }
1718
1719 static int
1720 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1721         uint8_t mlen)
1722 {
1723         struct radix_node_head *rnh;
1724         struct table_entry *ent;
1725         struct sockaddr_in sa, mask;
1726
1727         if (tbl >= IPFW_TABLES_MAX)
1728                 return (EINVAL);
1729         rnh = ch->tables[tbl];
1730         sa.sin_len = mask.sin_len = 8;
1731         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1732         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1733         IPFW_WLOCK(ch);
1734         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1735         if (ent == NULL) {
1736                 IPFW_WUNLOCK(ch);
1737                 return (ESRCH);
1738         }
1739         IPFW_WUNLOCK(ch);
1740         free(ent, M_IPFW_TBL);
1741         return (0);
1742 }
1743
1744 static int
1745 flush_table_entry(struct radix_node *rn, void *arg)
1746 {
1747         struct radix_node_head * const rnh = arg;
1748         struct table_entry *ent;
1749
1750         ent = (struct table_entry *)
1751             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1752         if (ent != NULL)
1753                 free(ent, M_IPFW_TBL);
1754         return (0);
1755 }
1756
1757 static int
1758 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1759 {
1760         struct radix_node_head *rnh;
1761
1762         IPFW_WLOCK_ASSERT(ch);
1763
1764         if (tbl >= IPFW_TABLES_MAX)
1765                 return (EINVAL);
1766         rnh = ch->tables[tbl];
1767         KASSERT(rnh != NULL, ("NULL IPFW table"));
1768         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1769         return (0);
1770 }
1771
1772 static void
1773 flush_tables(struct ip_fw_chain *ch)
1774 {
1775         uint16_t tbl;
1776
1777         IPFW_WLOCK_ASSERT(ch);
1778
1779         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1780                 flush_table(ch, tbl);
1781 }
1782
1783 static int
1784 init_tables(struct ip_fw_chain *ch)
1785
1786         int i;
1787         uint16_t j;
1788
1789         for (i = 0; i < IPFW_TABLES_MAX; i++) {
1790                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
1791                         for (j = 0; j < i; j++) {
1792                                 (void) flush_table(ch, j);
1793                         }
1794                         return (ENOMEM);
1795                 }
1796         }
1797         return (0);
1798 }
1799
1800 static int
1801 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1802         uint32_t *val)
1803 {
1804         struct radix_node_head *rnh;
1805         struct table_entry *ent;
1806         struct sockaddr_in sa;
1807
1808         if (tbl >= IPFW_TABLES_MAX)
1809                 return (0);
1810         rnh = ch->tables[tbl];
1811         sa.sin_len = 8;
1812         sa.sin_addr.s_addr = addr;
1813         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1814         if (ent != NULL) {
1815                 *val = ent->value;
1816                 return (1);
1817         }
1818         return (0);
1819 }
1820
1821 static int
1822 count_table_entry(struct radix_node *rn, void *arg)
1823 {
1824         u_int32_t * const cnt = arg;
1825
1826         (*cnt)++;
1827         return (0);
1828 }
1829
1830 static int
1831 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1832 {
1833         struct radix_node_head *rnh;
1834
1835         if (tbl >= IPFW_TABLES_MAX)
1836                 return (EINVAL);
1837         rnh = ch->tables[tbl];
1838         *cnt = 0;
1839         rnh->rnh_walktree(rnh, count_table_entry, cnt);
1840         return (0);
1841 }
1842
1843 static int
1844 dump_table_entry(struct radix_node *rn, void *arg)
1845 {
1846         struct table_entry * const n = (struct table_entry *)rn;
1847         ipfw_table * const tbl = arg;
1848         ipfw_table_entry *ent;
1849
1850         if (tbl->cnt == tbl->size)
1851                 return (1);
1852         ent = &tbl->ent[tbl->cnt];
1853         ent->tbl = tbl->tbl;
1854         if (in_nullhost(n->mask.sin_addr))
1855                 ent->masklen = 0;
1856         else
1857                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1858         ent->addr = n->addr.sin_addr.s_addr;
1859         ent->value = n->value;
1860         tbl->cnt++;
1861         return (0);
1862 }
1863
1864 static int
1865 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1866 {
1867         struct radix_node_head *rnh;
1868
1869         if (tbl->tbl >= IPFW_TABLES_MAX)
1870                 return (EINVAL);
1871         rnh = ch->tables[tbl->tbl];
1872         tbl->cnt = 0;
1873         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1874         return (0);
1875 }
1876
1877 static void
1878 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1879 {
1880         struct ucred *cr;
1881
1882         if (inp->inp_socket != NULL) {
1883                 cr = inp->inp_socket->so_cred;
1884                 ugp->fw_prid = jailed(cr) ?
1885                     cr->cr_prison->pr_id : -1;
1886                 ugp->fw_uid = cr->cr_uid;
1887                 ugp->fw_ngroups = cr->cr_ngroups;
1888                 bcopy(cr->cr_groups, ugp->fw_groups,
1889                     sizeof(ugp->fw_groups));
1890         }
1891 }
1892
1893 static int
1894 check_uidgid(ipfw_insn_u32 *insn,
1895         int proto, struct ifnet *oif,
1896         struct in_addr dst_ip, u_int16_t dst_port,
1897         struct in_addr src_ip, u_int16_t src_port,
1898         struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1899 {
1900         struct inpcbinfo *pi;
1901         int wildcard;
1902         struct inpcb *pcb;
1903         int match;
1904         gid_t *gp;
1905
1906         /*
1907          * Check to see if the UDP or TCP stack supplied us with
1908          * the PCB. If so, rather then holding a lock and looking
1909          * up the PCB, we can use the one that was supplied.
1910          */
1911         if (inp && *lookup == 0) {
1912                 INP_LOCK_ASSERT(inp);
1913                 if (inp->inp_socket != NULL) {
1914                         fill_ugid_cache(inp, ugp);
1915                         *lookup = 1;
1916                 }
1917         }
1918         /*
1919          * If we have already been here and the packet has no
1920          * PCB entry associated with it, then we can safely
1921          * assume that this is a no match.
1922          */
1923         if (*lookup == -1)
1924                 return (0);
1925         if (proto == IPPROTO_TCP) {
1926                 wildcard = 0;
1927                 pi = &tcbinfo;
1928         } else if (proto == IPPROTO_UDP) {
1929                 wildcard = INPLOOKUP_WILDCARD;
1930                 pi = &udbinfo;
1931         } else
1932                 return 0;
1933         match = 0;
1934         if (*lookup == 0) {
1935                 INP_INFO_RLOCK(pi);
1936                 pcb =  (oif) ?
1937                         in_pcblookup_hash(pi,
1938                                 dst_ip, htons(dst_port),
1939                                 src_ip, htons(src_port),
1940                                 wildcard, oif) :
1941                         in_pcblookup_hash(pi,
1942                                 src_ip, htons(src_port),
1943                                 dst_ip, htons(dst_port),
1944                                 wildcard, NULL);
1945                 if (pcb != NULL) {
1946                         INP_LOCK(pcb);
1947                         if (pcb->inp_socket != NULL) {
1948                                 fill_ugid_cache(pcb, ugp);
1949                                 *lookup = 1;
1950                         }
1951                         INP_UNLOCK(pcb);
1952                 }
1953                 INP_INFO_RUNLOCK(pi);
1954                 if (*lookup == 0) {
1955                         /*
1956                          * If the lookup did not yield any results, there
1957                          * is no sense in coming back and trying again. So
1958                          * we can set lookup to -1 and ensure that we wont
1959                          * bother the pcb system again.
1960                          */
1961                         *lookup = -1;
1962                         return (0);
1963                 }
1964         } 
1965         if (insn->o.opcode == O_UID)
1966                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
1967         else if (insn->o.opcode == O_GID) {
1968                 for (gp = ugp->fw_groups;
1969                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1970                         if (*gp == (gid_t)insn->d[0]) {
1971                                 match = 1;
1972                                 break;
1973                         }
1974         } else if (insn->o.opcode == O_JAIL)
1975                 match = (ugp->fw_prid == (int)insn->d[0]);
1976         return match;
1977 }
1978
1979 /*
1980  * The main check routine for the firewall.
1981  *
1982  * All arguments are in args so we can modify them and return them
1983  * back to the caller.
1984  *
1985  * Parameters:
1986  *
1987  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
1988  *              Starts with the IP header.
1989  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
1990  *      args->oif       Outgoing interface, or NULL if packet is incoming.
1991  *              The incoming interface is in the mbuf. (in)
1992  *      args->divert_rule (in/out)
1993  *              Skip up to the first rule past this rule number;
1994  *              upon return, non-zero port number for divert or tee.
1995  *
1996  *      args->rule      Pointer to the last matching rule (in/out)
1997  *      args->next_hop  Socket we are forwarding to (out).
1998  *      args->f_id      Addresses grabbed from the packet (out)
1999  *      args->cookie    a cookie depending on rule action
2000  *
2001  * Return value:
2002  *
2003  *      IP_FW_PASS      the packet must be accepted
2004  *      IP_FW_DENY      the packet must be dropped
2005  *      IP_FW_DIVERT    divert packet, port in m_tag
2006  *      IP_FW_TEE       tee packet, port in m_tag
2007  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
2008  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
2009  *
2010  */
2011
2012 int
2013 ipfw_chk(struct ip_fw_args *args)
2014 {
2015         /*
2016          * Local variables hold state during the processing of a packet.
2017          *
2018          * IMPORTANT NOTE: to speed up the processing of rules, there
2019          * are some assumption on the values of the variables, which
2020          * are documented here. Should you change them, please check
2021          * the implementation of the various instructions to make sure
2022          * that they still work.
2023          *
2024          * args->eh     The MAC header. It is non-null for a layer2
2025          *      packet, it is NULL for a layer-3 packet.
2026          *
2027          * m | args->m  Pointer to the mbuf, as received from the caller.
2028          *      It may change if ipfw_chk() does an m_pullup, or if it
2029          *      consumes the packet because it calls send_reject().
2030          *      XXX This has to change, so that ipfw_chk() never modifies
2031          *      or consumes the buffer.
2032          * ip   is simply an alias of the value of m, and it is kept
2033          *      in sync with it (the packet is  supposed to start with
2034          *      the ip header).
2035          */
2036         struct mbuf *m = args->m;
2037         struct ip *ip = mtod(m, struct ip *);
2038
2039         /*
2040          * For rules which contain uid/gid or jail constraints, cache
2041          * a copy of the users credentials after the pcb lookup has been
2042          * executed. This will speed up the processing of rules with
2043          * these types of constraints, as well as decrease contention
2044          * on pcb related locks.
2045          */
2046         struct ip_fw_ugid fw_ugid_cache;
2047         int ugid_lookup = 0;
2048
2049         /*
2050          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
2051          *      associated with a packet input on a divert socket.  This
2052          *      will allow to distinguish traffic and its direction when
2053          *      it originates from a divert socket.
2054          */
2055         u_int divinput_flags = 0;
2056
2057         /*
2058          * oif | args->oif      If NULL, ipfw_chk has been called on the
2059          *      inbound path (ether_input, ip_input).
2060          *      If non-NULL, ipfw_chk has been called on the outbound path
2061          *      (ether_output, ip_output).
2062          */
2063         struct ifnet *oif = args->oif;
2064
2065         struct ip_fw *f = NULL;         /* matching rule */
2066         int retval = 0;
2067
2068         /*
2069          * hlen The length of the IP header.
2070          */
2071         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
2072
2073         /*
2074          * offset       The offset of a fragment. offset != 0 means that
2075          *      we have a fragment at this offset of an IPv4 packet.
2076          *      offset == 0 means that (if this is an IPv4 packet)
2077          *      this is the first or only fragment.
2078          *      For IPv6 offset == 0 means there is no Fragment Header. 
2079          *      If offset != 0 for IPv6 always use correct mask to
2080          *      get the correct offset because we add IP6F_MORE_FRAG
2081          *      to be able to dectect the first fragment which would
2082          *      otherwise have offset = 0.
2083          */
2084         u_short offset = 0;
2085
2086         /*
2087          * Local copies of addresses. They are only valid if we have
2088          * an IP packet.
2089          *
2090          * proto        The protocol. Set to 0 for non-ip packets,
2091          *      or to the protocol read from the packet otherwise.
2092          *      proto != 0 means that we have an IPv4 packet.
2093          *
2094          * src_port, dst_port   port numbers, in HOST format. Only
2095          *      valid for TCP and UDP packets.
2096          *
2097          * src_ip, dst_ip       ip addresses, in NETWORK format.
2098          *      Only valid for IPv4 packets.
2099          */
2100         u_int8_t proto;
2101         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
2102         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
2103         u_int16_t ip_len=0;
2104         int pktlen;
2105
2106         /*
2107          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2108          *      MATCH_NONE when checked and not matched (q = NULL),
2109          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2110          */
2111         int dyn_dir = MATCH_UNKNOWN;
2112         ipfw_dyn_rule *q = NULL;
2113         struct ip_fw_chain *chain = &layer3_chain;
2114         struct m_tag *mtag;
2115
2116         /*
2117          * We store in ulp a pointer to the upper layer protocol header.
2118          * In the ipv4 case this is easy to determine from the header,
2119          * but for ipv6 we might have some additional headers in the middle.
2120          * ulp is NULL if not found.
2121          */
2122         void *ulp = NULL;               /* upper layer protocol pointer. */
2123         /* XXX ipv6 variables */
2124         int is_ipv6 = 0;
2125         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
2126         /* end of ipv6 variables */
2127         int is_ipv4 = 0;
2128
2129         if (m->m_flags & M_SKIP_FIREWALL)
2130                 return (IP_FW_PASS);    /* accept */
2131
2132         pktlen = m->m_pkthdr.len;
2133         proto = args->f_id.proto = 0;   /* mark f_id invalid */
2134                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2135
2136 /*
2137  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2138  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2139  * pointer might become stale after other pullups (but we never use it
2140  * this way).
2141  */
2142 #define PULLUP_TO(len, p, T)                                            \
2143 do {                                                                    \
2144         int x = (len) + sizeof(T);                                      \
2145         if ((m)->m_len < x) {                                           \
2146                 args->m = m = m_pullup(m, x);                           \
2147                 if (m == NULL)                                          \
2148                         goto pullup_failed;                             \
2149         }                                                               \
2150         p = (mtod(m, char *) + (len));                                  \
2151 } while (0)
2152
2153         /* Identify IP packets and fill up variables. */
2154         if (pktlen >= sizeof(struct ip6_hdr) &&
2155             (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2156             mtod(m, struct ip *)->ip_v == 6) {
2157                 is_ipv6 = 1;
2158                 args->f_id.addr_type = 6;
2159                 hlen = sizeof(struct ip6_hdr);
2160                 proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2161
2162                 /* Search extension headers to find upper layer protocols */
2163                 while (ulp == NULL) {
2164                         switch (proto) {
2165                         case IPPROTO_ICMPV6:
2166                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2167                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
2168                                 break;
2169
2170                         case IPPROTO_TCP:
2171                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2172                                 dst_port = TCP(ulp)->th_dport;
2173                                 src_port = TCP(ulp)->th_sport;
2174                                 args->f_id.flags = TCP(ulp)->th_flags;
2175                                 break;
2176
2177                         case IPPROTO_UDP:
2178                                 PULLUP_TO(hlen, ulp, struct udphdr);
2179                                 dst_port = UDP(ulp)->uh_dport;
2180                                 src_port = UDP(ulp)->uh_sport;
2181                                 break;
2182
2183                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
2184                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2185                                 ext_hd |= EXT_HOPOPTS;
2186                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2187                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2188                                 ulp = NULL;
2189                                 break;
2190
2191                         case IPPROTO_ROUTING:   /* RFC 2460 */
2192                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2193                                 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2194                                 case 0:
2195                                         break;
2196                                 default:
2197                                         printf("IPFW2: IPV6 - Unknown Routing "
2198                                             "Header type(%d)\n",
2199                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
2200                                         if (fw_deny_unknown_exthdrs)
2201                                             return (IP_FW_DENY);
2202                                         break;
2203                                 }
2204                                 ext_hd |= EXT_ROUTING;
2205                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2206                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2207                                 ulp = NULL;
2208                                 break;
2209
2210                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
2211                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
2212                                 ext_hd |= EXT_FRAGMENT;
2213                                 hlen += sizeof (struct ip6_frag);
2214                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2215                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2216                                         IP6F_OFF_MASK;
2217                                 /* Add IP6F_MORE_FRAG for offset of first
2218                                  * fragment to be != 0. */
2219                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2220                                         IP6F_MORE_FRAG;
2221                                 if (offset == 0) {
2222                                         printf("IPFW2: IPV6 - Invalid Fragment "
2223                                             "Header\n");
2224                                         if (fw_deny_unknown_exthdrs)
2225                                             return (IP_FW_DENY);
2226                                         break;
2227                                 }
2228                                 args->f_id.frag_id6 =
2229                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2230                                 ulp = NULL;
2231                                 break;
2232
2233                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
2234                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2235                                 ext_hd |= EXT_DSTOPTS;
2236                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2237                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2238                                 ulp = NULL;
2239                                 break;
2240
2241                         case IPPROTO_AH:        /* RFC 2402 */
2242                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2243                                 ext_hd |= EXT_AH;
2244                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2245                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2246                                 ulp = NULL;
2247                                 break;
2248
2249                         case IPPROTO_ESP:       /* RFC 2406 */
2250                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
2251                                 /* Anything past Seq# is variable length and
2252                                  * data past this ext. header is encrypted. */
2253                                 ext_hd |= EXT_ESP;
2254                                 break;
2255
2256                         case IPPROTO_NONE:      /* RFC 2460 */
2257                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2258                                 /* Packet ends here. if ip6e_len!=0 octets
2259                                  * must be ignored. */
2260                                 break;
2261
2262                         case IPPROTO_OSPFIGP:
2263                                 /* XXX OSPF header check? */
2264                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2265                                 break;
2266
2267                         case IPPROTO_PIM:
2268                                 /* XXX PIM header check? */
2269                                 PULLUP_TO(hlen, ulp, struct pim);
2270                                 break;
2271
2272                         case IPPROTO_IPV6:      /* RFC 2893 */
2273                                 PULLUP_TO(hlen, ulp, struct ip6_hdr);
2274                                 break;
2275
2276                         case IPPROTO_IPV4:      /* RFC 2893 */
2277                                 PULLUP_TO(hlen, ulp, struct ip);
2278                                 break;
2279
2280                         default:
2281                                 printf("IPFW2: IPV6 - Unknown Extension "
2282                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
2283                                 if (fw_deny_unknown_exthdrs)
2284                                     return (IP_FW_DENY);
2285                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2286                                 break;
2287                         } /*switch */
2288                 }
2289                 args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2290                 args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2291                 args->f_id.src_ip = 0;
2292                 args->f_id.dst_ip = 0;
2293                 args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2294         } else if (pktlen >= sizeof(struct ip) &&
2295             (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2296             mtod(m, struct ip *)->ip_v == 4) {
2297                 is_ipv4 = 1;
2298                 ip = mtod(m, struct ip *);
2299                 hlen = ip->ip_hl << 2;
2300                 args->f_id.addr_type = 4;
2301
2302                 /*
2303                  * Collect parameters into local variables for faster matching.
2304                  */
2305                 proto = ip->ip_p;
2306                 src_ip = ip->ip_src;
2307                 dst_ip = ip->ip_dst;
2308                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2309                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
2310                         ip_len = ntohs(ip->ip_len);
2311                 } else {
2312                         offset = ip->ip_off & IP_OFFMASK;
2313                         ip_len = ip->ip_len;
2314                 }
2315                 pktlen = ip_len < pktlen ? ip_len : pktlen;
2316
2317                 if (offset == 0) {
2318                         switch (proto) {
2319                         case IPPROTO_TCP:
2320                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2321                                 dst_port = TCP(ulp)->th_dport;
2322                                 src_port = TCP(ulp)->th_sport;
2323                                 args->f_id.flags = TCP(ulp)->th_flags;
2324                                 break;
2325
2326                         case IPPROTO_UDP:
2327                                 PULLUP_TO(hlen, ulp, struct udphdr);
2328                                 dst_port = UDP(ulp)->uh_dport;
2329                                 src_port = UDP(ulp)->uh_sport;
2330                                 break;
2331
2332                         case IPPROTO_ICMP:
2333                                 PULLUP_TO(hlen, ulp, struct icmphdr);
2334                                 args->f_id.flags = ICMP(ulp)->icmp_type;
2335                                 break;
2336
2337                         default:
2338                                 break;
2339                         }
2340                 }
2341
2342                 args->f_id.src_ip = ntohl(src_ip.s_addr);
2343                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2344         }
2345 #undef PULLUP_TO
2346         if (proto) { /* we may have port numbers, store them */
2347                 args->f_id.proto = proto;
2348                 args->f_id.src_port = src_port = ntohs(src_port);
2349                 args->f_id.dst_port = dst_port = ntohs(dst_port);
2350         }
2351
2352         IPFW_RLOCK(chain);
2353         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2354         if (args->rule) {
2355                 /*
2356                  * Packet has already been tagged. Look for the next rule
2357                  * to restart processing.
2358                  *
2359                  * If fw_one_pass != 0 then just accept it.
2360                  * XXX should not happen here, but optimized out in
2361                  * the caller.
2362                  */
2363                 if (fw_one_pass) {
2364                         IPFW_RUNLOCK(chain);
2365                         return (IP_FW_PASS);
2366                 }
2367
2368                 f = args->rule->next_rule;
2369                 if (f == NULL)
2370                         f = lookup_next_rule(args->rule);
2371         } else {
2372                 /*
2373                  * Find the starting rule. It can be either the first
2374                  * one, or the one after divert_rule if asked so.
2375                  */
2376                 int skipto = mtag ? divert_cookie(mtag) : 0;
2377
2378                 f = chain->rules;
2379                 if (args->eh == NULL && skipto != 0) {
2380                         if (skipto >= IPFW_DEFAULT_RULE) {
2381                                 IPFW_RUNLOCK(chain);
2382                                 return (IP_FW_DENY); /* invalid */
2383                         }
2384                         while (f && f->rulenum <= skipto)
2385                                 f = f->next;
2386                         if (f == NULL) {        /* drop packet */
2387                                 IPFW_RUNLOCK(chain);
2388                                 return (IP_FW_DENY);
2389                         }
2390                 }
2391         }
2392         /* reset divert rule to avoid confusion later */
2393         if (mtag) {
2394                 divinput_flags = divert_info(mtag) &
2395                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2396                 m_tag_delete(m, mtag);
2397         }
2398
2399         /*
2400          * Now scan the rules, and parse microinstructions for each rule.
2401          */
2402         for (; f; f = f->next) {
2403                 ipfw_insn *cmd;
2404                 uint32_t tablearg = 0;
2405                 int l, cmdlen, skip_or; /* skip rest of OR block */
2406
2407 again:
2408                 if (set_disable & (1 << f->set) )
2409                         continue;
2410
2411                 skip_or = 0;
2412                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2413                     l -= cmdlen, cmd += cmdlen) {
2414                         int match;
2415
2416                         /*
2417                          * check_body is a jump target used when we find a
2418                          * CHECK_STATE, and need to jump to the body of
2419                          * the target rule.
2420                          */
2421
2422 check_body:
2423                         cmdlen = F_LEN(cmd);
2424                         /*
2425                          * An OR block (insn_1 || .. || insn_n) has the
2426                          * F_OR bit set in all but the last instruction.
2427                          * The first match will set "skip_or", and cause
2428                          * the following instructions to be skipped until
2429                          * past the one with the F_OR bit clear.
2430                          */
2431                         if (skip_or) {          /* skip this instruction */
2432                                 if ((cmd->len & F_OR) == 0)
2433                                         skip_or = 0;    /* next one is good */
2434                                 continue;
2435                         }
2436                         match = 0; /* set to 1 if we succeed */
2437
2438                         switch (cmd->opcode) {
2439                         /*
2440                          * The first set of opcodes compares the packet's
2441                          * fields with some pattern, setting 'match' if a
2442                          * match is found. At the end of the loop there is
2443                          * logic to deal with F_NOT and F_OR flags associated
2444                          * with the opcode.
2445                          */
2446                         case O_NOP:
2447                                 match = 1;
2448                                 break;
2449
2450                         case O_FORWARD_MAC:
2451                                 printf("ipfw: opcode %d unimplemented\n",
2452                                     cmd->opcode);
2453                                 break;
2454
2455                         case O_GID:
2456                         case O_UID:
2457                         case O_JAIL:
2458                                 /*
2459                                  * We only check offset == 0 && proto != 0,
2460                                  * as this ensures that we have a
2461                                  * packet with the ports info.
2462                                  */
2463                                 if (offset!=0)
2464                                         break;
2465                                 if (is_ipv6) /* XXX to be fixed later */
2466                                         break;
2467                                 if (proto == IPPROTO_TCP ||
2468                                     proto == IPPROTO_UDP)
2469                                         match = check_uidgid(
2470                                                     (ipfw_insn_u32 *)cmd,
2471                                                     proto, oif,
2472                                                     dst_ip, dst_port,
2473                                                     src_ip, src_port, &fw_ugid_cache,
2474                                                     &ugid_lookup, args->inp);
2475                                 break;
2476
2477                         case O_RECV:
2478                                 match = iface_match(m->m_pkthdr.rcvif,
2479                                     (ipfw_insn_if *)cmd);
2480                                 break;
2481
2482                         case O_XMIT:
2483                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
2484                                 break;
2485
2486                         case O_VIA:
2487                                 match = iface_match(oif ? oif :
2488                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2489                                 break;
2490
2491                         case O_MACADDR2:
2492                                 if (args->eh != NULL) { /* have MAC header */
2493                                         u_int32_t *want = (u_int32_t *)
2494                                                 ((ipfw_insn_mac *)cmd)->addr;
2495                                         u_int32_t *mask = (u_int32_t *)
2496                                                 ((ipfw_insn_mac *)cmd)->mask;
2497                                         u_int32_t *hdr = (u_int32_t *)args->eh;
2498
2499                                         match =
2500                                             ( want[0] == (hdr[0] & mask[0]) &&
2501                                               want[1] == (hdr[1] & mask[1]) &&
2502                                               want[2] == (hdr[2] & mask[2]) );
2503                                 }
2504                                 break;
2505
2506                         case O_MAC_TYPE:
2507                                 if (args->eh != NULL) {
2508                                         u_int16_t t =
2509                                             ntohs(args->eh->ether_type);
2510                                         u_int16_t *p =
2511                                             ((ipfw_insn_u16 *)cmd)->ports;
2512                                         int i;
2513
2514                                         for (i = cmdlen - 1; !match && i>0;
2515                                             i--, p += 2)
2516                                                 match = (t>=p[0] && t<=p[1]);
2517                                 }
2518                                 break;
2519
2520                         case O_FRAG:
2521                                 match = (offset != 0);
2522                                 break;
2523
2524                         case O_IN:      /* "out" is "not in" */
2525                                 match = (oif == NULL);
2526                                 break;
2527
2528                         case O_LAYER2:
2529                                 match = (args->eh != NULL);
2530                                 break;
2531
2532                         case O_DIVERTED:
2533                                 match = (cmd->arg1 & 1 && divinput_flags &
2534                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
2535                                         (cmd->arg1 & 2 && divinput_flags &
2536                                     IP_FW_DIVERT_OUTPUT_FLAG);
2537                                 break;
2538
2539                         case O_PROTO:
2540                                 /*
2541                                  * We do not allow an arg of 0 so the
2542                                  * check of "proto" only suffices.
2543                                  */
2544                                 match = (proto == cmd->arg1);
2545                                 break;
2546
2547                         case O_IP_SRC:
2548                                 match = is_ipv4 &&
2549                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2550                                     src_ip.s_addr);
2551                                 break;
2552
2553                         case O_IP_SRC_LOOKUP:
2554                         case O_IP_DST_LOOKUP:
2555                                 if (is_ipv4) {
2556                                     uint32_t a =
2557                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
2558                                             dst_ip.s_addr : src_ip.s_addr;
2559                                     uint32_t v;
2560
2561                                     match = lookup_table(chain, cmd->arg1, a,
2562                                         &v);
2563                                     if (!match)
2564                                         break;
2565                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2566                                         match =
2567                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
2568                                     else
2569                                         tablearg = v;
2570                                 }
2571                                 break;
2572
2573                         case O_IP_SRC_MASK:
2574                         case O_IP_DST_MASK:
2575                                 if (is_ipv4) {
2576                                     uint32_t a =
2577                                         (cmd->opcode == O_IP_DST_MASK) ?
2578                                             dst_ip.s_addr : src_ip.s_addr;
2579                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2580                                     int i = cmdlen-1;
2581
2582                                     for (; !match && i>0; i-= 2, p+= 2)
2583                                         match = (p[0] == (a & p[1]));
2584                                 }
2585                                 break;
2586
2587                         case O_IP_SRC_ME:
2588                                 if (is_ipv4) {
2589                                         struct ifnet *tif;
2590
2591                                         INADDR_TO_IFP(src_ip, tif);
2592                                         match = (tif != NULL);
2593                                 }
2594                                 break;
2595
2596                         case O_IP_DST_SET:
2597                         case O_IP_SRC_SET:
2598                                 if (is_ipv4) {
2599                                         u_int32_t *d = (u_int32_t *)(cmd+1);
2600                                         u_int32_t addr =
2601                                             cmd->opcode == O_IP_DST_SET ?
2602                                                 args->f_id.dst_ip :
2603                                                 args->f_id.src_ip;
2604
2605                                             if (addr < d[0])
2606                                                     break;
2607                                             addr -= d[0]; /* subtract base */
2608                                             match = (addr < cmd->arg1) &&
2609                                                 ( d[ 1 + (addr>>5)] &
2610                                                   (1<<(addr & 0x1f)) );
2611                                 }
2612                                 break;
2613
2614                         case O_IP_DST:
2615                                 match = is_ipv4 &&
2616                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2617                                     dst_ip.s_addr);
2618                                 break;
2619
2620                         case O_IP_DST_ME:
2621                                 if (is_ipv4) {
2622                                         struct ifnet *tif;
2623
2624                                         INADDR_TO_IFP(dst_ip, tif);
2625                                         match = (tif != NULL);
2626                                 }
2627                                 break;
2628
2629                         case O_IP_SRCPORT:
2630                         case O_IP_DSTPORT:
2631                                 /*
2632                                  * offset == 0 && proto != 0 is enough
2633                                  * to guarantee that we have a
2634                                  * packet with port info.
2635                                  */
2636                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2637                                     && offset == 0) {
2638                                         u_int16_t x =
2639                                             (cmd->opcode == O_IP_SRCPORT) ?
2640                                                 src_port : dst_port ;
2641                                         u_int16_t *p =
2642                                             ((ipfw_insn_u16 *)cmd)->ports;
2643                                         int i;
2644
2645                                         for (i = cmdlen - 1; !match && i>0;
2646                                             i--, p += 2)
2647                                                 match = (x>=p[0] && x<=p[1]);
2648                                 }
2649                                 break;
2650
2651                         case O_ICMPTYPE:
2652                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
2653                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2654                                 break;
2655
2656 #ifdef INET6
2657                         case O_ICMP6TYPE:
2658                                 match = is_ipv6 && offset == 0 &&
2659                                     proto==IPPROTO_ICMPV6 &&
2660                                     icmp6type_match(
2661                                         ICMP6(ulp)->icmp6_type,
2662                                         (ipfw_insn_u32 *)cmd);
2663                                 break;
2664 #endif /* INET6 */
2665
2666                         case O_IPOPT:
2667                                 match = (is_ipv4 &&
2668                                     ipopts_match(mtod(m, struct ip *), cmd) );
2669                                 break;
2670
2671                         case O_IPVER:
2672                                 match = (is_ipv4 &&
2673                                     cmd->arg1 == mtod(m, struct ip *)->ip_v);
2674                                 break;
2675
2676                         case O_IPID:
2677                         case O_IPLEN:
2678                         case O_IPTTL:
2679                                 if (is_ipv4) {  /* only for IP packets */
2680                                     uint16_t x;
2681                                     uint16_t *p;
2682                                     int i;
2683
2684                                     if (cmd->opcode == O_IPLEN)
2685                                         x = ip_len;
2686                                     else if (cmd->opcode == O_IPTTL)
2687                                         x = mtod(m, struct ip *)->ip_ttl;
2688                                     else /* must be IPID */
2689                                         x = ntohs(mtod(m, struct ip *)->ip_id);
2690                                     if (cmdlen == 1) {
2691                                         match = (cmd->arg1 == x);
2692                                         break;
2693                                     }
2694                                     /* otherwise we have ranges */
2695                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2696                                     i = cmdlen - 1;
2697                                     for (; !match && i>0; i--, p += 2)
2698                                         match = (x >= p[0] && x <= p[1]);
2699                                 }
2700                                 break;
2701
2702                         case O_IPPRECEDENCE:
2703                                 match = (is_ipv4 &&
2704                                     (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2705                                 break;
2706
2707                         case O_IPTOS:
2708                                 match = (is_ipv4 &&
2709                                     flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2710                                 break;
2711
2712                         case O_TCPDATALEN:
2713                                 if (proto == IPPROTO_TCP && offset == 0) {
2714                                     struct tcphdr *tcp;
2715                                     uint16_t x;
2716                                     uint16_t *p;
2717                                     int i;
2718
2719                                     tcp = TCP(ulp);
2720                                     x = ip_len -
2721                                         ((ip->ip_hl + tcp->th_off) << 2);
2722                                     if (cmdlen == 1) {
2723                                         match = (cmd->arg1 == x);
2724                                         break;
2725                                     }
2726                                     /* otherwise we have ranges */
2727                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2728                                     i = cmdlen - 1;
2729                                     for (; !match && i>0; i--, p += 2)
2730                                         match = (x >= p[0] && x <= p[1]);
2731                                 }
2732                                 break;
2733
2734                         case O_TCPFLAGS:
2735                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2736                                     flags_match(cmd, TCP(ulp)->th_flags));
2737                                 break;
2738
2739                         case O_TCPOPTS:
2740                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2741                                     tcpopts_match(TCP(ulp), cmd));
2742                                 break;
2743
2744                         case O_TCPSEQ:
2745                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2746                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2747                                         TCP(ulp)->th_seq);
2748                                 break;
2749
2750                         case O_TCPACK:
2751                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2752                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2753                                         TCP(ulp)->th_ack);
2754                                 break;
2755
2756                         case O_TCPWIN:
2757                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2758                                     cmd->arg1 == TCP(ulp)->th_win);
2759                                 break;
2760
2761                         case O_ESTAB:
2762                                 /* reject packets which have SYN only */
2763                                 /* XXX should i also check for TH_ACK ? */
2764                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2765                                     (TCP(ulp)->th_flags &
2766                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2767                                 break;
2768
2769                         case O_ALTQ: {
2770                                 struct altq_tag *at;
2771                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2772
2773                                 match = 1;
2774                                 mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2775                                 if (mtag != NULL)
2776                                         break;
2777                                 mtag = m_tag_get(PACKET_TAG_PF_QID,
2778                                                 sizeof(struct altq_tag),
2779                                                 M_NOWAIT);
2780                                 if (mtag == NULL) {
2781                                         /*
2782                                          * Let the packet fall back to the
2783                                          * default ALTQ.
2784                                          */
2785                                         break;
2786                                 }
2787                                 at = (struct altq_tag *)(mtag+1);
2788                                 at->qid = altq->qid;
2789                                 if (is_ipv4)
2790                                         at->af = AF_INET;
2791                                 else
2792                                         at->af = AF_LINK;
2793                                 at->hdr = ip;
2794                                 m_tag_prepend(m, mtag);
2795                                 break;
2796                         }
2797
2798                         case O_LOG:
2799                                 if (fw_verbose)
2800                                         ipfw_log(f, hlen, args, m,
2801                                             oif, offset, tablearg);
2802                                 match = 1;
2803                                 break;
2804
2805                         case O_PROB:
2806                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2807                                 break;
2808
2809                         case O_VERREVPATH:
2810                                 /* Outgoing packets automatically pass/match */
2811                                 match = ((oif != NULL) ||
2812                                     (m->m_pkthdr.rcvif == NULL) ||
2813                                     (
2814 #ifdef INET6
2815                                     is_ipv6 ?
2816                                         verify_path6(&(args->f_id.src_ip6),
2817                                             m->m_pkthdr.rcvif) :
2818 #endif
2819                                     verify_path(src_ip, m->m_pkthdr.rcvif)));
2820                                 break;
2821
2822                         case O_VERSRCREACH:
2823                                 /* Outgoing packets automatically pass/match */
2824                                 match = (hlen > 0 && ((oif != NULL) ||
2825 #ifdef INET6
2826                                     is_ipv6 ?
2827                                         verify_path6(&(args->f_id.src_ip6),
2828                                             NULL) :
2829 #endif
2830                                     verify_path(src_ip, NULL)));
2831                                 break;
2832
2833                         case O_ANTISPOOF:
2834                                 /* Outgoing packets automatically pass/match */
2835                                 if (oif == NULL && hlen > 0 &&
2836                                     (  (is_ipv4 && in_localaddr(src_ip))
2837 #ifdef INET6
2838                                     || (is_ipv6 &&
2839                                         in6_localaddr(&(args->f_id.src_ip6)))
2840 #endif
2841                                     ))
2842                                         match =
2843 #ifdef INET6
2844                                             is_ipv6 ? verify_path6(
2845                                                 &(args->f_id.src_ip6),
2846                                                 m->m_pkthdr.rcvif) :
2847 #endif
2848                                             verify_path(src_ip,
2849                                                 m->m_pkthdr.rcvif);
2850                                 else
2851                                         match = 1;
2852                                 break;
2853
2854                         case O_IPSEC:
2855 #ifdef FAST_IPSEC
2856                                 match = (m_tag_find(m,
2857                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2858 #endif
2859 #ifdef IPSEC
2860                                 match = (ipsec_getnhist(m) != 0);
2861 #endif
2862                                 /* otherwise no match */
2863                                 break;
2864
2865 #ifdef INET6
2866                         case O_IP6_SRC:
2867                                 match = is_ipv6 &&
2868                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2869                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2870                                 break;
2871
2872                         case O_IP6_DST:
2873                                 match = is_ipv6 &&
2874                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2875                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2876                                 break;
2877                         case O_IP6_SRC_MASK:
2878                                 if (is_ipv6) {
2879                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2880                                         struct in6_addr p = args->f_id.src_ip6;
2881
2882                                         APPLY_MASK(&p, &te->mask6);
2883                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2884                                 }
2885                                 break;
2886
2887                         case O_IP6_DST_MASK:
2888                                 if (is_ipv6) {
2889                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2890                                         struct in6_addr p = args->f_id.dst_ip6;
2891
2892                                         APPLY_MASK(&p, &te->mask6);
2893                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2894                                 }
2895                                 break;
2896
2897                         case O_IP6_SRC_ME:
2898                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2899                                 break;
2900
2901                         case O_IP6_DST_ME:
2902                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2903                                 break;
2904
2905                         case O_FLOW6ID:
2906                                 match = is_ipv6 &&
2907                                     flow6id_match(args->f_id.flow_id6,
2908                                     (ipfw_insn_u32 *) cmd);
2909                                 break;
2910
2911                         case O_EXT_HDR:
2912                                 match = is_ipv6 &&
2913                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
2914                                 break;
2915
2916                         case O_IP6:
2917                                 match = is_ipv6;
2918                                 break;
2919 #endif
2920
2921                         case O_IP4:
2922                                 match = is_ipv4;
2923                                 break;
2924
2925                         case O_TAG: {
2926                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
2927                                     tablearg : cmd->arg1;
2928
2929                                 /* Packet is already tagged with this tag? */
2930                                 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2931
2932                                 /* We have `untag' action when F_NOT flag is
2933                                  * present. And we must remove this mtag from
2934                                  * mbuf and reset `match' to zero (`match' will
2935                                  * be inversed later).
2936                                  * Otherwise we should allocate new mtag and
2937                                  * push it into mbuf.
2938                                  */
2939                                 if (cmd->len & F_NOT) { /* `untag' action */
2940                                         if (mtag != NULL)
2941                                                 m_tag_delete(m, mtag);
2942                                 } else if (mtag == NULL) {
2943                                         if ((mtag = m_tag_alloc(MTAG_IPFW,
2944                                             tag, 0, M_NOWAIT)) != NULL)
2945                                                 m_tag_prepend(m, mtag);
2946                                 }
2947                                 match = (cmd->len & F_NOT) ? 0: 1;
2948                                 break;
2949                         }
2950
2951                         case O_TAGGED: {
2952                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
2953                                     tablearg : cmd->arg1;
2954
2955                                 if (cmdlen == 1) {
2956                                         match = m_tag_locate(m, MTAG_IPFW,
2957                                             tag, NULL) != NULL;
2958                                         break;
2959                                 }
2960
2961                                 /* we have ranges */
2962                                 for (mtag = m_tag_first(m);
2963                                     mtag != NULL && !match;
2964                                     mtag = m_tag_next(m, mtag)) {
2965                                         uint16_t *p;
2966                                         int i;
2967
2968                                         if (mtag->m_tag_cookie != MTAG_IPFW)
2969                                                 continue;
2970
2971                                         p = ((ipfw_insn_u16 *)cmd)->ports;
2972                                         i = cmdlen - 1;
2973                                         for(; !match && i > 0; i--, p += 2)
2974                                                 match =
2975                                                     mtag->m_tag_id >= p[0] &&
2976                                                     mtag->m_tag_id <= p[1];
2977                                 }
2978                                 break;
2979                         }
2980                                 
2981                         /*
2982                          * The second set of opcodes represents 'actions',
2983                          * i.e. the terminal part of a rule once the packet
2984                          * matches all previous patterns.
2985                          * Typically there is only one action for each rule,
2986                          * and the opcode is stored at the end of the rule
2987                          * (but there are exceptions -- see below).
2988                          *
2989                          * In general, here we set retval and terminate the
2990                          * outer loop (would be a 'break 3' in some language,
2991                          * but we need to do a 'goto done').
2992                          *
2993                          * Exceptions:
2994                          * O_COUNT and O_SKIPTO actions:
2995                          *   instead of terminating, we jump to the next rule
2996                          *   ('goto next_rule', equivalent to a 'break 2'),
2997                          *   or to the SKIPTO target ('goto again' after
2998                          *   having set f, cmd and l), respectively.
2999                          *
3000                          * O_TAG, O_LOG and O_ALTQ action parameters:
3001                          *   perform some action and set match = 1;
3002                          *
3003                          * O_LIMIT and O_KEEP_STATE: these opcodes are
3004                          *   not real 'actions', and are stored right
3005                          *   before the 'action' part of the rule.
3006                          *   These opcodes try to install an entry in the
3007                          *   state tables; if successful, we continue with
3008                          *   the next opcode (match=1; break;), otherwise
3009                          *   the packet *   must be dropped
3010                          *   ('goto done' after setting retval);
3011                          *
3012                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3013                          *   cause a lookup of the state table, and a jump
3014                          *   to the 'action' part of the parent rule
3015                          *   ('goto check_body') if an entry is found, or
3016                          *   (CHECK_STATE only) a jump to the next rule if
3017                          *   the entry is not found ('goto next_rule').
3018                          *   The result of the lookup is cached to make
3019                          *   further instances of these opcodes are
3020                          *   effectively NOPs.
3021                          */
3022                         case O_LIMIT:
3023                         case O_KEEP_STATE:
3024                                 if (install_state(f,
3025                                     (ipfw_insn_limit *)cmd, args, tablearg)) {
3026                                         retval = IP_FW_DENY;
3027                                         goto done; /* error/limit violation */
3028                                 }
3029                                 match = 1;
3030                                 break;
3031
3032                         case O_PROBE_STATE:
3033                         case O_CHECK_STATE:
3034                                 /*
3035                                  * dynamic rules are checked at the first
3036                                  * keep-state or check-state occurrence,
3037                                  * with the result being stored in dyn_dir.
3038                                  * The compiler introduces a PROBE_STATE
3039                                  * instruction for us when we have a
3040                                  * KEEP_STATE (because PROBE_STATE needs
3041                                  * to be run first).
3042                                  */
3043                                 if (dyn_dir == MATCH_UNKNOWN &&
3044                                     (q = lookup_dyn_rule(&args->f_id,
3045                                      &dyn_dir, proto == IPPROTO_TCP ?
3046                                         TCP(ulp) : NULL))
3047                                         != NULL) {
3048                                         /*
3049                                          * Found dynamic entry, update stats
3050                                          * and jump to the 'action' part of
3051                                          * the parent rule.
3052                                          */
3053                                         q->pcnt++;
3054                                         q->bcnt += pktlen;
3055                                         f = q->rule;
3056                                         cmd = ACTION_PTR(f);
3057                                         l = f->cmd_len - f->act_ofs;
3058                                         IPFW_DYN_UNLOCK();
3059                                         goto check_body;
3060                                 }
3061                                 /*
3062                                  * Dynamic entry not found. If CHECK_STATE,
3063                                  * skip to next rule, if PROBE_STATE just
3064                                  * ignore and continue with next opcode.
3065                                  */
3066                                 if (cmd->opcode == O_CHECK_STATE)
3067                                         goto next_rule;
3068                                 match = 1;
3069                                 break;
3070
3071                         case O_ACCEPT:
3072                                 retval = 0;     /* accept */
3073                                 goto done;
3074
3075                         case O_PIPE:
3076                         case O_QUEUE:
3077                                 args->rule = f; /* report matching rule */
3078                                 if (cmd->arg1 == IP_FW_TABLEARG)
3079                                         args->cookie = tablearg;
3080                                 else
3081                                         args->cookie = cmd->arg1;
3082                                 retval = IP_FW_DUMMYNET;
3083                                 goto done;
3084
3085                         case O_DIVERT:
3086                         case O_TEE: {
3087                                 struct divert_tag *dt;
3088
3089                                 if (args->eh) /* not on layer 2 */
3090                                         break;
3091                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
3092                                                 sizeof(struct divert_tag),
3093                                                 M_NOWAIT);
3094                                 if (mtag == NULL) {
3095                                         /* XXX statistic */
3096                                         /* drop packet */
3097                                         IPFW_RUNLOCK(chain);
3098                                         return (IP_FW_DENY);
3099                                 }
3100                                 dt = (struct divert_tag *)(mtag+1);
3101                                 dt->cookie = f->rulenum;
3102                                 if (cmd->arg1 == IP_FW_TABLEARG)
3103                                         dt->info = tablearg;
3104                                 else
3105                                         dt->info = cmd->arg1;
3106                                 m_tag_prepend(m, mtag);
3107                                 retval = (cmd->opcode == O_DIVERT) ?
3108                                     IP_FW_DIVERT : IP_FW_TEE;
3109                                 goto done;
3110                         }
3111
3112                         case O_COUNT:
3113                         case O_SKIPTO:
3114                                 f->pcnt++;      /* update stats */
3115                                 f->bcnt += pktlen;
3116                                 f->timestamp = time_uptime;
3117                                 if (cmd->opcode == O_COUNT)
3118                                         goto next_rule;
3119                                 /* handle skipto */
3120                                 if (f->next_rule == NULL)
3121                                         lookup_next_rule(f);
3122                                 f = f->next_rule;
3123                                 goto again;
3124
3125                         case O_REJECT:
3126                                 /*
3127                                  * Drop the packet and send a reject notice
3128                                  * if the packet is not ICMP (or is an ICMP
3129                                  * query), and it is not multicast/broadcast.
3130                                  */
3131                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
3132                                     (proto != IPPROTO_ICMP ||
3133                                      is_icmp_query(ICMP(ulp))) &&
3134                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3135                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3136                                         send_reject(args, cmd->arg1, ip_len);
3137                                         m = args->m;
3138                                 }
3139                                 /* FALLTHROUGH */
3140 #ifdef INET6
3141                         case O_UNREACH6:
3142                                 if (hlen > 0 && is_ipv6 &&
3143                                     ((offset & IP6F_OFF_MASK) == 0) &&
3144                                     (proto != IPPROTO_ICMPV6 ||
3145                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
3146                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3147                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3148                                         send_reject6(args, cmd->arg1, hlen);
3149                                         m = args->m;
3150                                 }
3151                                 /* FALLTHROUGH */
3152 #endif
3153                         case O_DENY:
3154                                 retval = IP_FW_DENY;
3155                                 goto done;
3156
3157                         case O_FORWARD_IP: {
3158                                 struct sockaddr_in *sa;
3159                                 sa = &(((ipfw_insn_sa *)cmd)->sa);
3160                                 if (args->eh)   /* not valid on layer2 pkts */
3161                                         break;
3162                                 if (!q || dyn_dir == MATCH_FORWARD) {
3163                                         if (sa->sin_addr.s_addr == INADDR_ANY) {
3164                                                 bcopy(sa, &args->hopstore,
3165                                                         sizeof(*sa));
3166                                                 args->hopstore.sin_addr.s_addr =
3167                                                     htonl(tablearg);
3168                                                 args->next_hop =
3169                                                     &args->hopstore;
3170                                         } else {
3171                                                 args->next_hop = sa;
3172                                         }
3173                                 }
3174                                 retval = IP_FW_PASS;
3175                             }
3176                             goto done;
3177
3178                         case O_NETGRAPH:
3179                         case O_NGTEE:
3180                                 args->rule = f; /* report matching rule */
3181                                 if (cmd->arg1 == IP_FW_TABLEARG)
3182                                         args->cookie = tablearg;
3183                                 else
3184                                         args->cookie = cmd->arg1;
3185                                 retval = (cmd->opcode == O_NETGRAPH) ?
3186                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
3187                                 goto done;
3188
3189                         default:
3190                                 panic("-- unknown opcode %d\n", cmd->opcode);
3191                         } /* end of switch() on opcodes */
3192
3193                         if (cmd->len & F_NOT)
3194                                 match = !match;
3195
3196                         if (match) {
3197                                 if (cmd->len & F_OR)
3198                                         skip_or = 1;
3199                         } else {
3200                                 if (!(cmd->len & F_OR)) /* not an OR block, */
3201                                         break;          /* try next rule    */
3202                         }
3203
3204                 }       /* end of inner for, scan opcodes */
3205
3206 next_rule:;             /* try next rule                */
3207
3208         }               /* end of outer for, scan rules */
3209         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3210         IPFW_RUNLOCK(chain);
3211         return (IP_FW_DENY);
3212
3213 done:
3214         /* Update statistics */
3215         f->pcnt++;
3216         f->bcnt += pktlen;
3217         f->timestamp = time_uptime;
3218         IPFW_RUNLOCK(chain);
3219         return (retval);
3220
3221 pullup_failed:
3222         if (fw_verbose)
3223                 printf("ipfw: pullup failed\n");
3224         return (IP_FW_DENY);
3225 }
3226
3227 /*
3228  * When a rule is added/deleted, clear the next_rule pointers in all rules.
3229  * These will be reconstructed on the fly as packets are matched.
3230  */
3231 static void
3232 flush_rule_ptrs(struct ip_fw_chain *chain)
3233 {
3234         struct ip_fw *rule;
3235
3236         IPFW_WLOCK_ASSERT(chain);
3237
3238         for (rule = chain->rules; rule; rule = rule->next)
3239                 rule->next_rule = NULL;
3240 }
3241
3242 /*
3243  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3244  * possibly create a rule number and add the rule to the list.
3245  * Update the rule_number in the input struct so the caller knows it as well.
3246  */
3247 static int
3248 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3249 {
3250         struct ip_fw *rule, *f, *prev;
3251         int l = RULESIZE(input_rule);
3252
3253         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3254                 return (EINVAL);
3255
3256         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3257         if (rule == NULL)
3258                 return (ENOSPC);
3259
3260         bcopy(input_rule, rule, l);
3261
3262         rule->next = NULL;
3263         rule->next_rule = NULL;
3264
3265         rule->pcnt = 0;
3266         rule->bcnt = 0;
3267         rule->timestamp = 0;
3268
3269         IPFW_WLOCK(chain);
3270
3271         if (chain->rules == NULL) {     /* default rule */
3272                 chain->rules = rule;
3273                 goto done;
3274         }
3275
3276         /*
3277          * If rulenum is 0, find highest numbered rule before the
3278          * default rule, and add autoinc_step
3279          */
3280         if (autoinc_step < 1)
3281                 autoinc_step = 1;
3282         else if (autoinc_step > 1000)
3283                 autoinc_step = 1000;
3284         if (rule->rulenum == 0) {
3285                 /*
3286                  * locate the highest numbered rule before default
3287                  */
3288                 for (f = chain->rules; f; f = f->next) {
3289                         if (f->rulenum == IPFW_DEFAULT_RULE)
3290                                 break;
3291                         rule->rulenum = f->rulenum;
3292                 }
3293                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3294                         rule->rulenum += autoinc_step;
3295                 input_rule->rulenum = rule->rulenum;
3296         }
3297
3298         /*
3299          * Now insert the new rule in the right place in the sorted list.
3300          */
3301         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3302                 if (f->rulenum > rule->rulenum) { /* found the location */
3303                         if (prev) {
3304                                 rule->next = f;
3305                                 prev->next = rule;
3306                         } else { /* head insert */
3307                                 rule->next = chain->rules;
3308                                 chain->rules = rule;
3309                         }
3310                         break;
3311                 }
3312         }
3313         flush_rule_ptrs(chain);
3314 done:
3315         static_count++;
3316         static_len += l;
3317         IPFW_WUNLOCK(chain);
3318         DEB(printf("ipfw: installed rule %d, static count now %d\n",
3319                 rule->rulenum, static_count);)
3320         return (0);
3321 }
3322
3323 /**
3324  * Remove a static rule (including derived * dynamic rules)
3325  * and place it on the ``reap list'' for later reclamation.
3326  * The caller is in charge of clearing rule pointers to avoid
3327  * dangling pointers.
3328  * @return a pointer to the next entry.
3329  * Arguments are not checked, so they better be correct.
3330  */
3331 static struct ip_fw *
3332 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3333 {
3334         struct ip_fw *n;
3335         int l = RULESIZE(rule);
3336
3337         IPFW_WLOCK_ASSERT(chain);
3338
3339         n = rule->next;
3340         IPFW_DYN_LOCK();
3341         remove_dyn_rule(rule, NULL /* force removal */);
3342         IPFW_DYN_UNLOCK();
3343         if (prev == NULL)
3344                 chain->rules = n;
3345         else
3346                 prev->next = n;
3347         static_count--;
3348         static_len -= l;
3349
3350         rule->next = chain->reap;
3351         chain->reap = rule;
3352
3353         return n;
3354 }
3355
3356 /**
3357  * Reclaim storage associated with a list of rules.  This is
3358  * typically the list created using remove_rule.
3359  */
3360 static void
3361 reap_rules(struct ip_fw *head)
3362 {
3363         struct ip_fw *rule;
3364
3365         while ((rule = head) != NULL) {
3366                 head = head->next;
3367                 if (DUMMYNET_LOADED)
3368                         ip_dn_ruledel_ptr(rule);
3369                 free(rule, M_IPFW);
3370         }
3371 }
3372
3373 /*
3374  * Remove all rules from a chain (except rules in set RESVD_SET
3375  * unless kill_default = 1).  The caller is responsible for
3376  * reclaiming storage for the rules left in chain->reap.
3377  */
3378 static void
3379 free_chain(struct ip_fw_chain *chain, int kill_default)
3380 {
3381         struct ip_fw *prev, *rule;
3382
3383         IPFW_WLOCK_ASSERT(chain);
3384
3385         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3386         for (prev = NULL, rule = chain->rules; rule ; )
3387                 if (kill_default || rule->set != RESVD_SET)
3388                         rule = remove_rule(chain, rule, prev);
3389                 else {
3390                         prev = rule;
3391                         rule = rule->next;
3392                 }
3393 }
3394
3395 /**
3396  * Remove all rules with given number, and also do set manipulation.
3397  * Assumes chain != NULL && *chain != NULL.
3398  *
3399  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3400  * the next 8 bits are the new set, the top 8 bits are the command:
3401  *
3402  *      0       delete rules with given number
3403  *      1       delete rules with given set number
3404  *      2       move rules with given number to new set
3405  *      3       move rules with given set number to new set
3406  *      4       swap sets with given numbers
3407  */
3408 static int
3409 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3410 {
3411         struct ip_fw *prev = NULL, *rule;
3412         u_int16_t rulenum;      /* rule or old_set */
3413         u_int8_t cmd, new_set;
3414
3415         rulenum = arg & 0xffff;
3416         cmd = (arg >> 24) & 0xff;
3417         new_set = (arg >> 16) & 0xff;
3418
3419         if (cmd > 4)
3420                 return EINVAL;
3421         if (new_set > RESVD_SET)
3422                 return EINVAL;
3423         if (cmd == 0 || cmd == 2) {
3424                 if (rulenum >= IPFW_DEFAULT_RULE)
3425                         return EINVAL;
3426         } else {
3427                 if (rulenum > RESVD_SET)        /* old_set */
3428                         return EINVAL;
3429         }
3430
3431         IPFW_WLOCK(chain);
3432         rule = chain->rules;
3433         chain->reap = NULL;
3434         switch (cmd) {
3435         case 0: /* delete rules with given number */
3436                 /*
3437                  * locate first rule to delete
3438                  */
3439                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3440                         ;
3441                 if (rule->rulenum != rulenum) {
3442                         IPFW_WUNLOCK(chain);
3443                         return EINVAL;
3444                 }
3445
3446                 /*
3447                  * flush pointers outside the loop, then delete all matching
3448                  * rules. prev remains the same throughout the cycle.
3449                  */
3450                 flush_rule_ptrs(chain);
3451                 while (rule->rulenum == rulenum)
3452                         rule = remove_rule(chain, rule, prev);
3453                 break;
3454
3455         case 1: /* delete all rules with given set number */
3456                 flush_rule_ptrs(chain);
3457                 rule = chain->rules;
3458                 while (rule->rulenum < IPFW_DEFAULT_RULE)
3459                         if (rule->set == rulenum)
3460                                 rule = remove_rule(chain, rule, prev);
3461                         else {
3462                                 prev = rule;
3463                                 rule = rule->next;
3464                         }
3465                 break;
3466
3467         case 2: /* move rules with given number to new set */
3468                 rule = chain->rules;
3469                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3470                         if (rule->rulenum == rulenum)
3471                                 rule->set = new_set;
3472                 break;
3473
3474         case 3: /* move rules with given set number to new set */
3475                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3476                         if (rule->set == rulenum)
3477                                 rule->set = new_set;
3478                 break;
3479
3480         case 4: /* swap two sets */
3481                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3482                         if (rule->set == rulenum)
3483                                 rule->set = new_set;
3484                         else if (rule->set == new_set)
3485                                 rule->set = rulenum;
3486                 break;
3487         }
3488         /*
3489          * Look for rules to reclaim.  We grab the list before
3490          * releasing the lock then reclaim them w/o the lock to
3491          * avoid a LOR with dummynet.
3492          */
3493         rule = chain->reap;
3494         chain->reap = NULL;
3495         IPFW_WUNLOCK(chain);
3496         if (rule)
3497                 reap_rules(rule);
3498         return 0;
3499 }
3500
3501 /*
3502  * Clear counters for a specific rule.
3503  * The enclosing "table" is assumed locked.
3504  */
3505 static void
3506 clear_counters(struct ip_fw *rule, int log_only)
3507 {
3508         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3509
3510         if (log_only == 0) {
3511                 rule->bcnt = rule->pcnt = 0;
3512                 rule->timestamp = 0;
3513         }
3514         if (l->o.opcode == O_LOG)
3515                 l->log_left = l->max_log;
3516 }
3517
3518 /**
3519  * Reset some or all counters on firewall rules.
3520  * @arg frwl is null to clear all entries, or contains a specific
3521  * rule number.
3522  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3523  */
3524 static int
3525 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3526 {
3527         struct ip_fw *rule;
3528         char *msg;
3529
3530         IPFW_WLOCK(chain);
3531         if (rulenum == 0) {
3532                 norule_counter = 0;
3533                 for (rule = chain->rules; rule; rule = rule->next)
3534                         clear_counters(rule, log_only);
3535                 msg = log_only ? "ipfw: All logging counts reset.\n" :
3536                                 "ipfw: Accounting cleared.\n";
3537         } else {
3538                 int cleared = 0;
3539                 /*
3540                  * We can have multiple rules with the same number, so we
3541                  * need to clear them all.
3542                  */
3543                 for (rule = chain->rules; rule; rule = rule->next)
3544                         if (rule->rulenum == rulenum) {
3545                                 while (rule && rule->rulenum == rulenum) {
3546                                         clear_counters(rule, log_only);
3547                                         rule = rule->next;
3548                                 }
3549                                 cleared = 1;
3550                                 break;
3551                         }
3552                 if (!cleared) { /* we did not find any matching rules */
3553                         IPFW_WUNLOCK(chain);
3554                         return (EINVAL);
3555                 }
3556                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3557                                 "ipfw: Entry %d cleared.\n";
3558         }
3559         IPFW_WUNLOCK(chain);
3560
3561         if (fw_verbose)
3562                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3563         return (0);
3564 }
3565
3566 /*
3567  * Check validity of the structure before insert.
3568  * Fortunately rules are simple, so this mostly need to check rule sizes.
3569  */
3570 static int
3571 check_ipfw_struct(struct ip_fw *rule, int size)
3572 {
3573         int l, cmdlen = 0;
3574         int have_action=0;
3575         ipfw_insn *cmd;
3576
3577         if (size < sizeof(*rule)) {
3578                 printf("ipfw: rule too short\n");
3579                 return (EINVAL);
3580         }
3581         /* first, check for valid size */
3582         l = RULESIZE(rule);
3583         if (l != size) {
3584                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3585                 return (EINVAL);
3586         }
3587         if (rule->act_ofs >= rule->cmd_len) {
3588                 printf("ipfw: bogus action offset (%u > %u)\n",
3589                     rule->act_ofs, rule->cmd_len - 1);
3590                 return (EINVAL);
3591         }
3592         /*
3593          * Now go for the individual checks. Very simple ones, basically only
3594          * instruction sizes.
3595          */
3596         for (l = rule->cmd_len, cmd = rule->cmd ;
3597                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
3598                 cmdlen = F_LEN(cmd);
3599                 if (cmdlen > l) {
3600                         printf("ipfw: opcode %d size truncated\n",
3601                             cmd->opcode);
3602                         return EINVAL;
3603                 }
3604                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3605                 switch (cmd->opcode) {
3606                 case O_PROBE_STATE:
3607                 case O_KEEP_STATE:
3608                 case O_PROTO:
3609                 case O_IP_SRC_ME:
3610                 case O_IP_DST_ME:
3611                 case O_LAYER2:
3612                 case O_IN:
3613                 case O_FRAG:
3614                 case O_DIVERTED:
3615                 case O_IPOPT:
3616                 case O_IPTOS:
3617                 case O_IPPRECEDENCE:
3618                 case O_IPVER:
3619                 case O_TCPWIN:
3620                 case O_TCPFLAGS:
3621                 case O_TCPOPTS:
3622                 case O_ESTAB:
3623                 case O_VERREVPATH:
3624                 case O_VERSRCREACH:
3625                 case O_ANTISPOOF:
3626                 case O_IPSEC:
3627 #ifdef INET6
3628                 case O_IP6_SRC_ME:
3629                 case O_IP6_DST_ME:
3630                 case O_EXT_HDR:
3631                 case O_IP6:
3632 #endif
3633                 case O_IP4:
3634                 case O_TAG:
3635                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3636                                 goto bad_size;
3637                         break;
3638
3639                 case O_UID:
3640                 case O_GID:
3641                 case O_JAIL:
3642                 case O_IP_SRC:
3643                 case O_IP_DST:
3644                 case O_TCPSEQ:
3645                 case O_TCPACK:
3646                 case O_PROB:
3647                 case O_ICMPTYPE:
3648                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3649                                 goto bad_size;
3650                         break;
3651
3652                 case O_LIMIT:
3653                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3654                                 goto bad_size;
3655                         break;
3656
3657                 case O_LOG:
3658                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3659                                 goto bad_size;
3660
3661                         ((ipfw_insn_log *)cmd)->log_left =
3662                             ((ipfw_insn_log *)cmd)->max_log;
3663
3664                         break;
3665
3666                 case O_IP_SRC_MASK:
3667                 case O_IP_DST_MASK:
3668                         /* only odd command lengths */
3669                         if ( !(cmdlen & 1) || cmdlen > 31)
3670                                 goto bad_size;
3671                         break;
3672
3673                 case O_IP_SRC_SET:
3674                 case O_IP_DST_SET:
3675                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3676                                 printf("ipfw: invalid set size %d\n",
3677                                         cmd->arg1);
3678                                 return EINVAL;
3679                         }
3680                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3681                             (cmd->arg1+31)/32 )
3682                                 goto bad_size;
3683                         break;
3684
3685                 case O_IP_SRC_LOOKUP:
3686                 case O_IP_DST_LOOKUP:
3687                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
3688                                 printf("ipfw: invalid table number %d\n",
3689                                     cmd->arg1);
3690                                 return (EINVAL);
3691                         }
3692                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3693                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3694                                 goto bad_size;
3695                         break;
3696
3697                 case O_MACADDR2:
3698                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3699                                 goto bad_size;
3700                         break;
3701
3702                 case O_NOP:
3703                 case O_IPID:
3704                 case O_IPTTL:
3705                 case O_IPLEN:
3706                 case O_TCPDATALEN:
3707                 case O_TAGGED:
3708                         if (cmdlen < 1 || cmdlen > 31)
3709                                 goto bad_size;
3710                         break;
3711
3712                 case O_MAC_TYPE:
3713                 case O_IP_SRCPORT:
3714                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3715                         if (cmdlen < 2 || cmdlen > 31)
3716                                 goto bad_size;
3717                         break;
3718
3719                 case O_RECV:
3720                 case O_XMIT:
3721                 case O_VIA:
3722                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3723                                 goto bad_size;
3724                         break;
3725
3726                 case O_ALTQ:
3727                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3728                                 goto bad_size;
3729                         break;
3730
3731                 case O_PIPE:
3732                 case O_QUEUE:
3733                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3734                                 goto bad_size;
3735                         goto check_action;
3736
3737                 case O_FORWARD_IP:
3738 #ifdef  IPFIREWALL_FORWARD
3739                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3740                                 goto bad_size;
3741                         goto check_action;
3742 #else
3743                         return EINVAL;
3744 #endif
3745
3746                 case O_DIVERT:
3747                 case O_TEE:
3748                         if (ip_divert_ptr == NULL)
3749                                 return EINVAL;
3750                         else
3751                                 goto check_size;
3752                 case O_NETGRAPH:
3753                 case O_NGTEE:
3754                         if (!NG_IPFW_LOADED)
3755                                 return EINVAL;
3756                         else
3757                                 goto check_size;
3758                 case O_FORWARD_MAC: /* XXX not implemented yet */
3759                 case O_CHECK_STATE:
3760                 case O_COUNT:
3761                 case O_ACCEPT:
3762                 case O_DENY:
3763                 case O_REJECT:
3764 #ifdef INET6
3765                 case O_UNREACH6:
3766 #endif
3767                 case O_SKIPTO:
3768 check_size:
3769                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3770                                 goto bad_size;
3771 check_action:
3772                         if (have_action) {
3773                                 printf("ipfw: opcode %d, multiple actions"
3774                                         " not allowed\n",
3775                                         cmd->opcode);
3776                                 return EINVAL;
3777                         }
3778                         have_action = 1;
3779                         if (l != cmdlen) {
3780                                 printf("ipfw: opcode %d, action must be"
3781                                         " last opcode\n",
3782                                         cmd->opcode);
3783                                 return EINVAL;
3784                         }
3785                         break;
3786 #ifdef INET6
3787                 case O_IP6_SRC:
3788                 case O_IP6_DST:
3789                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3790                             F_INSN_SIZE(ipfw_insn))
3791                                 goto bad_size;
3792                         break;
3793
3794                 case O_FLOW6ID:
3795                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3796                             ((ipfw_insn_u32 *)cmd)->o.arg1)
3797                                 goto bad_size;
3798                         break;
3799
3800                 case O_IP6_SRC_MASK:
3801                 case O_IP6_DST_MASK:
3802                         if ( !(cmdlen & 1) || cmdlen > 127)
3803                                 goto bad_size;
3804                         break;
3805                 case O_ICMP6TYPE:
3806                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3807                                 goto bad_size;
3808                         break;
3809 #endif
3810
3811                 default:
3812                         switch (cmd->opcode) {
3813 #ifndef INET6
3814                         case O_IP6_SRC_ME:
3815                         case O_IP6_DST_ME:
3816                         case O_EXT_HDR:
3817                         case O_IP6:
3818                         case O_UNREACH6:
3819                         case O_IP6_SRC:
3820                         case O_IP6_DST:
3821                         case O_FLOW6ID:
3822                         case O_IP6_SRC_MASK:
3823                         case O_IP6_DST_MASK:
3824                         case O_ICMP6TYPE:
3825                                 printf("ipfw: no IPv6 support in kernel\n");
3826                                 return EPROTONOSUPPORT;
3827 #endif
3828                         default:
3829                                 printf("ipfw: opcode %d, unknown opcode\n",
3830                                         cmd->opcode);
3831                                 return EINVAL;
3832                         }
3833                 }
3834         }
3835         if (have_action == 0) {
3836                 printf("ipfw: missing action\n");
3837                 return EINVAL;
3838         }
3839         return 0;
3840
3841 bad_size:
3842         printf("ipfw: opcode %d size %d wrong\n",
3843                 cmd->opcode, cmdlen);
3844         return EINVAL;
3845 }
3846
3847 /*
3848  * Copy the static and dynamic rules to the supplied buffer
3849  * and return the amount of space actually used.
3850  */
3851 static size_t
3852 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3853 {
3854         char *bp = buf;
3855         char *ep = bp + space;
3856         struct ip_fw *rule;
3857         int i;
3858
3859         /* XXX this can take a long time and locking will block packet flow */
3860         IPFW_RLOCK(chain);
3861         for (rule = chain->rules; rule ; rule = rule->next) {
3862                 /*
3863                  * Verify the entry fits in the buffer in case the
3864                  * rules changed between calculating buffer space and
3865                  * now.  This would be better done using a generation
3866                  * number but should suffice for now.
3867                  */
3868                 i = RULESIZE(rule);
3869                 if (bp + i <= ep) {
3870                         bcopy(rule, bp, i);
3871                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3872                             sizeof(set_disable));
3873                         bp += i;
3874                 }
3875         }
3876         IPFW_RUNLOCK(chain);
3877         if (ipfw_dyn_v) {
3878                 ipfw_dyn_rule *p, *last = NULL;
3879
3880                 IPFW_DYN_LOCK();
3881                 for (i = 0 ; i < curr_dyn_buckets; i++)
3882                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3883                                 if (bp + sizeof *p <= ep) {
3884                                         ipfw_dyn_rule *dst =
3885                                                 (ipfw_dyn_rule *)bp;
3886                                         bcopy(p, dst, sizeof *p);
3887                                         bcopy(&(p->rule->rulenum), &(dst->rule),
3888                                             sizeof(p->rule->rulenum));
3889                                         /*
3890                                          * store a non-null value in "next".
3891                                          * The userland code will interpret a
3892                                          * NULL here as a marker
3893                                          * for the last dynamic rule.
3894                                          */
3895                                         bcopy(&dst, &dst->next, sizeof(dst));
3896                                         last = dst;
3897                                         dst->expire =
3898                                             TIME_LEQ(dst->expire, time_uptime) ?
3899                                                 0 : dst->expire - time_uptime ;
3900                                         bp += sizeof(ipfw_dyn_rule);
3901                                 }
3902                         }
3903                 IPFW_DYN_UNLOCK();
3904                 if (last != NULL) /* mark last dynamic rule */
3905                         bzero(&last->next, sizeof(last));
3906         }
3907         return (bp - (char *)buf);
3908 }
3909
3910
3911 /**
3912  * {set|get}sockopt parser.
3913  */
3914 static int
3915 ipfw_ctl(struct sockopt *sopt)
3916 {
3917 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
3918         int error, rule_num;
3919         size_t size;
3920         struct ip_fw *buf, *rule;
3921         u_int32_t rulenum[2];
3922
3923         error = suser(sopt->sopt_td);
3924         if (error)
3925                 return (error);
3926
3927         /*
3928          * Disallow modifications in really-really secure mode, but still allow
3929          * the logging counters to be reset.
3930          */
3931         if (sopt->sopt_name == IP_FW_ADD ||
3932             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3933                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3934                 if (error)
3935                         return (error);
3936         }
3937
3938         error = 0;
3939
3940         switch (sopt->sopt_name) {
3941         case IP_FW_GET:
3942                 /*
3943                  * pass up a copy of the current rules. Static rules
3944                  * come first (the last of which has number IPFW_DEFAULT_RULE),
3945                  * followed by a possibly empty list of dynamic rule.
3946                  * The last dynamic rule has NULL in the "next" field.
3947                  *
3948                  * Note that the calculated size is used to bound the
3949                  * amount of data returned to the user.  The rule set may
3950                  * change between calculating the size and returning the
3951                  * data in which case we'll just return what fits.
3952                  */
3953                 size = static_len;      /* size of static rules */
3954                 if (ipfw_dyn_v)         /* add size of dyn.rules */
3955                         size += (dyn_count * sizeof(ipfw_dyn_rule));
3956
3957                 /*
3958                  * XXX todo: if the user passes a short length just to know
3959                  * how much room is needed, do not bother filling up the
3960                  * buffer, just jump to the sooptcopyout.
3961                  */
3962                 buf = malloc(size, M_TEMP, M_WAITOK);
3963                 error = sooptcopyout(sopt, buf,
3964                                 ipfw_getrules(&layer3_chain, buf, size));
3965                 free(buf, M_TEMP);
3966                 break;
3967
3968         case IP_FW_FLUSH:
3969                 /*
3970                  * Normally we cannot release the lock on each iteration.
3971                  * We could do it here only because we start from the head all
3972                  * the times so there is no risk of missing some entries.
3973                  * On the other hand, the risk is that we end up with
3974                  * a very inconsistent ruleset, so better keep the lock
3975                  * around the whole cycle.
3976                  *
3977                  * XXX this code can be improved by resetting the head of
3978                  * the list to point to the default rule, and then freeing
3979                  * the old list without the need for a lock.
3980                  */
3981
3982                 IPFW_WLOCK(&layer3_chain);
3983                 layer3_chain.reap = NULL;
3984                 free_chain(&layer3_chain, 0 /* keep default rule */);
3985                 rule = layer3_chain.reap;
3986                 layer3_chain.reap = NULL;
3987                 IPFW_WUNLOCK(&layer3_chain);
3988                 if (rule != NULL)
3989                         reap_rules(rule);
3990                 break;
3991
3992         case IP_FW_ADD:
3993                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3994                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3995                         sizeof(struct ip_fw) );
3996                 if (error == 0)
3997                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
3998                 if (error == 0) {
3999                         error = add_rule(&layer3_chain, rule);
4000                         size = RULESIZE(rule);
4001                         if (!error && sopt->sopt_dir == SOPT_GET)
4002                                 error = sooptcopyout(sopt, rule, size);
4003                 }
4004                 free(rule, M_TEMP);
4005                 break;
4006
4007         case IP_FW_DEL:
4008                 /*
4009                  * IP_FW_DEL is used for deleting single rules or sets,
4010                  * and (ab)used to atomically manipulate sets. Argument size
4011                  * is used to distinguish between the two:
4012                  *    sizeof(u_int32_t)
4013                  *      delete single rule or set of rules,
4014                  *      or reassign rules (or sets) to a different set.
4015                  *    2*sizeof(u_int32_t)
4016                  *      atomic disable/enable sets.
4017                  *      first u_int32_t contains sets to be disabled,
4018                  *      second u_int32_t contains sets to be enabled.
4019                  */
4020                 error = sooptcopyin(sopt, rulenum,
4021                         2*sizeof(u_int32_t), sizeof(u_int32_t));
4022                 if (error)
4023                         break;
4024                 size = sopt->sopt_valsize;
4025                 if (size == sizeof(u_int32_t))  /* delete or reassign */
4026                         error = del_entry(&layer3_chain, rulenum[0]);
4027                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4028                         set_disable =
4029                             (set_disable | rulenum[0]) & ~rulenum[1] &
4030                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4031                 else
4032                         error = EINVAL;
4033                 break;
4034
4035         case IP_FW_ZERO:
4036         case IP_FW_RESETLOG: /* argument is an int, the rule number */
4037                 rule_num = 0;
4038                 if (sopt->sopt_val != 0) {
4039                     error = sooptcopyin(sopt, &rule_num,
4040                             sizeof(int), sizeof(int));
4041                     if (error)
4042                         break;
4043                 }
4044                 error = zero_entry(&layer3_chain, rule_num,
4045                         sopt->sopt_name == IP_FW_RESETLOG);
4046                 break;
4047
4048         case IP_FW_TABLE_ADD:
4049                 {
4050                         ipfw_table_entry ent;
4051
4052                         error = sooptcopyin(sopt, &ent,
4053                             sizeof(ent), sizeof(ent));
4054                         if (error)
4055                                 break;
4056                         error = add_table_entry(&layer3_chain, ent.tbl,
4057                             ent.addr, ent.masklen, ent.value);
4058                 }
4059                 break;
4060
4061         case IP_FW_TABLE_DEL:
4062                 {
4063                         ipfw_table_entry ent;
4064
4065                         error = sooptcopyin(sopt, &ent,
4066                             sizeof(ent), sizeof(ent));
4067                         if (error)
4068                                 break;
4069                         error = del_table_entry(&layer3_chain, ent.tbl,
4070                             ent.addr, ent.masklen);
4071                 }
4072                 break;
4073
4074         case IP_FW_TABLE_FLUSH:
4075                 {
4076                         u_int16_t tbl;
4077
4078                         error = sooptcopyin(sopt, &tbl,
4079                             sizeof(tbl), sizeof(tbl));
4080                         if (error)
4081                                 break;
4082                         IPFW_WLOCK(&layer3_chain);
4083                         error = flush_table(&layer3_chain, tbl);
4084                         IPFW_WUNLOCK(&layer3_chain);
4085                 }
4086                 break;
4087
4088         case IP_FW_TABLE_GETSIZE:
4089                 {
4090                         u_int32_t tbl, cnt;
4091
4092                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4093                             sizeof(tbl))))
4094                                 break;
4095                         IPFW_RLOCK(&layer3_chain);
4096                         error = count_table(&layer3_chain, tbl, &cnt);
4097                         IPFW_RUNLOCK(&layer3_chain);
4098                         if (error)
4099                                 break;
4100                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4101                 }
4102                 break;
4103
4104         case IP_FW_TABLE_LIST:
4105                 {
4106                         ipfw_table *tbl;
4107
4108                         if (sopt->sopt_valsize < sizeof(*tbl)) {
4109                                 error = EINVAL;
4110                                 break;
4111                         }
4112                         size = sopt->sopt_valsize;
4113                         tbl = malloc(size, M_TEMP, M_WAITOK);
4114                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4115                         if (error) {
4116                                 free(tbl, M_TEMP);
4117                                 break;
4118                         }
4119                         tbl->size = (size - sizeof(*tbl)) /
4120                             sizeof(ipfw_table_entry);
4121                         IPFW_RLOCK(&layer3_chain);
4122                         error = dump_table(&layer3_chain, tbl);
4123                         IPFW_RUNLOCK(&layer3_chain);
4124                         if (error) {
4125                                 free(tbl, M_TEMP);
4126                                 break;
4127                         }
4128                         error = sooptcopyout(sopt, tbl, size);
4129                         free(tbl, M_TEMP);
4130                 }
4131                 break;
4132
4133         default:
4134                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4135                 error = EINVAL;
4136         }
4137
4138         return (error);
4139 #undef RULE_MAXSIZE
4140 }
4141
4142 /**
4143  * dummynet needs a reference to the default rule, because rules can be
4144  * deleted while packets hold a reference to them. When this happens,
4145  * dummynet changes the reference to the default rule (it could well be a
4146  * NULL pointer, but this way we do not need to check for the special
4147  * case, plus here he have info on the default behaviour).
4148  */
4149 struct ip_fw *ip_fw_default_rule;
4150
4151 /*
4152  * This procedure is only used to handle keepalives. It is invoked
4153  * every dyn_keepalive_period
4154  */
4155 static void
4156 ipfw_tick(void * __unused unused)
4157 {
4158         struct mbuf *m0, *m, *mnext, **mtailp;
4159         int i;
4160         ipfw_dyn_rule *q;
4161
4162         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4163                 goto done;
4164
4165         /*
4166          * We make a chain of packets to go out here -- not deferring
4167          * until after we drop the IPFW dynamic rule lock would result
4168          * in a lock order reversal with the normal packet input -> ipfw
4169          * call stack.
4170          */
4171         m0 = NULL;
4172         mtailp = &m0;
4173         IPFW_DYN_LOCK();
4174         for (i = 0 ; i < curr_dyn_buckets ; i++) {
4175                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4176                         if (q->dyn_type == O_LIMIT_PARENT)
4177                                 continue;
4178                         if (q->id.proto != IPPROTO_TCP)
4179                                 continue;
4180                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
4181                                 continue;
4182                         if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4183                             q->expire))
4184                                 continue;       /* too early */
4185                         if (TIME_LEQ(q->expire, time_uptime))
4186                                 continue;       /* too late, rule expired */
4187
4188                         *mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4189                                 q->ack_fwd, TH_SYN);
4190                         if (*mtailp != NULL)
4191                                 mtailp = &(*mtailp)->m_nextpkt;
4192                         *mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4193                                 q->ack_rev, 0);
4194                         if (*mtailp != NULL)
4195                                 mtailp = &(*mtailp)->m_nextpkt;
4196                 }
4197         }
4198         IPFW_DYN_UNLOCK();
4199         for (m = mnext = m0; m != NULL; m = mnext) {
4200                 mnext = m->m_nextpkt;
4201                 m->m_nextpkt = NULL;
4202                 ip_output(m, NULL, NULL, 0, NULL, NULL);
4203         }
4204 done:
4205         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4206 }
4207
4208 int
4209 ipfw_init(void)
4210 {
4211         struct ip_fw default_rule;
4212         int error;
4213
4214 #ifdef INET6
4215         /* Setup IPv6 fw sysctl tree. */
4216         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4217         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4218             SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4219             CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4220         SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4221             OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4222             &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4223         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4224             OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4225             &fw_deny_unknown_exthdrs, 0,
4226             "Deny packets with unknown IPv6 Extension Headers");
4227 #endif
4228
4229         layer3_chain.rules = NULL;
4230         IPFW_LOCK_INIT(&layer3_chain);
4231         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4232             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4233             UMA_ALIGN_PTR, 0);
4234         IPFW_DYN_LOCK_INIT();
4235         callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4236
4237         bzero(&default_rule, sizeof default_rule);
4238
4239         default_rule.act_ofs = 0;
4240         default_rule.rulenum = IPFW_DEFAULT_RULE;
4241         default_rule.cmd_len = 1;
4242         default_rule.set = RESVD_SET;
4243
4244         default_rule.cmd[0].len = 1;
4245         default_rule.cmd[0].opcode =
4246 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4247                                 1 ? O_ACCEPT :
4248 #endif
4249                                 O_DENY;
4250
4251         error = add_rule(&layer3_chain, &default_rule);
4252         if (error != 0) {
4253                 printf("ipfw2: error %u initializing default rule "
4254                         "(support disabled)\n", error);
4255                 IPFW_DYN_LOCK_DESTROY();
4256                 IPFW_LOCK_DESTROY(&layer3_chain);
4257                 uma_zdestroy(ipfw_dyn_rule_zone);
4258                 return (error);
4259         }
4260
4261         ip_fw_default_rule = layer3_chain.rules;
4262         printf("ipfw2 "
4263 #ifdef INET6
4264                 "(+ipv6) "
4265 #endif
4266                 "initialized, divert %s, "
4267                 "rule-based forwarding "
4268 #ifdef IPFIREWALL_FORWARD
4269                 "enabled, "
4270 #else
4271                 "disabled, "
4272 #endif
4273                 "default to %s, logging ",
4274 #ifdef IPDIVERT
4275                 "enabled",
4276 #else
4277                 "loadable",
4278 #endif
4279                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4280
4281 #ifdef IPFIREWALL_VERBOSE
4282         fw_verbose = 1;
4283 #endif
4284 #ifdef IPFIREWALL_VERBOSE_LIMIT
4285         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4286 #endif
4287         if (fw_verbose == 0)
4288                 printf("disabled\n");
4289         else if (verbose_limit == 0)
4290                 printf("unlimited\n");
4291         else
4292                 printf("limited to %d packets/entry by default\n",
4293                     verbose_limit);
4294
4295         error = init_tables(&layer3_chain);
4296         if (error) {
4297                 IPFW_DYN_LOCK_DESTROY();
4298                 IPFW_LOCK_DESTROY(&layer3_chain);
4299                 uma_zdestroy(ipfw_dyn_rule_zone);
4300                 return (error);
4301         }
4302         ip_fw_ctl_ptr = ipfw_ctl;
4303         ip_fw_chk_ptr = ipfw_chk;
4304         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4305
4306         return (0);
4307 }
4308
4309 void
4310 ipfw_destroy(void)
4311 {
4312         struct ip_fw *reap;
4313
4314         ip_fw_chk_ptr = NULL;
4315         ip_fw_ctl_ptr = NULL;
4316         callout_drain(&ipfw_timeout);
4317         IPFW_WLOCK(&layer3_chain);
4318         flush_tables(&layer3_chain);
4319         layer3_chain.reap = NULL;
4320         free_chain(&layer3_chain, 1 /* kill default rule */);
4321         reap = layer3_chain.reap, layer3_chain.reap = NULL;
4322         IPFW_WUNLOCK(&layer3_chain);
4323         if (reap != NULL)
4324                 reap_rules(reap);
4325         IPFW_DYN_LOCK_DESTROY();
4326         uma_zdestroy(ipfw_dyn_rule_zone);
4327         IPFW_LOCK_DESTROY(&layer3_chain);
4328
4329 #ifdef INET6
4330         /* Free IPv6 fw sysctl tree. */
4331         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4332 #endif
4333
4334         printf("IP firewall unloaded\n");
4335 }