]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/ip_fw2.c
This commit was generated by cvs2svn to compensate for changes in r161655,
[FreeBSD/FreeBSD.git] / sys / netinet / ip_fw2.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27
28 #define        DEB(x)
29 #define        DDB(x) x
30
31 /*
32  * Implement IP packet firewall (new version)
33  */
34
35 #if !defined(KLD_MODULE)
36 #include "opt_ipfw.h"
37 #include "opt_ipdn.h"
38 #include "opt_inet.h"
39 #ifndef INET
40 #error IPFIREWALL requires INET.
41 #endif /* INET */
42 #endif
43 #include "opt_inet6.h"
44 #include "opt_ipsec.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/condvar.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/jail.h>
54 #include <sys/module.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/if.h>
63 #include <net/radix.h>
64 #include <net/route.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_icmp.h>
72 #include <netinet/ip_fw.h>
73 #include <netinet/ip_divert.h>
74 #include <netinet/ip_dummynet.h>
75 #include <netinet/tcp.h>
76 #include <netinet/tcp_timer.h>
77 #include <netinet/tcp_var.h>
78 #include <netinet/tcpip.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81
82 #include <netgraph/ng_ipfw.h>
83
84 #include <altq/if_altq.h>
85
86 #ifdef IPSEC
87 #include <netinet6/ipsec.h>
88 #endif
89
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #ifdef INET6
93 #include <netinet6/scope6_var.h>
94 #endif
95
96 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
97
98 #include <machine/in_cksum.h>   /* XXX for in_cksum */
99
100 /*
101  * set_disable contains one bit per set value (0..31).
102  * If the bit is set, all rules with the corresponding set
103  * are disabled. Set RESVD_SET(31) is reserved for the default rule
104  * and rules that are not deleted by the flush command,
105  * and CANNOT be disabled.
106  * Rules in set RESVD_SET can only be deleted explicitly.
107  */
108 static u_int32_t set_disable;
109
110 static int fw_verbose;
111 static int verbose_limit;
112
113 static struct callout ipfw_timeout;
114 static uma_zone_t ipfw_dyn_rule_zone;
115 #define IPFW_DEFAULT_RULE       65535
116
117 /*
118  * Data structure to cache our ucred related
119  * information. This structure only gets used if
120  * the user specified UID/GID based constraints in
121  * a firewall rule.
122  */
123 struct ip_fw_ugid {
124         gid_t           fw_groups[NGROUPS];
125         int             fw_ngroups;
126         uid_t           fw_uid;
127         int             fw_prid;
128 };
129
130 #define IPFW_TABLES_MAX         128
131 struct ip_fw_chain {
132         struct ip_fw    *rules;         /* list of rules */
133         struct ip_fw    *reap;          /* list of rules to reap */
134         struct radix_node_head *tables[IPFW_TABLES_MAX];
135         struct rwlock   rwmtx;
136 };
137 #define IPFW_LOCK_INIT(_chain) \
138         rw_init(&(_chain)->rwmtx, "IPFW static rules")
139 #define IPFW_LOCK_DESTROY(_chain)       rw_destroy(&(_chain)->rwmtx)
140 #define IPFW_WLOCK_ASSERT(_chain)       do {                            \
141         rw_assert(&(_chain)->rwmtx, RA_WLOCKED);                                        \
142         NET_ASSERT_GIANT();                                             \
143 } while (0)
144
145 #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
146 #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
147 #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
148 #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
149
150 /*
151  * list of rules for layer 3
152  */
153 static struct ip_fw_chain layer3_chain;
154
155 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
156 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
157
158 struct table_entry {
159         struct radix_node       rn[2];
160         struct sockaddr_in      addr, mask;
161         u_int32_t               value;
162 };
163
164 static int fw_debug = 1;
165 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
166
167 extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
168
169 #ifdef SYSCTL_NODE
170 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
171 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
172     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
173     ipfw_chg_hook, "I", "Enable ipfw");
174 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
175     &autoinc_step, 0, "Rule number autincrement step");
176 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
177     CTLFLAG_RW | CTLFLAG_SECURE3,
178     &fw_one_pass, 0,
179     "Only do a single pass through ipfw when using dummynet(4)");
180 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
181     &fw_debug, 0, "Enable printing of debug ip_fw statements");
182 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
183     CTLFLAG_RW | CTLFLAG_SECURE3,
184     &fw_verbose, 0, "Log matches to ipfw rules");
185 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
186     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
187
188 /*
189  * Description of dynamic rules.
190  *
191  * Dynamic rules are stored in lists accessed through a hash table
192  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
193  * be modified through the sysctl variable dyn_buckets which is
194  * updated when the table becomes empty.
195  *
196  * XXX currently there is only one list, ipfw_dyn.
197  *
198  * When a packet is received, its address fields are first masked
199  * with the mask defined for the rule, then hashed, then matched
200  * against the entries in the corresponding list.
201  * Dynamic rules can be used for different purposes:
202  *  + stateful rules;
203  *  + enforcing limits on the number of sessions;
204  *  + in-kernel NAT (not implemented yet)
205  *
206  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
207  * measured in seconds and depending on the flags.
208  *
209  * The total number of dynamic rules is stored in dyn_count.
210  * The max number of dynamic rules is dyn_max. When we reach
211  * the maximum number of rules we do not create anymore. This is
212  * done to avoid consuming too much memory, but also too much
213  * time when searching on each packet (ideally, we should try instead
214  * to put a limit on the length of the list on each bucket...).
215  *
216  * Each dynamic rule holds a pointer to the parent ipfw rule so
217  * we know what action to perform. Dynamic rules are removed when
218  * the parent rule is deleted. XXX we should make them survive.
219  *
220  * There are some limitations with dynamic rules -- we do not
221  * obey the 'randomized match', and we do not do multiple
222  * passes through the firewall. XXX check the latter!!!
223  */
224 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
225 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
226 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
227
228 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
229 #define IPFW_DYN_LOCK_INIT() \
230         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
231 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
232 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
233 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
234 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
235
236 /*
237  * Timeouts for various events in handing dynamic rules.
238  */
239 static u_int32_t dyn_ack_lifetime = 300;
240 static u_int32_t dyn_syn_lifetime = 20;
241 static u_int32_t dyn_fin_lifetime = 1;
242 static u_int32_t dyn_rst_lifetime = 1;
243 static u_int32_t dyn_udp_lifetime = 10;
244 static u_int32_t dyn_short_lifetime = 5;
245
246 /*
247  * Keepalives are sent if dyn_keepalive is set. They are sent every
248  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
249  * seconds of lifetime of a rule.
250  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
251  * than dyn_keepalive_period.
252  */
253
254 static u_int32_t dyn_keepalive_interval = 20;
255 static u_int32_t dyn_keepalive_period = 5;
256 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
257
258 static u_int32_t static_count;  /* # of static rules */
259 static u_int32_t static_len;    /* size in bytes of static rules */
260 static u_int32_t dyn_count;             /* # of dynamic rules */
261 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
262
263 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
264     &dyn_buckets, 0, "Number of dyn. buckets");
265 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
266     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
267 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
268     &dyn_count, 0, "Number of dyn. rules");
269 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
270     &dyn_max, 0, "Max number of dyn. rules");
271 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
272     &static_count, 0, "Number of static rules");
273 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
274     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
275 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
276     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
277 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
278     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
279 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
280     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
281 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
282     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
283 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
284     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
285 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
286     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
287
288 #ifdef INET6
289 /*
290  * IPv6 specific variables
291  */
292 SYSCTL_DECL(_net_inet6_ip6);
293
294 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
295 static struct sysctl_oid *ip6_fw_sysctl_tree;
296 #endif /* INET6 */
297 #endif /* SYSCTL_NODE */
298
299 static int fw_deny_unknown_exthdrs = 1;
300
301
302 /*
303  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
304  * Other macros just cast void * into the appropriate type
305  */
306 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
307 #define TCP(p)          ((struct tcphdr *)(p))
308 #define UDP(p)          ((struct udphdr *)(p))
309 #define ICMP(p)         ((struct icmphdr *)(p))
310 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
311
312 static __inline int
313 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
314 {
315         int type = icmp->icmp_type;
316
317         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
318 }
319
320 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
321     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
322
323 static int
324 is_icmp_query(struct icmphdr *icmp)
325 {
326         int type = icmp->icmp_type;
327
328         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
329 }
330 #undef TT
331
332 /*
333  * The following checks use two arrays of 8 or 16 bits to store the
334  * bits that we want set or clear, respectively. They are in the
335  * low and high half of cmd->arg1 or cmd->d[0].
336  *
337  * We scan options and store the bits we find set. We succeed if
338  *
339  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
340  *
341  * The code is sometimes optimized not to store additional variables.
342  */
343
344 static int
345 flags_match(ipfw_insn *cmd, u_int8_t bits)
346 {
347         u_char want_clear;
348         bits = ~bits;
349
350         if ( ((cmd->arg1 & 0xff) & bits) != 0)
351                 return 0; /* some bits we want set were clear */
352         want_clear = (cmd->arg1 >> 8) & 0xff;
353         if ( (want_clear & bits) != want_clear)
354                 return 0; /* some bits we want clear were set */
355         return 1;
356 }
357
358 static int
359 ipopts_match(struct ip *ip, ipfw_insn *cmd)
360 {
361         int optlen, bits = 0;
362         u_char *cp = (u_char *)(ip + 1);
363         int x = (ip->ip_hl << 2) - sizeof (struct ip);
364
365         for (; x > 0; x -= optlen, cp += optlen) {
366                 int opt = cp[IPOPT_OPTVAL];
367
368                 if (opt == IPOPT_EOL)
369                         break;
370                 if (opt == IPOPT_NOP)
371                         optlen = 1;
372                 else {
373                         optlen = cp[IPOPT_OLEN];
374                         if (optlen <= 0 || optlen > x)
375                                 return 0; /* invalid or truncated */
376                 }
377                 switch (opt) {
378
379                 default:
380                         break;
381
382                 case IPOPT_LSRR:
383                         bits |= IP_FW_IPOPT_LSRR;
384                         break;
385
386                 case IPOPT_SSRR:
387                         bits |= IP_FW_IPOPT_SSRR;
388                         break;
389
390                 case IPOPT_RR:
391                         bits |= IP_FW_IPOPT_RR;
392                         break;
393
394                 case IPOPT_TS:
395                         bits |= IP_FW_IPOPT_TS;
396                         break;
397                 }
398         }
399         return (flags_match(cmd, bits));
400 }
401
402 static int
403 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
404 {
405         int optlen, bits = 0;
406         u_char *cp = (u_char *)(tcp + 1);
407         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
408
409         for (; x > 0; x -= optlen, cp += optlen) {
410                 int opt = cp[0];
411                 if (opt == TCPOPT_EOL)
412                         break;
413                 if (opt == TCPOPT_NOP)
414                         optlen = 1;
415                 else {
416                         optlen = cp[1];
417                         if (optlen <= 0)
418                                 break;
419                 }
420
421                 switch (opt) {
422
423                 default:
424                         break;
425
426                 case TCPOPT_MAXSEG:
427                         bits |= IP_FW_TCPOPT_MSS;
428                         break;
429
430                 case TCPOPT_WINDOW:
431                         bits |= IP_FW_TCPOPT_WINDOW;
432                         break;
433
434                 case TCPOPT_SACK_PERMITTED:
435                 case TCPOPT_SACK:
436                         bits |= IP_FW_TCPOPT_SACK;
437                         break;
438
439                 case TCPOPT_TIMESTAMP:
440                         bits |= IP_FW_TCPOPT_TS;
441                         break;
442
443                 }
444         }
445         return (flags_match(cmd, bits));
446 }
447
448 static int
449 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
450 {
451         if (ifp == NULL)        /* no iface with this packet, match fails */
452                 return 0;
453         /* Check by name or by IP address */
454         if (cmd->name[0] != '\0') { /* match by name */
455                 /* Check name */
456                 if (cmd->p.glob) {
457                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
458                                 return(1);
459                 } else {
460                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
461                                 return(1);
462                 }
463         } else {
464                 struct ifaddr *ia;
465
466                 /* XXX lock? */
467                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
468                         if (ia->ifa_addr->sa_family != AF_INET)
469                                 continue;
470                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
471                             (ia->ifa_addr))->sin_addr.s_addr)
472                                 return(1);      /* match */
473                 }
474         }
475         return(0);      /* no match, fail ... */
476 }
477
478 /*
479  * The verify_path function checks if a route to the src exists and
480  * if it is reachable via ifp (when provided).
481  * 
482  * The 'verrevpath' option checks that the interface that an IP packet
483  * arrives on is the same interface that traffic destined for the
484  * packet's source address would be routed out of.  The 'versrcreach'
485  * option just checks that the source address is reachable via any route
486  * (except default) in the routing table.  These two are a measure to block
487  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
488  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
489  * is purposely reminiscent of the Cisco IOS command,
490  *
491  *   ip verify unicast reverse-path
492  *   ip verify unicast source reachable-via any
493  *
494  * which implements the same functionality. But note that syntax is
495  * misleading. The check may be performed on all IP packets whether unicast,
496  * multicast, or broadcast.
497  */
498 static int
499 verify_path(struct in_addr src, struct ifnet *ifp)
500 {
501         struct route ro;
502         struct sockaddr_in *dst;
503
504         bzero(&ro, sizeof(ro));
505
506         dst = (struct sockaddr_in *)&(ro.ro_dst);
507         dst->sin_family = AF_INET;
508         dst->sin_len = sizeof(*dst);
509         dst->sin_addr = src;
510         rtalloc_ign(&ro, RTF_CLONING);
511
512         if (ro.ro_rt == NULL)
513                 return 0;
514
515         /*
516          * If ifp is provided, check for equality with rtentry.
517          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
518          * in order to pass packets injected back by if_simloop():
519          * if useloopback == 1 routing entry (via lo0) for our own address
520          * may exist, so we need to handle routing assymetry.
521          */
522         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
523                 RTFREE(ro.ro_rt);
524                 return 0;
525         }
526
527         /* if no ifp provided, check if rtentry is not default route */
528         if (ifp == NULL &&
529              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
530                 RTFREE(ro.ro_rt);
531                 return 0;
532         }
533
534         /* or if this is a blackhole/reject route */
535         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
536                 RTFREE(ro.ro_rt);
537                 return 0;
538         }
539
540         /* found valid route */
541         RTFREE(ro.ro_rt);
542         return 1;
543 }
544
545 #ifdef INET6
546 /*
547  * ipv6 specific rules here...
548  */
549 static __inline int
550 icmp6type_match (int type, ipfw_insn_u32 *cmd)
551 {
552         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
553 }
554
555 static int
556 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
557 {
558         int i;
559         for (i=0; i <= cmd->o.arg1; ++i )
560                 if (curr_flow == cmd->d[i] )
561                         return 1;
562         return 0;
563 }
564
565 /* support for IP6_*_ME opcodes */
566 static int
567 search_ip6_addr_net (struct in6_addr * ip6_addr)
568 {
569         struct ifnet *mdc;
570         struct ifaddr *mdc2;
571         struct in6_ifaddr *fdm;
572         struct in6_addr copia;
573
574         TAILQ_FOREACH(mdc, &ifnet, if_link)
575                 TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
576                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
577                                 fdm = (struct in6_ifaddr *)mdc2;
578                                 copia = fdm->ia_addr.sin6_addr;
579                                 /* need for leaving scope_id in the sock_addr */
580                                 in6_clearscope(&copia);
581                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
582                                         return 1;
583                         }
584                 }
585         return 0;
586 }
587
588 static int
589 verify_path6(struct in6_addr *src, struct ifnet *ifp)
590 {
591         struct route_in6 ro;
592         struct sockaddr_in6 *dst;
593
594         bzero(&ro, sizeof(ro));
595
596         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
597         dst->sin6_family = AF_INET6;
598         dst->sin6_len = sizeof(*dst);
599         dst->sin6_addr = *src;
600         rtalloc_ign((struct route *)&ro, RTF_CLONING);
601
602         if (ro.ro_rt == NULL)
603                 return 0;
604
605         /* 
606          * if ifp is provided, check for equality with rtentry
607          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
608          * to support the case of sending packets to an address of our own.
609          * (where the former interface is the first argument of if_simloop()
610          *  (=ifp), the latter is lo0)
611          */
612         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
613                 RTFREE(ro.ro_rt);
614                 return 0;
615         }
616
617         /* if no ifp provided, check if rtentry is not default route */
618         if (ifp == NULL &&
619             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
620                 RTFREE(ro.ro_rt);
621                 return 0;
622         }
623
624         /* or if this is a blackhole/reject route */
625         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
626                 RTFREE(ro.ro_rt);
627                 return 0;
628         }
629
630         /* found valid route */
631         RTFREE(ro.ro_rt);
632         return 1;
633
634 }
635 static __inline int
636 hash_packet6(struct ipfw_flow_id *id)
637 {
638         u_int32_t i;
639         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
640             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
641             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
642             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
643             (id->dst_port) ^ (id->src_port);
644         return i;
645 }
646
647 static int
648 is_icmp6_query(int icmp6_type)
649 {
650         if ((icmp6_type <= ICMP6_MAXTYPE) &&
651             (icmp6_type == ICMP6_ECHO_REQUEST ||
652             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
653             icmp6_type == ICMP6_WRUREQUEST ||
654             icmp6_type == ICMP6_FQDN_QUERY ||
655             icmp6_type == ICMP6_NI_QUERY))
656                 return (1);
657
658         return (0);
659 }
660
661 static void
662 send_reject6(struct ip_fw_args *args, int code, u_int hlen)
663 {
664         if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
665                 struct ip6_hdr *ip6;
666                 struct tcphdr *tcp;
667                 tcp_seq ack, seq;
668                 int flags;
669                 struct {
670                         struct ip6_hdr ip6;
671                         struct tcphdr th;
672                 } ti;
673
674                 if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
675                         args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
676                         if (args->m == NULL)
677                                 return;
678                 }
679
680                 ip6 = mtod(args->m, struct ip6_hdr *);
681                 tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
682
683                 if ((tcp->th_flags & TH_RST) != 0) {
684                         m_freem(args->m);
685                         return;
686                 }
687
688                 ti.ip6 = *ip6;
689                 ti.th = *tcp;
690                 ti.th.th_seq = ntohl(ti.th.th_seq);
691                 ti.th.th_ack = ntohl(ti.th.th_ack);
692                 ti.ip6.ip6_nxt = IPPROTO_TCP;
693
694                 if (ti.th.th_flags & TH_ACK) {
695                         ack = 0;
696                         seq = ti.th.th_ack;
697                         flags = TH_RST;
698                 } else {
699                         ack = ti.th.th_seq;
700                         if (((args->m)->m_flags & M_PKTHDR) != 0) {
701                                 ack += (args->m)->m_pkthdr.len - hlen
702                                         - (ti.th.th_off << 2);
703                         } else if (ip6->ip6_plen) {
704                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
705                                         - hlen - (ti.th.th_off << 2);
706                         } else {
707                                 m_freem(args->m);
708                                 return;
709                         }
710                         if (tcp->th_flags & TH_SYN)
711                                 ack++;
712                         seq = 0;
713                         flags = TH_RST|TH_ACK;
714                 }
715                 bcopy(&ti, ip6, sizeof(ti));
716                 tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
717                         args->m, ack, seq, flags);
718
719         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
720                 icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
721
722         } else
723                 m_freem(args->m);
724
725         args->m = NULL;
726 }
727
728 #endif /* INET6 */
729
730 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
731
732 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
733 #define SNP(buf) buf, sizeof(buf)
734
735 /*
736  * We enter here when we have a rule with O_LOG.
737  * XXX this function alone takes about 2Kbytes of code!
738  */
739 static void
740 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
741         struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg)
742 {
743         struct ether_header *eh = args->eh;
744         char *action;
745         int limit_reached = 0;
746         char action2[40], proto[128], fragment[32];
747
748         fragment[0] = '\0';
749         proto[0] = '\0';
750
751         if (f == NULL) {        /* bogus pkt */
752                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
753                         return;
754                 norule_counter++;
755                 if (norule_counter == verbose_limit)
756                         limit_reached = verbose_limit;
757                 action = "Refuse";
758         } else {        /* O_LOG is the first action, find the real one */
759                 ipfw_insn *cmd = ACTION_PTR(f);
760                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
761
762                 if (l->max_log != 0 && l->log_left == 0)
763                         return;
764                 l->log_left--;
765                 if (l->log_left == 0)
766                         limit_reached = l->max_log;
767                 cmd += F_LEN(cmd);      /* point to first action */
768                 if (cmd->opcode == O_ALTQ) {
769                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
770
771                         snprintf(SNPARGS(action2, 0), "Altq %d",
772                                 altq->qid);
773                         cmd += F_LEN(cmd);
774                 }
775                 if (cmd->opcode == O_PROB)
776                         cmd += F_LEN(cmd);
777
778                 if (cmd->opcode == O_TAG)
779                         cmd += F_LEN(cmd);
780
781                 action = action2;
782                 switch (cmd->opcode) {
783                 case O_DENY:
784                         action = "Deny";
785                         break;
786
787                 case O_REJECT:
788                         if (cmd->arg1==ICMP_REJECT_RST)
789                                 action = "Reset";
790                         else if (cmd->arg1==ICMP_UNREACH_HOST)
791                                 action = "Reject";
792                         else
793                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
794                                         cmd->arg1);
795                         break;
796
797                 case O_UNREACH6:
798                         if (cmd->arg1==ICMP6_UNREACH_RST)
799                                 action = "Reset";
800                         else
801                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
802                                         cmd->arg1);
803                         break;
804
805                 case O_ACCEPT:
806                         action = "Accept";
807                         break;
808                 case O_COUNT:
809                         action = "Count";
810                         break;
811                 case O_DIVERT:
812                         snprintf(SNPARGS(action2, 0), "Divert %d",
813                                 cmd->arg1);
814                         break;
815                 case O_TEE:
816                         snprintf(SNPARGS(action2, 0), "Tee %d",
817                                 cmd->arg1);
818                         break;
819                 case O_SKIPTO:
820                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
821                                 cmd->arg1);
822                         break;
823                 case O_PIPE:
824                         snprintf(SNPARGS(action2, 0), "Pipe %d",
825                                 cmd->arg1);
826                         break;
827                 case O_QUEUE:
828                         snprintf(SNPARGS(action2, 0), "Queue %d",
829                                 cmd->arg1);
830                         break;
831                 case O_FORWARD_IP: {
832                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
833                         int len;
834                         struct in_addr dummyaddr;
835                         if (sa->sa.sin_addr.s_addr == INADDR_ANY)
836                                 dummyaddr.s_addr = htonl(tablearg);
837                         else
838                                 dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
839
840                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
841                                 inet_ntoa(dummyaddr));
842
843                         if (sa->sa.sin_port)
844                                 snprintf(SNPARGS(action2, len), ":%d",
845                                     sa->sa.sin_port);
846                         }
847                         break;
848                 case O_NETGRAPH:
849                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
850                                 cmd->arg1);
851                         break;
852                 case O_NGTEE:
853                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
854                                 cmd->arg1);
855                         break;
856                 default:
857                         action = "UNKNOWN";
858                         break;
859                 }
860         }
861
862         if (hlen == 0) {        /* non-ip */
863                 snprintf(SNPARGS(proto, 0), "MAC");
864
865         } else {
866                 int len;
867                 char src[48], dst[48];
868                 struct icmphdr *icmp;
869                 struct tcphdr *tcp;
870                 struct udphdr *udp;
871                 /* Initialize to make compiler happy. */
872                 struct ip *ip = NULL;
873 #ifdef INET6
874                 struct ip6_hdr *ip6 = NULL;
875                 struct icmp6_hdr *icmp6;
876 #endif
877                 src[0] = '\0';
878                 dst[0] = '\0';
879 #ifdef INET6
880                 if (args->f_id.addr_type == 6) {
881                         snprintf(src, sizeof(src), "[%s]",
882                             ip6_sprintf(&args->f_id.src_ip6));
883                         snprintf(dst, sizeof(dst), "[%s]",
884                             ip6_sprintf(&args->f_id.dst_ip6));
885
886                         ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
887                         tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
888                         udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
889                 } else
890 #endif
891                 {
892                         ip = mtod(m, struct ip *);
893                         tcp = L3HDR(struct tcphdr, ip);
894                         udp = L3HDR(struct udphdr, ip);
895
896                         inet_ntoa_r(ip->ip_src, src);
897                         inet_ntoa_r(ip->ip_dst, dst);
898                 }
899
900                 switch (args->f_id.proto) {
901                 case IPPROTO_TCP:
902                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
903                         if (offset == 0)
904                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
905                                     ntohs(tcp->th_sport),
906                                     dst,
907                                     ntohs(tcp->th_dport));
908                         else
909                                 snprintf(SNPARGS(proto, len), " %s", dst);
910                         break;
911
912                 case IPPROTO_UDP:
913                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
914                         if (offset == 0)
915                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
916                                     ntohs(udp->uh_sport),
917                                     dst,
918                                     ntohs(udp->uh_dport));
919                         else
920                                 snprintf(SNPARGS(proto, len), " %s", dst);
921                         break;
922
923                 case IPPROTO_ICMP:
924                         icmp = L3HDR(struct icmphdr, ip);
925                         if (offset == 0)
926                                 len = snprintf(SNPARGS(proto, 0),
927                                     "ICMP:%u.%u ",
928                                     icmp->icmp_type, icmp->icmp_code);
929                         else
930                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
931                         len += snprintf(SNPARGS(proto, len), "%s", src);
932                         snprintf(SNPARGS(proto, len), " %s", dst);
933                         break;
934 #ifdef INET6
935                 case IPPROTO_ICMPV6:
936                         icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
937                         if (offset == 0)
938                                 len = snprintf(SNPARGS(proto, 0),
939                                     "ICMPv6:%u.%u ",
940                                     icmp6->icmp6_type, icmp6->icmp6_code);
941                         else
942                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
943                         len += snprintf(SNPARGS(proto, len), "%s", src);
944                         snprintf(SNPARGS(proto, len), " %s", dst);
945                         break;
946 #endif
947                 default:
948                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
949                             args->f_id.proto, src);
950                         snprintf(SNPARGS(proto, len), " %s", dst);
951                         break;
952                 }
953
954 #ifdef INET6
955                 if (args->f_id.addr_type == 6) {
956                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
957                                 snprintf(SNPARGS(fragment, 0),
958                                     " (frag %08x:%d@%d%s)",
959                                     args->f_id.frag_id6,
960                                     ntohs(ip6->ip6_plen) - hlen,
961                                     ntohs(offset & IP6F_OFF_MASK) << 3,
962                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
963                 } else
964 #endif
965                 {
966                         int ip_off, ip_len;
967                         if (eh != NULL) { /* layer 2 packets are as on the wire */
968                                 ip_off = ntohs(ip->ip_off);
969                                 ip_len = ntohs(ip->ip_len);
970                         } else {
971                                 ip_off = ip->ip_off;
972                                 ip_len = ip->ip_len;
973                         }
974                         if (ip_off & (IP_MF | IP_OFFMASK))
975                                 snprintf(SNPARGS(fragment, 0),
976                                     " (frag %d:%d@%d%s)",
977                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
978                                     offset << 3,
979                                     (ip_off & IP_MF) ? "+" : "");
980                 }
981         }
982         if (oif || m->m_pkthdr.rcvif)
983                 log(LOG_SECURITY | LOG_INFO,
984                     "ipfw: %d %s %s %s via %s%s\n",
985                     f ? f->rulenum : -1,
986                     action, proto, oif ? "out" : "in",
987                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
988                     fragment);
989         else
990                 log(LOG_SECURITY | LOG_INFO,
991                     "ipfw: %d %s %s [no if info]%s\n",
992                     f ? f->rulenum : -1,
993                     action, proto, fragment);
994         if (limit_reached)
995                 log(LOG_SECURITY | LOG_NOTICE,
996                     "ipfw: limit %d reached on entry %d\n",
997                     limit_reached, f ? f->rulenum : -1);
998 }
999
1000 /*
1001  * IMPORTANT: the hash function for dynamic rules must be commutative
1002  * in source and destination (ip,port), because rules are bidirectional
1003  * and we want to find both in the same bucket.
1004  */
1005 static __inline int
1006 hash_packet(struct ipfw_flow_id *id)
1007 {
1008         u_int32_t i;
1009
1010 #ifdef INET6
1011         if (IS_IP6_FLOW_ID(id)) 
1012                 i = hash_packet6(id);
1013         else
1014 #endif /* INET6 */
1015         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1016         i &= (curr_dyn_buckets - 1);
1017         return i;
1018 }
1019
1020 /**
1021  * unlink a dynamic rule from a chain. prev is a pointer to
1022  * the previous one, q is a pointer to the rule to delete,
1023  * head is a pointer to the head of the queue.
1024  * Modifies q and potentially also head.
1025  */
1026 #define UNLINK_DYN_RULE(prev, head, q) {                                \
1027         ipfw_dyn_rule *old_q = q;                                       \
1028                                                                         \
1029         /* remove a refcount to the parent */                           \
1030         if (q->dyn_type == O_LIMIT)                                     \
1031                 q->parent->count--;                                     \
1032         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1033                 (q->id.src_ip), (q->id.src_port),                       \
1034                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
1035         if (prev != NULL)                                               \
1036                 prev->next = q = q->next;                               \
1037         else                                                            \
1038                 head = q = q->next;                                     \
1039         dyn_count--;                                                    \
1040         uma_zfree(ipfw_dyn_rule_zone, old_q); }
1041
1042 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1043
1044 /**
1045  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1046  *
1047  * If keep_me == NULL, rules are deleted even if not expired,
1048  * otherwise only expired rules are removed.
1049  *
1050  * The value of the second parameter is also used to point to identify
1051  * a rule we absolutely do not want to remove (e.g. because we are
1052  * holding a reference to it -- this is the case with O_LIMIT_PARENT
1053  * rules). The pointer is only used for comparison, so any non-null
1054  * value will do.
1055  */
1056 static void
1057 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1058 {
1059         static u_int32_t last_remove = 0;
1060
1061 #define FORCE (keep_me == NULL)
1062
1063         ipfw_dyn_rule *prev, *q;
1064         int i, pass = 0, max_pass = 0;
1065
1066         IPFW_DYN_LOCK_ASSERT();
1067
1068         if (ipfw_dyn_v == NULL || dyn_count == 0)
1069                 return;
1070         /* do not expire more than once per second, it is useless */
1071         if (!FORCE && last_remove == time_uptime)
1072                 return;
1073         last_remove = time_uptime;
1074
1075         /*
1076          * because O_LIMIT refer to parent rules, during the first pass only
1077          * remove child and mark any pending LIMIT_PARENT, and remove
1078          * them in a second pass.
1079          */
1080 next_pass:
1081         for (i = 0 ; i < curr_dyn_buckets ; i++) {
1082                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1083                         /*
1084                          * Logic can become complex here, so we split tests.
1085                          */
1086                         if (q == keep_me)
1087                                 goto next;
1088                         if (rule != NULL && rule != q->rule)
1089                                 goto next; /* not the one we are looking for */
1090                         if (q->dyn_type == O_LIMIT_PARENT) {
1091                                 /*
1092                                  * handle parent in the second pass,
1093                                  * record we need one.
1094                                  */
1095                                 max_pass = 1;
1096                                 if (pass == 0)
1097                                         goto next;
1098                                 if (FORCE && q->count != 0 ) {
1099                                         /* XXX should not happen! */
1100                                         printf("ipfw: OUCH! cannot remove rule,"
1101                                              " count %d\n", q->count);
1102                                 }
1103                         } else {
1104                                 if (!FORCE &&
1105                                     !TIME_LEQ( q->expire, time_uptime ))
1106                                         goto next;
1107                         }
1108              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1109                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1110                      continue;
1111              }
1112 next:
1113                         prev=q;
1114                         q=q->next;
1115                 }
1116         }
1117         if (pass++ < max_pass)
1118                 goto next_pass;
1119 }
1120
1121
1122 /**
1123  * lookup a dynamic rule.
1124  */
1125 static ipfw_dyn_rule *
1126 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1127         struct tcphdr *tcp)
1128 {
1129         /*
1130          * stateful ipfw extensions.
1131          * Lookup into dynamic session queue
1132          */
1133 #define MATCH_REVERSE   0
1134 #define MATCH_FORWARD   1
1135 #define MATCH_NONE      2
1136 #define MATCH_UNKNOWN   3
1137         int i, dir = MATCH_NONE;
1138         ipfw_dyn_rule *prev, *q=NULL;
1139
1140         IPFW_DYN_LOCK_ASSERT();
1141
1142         if (ipfw_dyn_v == NULL)
1143                 goto done;      /* not found */
1144         i = hash_packet( pkt );
1145         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1146                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1147                         goto next;
1148                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1149                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1150                         continue;
1151                 }
1152                 if (pkt->proto == q->id.proto &&
1153                     q->dyn_type != O_LIMIT_PARENT) {
1154                         if (IS_IP6_FLOW_ID(pkt)) {
1155                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1156                                 &(q->id.src_ip6)) &&
1157                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1158                                 &(q->id.dst_ip6)) &&
1159                             pkt->src_port == q->id.src_port &&
1160                             pkt->dst_port == q->id.dst_port ) {
1161                                 dir = MATCH_FORWARD;
1162                                 break;
1163                             }
1164                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1165                                     &(q->id.dst_ip6)) &&
1166                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1167                                     &(q->id.src_ip6)) &&
1168                                 pkt->src_port == q->id.dst_port &&
1169                                 pkt->dst_port == q->id.src_port ) {
1170                                     dir = MATCH_REVERSE;
1171                                     break;
1172                             }
1173                         } else {
1174                             if (pkt->src_ip == q->id.src_ip &&
1175                                 pkt->dst_ip == q->id.dst_ip &&
1176                                 pkt->src_port == q->id.src_port &&
1177                                 pkt->dst_port == q->id.dst_port ) {
1178                                     dir = MATCH_FORWARD;
1179                                     break;
1180                             }
1181                             if (pkt->src_ip == q->id.dst_ip &&
1182                                 pkt->dst_ip == q->id.src_ip &&
1183                                 pkt->src_port == q->id.dst_port &&
1184                                 pkt->dst_port == q->id.src_port ) {
1185                                     dir = MATCH_REVERSE;
1186                                     break;
1187                             }
1188                         }
1189                 }
1190 next:
1191                 prev = q;
1192                 q = q->next;
1193         }
1194         if (q == NULL)
1195                 goto done; /* q = NULL, not found */
1196
1197         if ( prev != NULL) { /* found and not in front */
1198                 prev->next = q->next;
1199                 q->next = ipfw_dyn_v[i];
1200                 ipfw_dyn_v[i] = q;
1201         }
1202         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1203                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1204
1205 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
1206 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
1207                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1208                 switch (q->state) {
1209                 case TH_SYN:                            /* opening */
1210                         q->expire = time_uptime + dyn_syn_lifetime;
1211                         break;
1212
1213                 case BOTH_SYN:                  /* move to established */
1214                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
1215                 case BOTH_SYN | (TH_FIN << 8) :
1216                         if (tcp) {
1217 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1218                             u_int32_t ack = ntohl(tcp->th_ack);
1219                             if (dir == MATCH_FORWARD) {
1220                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1221                                     q->ack_fwd = ack;
1222                                 else { /* ignore out-of-sequence */
1223                                     break;
1224                                 }
1225                             } else {
1226                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1227                                     q->ack_rev = ack;
1228                                 else { /* ignore out-of-sequence */
1229                                     break;
1230                                 }
1231                             }
1232                         }
1233                         q->expire = time_uptime + dyn_ack_lifetime;
1234                         break;
1235
1236                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
1237                         if (dyn_fin_lifetime >= dyn_keepalive_period)
1238                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
1239                         q->expire = time_uptime + dyn_fin_lifetime;
1240                         break;
1241
1242                 default:
1243 #if 0
1244                         /*
1245                          * reset or some invalid combination, but can also
1246                          * occur if we use keep-state the wrong way.
1247                          */
1248                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1249                                 printf("invalid state: 0x%x\n", q->state);
1250 #endif
1251                         if (dyn_rst_lifetime >= dyn_keepalive_period)
1252                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
1253                         q->expire = time_uptime + dyn_rst_lifetime;
1254                         break;
1255                 }
1256         } else if (pkt->proto == IPPROTO_UDP) {
1257                 q->expire = time_uptime + dyn_udp_lifetime;
1258         } else {
1259                 /* other protocols */
1260                 q->expire = time_uptime + dyn_short_lifetime;
1261         }
1262 done:
1263         if (match_direction)
1264                 *match_direction = dir;
1265         return q;
1266 }
1267
1268 static ipfw_dyn_rule *
1269 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1270         struct tcphdr *tcp)
1271 {
1272         ipfw_dyn_rule *q;
1273
1274         IPFW_DYN_LOCK();
1275         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1276         if (q == NULL)
1277                 IPFW_DYN_UNLOCK();
1278         /* NB: return table locked when q is not NULL */
1279         return q;
1280 }
1281
1282 static void
1283 realloc_dynamic_table(void)
1284 {
1285         IPFW_DYN_LOCK_ASSERT();
1286
1287         /*
1288          * Try reallocation, make sure we have a power of 2 and do
1289          * not allow more than 64k entries. In case of overflow,
1290          * default to 1024.
1291          */
1292
1293         if (dyn_buckets > 65536)
1294                 dyn_buckets = 1024;
1295         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1296                 dyn_buckets = curr_dyn_buckets; /* reset */
1297                 return;
1298         }
1299         curr_dyn_buckets = dyn_buckets;
1300         if (ipfw_dyn_v != NULL)
1301                 free(ipfw_dyn_v, M_IPFW);
1302         for (;;) {
1303                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1304                        M_IPFW, M_NOWAIT | M_ZERO);
1305                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1306                         break;
1307                 curr_dyn_buckets /= 2;
1308         }
1309 }
1310
1311 /**
1312  * Install state of type 'type' for a dynamic session.
1313  * The hash table contains two type of rules:
1314  * - regular rules (O_KEEP_STATE)
1315  * - rules for sessions with limited number of sess per user
1316  *   (O_LIMIT). When they are created, the parent is
1317  *   increased by 1, and decreased on delete. In this case,
1318  *   the third parameter is the parent rule and not the chain.
1319  * - "parent" rules for the above (O_LIMIT_PARENT).
1320  */
1321 static ipfw_dyn_rule *
1322 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1323 {
1324         ipfw_dyn_rule *r;
1325         int i;
1326
1327         IPFW_DYN_LOCK_ASSERT();
1328
1329         if (ipfw_dyn_v == NULL ||
1330             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1331                 realloc_dynamic_table();
1332                 if (ipfw_dyn_v == NULL)
1333                         return NULL; /* failed ! */
1334         }
1335         i = hash_packet(id);
1336
1337         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1338         if (r == NULL) {
1339                 printf ("ipfw: sorry cannot allocate state\n");
1340                 return NULL;
1341         }
1342
1343         /* increase refcount on parent, and set pointer */
1344         if (dyn_type == O_LIMIT) {
1345                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1346                 if ( parent->dyn_type != O_LIMIT_PARENT)
1347                         panic("invalid parent");
1348                 parent->count++;
1349                 r->parent = parent;
1350                 rule = parent->rule;
1351         }
1352
1353         r->id = *id;
1354         r->expire = time_uptime + dyn_syn_lifetime;
1355         r->rule = rule;
1356         r->dyn_type = dyn_type;
1357         r->pcnt = r->bcnt = 0;
1358         r->count = 0;
1359
1360         r->bucket = i;
1361         r->next = ipfw_dyn_v[i];
1362         ipfw_dyn_v[i] = r;
1363         dyn_count++;
1364         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1365            dyn_type,
1366            (r->id.src_ip), (r->id.src_port),
1367            (r->id.dst_ip), (r->id.dst_port),
1368            dyn_count ); )
1369         return r;
1370 }
1371
1372 /**
1373  * lookup dynamic parent rule using pkt and rule as search keys.
1374  * If the lookup fails, then install one.
1375  */
1376 static ipfw_dyn_rule *
1377 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1378 {
1379         ipfw_dyn_rule *q;
1380         int i;
1381
1382         IPFW_DYN_LOCK_ASSERT();
1383
1384         if (ipfw_dyn_v) {
1385                 int is_v6 = IS_IP6_FLOW_ID(pkt);
1386                 i = hash_packet( pkt );
1387                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1388                         if (q->dyn_type == O_LIMIT_PARENT &&
1389                             rule== q->rule &&
1390                             pkt->proto == q->id.proto &&
1391                             pkt->src_port == q->id.src_port &&
1392                             pkt->dst_port == q->id.dst_port &&
1393                             (
1394                                 (is_v6 &&
1395                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1396                                         &(q->id.src_ip6)) &&
1397                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1398                                         &(q->id.dst_ip6))) ||
1399                                 (!is_v6 &&
1400                                  pkt->src_ip == q->id.src_ip &&
1401                                  pkt->dst_ip == q->id.dst_ip)
1402                             )
1403                         ) {
1404                                 q->expire = time_uptime + dyn_short_lifetime;
1405                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1406                                 return q;
1407                         }
1408         }
1409         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1410 }
1411
1412 /**
1413  * Install dynamic state for rule type cmd->o.opcode
1414  *
1415  * Returns 1 (failure) if state is not installed because of errors or because
1416  * session limitations are enforced.
1417  */
1418 static int
1419 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1420     struct ip_fw_args *args, uint32_t tablearg)
1421 {
1422         static int last_log;
1423
1424         ipfw_dyn_rule *q;
1425
1426         DEB(
1427         printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1428             __func__, cmd->o.opcode,
1429             (args->f_id.src_ip), (args->f_id.src_port),
1430             (args->f_id.dst_ip), (args->f_id.dst_port));
1431         )
1432
1433         IPFW_DYN_LOCK();
1434
1435         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1436
1437         if (q != NULL) {        /* should never occur */
1438                 if (last_log != time_uptime) {
1439                         last_log = time_uptime;
1440                         printf("ipfw: %s: entry already present, done\n",
1441                             __func__);
1442                 }
1443                 IPFW_DYN_UNLOCK();
1444                 return (0);
1445         }
1446
1447         if (dyn_count >= dyn_max)
1448                 /* Run out of slots, try to remove any expired rule. */
1449                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1450
1451         if (dyn_count >= dyn_max) {
1452                 if (last_log != time_uptime) {
1453                         last_log = time_uptime;
1454                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
1455                 }
1456                 IPFW_DYN_UNLOCK();
1457                 return (1);     /* cannot install, notify caller */
1458         }
1459
1460         switch (cmd->o.opcode) {
1461         case O_KEEP_STATE:      /* bidir rule */
1462                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1463                 break;
1464
1465         case O_LIMIT: {         /* limit number of sessions */
1466                 struct ipfw_flow_id id;
1467                 ipfw_dyn_rule *parent;
1468                 uint32_t conn_limit;
1469                 uint16_t limit_mask = cmd->limit_mask;
1470
1471                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1472                     tablearg : cmd->conn_limit;
1473                   
1474                 DEB(
1475                 if (cmd->conn_limit == IP_FW_TABLEARG)
1476                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1477                             "(tablearg)\n", __func__, conn_limit);
1478                 else
1479                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1480                             __func__, conn_limit);
1481                 )
1482
1483                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1484                 id.proto = args->f_id.proto;
1485                 id.addr_type = args->f_id.addr_type;
1486
1487                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
1488                         if (limit_mask & DYN_SRC_ADDR)
1489                                 id.src_ip6 = args->f_id.src_ip6;
1490                         if (limit_mask & DYN_DST_ADDR)
1491                                 id.dst_ip6 = args->f_id.dst_ip6;
1492                 } else {
1493                         if (limit_mask & DYN_SRC_ADDR)
1494                                 id.src_ip = args->f_id.src_ip;
1495                         if (limit_mask & DYN_DST_ADDR)
1496                                 id.dst_ip = args->f_id.dst_ip;
1497                 }
1498                 if (limit_mask & DYN_SRC_PORT)
1499                         id.src_port = args->f_id.src_port;
1500                 if (limit_mask & DYN_DST_PORT)
1501                         id.dst_port = args->f_id.dst_port;
1502                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1503                         printf("ipfw: %s: add parent failed\n", __func__);
1504                         IPFW_DYN_UNLOCK();
1505                         return (1);
1506                 }
1507
1508                 if (parent->count >= conn_limit) {
1509                         /* See if we can remove some expired rule. */
1510                         remove_dyn_rule(rule, parent);
1511                         if (parent->count >= conn_limit) {
1512                                 if (fw_verbose && last_log != time_uptime) {
1513                                         last_log = time_uptime;
1514                                         log(LOG_SECURITY | LOG_DEBUG,
1515                                             "drop session, too many entries\n");
1516                                 }
1517                                 IPFW_DYN_UNLOCK();
1518                                 return (1);
1519                         }
1520                 }
1521                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1522                 break;
1523         }
1524         default:
1525                 printf("ipfw: %s: unknown dynamic rule type %u\n",
1526                     __func__, cmd->o.opcode);
1527                 IPFW_DYN_UNLOCK();
1528                 return (1);
1529         }
1530
1531         /* XXX just set lifetime */
1532         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1533
1534         IPFW_DYN_UNLOCK();
1535         return (0);
1536 }
1537
1538 /*
1539  * Generate a TCP packet, containing either a RST or a keepalive.
1540  * When flags & TH_RST, we are sending a RST packet, because of a
1541  * "reset" action matched the packet.
1542  * Otherwise we are sending a keepalive, and flags & TH_
1543  */
1544 static struct mbuf *
1545 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1546 {
1547         struct mbuf *m;
1548         struct ip *ip;
1549         struct tcphdr *tcp;
1550
1551         MGETHDR(m, M_DONTWAIT, MT_DATA);
1552         if (m == 0)
1553                 return (NULL);
1554         m->m_pkthdr.rcvif = (struct ifnet *)0;
1555         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1556         m->m_data += max_linkhdr;
1557
1558         ip = mtod(m, struct ip *);
1559         bzero(ip, m->m_len);
1560         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1561         ip->ip_p = IPPROTO_TCP;
1562         tcp->th_off = 5;
1563         /*
1564          * Assume we are sending a RST (or a keepalive in the reverse
1565          * direction), swap src and destination addresses and ports.
1566          */
1567         ip->ip_src.s_addr = htonl(id->dst_ip);
1568         ip->ip_dst.s_addr = htonl(id->src_ip);
1569         tcp->th_sport = htons(id->dst_port);
1570         tcp->th_dport = htons(id->src_port);
1571         if (flags & TH_RST) {   /* we are sending a RST */
1572                 if (flags & TH_ACK) {
1573                         tcp->th_seq = htonl(ack);
1574                         tcp->th_ack = htonl(0);
1575                         tcp->th_flags = TH_RST;
1576                 } else {
1577                         if (flags & TH_SYN)
1578                                 seq++;
1579                         tcp->th_seq = htonl(0);
1580                         tcp->th_ack = htonl(seq);
1581                         tcp->th_flags = TH_RST | TH_ACK;
1582                 }
1583         } else {
1584                 /*
1585                  * We are sending a keepalive. flags & TH_SYN determines
1586                  * the direction, forward if set, reverse if clear.
1587                  * NOTE: seq and ack are always assumed to be correct
1588                  * as set by the caller. This may be confusing...
1589                  */
1590                 if (flags & TH_SYN) {
1591                         /*
1592                          * we have to rewrite the correct addresses!
1593                          */
1594                         ip->ip_dst.s_addr = htonl(id->dst_ip);
1595                         ip->ip_src.s_addr = htonl(id->src_ip);
1596                         tcp->th_dport = htons(id->dst_port);
1597                         tcp->th_sport = htons(id->src_port);
1598                 }
1599                 tcp->th_seq = htonl(seq);
1600                 tcp->th_ack = htonl(ack);
1601                 tcp->th_flags = TH_ACK;
1602         }
1603         /*
1604          * set ip_len to the payload size so we can compute
1605          * the tcp checksum on the pseudoheader
1606          * XXX check this, could save a couple of words ?
1607          */
1608         ip->ip_len = htons(sizeof(struct tcphdr));
1609         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1610         /*
1611          * now fill fields left out earlier
1612          */
1613         ip->ip_ttl = ip_defttl;
1614         ip->ip_len = m->m_pkthdr.len;
1615         m->m_flags |= M_SKIP_FIREWALL;
1616         return (m);
1617 }
1618
1619 /*
1620  * sends a reject message, consuming the mbuf passed as an argument.
1621  */
1622 static void
1623 send_reject(struct ip_fw_args *args, int code, int ip_len)
1624 {
1625
1626         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1627                 /* We need the IP header in host order for icmp_error(). */
1628                 if (args->eh != NULL) {
1629                         struct ip *ip = mtod(args->m, struct ip *);
1630                         ip->ip_len = ntohs(ip->ip_len);
1631                         ip->ip_off = ntohs(ip->ip_off);
1632                 }
1633                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1634         } else if (args->f_id.proto == IPPROTO_TCP) {
1635                 struct tcphdr *const tcp =
1636                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1637                 if ( (tcp->th_flags & TH_RST) == 0) {
1638                         struct mbuf *m;
1639                         m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1640                                 ntohl(tcp->th_ack),
1641                                 tcp->th_flags | TH_RST);
1642                         if (m != NULL)
1643                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1644                 }
1645                 m_freem(args->m);
1646         } else
1647                 m_freem(args->m);
1648         args->m = NULL;
1649 }
1650
1651 /**
1652  *
1653  * Given an ip_fw *, lookup_next_rule will return a pointer
1654  * to the next rule, which can be either the jump
1655  * target (for skipto instructions) or the next one in the list (in
1656  * all other cases including a missing jump target).
1657  * The result is also written in the "next_rule" field of the rule.
1658  * Backward jumps are not allowed, so start looking from the next
1659  * rule...
1660  *
1661  * This never returns NULL -- in case we do not have an exact match,
1662  * the next rule is returned. When the ruleset is changed,
1663  * pointers are flushed so we are always correct.
1664  */
1665
1666 static struct ip_fw *
1667 lookup_next_rule(struct ip_fw *me)
1668 {
1669         struct ip_fw *rule = NULL;
1670         ipfw_insn *cmd;
1671
1672         /* look for action, in case it is a skipto */
1673         cmd = ACTION_PTR(me);
1674         if (cmd->opcode == O_LOG)
1675                 cmd += F_LEN(cmd);
1676         if (cmd->opcode == O_ALTQ)
1677                 cmd += F_LEN(cmd);
1678         if (cmd->opcode == O_TAG)
1679                 cmd += F_LEN(cmd);
1680         if ( cmd->opcode == O_SKIPTO )
1681                 for (rule = me->next; rule ; rule = rule->next)
1682                         if (rule->rulenum >= cmd->arg1)
1683                                 break;
1684         if (rule == NULL)                       /* failure or not a skipto */
1685                 rule = me->next;
1686         me->next_rule = rule;
1687         return rule;
1688 }
1689
1690 static int
1691 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1692         uint8_t mlen, uint32_t value)
1693 {
1694         struct radix_node_head *rnh;
1695         struct table_entry *ent;
1696
1697         if (tbl >= IPFW_TABLES_MAX)
1698                 return (EINVAL);
1699         rnh = ch->tables[tbl];
1700         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1701         if (ent == NULL)
1702                 return (ENOMEM);
1703         ent->value = value;
1704         ent->addr.sin_len = ent->mask.sin_len = 8;
1705         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1706         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1707         IPFW_WLOCK(&layer3_chain);
1708         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1709             NULL) {
1710                 IPFW_WUNLOCK(&layer3_chain);
1711                 free(ent, M_IPFW_TBL);
1712                 return (EEXIST);
1713         }
1714         IPFW_WUNLOCK(&layer3_chain);
1715         return (0);
1716 }
1717
1718 static int
1719 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1720         uint8_t mlen)
1721 {
1722         struct radix_node_head *rnh;
1723         struct table_entry *ent;
1724         struct sockaddr_in sa, mask;
1725
1726         if (tbl >= IPFW_TABLES_MAX)
1727                 return (EINVAL);
1728         rnh = ch->tables[tbl];
1729         sa.sin_len = mask.sin_len = 8;
1730         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1731         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1732         IPFW_WLOCK(ch);
1733         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1734         if (ent == NULL) {
1735                 IPFW_WUNLOCK(ch);
1736                 return (ESRCH);
1737         }
1738         IPFW_WUNLOCK(ch);
1739         free(ent, M_IPFW_TBL);
1740         return (0);
1741 }
1742
1743 static int
1744 flush_table_entry(struct radix_node *rn, void *arg)
1745 {
1746         struct radix_node_head * const rnh = arg;
1747         struct table_entry *ent;
1748
1749         ent = (struct table_entry *)
1750             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1751         if (ent != NULL)
1752                 free(ent, M_IPFW_TBL);
1753         return (0);
1754 }
1755
1756 static int
1757 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1758 {
1759         struct radix_node_head *rnh;
1760
1761         IPFW_WLOCK_ASSERT(ch);
1762
1763         if (tbl >= IPFW_TABLES_MAX)
1764                 return (EINVAL);
1765         rnh = ch->tables[tbl];
1766         KASSERT(rnh != NULL, ("NULL IPFW table"));
1767         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1768         return (0);
1769 }
1770
1771 static void
1772 flush_tables(struct ip_fw_chain *ch)
1773 {
1774         uint16_t tbl;
1775
1776         IPFW_WLOCK_ASSERT(ch);
1777
1778         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1779                 flush_table(ch, tbl);
1780 }
1781
1782 static int
1783 init_tables(struct ip_fw_chain *ch)
1784
1785         int i;
1786         uint16_t j;
1787
1788         for (i = 0; i < IPFW_TABLES_MAX; i++) {
1789                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
1790                         for (j = 0; j < i; j++) {
1791                                 (void) flush_table(ch, j);
1792                         }
1793                         return (ENOMEM);
1794                 }
1795         }
1796         return (0);
1797 }
1798
1799 static int
1800 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1801         uint32_t *val)
1802 {
1803         struct radix_node_head *rnh;
1804         struct table_entry *ent;
1805         struct sockaddr_in sa;
1806
1807         if (tbl >= IPFW_TABLES_MAX)
1808                 return (0);
1809         rnh = ch->tables[tbl];
1810         sa.sin_len = 8;
1811         sa.sin_addr.s_addr = addr;
1812         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1813         if (ent != NULL) {
1814                 *val = ent->value;
1815                 return (1);
1816         }
1817         return (0);
1818 }
1819
1820 static int
1821 count_table_entry(struct radix_node *rn, void *arg)
1822 {
1823         u_int32_t * const cnt = arg;
1824
1825         (*cnt)++;
1826         return (0);
1827 }
1828
1829 static int
1830 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1831 {
1832         struct radix_node_head *rnh;
1833
1834         if (tbl >= IPFW_TABLES_MAX)
1835                 return (EINVAL);
1836         rnh = ch->tables[tbl];
1837         *cnt = 0;
1838         rnh->rnh_walktree(rnh, count_table_entry, cnt);
1839         return (0);
1840 }
1841
1842 static int
1843 dump_table_entry(struct radix_node *rn, void *arg)
1844 {
1845         struct table_entry * const n = (struct table_entry *)rn;
1846         ipfw_table * const tbl = arg;
1847         ipfw_table_entry *ent;
1848
1849         if (tbl->cnt == tbl->size)
1850                 return (1);
1851         ent = &tbl->ent[tbl->cnt];
1852         ent->tbl = tbl->tbl;
1853         if (in_nullhost(n->mask.sin_addr))
1854                 ent->masklen = 0;
1855         else
1856                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1857         ent->addr = n->addr.sin_addr.s_addr;
1858         ent->value = n->value;
1859         tbl->cnt++;
1860         return (0);
1861 }
1862
1863 static int
1864 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1865 {
1866         struct radix_node_head *rnh;
1867
1868         if (tbl->tbl >= IPFW_TABLES_MAX)
1869                 return (EINVAL);
1870         rnh = ch->tables[tbl->tbl];
1871         tbl->cnt = 0;
1872         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1873         return (0);
1874 }
1875
1876 static void
1877 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1878 {
1879         struct ucred *cr;
1880
1881         if (inp->inp_socket != NULL) {
1882                 cr = inp->inp_socket->so_cred;
1883                 ugp->fw_prid = jailed(cr) ?
1884                     cr->cr_prison->pr_id : -1;
1885                 ugp->fw_uid = cr->cr_uid;
1886                 ugp->fw_ngroups = cr->cr_ngroups;
1887                 bcopy(cr->cr_groups, ugp->fw_groups,
1888                     sizeof(ugp->fw_groups));
1889         }
1890 }
1891
1892 static int
1893 check_uidgid(ipfw_insn_u32 *insn,
1894         int proto, struct ifnet *oif,
1895         struct in_addr dst_ip, u_int16_t dst_port,
1896         struct in_addr src_ip, u_int16_t src_port,
1897         struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1898 {
1899         struct inpcbinfo *pi;
1900         int wildcard;
1901         struct inpcb *pcb;
1902         int match;
1903         gid_t *gp;
1904
1905         /*
1906          * Check to see if the UDP or TCP stack supplied us with
1907          * the PCB. If so, rather then holding a lock and looking
1908          * up the PCB, we can use the one that was supplied.
1909          */
1910         if (inp && *lookup == 0) {
1911                 INP_LOCK_ASSERT(inp);
1912                 if (inp->inp_socket != NULL) {
1913                         fill_ugid_cache(inp, ugp);
1914                         *lookup = 1;
1915                 }
1916         }
1917         /*
1918          * If we have already been here and the packet has no
1919          * PCB entry associated with it, then we can safely
1920          * assume that this is a no match.
1921          */
1922         if (*lookup == -1)
1923                 return (0);
1924         if (proto == IPPROTO_TCP) {
1925                 wildcard = 0;
1926                 pi = &tcbinfo;
1927         } else if (proto == IPPROTO_UDP) {
1928                 wildcard = INPLOOKUP_WILDCARD;
1929                 pi = &udbinfo;
1930         } else
1931                 return 0;
1932         match = 0;
1933         if (*lookup == 0) {
1934                 INP_INFO_RLOCK(pi);
1935                 pcb =  (oif) ?
1936                         in_pcblookup_hash(pi,
1937                                 dst_ip, htons(dst_port),
1938                                 src_ip, htons(src_port),
1939                                 wildcard, oif) :
1940                         in_pcblookup_hash(pi,
1941                                 src_ip, htons(src_port),
1942                                 dst_ip, htons(dst_port),
1943                                 wildcard, NULL);
1944                 if (pcb != NULL) {
1945                         INP_LOCK(pcb);
1946                         if (pcb->inp_socket != NULL) {
1947                                 fill_ugid_cache(pcb, ugp);
1948                                 *lookup = 1;
1949                         }
1950                         INP_UNLOCK(pcb);
1951                 }
1952                 INP_INFO_RUNLOCK(pi);
1953                 if (*lookup == 0) {
1954                         /*
1955                          * If the lookup did not yield any results, there
1956                          * is no sense in coming back and trying again. So
1957                          * we can set lookup to -1 and ensure that we wont
1958                          * bother the pcb system again.
1959                          */
1960                         *lookup = -1;
1961                         return (0);
1962                 }
1963         } 
1964         if (insn->o.opcode == O_UID)
1965                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
1966         else if (insn->o.opcode == O_GID) {
1967                 for (gp = ugp->fw_groups;
1968                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1969                         if (*gp == (gid_t)insn->d[0]) {
1970                                 match = 1;
1971                                 break;
1972                         }
1973         } else if (insn->o.opcode == O_JAIL)
1974                 match = (ugp->fw_prid == (int)insn->d[0]);
1975         return match;
1976 }
1977
1978 /*
1979  * The main check routine for the firewall.
1980  *
1981  * All arguments are in args so we can modify them and return them
1982  * back to the caller.
1983  *
1984  * Parameters:
1985  *
1986  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
1987  *              Starts with the IP header.
1988  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
1989  *      args->oif       Outgoing interface, or NULL if packet is incoming.
1990  *              The incoming interface is in the mbuf. (in)
1991  *      args->divert_rule (in/out)
1992  *              Skip up to the first rule past this rule number;
1993  *              upon return, non-zero port number for divert or tee.
1994  *
1995  *      args->rule      Pointer to the last matching rule (in/out)
1996  *      args->next_hop  Socket we are forwarding to (out).
1997  *      args->f_id      Addresses grabbed from the packet (out)
1998  *      args->cookie    a cookie depending on rule action
1999  *
2000  * Return value:
2001  *
2002  *      IP_FW_PASS      the packet must be accepted
2003  *      IP_FW_DENY      the packet must be dropped
2004  *      IP_FW_DIVERT    divert packet, port in m_tag
2005  *      IP_FW_TEE       tee packet, port in m_tag
2006  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
2007  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
2008  *
2009  */
2010
2011 int
2012 ipfw_chk(struct ip_fw_args *args)
2013 {
2014         /*
2015          * Local variables hold state during the processing of a packet.
2016          *
2017          * IMPORTANT NOTE: to speed up the processing of rules, there
2018          * are some assumption on the values of the variables, which
2019          * are documented here. Should you change them, please check
2020          * the implementation of the various instructions to make sure
2021          * that they still work.
2022          *
2023          * args->eh     The MAC header. It is non-null for a layer2
2024          *      packet, it is NULL for a layer-3 packet.
2025          *
2026          * m | args->m  Pointer to the mbuf, as received from the caller.
2027          *      It may change if ipfw_chk() does an m_pullup, or if it
2028          *      consumes the packet because it calls send_reject().
2029          *      XXX This has to change, so that ipfw_chk() never modifies
2030          *      or consumes the buffer.
2031          * ip   is simply an alias of the value of m, and it is kept
2032          *      in sync with it (the packet is  supposed to start with
2033          *      the ip header).
2034          */
2035         struct mbuf *m = args->m;
2036         struct ip *ip = mtod(m, struct ip *);
2037
2038         /*
2039          * For rules which contain uid/gid or jail constraints, cache
2040          * a copy of the users credentials after the pcb lookup has been
2041          * executed. This will speed up the processing of rules with
2042          * these types of constraints, as well as decrease contention
2043          * on pcb related locks.
2044          */
2045         struct ip_fw_ugid fw_ugid_cache;
2046         int ugid_lookup = 0;
2047
2048         /*
2049          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
2050          *      associated with a packet input on a divert socket.  This
2051          *      will allow to distinguish traffic and its direction when
2052          *      it originates from a divert socket.
2053          */
2054         u_int divinput_flags = 0;
2055
2056         /*
2057          * oif | args->oif      If NULL, ipfw_chk has been called on the
2058          *      inbound path (ether_input, ip_input).
2059          *      If non-NULL, ipfw_chk has been called on the outbound path
2060          *      (ether_output, ip_output).
2061          */
2062         struct ifnet *oif = args->oif;
2063
2064         struct ip_fw *f = NULL;         /* matching rule */
2065         int retval = 0;
2066
2067         /*
2068          * hlen The length of the IP header.
2069          */
2070         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
2071
2072         /*
2073          * offset       The offset of a fragment. offset != 0 means that
2074          *      we have a fragment at this offset of an IPv4 packet.
2075          *      offset == 0 means that (if this is an IPv4 packet)
2076          *      this is the first or only fragment.
2077          *      For IPv6 offset == 0 means there is no Fragment Header. 
2078          *      If offset != 0 for IPv6 always use correct mask to
2079          *      get the correct offset because we add IP6F_MORE_FRAG
2080          *      to be able to dectect the first fragment which would
2081          *      otherwise have offset = 0.
2082          */
2083         u_short offset = 0;
2084
2085         /*
2086          * Local copies of addresses. They are only valid if we have
2087          * an IP packet.
2088          *
2089          * proto        The protocol. Set to 0 for non-ip packets,
2090          *      or to the protocol read from the packet otherwise.
2091          *      proto != 0 means that we have an IPv4 packet.
2092          *
2093          * src_port, dst_port   port numbers, in HOST format. Only
2094          *      valid for TCP and UDP packets.
2095          *
2096          * src_ip, dst_ip       ip addresses, in NETWORK format.
2097          *      Only valid for IPv4 packets.
2098          */
2099         u_int8_t proto;
2100         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
2101         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
2102         u_int16_t ip_len=0;
2103         int pktlen;
2104
2105         /*
2106          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2107          *      MATCH_NONE when checked and not matched (q = NULL),
2108          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2109          */
2110         int dyn_dir = MATCH_UNKNOWN;
2111         ipfw_dyn_rule *q = NULL;
2112         struct ip_fw_chain *chain = &layer3_chain;
2113         struct m_tag *mtag;
2114
2115         /*
2116          * We store in ulp a pointer to the upper layer protocol header.
2117          * In the ipv4 case this is easy to determine from the header,
2118          * but for ipv6 we might have some additional headers in the middle.
2119          * ulp is NULL if not found.
2120          */
2121         void *ulp = NULL;               /* upper layer protocol pointer. */
2122         /* XXX ipv6 variables */
2123         int is_ipv6 = 0;
2124         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
2125         /* end of ipv6 variables */
2126         int is_ipv4 = 0;
2127
2128         if (m->m_flags & M_SKIP_FIREWALL)
2129                 return (IP_FW_PASS);    /* accept */
2130
2131         pktlen = m->m_pkthdr.len;
2132         proto = args->f_id.proto = 0;   /* mark f_id invalid */
2133                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2134
2135 /*
2136  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2137  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2138  * pointer might become stale after other pullups (but we never use it
2139  * this way).
2140  */
2141 #define PULLUP_TO(len, p, T)                                            \
2142 do {                                                                    \
2143         int x = (len) + sizeof(T);                                      \
2144         if ((m)->m_len < x) {                                           \
2145                 args->m = m = m_pullup(m, x);                           \
2146                 if (m == NULL)                                          \
2147                         goto pullup_failed;                             \
2148         }                                                               \
2149         p = (mtod(m, char *) + (len));                                  \
2150 } while (0)
2151
2152         /* Identify IP packets and fill up variables. */
2153         if (pktlen >= sizeof(struct ip6_hdr) &&
2154             (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2155             mtod(m, struct ip *)->ip_v == 6) {
2156                 is_ipv6 = 1;
2157                 args->f_id.addr_type = 6;
2158                 hlen = sizeof(struct ip6_hdr);
2159                 proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2160
2161                 /* Search extension headers to find upper layer protocols */
2162                 while (ulp == NULL) {
2163                         switch (proto) {
2164                         case IPPROTO_ICMPV6:
2165                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2166                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
2167                                 break;
2168
2169                         case IPPROTO_TCP:
2170                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2171                                 dst_port = TCP(ulp)->th_dport;
2172                                 src_port = TCP(ulp)->th_sport;
2173                                 args->f_id.flags = TCP(ulp)->th_flags;
2174                                 break;
2175
2176                         case IPPROTO_UDP:
2177                                 PULLUP_TO(hlen, ulp, struct udphdr);
2178                                 dst_port = UDP(ulp)->uh_dport;
2179                                 src_port = UDP(ulp)->uh_sport;
2180                                 break;
2181
2182                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
2183                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2184                                 ext_hd |= EXT_HOPOPTS;
2185                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2186                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2187                                 ulp = NULL;
2188                                 break;
2189
2190                         case IPPROTO_ROUTING:   /* RFC 2460 */
2191                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2192                                 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2193                                 case 0:
2194                                         break;
2195                                 default:
2196                                         printf("IPFW2: IPV6 - Unknown Routing "
2197                                             "Header type(%d)\n",
2198                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
2199                                         if (fw_deny_unknown_exthdrs)
2200                                             return (IP_FW_DENY);
2201                                         break;
2202                                 }
2203                                 ext_hd |= EXT_ROUTING;
2204                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2205                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2206                                 ulp = NULL;
2207                                 break;
2208
2209                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
2210                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
2211                                 ext_hd |= EXT_FRAGMENT;
2212                                 hlen += sizeof (struct ip6_frag);
2213                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2214                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2215                                         IP6F_OFF_MASK;
2216                                 /* Add IP6F_MORE_FRAG for offset of first
2217                                  * fragment to be != 0. */
2218                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2219                                         IP6F_MORE_FRAG;
2220                                 if (offset == 0) {
2221                                         printf("IPFW2: IPV6 - Invalid Fragment "
2222                                             "Header\n");
2223                                         if (fw_deny_unknown_exthdrs)
2224                                             return (IP_FW_DENY);
2225                                         break;
2226                                 }
2227                                 args->f_id.frag_id6 =
2228                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2229                                 ulp = NULL;
2230                                 break;
2231
2232                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
2233                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2234                                 ext_hd |= EXT_DSTOPTS;
2235                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2236                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2237                                 ulp = NULL;
2238                                 break;
2239
2240                         case IPPROTO_AH:        /* RFC 2402 */
2241                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2242                                 ext_hd |= EXT_AH;
2243                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2244                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2245                                 ulp = NULL;
2246                                 break;
2247
2248                         case IPPROTO_ESP:       /* RFC 2406 */
2249                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
2250                                 /* Anything past Seq# is variable length and
2251                                  * data past this ext. header is encrypted. */
2252                                 ext_hd |= EXT_ESP;
2253                                 break;
2254
2255                         case IPPROTO_NONE:      /* RFC 2460 */
2256                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2257                                 /* Packet ends here. if ip6e_len!=0 octets
2258                                  * must be ignored. */
2259                                 break;
2260
2261                         case IPPROTO_OSPFIGP:
2262                                 /* XXX OSPF header check? */
2263                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2264                                 break;
2265
2266                         case IPPROTO_IPV6:      /* RFC 2893 */
2267                                 PULLUP_TO(hlen, ulp, struct ip6_hdr);
2268                                 break;
2269
2270                         case IPPROTO_IPV4:      /* RFC 2893 */
2271                                 PULLUP_TO(hlen, ulp, struct ip);
2272                                 break;
2273
2274                         default:
2275                                 printf("IPFW2: IPV6 - Unknown Extension "
2276                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
2277                                 if (fw_deny_unknown_exthdrs)
2278                                     return (IP_FW_DENY);
2279                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2280                                 break;
2281                         } /*switch */
2282                 }
2283                 args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2284                 args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2285                 args->f_id.src_ip = 0;
2286                 args->f_id.dst_ip = 0;
2287                 args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2288         } else if (pktlen >= sizeof(struct ip) &&
2289             (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2290             mtod(m, struct ip *)->ip_v == 4) {
2291                 is_ipv4 = 1;
2292                 ip = mtod(m, struct ip *);
2293                 hlen = ip->ip_hl << 2;
2294                 args->f_id.addr_type = 4;
2295
2296                 /*
2297                  * Collect parameters into local variables for faster matching.
2298                  */
2299                 proto = ip->ip_p;
2300                 src_ip = ip->ip_src;
2301                 dst_ip = ip->ip_dst;
2302                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2303                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
2304                         ip_len = ntohs(ip->ip_len);
2305                 } else {
2306                         offset = ip->ip_off & IP_OFFMASK;
2307                         ip_len = ip->ip_len;
2308                 }
2309                 pktlen = ip_len < pktlen ? ip_len : pktlen;
2310
2311                 if (offset == 0) {
2312                         switch (proto) {
2313                         case IPPROTO_TCP:
2314                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2315                                 dst_port = TCP(ulp)->th_dport;
2316                                 src_port = TCP(ulp)->th_sport;
2317                                 args->f_id.flags = TCP(ulp)->th_flags;
2318                                 break;
2319
2320                         case IPPROTO_UDP:
2321                                 PULLUP_TO(hlen, ulp, struct udphdr);
2322                                 dst_port = UDP(ulp)->uh_dport;
2323                                 src_port = UDP(ulp)->uh_sport;
2324                                 break;
2325
2326                         case IPPROTO_ICMP:
2327                                 PULLUP_TO(hlen, ulp, struct icmphdr);
2328                                 args->f_id.flags = ICMP(ulp)->icmp_type;
2329                                 break;
2330
2331                         default:
2332                                 break;
2333                         }
2334                 }
2335
2336                 args->f_id.src_ip = ntohl(src_ip.s_addr);
2337                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2338         }
2339 #undef PULLUP_TO
2340         if (proto) { /* we may have port numbers, store them */
2341                 args->f_id.proto = proto;
2342                 args->f_id.src_port = src_port = ntohs(src_port);
2343                 args->f_id.dst_port = dst_port = ntohs(dst_port);
2344         }
2345
2346         IPFW_RLOCK(chain);
2347         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2348         if (args->rule) {
2349                 /*
2350                  * Packet has already been tagged. Look for the next rule
2351                  * to restart processing.
2352                  *
2353                  * If fw_one_pass != 0 then just accept it.
2354                  * XXX should not happen here, but optimized out in
2355                  * the caller.
2356                  */
2357                 if (fw_one_pass) {
2358                         IPFW_RUNLOCK(chain);
2359                         return (IP_FW_PASS);
2360                 }
2361
2362                 f = args->rule->next_rule;
2363                 if (f == NULL)
2364                         f = lookup_next_rule(args->rule);
2365         } else {
2366                 /*
2367                  * Find the starting rule. It can be either the first
2368                  * one, or the one after divert_rule if asked so.
2369                  */
2370                 int skipto = mtag ? divert_cookie(mtag) : 0;
2371
2372                 f = chain->rules;
2373                 if (args->eh == NULL && skipto != 0) {
2374                         if (skipto >= IPFW_DEFAULT_RULE) {
2375                                 IPFW_RUNLOCK(chain);
2376                                 return (IP_FW_DENY); /* invalid */
2377                         }
2378                         while (f && f->rulenum <= skipto)
2379                                 f = f->next;
2380                         if (f == NULL) {        /* drop packet */
2381                                 IPFW_RUNLOCK(chain);
2382                                 return (IP_FW_DENY);
2383                         }
2384                 }
2385         }
2386         /* reset divert rule to avoid confusion later */
2387         if (mtag) {
2388                 divinput_flags = divert_info(mtag) &
2389                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2390                 m_tag_delete(m, mtag);
2391         }
2392
2393         /*
2394          * Now scan the rules, and parse microinstructions for each rule.
2395          */
2396         for (; f; f = f->next) {
2397                 ipfw_insn *cmd;
2398                 uint32_t tablearg = 0;
2399                 int l, cmdlen, skip_or; /* skip rest of OR block */
2400
2401 again:
2402                 if (set_disable & (1 << f->set) )
2403                         continue;
2404
2405                 skip_or = 0;
2406                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2407                     l -= cmdlen, cmd += cmdlen) {
2408                         int match;
2409
2410                         /*
2411                          * check_body is a jump target used when we find a
2412                          * CHECK_STATE, and need to jump to the body of
2413                          * the target rule.
2414                          */
2415
2416 check_body:
2417                         cmdlen = F_LEN(cmd);
2418                         /*
2419                          * An OR block (insn_1 || .. || insn_n) has the
2420                          * F_OR bit set in all but the last instruction.
2421                          * The first match will set "skip_or", and cause
2422                          * the following instructions to be skipped until
2423                          * past the one with the F_OR bit clear.
2424                          */
2425                         if (skip_or) {          /* skip this instruction */
2426                                 if ((cmd->len & F_OR) == 0)
2427                                         skip_or = 0;    /* next one is good */
2428                                 continue;
2429                         }
2430                         match = 0; /* set to 1 if we succeed */
2431
2432                         switch (cmd->opcode) {
2433                         /*
2434                          * The first set of opcodes compares the packet's
2435                          * fields with some pattern, setting 'match' if a
2436                          * match is found. At the end of the loop there is
2437                          * logic to deal with F_NOT and F_OR flags associated
2438                          * with the opcode.
2439                          */
2440                         case O_NOP:
2441                                 match = 1;
2442                                 break;
2443
2444                         case O_FORWARD_MAC:
2445                                 printf("ipfw: opcode %d unimplemented\n",
2446                                     cmd->opcode);
2447                                 break;
2448
2449                         case O_GID:
2450                         case O_UID:
2451                         case O_JAIL:
2452                                 /*
2453                                  * We only check offset == 0 && proto != 0,
2454                                  * as this ensures that we have a
2455                                  * packet with the ports info.
2456                                  */
2457                                 if (offset!=0)
2458                                         break;
2459                                 if (is_ipv6) /* XXX to be fixed later */
2460                                         break;
2461                                 if (proto == IPPROTO_TCP ||
2462                                     proto == IPPROTO_UDP)
2463                                         match = check_uidgid(
2464                                                     (ipfw_insn_u32 *)cmd,
2465                                                     proto, oif,
2466                                                     dst_ip, dst_port,
2467                                                     src_ip, src_port, &fw_ugid_cache,
2468                                                     &ugid_lookup, args->inp);
2469                                 break;
2470
2471                         case O_RECV:
2472                                 match = iface_match(m->m_pkthdr.rcvif,
2473                                     (ipfw_insn_if *)cmd);
2474                                 break;
2475
2476                         case O_XMIT:
2477                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
2478                                 break;
2479
2480                         case O_VIA:
2481                                 match = iface_match(oif ? oif :
2482                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2483                                 break;
2484
2485                         case O_MACADDR2:
2486                                 if (args->eh != NULL) { /* have MAC header */
2487                                         u_int32_t *want = (u_int32_t *)
2488                                                 ((ipfw_insn_mac *)cmd)->addr;
2489                                         u_int32_t *mask = (u_int32_t *)
2490                                                 ((ipfw_insn_mac *)cmd)->mask;
2491                                         u_int32_t *hdr = (u_int32_t *)args->eh;
2492
2493                                         match =
2494                                             ( want[0] == (hdr[0] & mask[0]) &&
2495                                               want[1] == (hdr[1] & mask[1]) &&
2496                                               want[2] == (hdr[2] & mask[2]) );
2497                                 }
2498                                 break;
2499
2500                         case O_MAC_TYPE:
2501                                 if (args->eh != NULL) {
2502                                         u_int16_t t =
2503                                             ntohs(args->eh->ether_type);
2504                                         u_int16_t *p =
2505                                             ((ipfw_insn_u16 *)cmd)->ports;
2506                                         int i;
2507
2508                                         for (i = cmdlen - 1; !match && i>0;
2509                                             i--, p += 2)
2510                                                 match = (t>=p[0] && t<=p[1]);
2511                                 }
2512                                 break;
2513
2514                         case O_FRAG:
2515                                 match = (offset != 0);
2516                                 break;
2517
2518                         case O_IN:      /* "out" is "not in" */
2519                                 match = (oif == NULL);
2520                                 break;
2521
2522                         case O_LAYER2:
2523                                 match = (args->eh != NULL);
2524                                 break;
2525
2526                         case O_DIVERTED:
2527                                 match = (cmd->arg1 & 1 && divinput_flags &
2528                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
2529                                         (cmd->arg1 & 2 && divinput_flags &
2530                                     IP_FW_DIVERT_OUTPUT_FLAG);
2531                                 break;
2532
2533                         case O_PROTO:
2534                                 /*
2535                                  * We do not allow an arg of 0 so the
2536                                  * check of "proto" only suffices.
2537                                  */
2538                                 match = (proto == cmd->arg1);
2539                                 break;
2540
2541                         case O_IP_SRC:
2542                                 match = is_ipv4 &&
2543                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2544                                     src_ip.s_addr);
2545                                 break;
2546
2547                         case O_IP_SRC_LOOKUP:
2548                         case O_IP_DST_LOOKUP:
2549                                 if (is_ipv4) {
2550                                     uint32_t a =
2551                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
2552                                             dst_ip.s_addr : src_ip.s_addr;
2553                                     uint32_t v;
2554
2555                                     match = lookup_table(chain, cmd->arg1, a,
2556                                         &v);
2557                                     if (!match)
2558                                         break;
2559                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2560                                         match =
2561                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
2562                                     else
2563                                         tablearg = v;
2564                                 }
2565                                 break;
2566
2567                         case O_IP_SRC_MASK:
2568                         case O_IP_DST_MASK:
2569                                 if (is_ipv4) {
2570                                     uint32_t a =
2571                                         (cmd->opcode == O_IP_DST_MASK) ?
2572                                             dst_ip.s_addr : src_ip.s_addr;
2573                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2574                                     int i = cmdlen-1;
2575
2576                                     for (; !match && i>0; i-= 2, p+= 2)
2577                                         match = (p[0] == (a & p[1]));
2578                                 }
2579                                 break;
2580
2581                         case O_IP_SRC_ME:
2582                                 if (is_ipv4) {
2583                                         struct ifnet *tif;
2584
2585                                         INADDR_TO_IFP(src_ip, tif);
2586                                         match = (tif != NULL);
2587                                 }
2588                                 break;
2589
2590                         case O_IP_DST_SET:
2591                         case O_IP_SRC_SET:
2592                                 if (is_ipv4) {
2593                                         u_int32_t *d = (u_int32_t *)(cmd+1);
2594                                         u_int32_t addr =
2595                                             cmd->opcode == O_IP_DST_SET ?
2596                                                 args->f_id.dst_ip :
2597                                                 args->f_id.src_ip;
2598
2599                                             if (addr < d[0])
2600                                                     break;
2601                                             addr -= d[0]; /* subtract base */
2602                                             match = (addr < cmd->arg1) &&
2603                                                 ( d[ 1 + (addr>>5)] &
2604                                                   (1<<(addr & 0x1f)) );
2605                                 }
2606                                 break;
2607
2608                         case O_IP_DST:
2609                                 match = is_ipv4 &&
2610                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2611                                     dst_ip.s_addr);
2612                                 break;
2613
2614                         case O_IP_DST_ME:
2615                                 if (is_ipv4) {
2616                                         struct ifnet *tif;
2617
2618                                         INADDR_TO_IFP(dst_ip, tif);
2619                                         match = (tif != NULL);
2620                                 }
2621                                 break;
2622
2623                         case O_IP_SRCPORT:
2624                         case O_IP_DSTPORT:
2625                                 /*
2626                                  * offset == 0 && proto != 0 is enough
2627                                  * to guarantee that we have a
2628                                  * packet with port info.
2629                                  */
2630                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2631                                     && offset == 0) {
2632                                         u_int16_t x =
2633                                             (cmd->opcode == O_IP_SRCPORT) ?
2634                                                 src_port : dst_port ;
2635                                         u_int16_t *p =
2636                                             ((ipfw_insn_u16 *)cmd)->ports;
2637                                         int i;
2638
2639                                         for (i = cmdlen - 1; !match && i>0;
2640                                             i--, p += 2)
2641                                                 match = (x>=p[0] && x<=p[1]);
2642                                 }
2643                                 break;
2644
2645                         case O_ICMPTYPE:
2646                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
2647                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2648                                 break;
2649
2650 #ifdef INET6
2651                         case O_ICMP6TYPE:
2652                                 match = is_ipv6 && offset == 0 &&
2653                                     proto==IPPROTO_ICMPV6 &&
2654                                     icmp6type_match(
2655                                         ICMP6(ulp)->icmp6_type,
2656                                         (ipfw_insn_u32 *)cmd);
2657                                 break;
2658 #endif /* INET6 */
2659
2660                         case O_IPOPT:
2661                                 match = (is_ipv4 &&
2662                                     ipopts_match(mtod(m, struct ip *), cmd) );
2663                                 break;
2664
2665                         case O_IPVER:
2666                                 match = (is_ipv4 &&
2667                                     cmd->arg1 == mtod(m, struct ip *)->ip_v);
2668                                 break;
2669
2670                         case O_IPID:
2671                         case O_IPLEN:
2672                         case O_IPTTL:
2673                                 if (is_ipv4) {  /* only for IP packets */
2674                                     uint16_t x;
2675                                     uint16_t *p;
2676                                     int i;
2677
2678                                     if (cmd->opcode == O_IPLEN)
2679                                         x = ip_len;
2680                                     else if (cmd->opcode == O_IPTTL)
2681                                         x = mtod(m, struct ip *)->ip_ttl;
2682                                     else /* must be IPID */
2683                                         x = ntohs(mtod(m, struct ip *)->ip_id);
2684                                     if (cmdlen == 1) {
2685                                         match = (cmd->arg1 == x);
2686                                         break;
2687                                     }
2688                                     /* otherwise we have ranges */
2689                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2690                                     i = cmdlen - 1;
2691                                     for (; !match && i>0; i--, p += 2)
2692                                         match = (x >= p[0] && x <= p[1]);
2693                                 }
2694                                 break;
2695
2696                         case O_IPPRECEDENCE:
2697                                 match = (is_ipv4 &&
2698                                     (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2699                                 break;
2700
2701                         case O_IPTOS:
2702                                 match = (is_ipv4 &&
2703                                     flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2704                                 break;
2705
2706                         case O_TCPDATALEN:
2707                                 if (proto == IPPROTO_TCP && offset == 0) {
2708                                     struct tcphdr *tcp;
2709                                     uint16_t x;
2710                                     uint16_t *p;
2711                                     int i;
2712
2713                                     tcp = TCP(ulp);
2714                                     x = ip_len -
2715                                         ((ip->ip_hl + tcp->th_off) << 2);
2716                                     if (cmdlen == 1) {
2717                                         match = (cmd->arg1 == x);
2718                                         break;
2719                                     }
2720                                     /* otherwise we have ranges */
2721                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2722                                     i = cmdlen - 1;
2723                                     for (; !match && i>0; i--, p += 2)
2724                                         match = (x >= p[0] && x <= p[1]);
2725                                 }
2726                                 break;
2727
2728                         case O_TCPFLAGS:
2729                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2730                                     flags_match(cmd, TCP(ulp)->th_flags));
2731                                 break;
2732
2733                         case O_TCPOPTS:
2734                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2735                                     tcpopts_match(TCP(ulp), cmd));
2736                                 break;
2737
2738                         case O_TCPSEQ:
2739                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2740                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2741                                         TCP(ulp)->th_seq);
2742                                 break;
2743
2744                         case O_TCPACK:
2745                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2746                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2747                                         TCP(ulp)->th_ack);
2748                                 break;
2749
2750                         case O_TCPWIN:
2751                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2752                                     cmd->arg1 == TCP(ulp)->th_win);
2753                                 break;
2754
2755                         case O_ESTAB:
2756                                 /* reject packets which have SYN only */
2757                                 /* XXX should i also check for TH_ACK ? */
2758                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2759                                     (TCP(ulp)->th_flags &
2760                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2761                                 break;
2762
2763                         case O_ALTQ: {
2764                                 struct altq_tag *at;
2765                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2766
2767                                 match = 1;
2768                                 mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2769                                 if (mtag != NULL)
2770                                         break;
2771                                 mtag = m_tag_get(PACKET_TAG_PF_QID,
2772                                                 sizeof(struct altq_tag),
2773                                                 M_NOWAIT);
2774                                 if (mtag == NULL) {
2775                                         /*
2776                                          * Let the packet fall back to the
2777                                          * default ALTQ.
2778                                          */
2779                                         break;
2780                                 }
2781                                 at = (struct altq_tag *)(mtag+1);
2782                                 at->qid = altq->qid;
2783                                 if (is_ipv4)
2784                                         at->af = AF_INET;
2785                                 else
2786                                         at->af = AF_LINK;
2787                                 at->hdr = ip;
2788                                 m_tag_prepend(m, mtag);
2789                                 break;
2790                         }
2791
2792                         case O_LOG:
2793                                 if (fw_verbose)
2794                                         ipfw_log(f, hlen, args, m,
2795                                             oif, offset, tablearg);
2796                                 match = 1;
2797                                 break;
2798
2799                         case O_PROB:
2800                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2801                                 break;
2802
2803                         case O_VERREVPATH:
2804                                 /* Outgoing packets automatically pass/match */
2805                                 match = ((oif != NULL) ||
2806                                     (m->m_pkthdr.rcvif == NULL) ||
2807                                     (
2808 #ifdef INET6
2809                                     is_ipv6 ?
2810                                         verify_path6(&(args->f_id.src_ip6),
2811                                             m->m_pkthdr.rcvif) :
2812 #endif
2813                                     verify_path(src_ip, m->m_pkthdr.rcvif)));
2814                                 break;
2815
2816                         case O_VERSRCREACH:
2817                                 /* Outgoing packets automatically pass/match */
2818                                 match = (hlen > 0 && ((oif != NULL) ||
2819 #ifdef INET6
2820                                     is_ipv6 ?
2821                                         verify_path6(&(args->f_id.src_ip6),
2822                                             NULL) :
2823 #endif
2824                                     verify_path(src_ip, NULL)));
2825                                 break;
2826
2827                         case O_ANTISPOOF:
2828                                 /* Outgoing packets automatically pass/match */
2829                                 if (oif == NULL && hlen > 0 &&
2830                                     (  (is_ipv4 && in_localaddr(src_ip))
2831 #ifdef INET6
2832                                     || (is_ipv6 &&
2833                                         in6_localaddr(&(args->f_id.src_ip6)))
2834 #endif
2835                                     ))
2836                                         match =
2837 #ifdef INET6
2838                                             is_ipv6 ? verify_path6(
2839                                                 &(args->f_id.src_ip6),
2840                                                 m->m_pkthdr.rcvif) :
2841 #endif
2842                                             verify_path(src_ip,
2843                                                 m->m_pkthdr.rcvif);
2844                                 else
2845                                         match = 1;
2846                                 break;
2847
2848                         case O_IPSEC:
2849 #ifdef FAST_IPSEC
2850                                 match = (m_tag_find(m,
2851                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2852 #endif
2853 #ifdef IPSEC
2854                                 match = (ipsec_getnhist(m) != 0);
2855 #endif
2856                                 /* otherwise no match */
2857                                 break;
2858
2859 #ifdef INET6
2860                         case O_IP6_SRC:
2861                                 match = is_ipv6 &&
2862                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2863                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2864                                 break;
2865
2866                         case O_IP6_DST:
2867                                 match = is_ipv6 &&
2868                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2869                                     &((ipfw_insn_ip6 *)cmd)->addr6);
2870                                 break;
2871                         case O_IP6_SRC_MASK:
2872                                 if (is_ipv6) {
2873                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2874                                         struct in6_addr p = args->f_id.src_ip6;
2875
2876                                         APPLY_MASK(&p, &te->mask6);
2877                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2878                                 }
2879                                 break;
2880
2881                         case O_IP6_DST_MASK:
2882                                 if (is_ipv6) {
2883                                         ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2884                                         struct in6_addr p = args->f_id.dst_ip6;
2885
2886                                         APPLY_MASK(&p, &te->mask6);
2887                                         match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2888                                 }
2889                                 break;
2890
2891                         case O_IP6_SRC_ME:
2892                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2893                                 break;
2894
2895                         case O_IP6_DST_ME:
2896                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2897                                 break;
2898
2899                         case O_FLOW6ID:
2900                                 match = is_ipv6 &&
2901                                     flow6id_match(args->f_id.flow_id6,
2902                                     (ipfw_insn_u32 *) cmd);
2903                                 break;
2904
2905                         case O_EXT_HDR:
2906                                 match = is_ipv6 &&
2907                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
2908                                 break;
2909
2910                         case O_IP6:
2911                                 match = is_ipv6;
2912                                 break;
2913 #endif
2914
2915                         case O_IP4:
2916                                 match = is_ipv4;
2917                                 break;
2918
2919                         case O_TAG: {
2920                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
2921                                     tablearg : cmd->arg1;
2922
2923                                 /* Packet is already tagged with this tag? */
2924                                 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2925
2926                                 /* We have `untag' action when F_NOT flag is
2927                                  * present. And we must remove this mtag from
2928                                  * mbuf and reset `match' to zero (`match' will
2929                                  * be inversed later).
2930                                  * Otherwise we should allocate new mtag and
2931                                  * push it into mbuf.
2932                                  */
2933                                 if (cmd->len & F_NOT) { /* `untag' action */
2934                                         if (mtag != NULL)
2935                                                 m_tag_delete(m, mtag);
2936                                 } else if (mtag == NULL) {
2937                                         if ((mtag = m_tag_alloc(MTAG_IPFW,
2938                                             tag, 0, M_NOWAIT)) != NULL)
2939                                                 m_tag_prepend(m, mtag);
2940                                 }
2941                                 match = (cmd->len & F_NOT) ? 0: 1;
2942                                 break;
2943                         }
2944
2945                         case O_TAGGED: {
2946                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
2947                                     tablearg : cmd->arg1;
2948
2949                                 if (cmdlen == 1) {
2950                                         match = m_tag_locate(m, MTAG_IPFW,
2951                                             tag, NULL) != NULL;
2952                                         break;
2953                                 }
2954
2955                                 /* we have ranges */
2956                                 for (mtag = m_tag_first(m);
2957                                     mtag != NULL && !match;
2958                                     mtag = m_tag_next(m, mtag)) {
2959                                         uint16_t *p;
2960                                         int i;
2961
2962                                         if (mtag->m_tag_cookie != MTAG_IPFW)
2963                                                 continue;
2964
2965                                         p = ((ipfw_insn_u16 *)cmd)->ports;
2966                                         i = cmdlen - 1;
2967                                         for(; !match && i > 0; i--, p += 2)
2968                                                 match =
2969                                                     mtag->m_tag_id >= p[0] &&
2970                                                     mtag->m_tag_id <= p[1];
2971                                 }
2972                                 break;
2973                         }
2974                                 
2975                         /*
2976                          * The second set of opcodes represents 'actions',
2977                          * i.e. the terminal part of a rule once the packet
2978                          * matches all previous patterns.
2979                          * Typically there is only one action for each rule,
2980                          * and the opcode is stored at the end of the rule
2981                          * (but there are exceptions -- see below).
2982                          *
2983                          * In general, here we set retval and terminate the
2984                          * outer loop (would be a 'break 3' in some language,
2985                          * but we need to do a 'goto done').
2986                          *
2987                          * Exceptions:
2988                          * O_COUNT and O_SKIPTO actions:
2989                          *   instead of terminating, we jump to the next rule
2990                          *   ('goto next_rule', equivalent to a 'break 2'),
2991                          *   or to the SKIPTO target ('goto again' after
2992                          *   having set f, cmd and l), respectively.
2993                          *
2994                          * O_TAG, O_LOG and O_ALTQ action parameters:
2995                          *   perform some action and set match = 1;
2996                          *
2997                          * O_LIMIT and O_KEEP_STATE: these opcodes are
2998                          *   not real 'actions', and are stored right
2999                          *   before the 'action' part of the rule.
3000                          *   These opcodes try to install an entry in the
3001                          *   state tables; if successful, we continue with
3002                          *   the next opcode (match=1; break;), otherwise
3003                          *   the packet *   must be dropped
3004                          *   ('goto done' after setting retval);
3005                          *
3006                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3007                          *   cause a lookup of the state table, and a jump
3008                          *   to the 'action' part of the parent rule
3009                          *   ('goto check_body') if an entry is found, or
3010                          *   (CHECK_STATE only) a jump to the next rule if
3011                          *   the entry is not found ('goto next_rule').
3012                          *   The result of the lookup is cached to make
3013                          *   further instances of these opcodes are
3014                          *   effectively NOPs.
3015                          */
3016                         case O_LIMIT:
3017                         case O_KEEP_STATE:
3018                                 if (install_state(f,
3019                                     (ipfw_insn_limit *)cmd, args, tablearg)) {
3020                                         retval = IP_FW_DENY;
3021                                         goto done; /* error/limit violation */
3022                                 }
3023                                 match = 1;
3024                                 break;
3025
3026                         case O_PROBE_STATE:
3027                         case O_CHECK_STATE:
3028                                 /*
3029                                  * dynamic rules are checked at the first
3030                                  * keep-state or check-state occurrence,
3031                                  * with the result being stored in dyn_dir.
3032                                  * The compiler introduces a PROBE_STATE
3033                                  * instruction for us when we have a
3034                                  * KEEP_STATE (because PROBE_STATE needs
3035                                  * to be run first).
3036                                  */
3037                                 if (dyn_dir == MATCH_UNKNOWN &&
3038                                     (q = lookup_dyn_rule(&args->f_id,
3039                                      &dyn_dir, proto == IPPROTO_TCP ?
3040                                         TCP(ulp) : NULL))
3041                                         != NULL) {
3042                                         /*
3043                                          * Found dynamic entry, update stats
3044                                          * and jump to the 'action' part of
3045                                          * the parent rule.
3046                                          */
3047                                         q->pcnt++;
3048                                         q->bcnt += pktlen;
3049                                         f = q->rule;
3050                                         cmd = ACTION_PTR(f);
3051                                         l = f->cmd_len - f->act_ofs;
3052                                         IPFW_DYN_UNLOCK();
3053                                         goto check_body;
3054                                 }
3055                                 /*
3056                                  * Dynamic entry not found. If CHECK_STATE,
3057                                  * skip to next rule, if PROBE_STATE just
3058                                  * ignore and continue with next opcode.
3059                                  */
3060                                 if (cmd->opcode == O_CHECK_STATE)
3061                                         goto next_rule;
3062                                 match = 1;
3063                                 break;
3064
3065                         case O_ACCEPT:
3066                                 retval = 0;     /* accept */
3067                                 goto done;
3068
3069                         case O_PIPE:
3070                         case O_QUEUE:
3071                                 args->rule = f; /* report matching rule */
3072                                 if (cmd->arg1 == IP_FW_TABLEARG)
3073                                         args->cookie = tablearg;
3074                                 else
3075                                         args->cookie = cmd->arg1;
3076                                 retval = IP_FW_DUMMYNET;
3077                                 goto done;
3078
3079                         case O_DIVERT:
3080                         case O_TEE: {
3081                                 struct divert_tag *dt;
3082
3083                                 if (args->eh) /* not on layer 2 */
3084                                         break;
3085                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
3086                                                 sizeof(struct divert_tag),
3087                                                 M_NOWAIT);
3088                                 if (mtag == NULL) {
3089                                         /* XXX statistic */
3090                                         /* drop packet */
3091                                         IPFW_RUNLOCK(chain);
3092                                         return (IP_FW_DENY);
3093                                 }
3094                                 dt = (struct divert_tag *)(mtag+1);
3095                                 dt->cookie = f->rulenum;
3096                                 if (cmd->arg1 == IP_FW_TABLEARG)
3097                                         dt->info = tablearg;
3098                                 else
3099                                         dt->info = cmd->arg1;
3100                                 m_tag_prepend(m, mtag);
3101                                 retval = (cmd->opcode == O_DIVERT) ?
3102                                     IP_FW_DIVERT : IP_FW_TEE;
3103                                 goto done;
3104                         }
3105
3106                         case O_COUNT:
3107                         case O_SKIPTO:
3108                                 f->pcnt++;      /* update stats */
3109                                 f->bcnt += pktlen;
3110                                 f->timestamp = time_uptime;
3111                                 if (cmd->opcode == O_COUNT)
3112                                         goto next_rule;
3113                                 /* handle skipto */
3114                                 if (f->next_rule == NULL)
3115                                         lookup_next_rule(f);
3116                                 f = f->next_rule;
3117                                 goto again;
3118
3119                         case O_REJECT:
3120                                 /*
3121                                  * Drop the packet and send a reject notice
3122                                  * if the packet is not ICMP (or is an ICMP
3123                                  * query), and it is not multicast/broadcast.
3124                                  */
3125                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
3126                                     (proto != IPPROTO_ICMP ||
3127                                      is_icmp_query(ICMP(ulp))) &&
3128                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3129                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3130                                         send_reject(args, cmd->arg1, ip_len);
3131                                         m = args->m;
3132                                 }
3133                                 /* FALLTHROUGH */
3134 #ifdef INET6
3135                         case O_UNREACH6:
3136                                 if (hlen > 0 && is_ipv6 &&
3137                                     ((offset & IP6F_OFF_MASK) == 0) &&
3138                                     (proto != IPPROTO_ICMPV6 ||
3139                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
3140                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3141                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3142                                         send_reject6(args, cmd->arg1, hlen);
3143                                         m = args->m;
3144                                 }
3145                                 /* FALLTHROUGH */
3146 #endif
3147                         case O_DENY:
3148                                 retval = IP_FW_DENY;
3149                                 goto done;
3150
3151                         case O_FORWARD_IP: {
3152                                 struct sockaddr_in *sa;
3153                                 sa = &(((ipfw_insn_sa *)cmd)->sa);
3154                                 if (args->eh)   /* not valid on layer2 pkts */
3155                                         break;
3156                                 if (!q || dyn_dir == MATCH_FORWARD) {
3157                                         if (sa->sin_addr.s_addr == INADDR_ANY) {
3158                                                 bcopy(sa, &args->hopstore,
3159                                                         sizeof(*sa));
3160                                                 args->hopstore.sin_addr.s_addr =
3161                                                     htonl(tablearg);
3162                                                 args->next_hop =
3163                                                     &args->hopstore;
3164                                         } else {
3165                                                 args->next_hop = sa;
3166                                         }
3167                                 }
3168                                 retval = IP_FW_PASS;
3169                             }
3170                             goto done;
3171
3172                         case O_NETGRAPH:
3173                         case O_NGTEE:
3174                                 args->rule = f; /* report matching rule */
3175                                 if (cmd->arg1 == IP_FW_TABLEARG)
3176                                         args->cookie = tablearg;
3177                                 else
3178                                         args->cookie = cmd->arg1;
3179                                 retval = (cmd->opcode == O_NETGRAPH) ?
3180                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
3181                                 goto done;
3182
3183                         default:
3184                                 panic("-- unknown opcode %d\n", cmd->opcode);
3185                         } /* end of switch() on opcodes */
3186
3187                         if (cmd->len & F_NOT)
3188                                 match = !match;
3189
3190                         if (match) {
3191                                 if (cmd->len & F_OR)
3192                                         skip_or = 1;
3193                         } else {
3194                                 if (!(cmd->len & F_OR)) /* not an OR block, */
3195                                         break;          /* try next rule    */
3196                         }
3197
3198                 }       /* end of inner for, scan opcodes */
3199
3200 next_rule:;             /* try next rule                */
3201
3202         }               /* end of outer for, scan rules */
3203         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3204         IPFW_RUNLOCK(chain);
3205         return (IP_FW_DENY);
3206
3207 done:
3208         /* Update statistics */
3209         f->pcnt++;
3210         f->bcnt += pktlen;
3211         f->timestamp = time_uptime;
3212         IPFW_RUNLOCK(chain);
3213         return (retval);
3214
3215 pullup_failed:
3216         if (fw_verbose)
3217                 printf("ipfw: pullup failed\n");
3218         return (IP_FW_DENY);
3219 }
3220
3221 /*
3222  * When a rule is added/deleted, clear the next_rule pointers in all rules.
3223  * These will be reconstructed on the fly as packets are matched.
3224  */
3225 static void
3226 flush_rule_ptrs(struct ip_fw_chain *chain)
3227 {
3228         struct ip_fw *rule;
3229
3230         IPFW_WLOCK_ASSERT(chain);
3231
3232         for (rule = chain->rules; rule; rule = rule->next)
3233                 rule->next_rule = NULL;
3234 }
3235
3236 /*
3237  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3238  * possibly create a rule number and add the rule to the list.
3239  * Update the rule_number in the input struct so the caller knows it as well.
3240  */
3241 static int
3242 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3243 {
3244         struct ip_fw *rule, *f, *prev;
3245         int l = RULESIZE(input_rule);
3246
3247         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3248                 return (EINVAL);
3249
3250         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3251         if (rule == NULL)
3252                 return (ENOSPC);
3253
3254         bcopy(input_rule, rule, l);
3255
3256         rule->next = NULL;
3257         rule->next_rule = NULL;
3258
3259         rule->pcnt = 0;
3260         rule->bcnt = 0;
3261         rule->timestamp = 0;
3262
3263         IPFW_WLOCK(chain);
3264
3265         if (chain->rules == NULL) {     /* default rule */
3266                 chain->rules = rule;
3267                 goto done;
3268         }
3269
3270         /*
3271          * If rulenum is 0, find highest numbered rule before the
3272          * default rule, and add autoinc_step
3273          */
3274         if (autoinc_step < 1)
3275                 autoinc_step = 1;
3276         else if (autoinc_step > 1000)
3277                 autoinc_step = 1000;
3278         if (rule->rulenum == 0) {
3279                 /*
3280                  * locate the highest numbered rule before default
3281                  */
3282                 for (f = chain->rules; f; f = f->next) {
3283                         if (f->rulenum == IPFW_DEFAULT_RULE)
3284                                 break;
3285                         rule->rulenum = f->rulenum;
3286                 }
3287                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3288                         rule->rulenum += autoinc_step;
3289                 input_rule->rulenum = rule->rulenum;
3290         }
3291
3292         /*
3293          * Now insert the new rule in the right place in the sorted list.
3294          */
3295         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3296                 if (f->rulenum > rule->rulenum) { /* found the location */
3297                         if (prev) {
3298                                 rule->next = f;
3299                                 prev->next = rule;
3300                         } else { /* head insert */
3301                                 rule->next = chain->rules;
3302                                 chain->rules = rule;
3303                         }
3304                         break;
3305                 }
3306         }
3307         flush_rule_ptrs(chain);
3308 done:
3309         static_count++;
3310         static_len += l;
3311         IPFW_WUNLOCK(chain);
3312         DEB(printf("ipfw: installed rule %d, static count now %d\n",
3313                 rule->rulenum, static_count);)
3314         return (0);
3315 }
3316
3317 /**
3318  * Remove a static rule (including derived * dynamic rules)
3319  * and place it on the ``reap list'' for later reclamation.
3320  * The caller is in charge of clearing rule pointers to avoid
3321  * dangling pointers.
3322  * @return a pointer to the next entry.
3323  * Arguments are not checked, so they better be correct.
3324  */
3325 static struct ip_fw *
3326 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3327 {
3328         struct ip_fw *n;
3329         int l = RULESIZE(rule);
3330
3331         IPFW_WLOCK_ASSERT(chain);
3332
3333         n = rule->next;
3334         IPFW_DYN_LOCK();
3335         remove_dyn_rule(rule, NULL /* force removal */);
3336         IPFW_DYN_UNLOCK();
3337         if (prev == NULL)
3338                 chain->rules = n;
3339         else
3340                 prev->next = n;
3341         static_count--;
3342         static_len -= l;
3343
3344         rule->next = chain->reap;
3345         chain->reap = rule;
3346
3347         return n;
3348 }
3349
3350 /**
3351  * Reclaim storage associated with a list of rules.  This is
3352  * typically the list created using remove_rule.
3353  */
3354 static void
3355 reap_rules(struct ip_fw *head)
3356 {
3357         struct ip_fw *rule;
3358
3359         while ((rule = head) != NULL) {
3360                 head = head->next;
3361                 if (DUMMYNET_LOADED)
3362                         ip_dn_ruledel_ptr(rule);
3363                 free(rule, M_IPFW);
3364         }
3365 }
3366
3367 /*
3368  * Remove all rules from a chain (except rules in set RESVD_SET
3369  * unless kill_default = 1).  The caller is responsible for
3370  * reclaiming storage for the rules left in chain->reap.
3371  */
3372 static void
3373 free_chain(struct ip_fw_chain *chain, int kill_default)
3374 {
3375         struct ip_fw *prev, *rule;
3376
3377         IPFW_WLOCK_ASSERT(chain);
3378
3379         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3380         for (prev = NULL, rule = chain->rules; rule ; )
3381                 if (kill_default || rule->set != RESVD_SET)
3382                         rule = remove_rule(chain, rule, prev);
3383                 else {
3384                         prev = rule;
3385                         rule = rule->next;
3386                 }
3387 }
3388
3389 /**
3390  * Remove all rules with given number, and also do set manipulation.
3391  * Assumes chain != NULL && *chain != NULL.
3392  *
3393  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3394  * the next 8 bits are the new set, the top 8 bits are the command:
3395  *
3396  *      0       delete rules with given number
3397  *      1       delete rules with given set number
3398  *      2       move rules with given number to new set
3399  *      3       move rules with given set number to new set
3400  *      4       swap sets with given numbers
3401  */
3402 static int
3403 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3404 {
3405         struct ip_fw *prev = NULL, *rule;
3406         u_int16_t rulenum;      /* rule or old_set */
3407         u_int8_t cmd, new_set;
3408
3409         rulenum = arg & 0xffff;
3410         cmd = (arg >> 24) & 0xff;
3411         new_set = (arg >> 16) & 0xff;
3412
3413         if (cmd > 4)
3414                 return EINVAL;
3415         if (new_set > RESVD_SET)
3416                 return EINVAL;
3417         if (cmd == 0 || cmd == 2) {
3418                 if (rulenum >= IPFW_DEFAULT_RULE)
3419                         return EINVAL;
3420         } else {
3421                 if (rulenum > RESVD_SET)        /* old_set */
3422                         return EINVAL;
3423         }
3424
3425         IPFW_WLOCK(chain);
3426         rule = chain->rules;
3427         chain->reap = NULL;
3428         switch (cmd) {
3429         case 0: /* delete rules with given number */
3430                 /*
3431                  * locate first rule to delete
3432                  */
3433                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3434                         ;
3435                 if (rule->rulenum != rulenum) {
3436                         IPFW_WUNLOCK(chain);
3437                         return EINVAL;
3438                 }
3439
3440                 /*
3441                  * flush pointers outside the loop, then delete all matching
3442                  * rules. prev remains the same throughout the cycle.
3443                  */
3444                 flush_rule_ptrs(chain);
3445                 while (rule->rulenum == rulenum)
3446                         rule = remove_rule(chain, rule, prev);
3447                 break;
3448
3449         case 1: /* delete all rules with given set number */
3450                 flush_rule_ptrs(chain);
3451                 rule = chain->rules;
3452                 while (rule->rulenum < IPFW_DEFAULT_RULE)
3453                         if (rule->set == rulenum)
3454                                 rule = remove_rule(chain, rule, prev);
3455                         else {
3456                                 prev = rule;
3457                                 rule = rule->next;
3458                         }
3459                 break;
3460
3461         case 2: /* move rules with given number to new set */
3462                 rule = chain->rules;
3463                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3464                         if (rule->rulenum == rulenum)
3465                                 rule->set = new_set;
3466                 break;
3467
3468         case 3: /* move rules with given set number to new set */
3469                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3470                         if (rule->set == rulenum)
3471                                 rule->set = new_set;
3472                 break;
3473
3474         case 4: /* swap two sets */
3475                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3476                         if (rule->set == rulenum)
3477                                 rule->set = new_set;
3478                         else if (rule->set == new_set)
3479                                 rule->set = rulenum;
3480                 break;
3481         }
3482         /*
3483          * Look for rules to reclaim.  We grab the list before
3484          * releasing the lock then reclaim them w/o the lock to
3485          * avoid a LOR with dummynet.
3486          */
3487         rule = chain->reap;
3488         chain->reap = NULL;
3489         IPFW_WUNLOCK(chain);
3490         if (rule)
3491                 reap_rules(rule);
3492         return 0;
3493 }
3494
3495 /*
3496  * Clear counters for a specific rule.
3497  * The enclosing "table" is assumed locked.
3498  */
3499 static void
3500 clear_counters(struct ip_fw *rule, int log_only)
3501 {
3502         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3503
3504         if (log_only == 0) {
3505                 rule->bcnt = rule->pcnt = 0;
3506                 rule->timestamp = 0;
3507         }
3508         if (l->o.opcode == O_LOG)
3509                 l->log_left = l->max_log;
3510 }
3511
3512 /**
3513  * Reset some or all counters on firewall rules.
3514  * @arg frwl is null to clear all entries, or contains a specific
3515  * rule number.
3516  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3517  */
3518 static int
3519 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3520 {
3521         struct ip_fw *rule;
3522         char *msg;
3523
3524         IPFW_WLOCK(chain);
3525         if (rulenum == 0) {
3526                 norule_counter = 0;
3527                 for (rule = chain->rules; rule; rule = rule->next)
3528                         clear_counters(rule, log_only);
3529                 msg = log_only ? "ipfw: All logging counts reset.\n" :
3530                                 "ipfw: Accounting cleared.\n";
3531         } else {
3532                 int cleared = 0;
3533                 /*
3534                  * We can have multiple rules with the same number, so we
3535                  * need to clear them all.
3536                  */
3537                 for (rule = chain->rules; rule; rule = rule->next)
3538                         if (rule->rulenum == rulenum) {
3539                                 while (rule && rule->rulenum == rulenum) {
3540                                         clear_counters(rule, log_only);
3541                                         rule = rule->next;
3542                                 }
3543                                 cleared = 1;
3544                                 break;
3545                         }
3546                 if (!cleared) { /* we did not find any matching rules */
3547                         IPFW_WUNLOCK(chain);
3548                         return (EINVAL);
3549                 }
3550                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3551                                 "ipfw: Entry %d cleared.\n";
3552         }
3553         IPFW_WUNLOCK(chain);
3554
3555         if (fw_verbose)
3556                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3557         return (0);
3558 }
3559
3560 /*
3561  * Check validity of the structure before insert.
3562  * Fortunately rules are simple, so this mostly need to check rule sizes.
3563  */
3564 static int
3565 check_ipfw_struct(struct ip_fw *rule, int size)
3566 {
3567         int l, cmdlen = 0;
3568         int have_action=0;
3569         ipfw_insn *cmd;
3570
3571         if (size < sizeof(*rule)) {
3572                 printf("ipfw: rule too short\n");
3573                 return (EINVAL);
3574         }
3575         /* first, check for valid size */
3576         l = RULESIZE(rule);
3577         if (l != size) {
3578                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3579                 return (EINVAL);
3580         }
3581         if (rule->act_ofs >= rule->cmd_len) {
3582                 printf("ipfw: bogus action offset (%u > %u)\n",
3583                     rule->act_ofs, rule->cmd_len - 1);
3584                 return (EINVAL);
3585         }
3586         /*
3587          * Now go for the individual checks. Very simple ones, basically only
3588          * instruction sizes.
3589          */
3590         for (l = rule->cmd_len, cmd = rule->cmd ;
3591                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
3592                 cmdlen = F_LEN(cmd);
3593                 if (cmdlen > l) {
3594                         printf("ipfw: opcode %d size truncated\n",
3595                             cmd->opcode);
3596                         return EINVAL;
3597                 }
3598                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3599                 switch (cmd->opcode) {
3600                 case O_PROBE_STATE:
3601                 case O_KEEP_STATE:
3602                 case O_PROTO:
3603                 case O_IP_SRC_ME:
3604                 case O_IP_DST_ME:
3605                 case O_LAYER2:
3606                 case O_IN:
3607                 case O_FRAG:
3608                 case O_DIVERTED:
3609                 case O_IPOPT:
3610                 case O_IPTOS:
3611                 case O_IPPRECEDENCE:
3612                 case O_IPVER:
3613                 case O_TCPWIN:
3614                 case O_TCPFLAGS:
3615                 case O_TCPOPTS:
3616                 case O_ESTAB:
3617                 case O_VERREVPATH:
3618                 case O_VERSRCREACH:
3619                 case O_ANTISPOOF:
3620                 case O_IPSEC:
3621 #ifdef INET6
3622                 case O_IP6_SRC_ME:
3623                 case O_IP6_DST_ME:
3624                 case O_EXT_HDR:
3625                 case O_IP6:
3626 #endif
3627                 case O_IP4:
3628                 case O_TAG:
3629                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3630                                 goto bad_size;
3631                         break;
3632
3633                 case O_UID:
3634                 case O_GID:
3635                 case O_JAIL:
3636                 case O_IP_SRC:
3637                 case O_IP_DST:
3638                 case O_TCPSEQ:
3639                 case O_TCPACK:
3640                 case O_PROB:
3641                 case O_ICMPTYPE:
3642                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3643                                 goto bad_size;
3644                         break;
3645
3646                 case O_LIMIT:
3647                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3648                                 goto bad_size;
3649                         break;
3650
3651                 case O_LOG:
3652                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3653                                 goto bad_size;
3654
3655                         ((ipfw_insn_log *)cmd)->log_left =
3656                             ((ipfw_insn_log *)cmd)->max_log;
3657
3658                         break;
3659
3660                 case O_IP_SRC_MASK:
3661                 case O_IP_DST_MASK:
3662                         /* only odd command lengths */
3663                         if ( !(cmdlen & 1) || cmdlen > 31)
3664                                 goto bad_size;
3665                         break;
3666
3667                 case O_IP_SRC_SET:
3668                 case O_IP_DST_SET:
3669                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3670                                 printf("ipfw: invalid set size %d\n",
3671                                         cmd->arg1);
3672                                 return EINVAL;
3673                         }
3674                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3675                             (cmd->arg1+31)/32 )
3676                                 goto bad_size;
3677                         break;
3678
3679                 case O_IP_SRC_LOOKUP:
3680                 case O_IP_DST_LOOKUP:
3681                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
3682                                 printf("ipfw: invalid table number %d\n",
3683                                     cmd->arg1);
3684                                 return (EINVAL);
3685                         }
3686                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3687                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3688                                 goto bad_size;
3689                         break;
3690
3691                 case O_MACADDR2:
3692                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3693                                 goto bad_size;
3694                         break;
3695
3696                 case O_NOP:
3697                 case O_IPID:
3698                 case O_IPTTL:
3699                 case O_IPLEN:
3700                 case O_TCPDATALEN:
3701                 case O_TAGGED:
3702                         if (cmdlen < 1 || cmdlen > 31)
3703                                 goto bad_size;
3704                         break;
3705
3706                 case O_MAC_TYPE:
3707                 case O_IP_SRCPORT:
3708                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3709                         if (cmdlen < 2 || cmdlen > 31)
3710                                 goto bad_size;
3711                         break;
3712
3713                 case O_RECV:
3714                 case O_XMIT:
3715                 case O_VIA:
3716                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3717                                 goto bad_size;
3718                         break;
3719
3720                 case O_ALTQ:
3721                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3722                                 goto bad_size;
3723                         break;
3724
3725                 case O_PIPE:
3726                 case O_QUEUE:
3727                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3728                                 goto bad_size;
3729                         goto check_action;
3730
3731                 case O_FORWARD_IP:
3732 #ifdef  IPFIREWALL_FORWARD
3733                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3734                                 goto bad_size;
3735                         goto check_action;
3736 #else
3737                         return EINVAL;
3738 #endif
3739
3740                 case O_DIVERT:
3741                 case O_TEE:
3742                         if (ip_divert_ptr == NULL)
3743                                 return EINVAL;
3744                         else
3745                                 goto check_size;
3746                 case O_NETGRAPH:
3747                 case O_NGTEE:
3748                         if (!NG_IPFW_LOADED)
3749                                 return EINVAL;
3750                         else
3751                                 goto check_size;
3752                 case O_FORWARD_MAC: /* XXX not implemented yet */
3753                 case O_CHECK_STATE:
3754                 case O_COUNT:
3755                 case O_ACCEPT:
3756                 case O_DENY:
3757                 case O_REJECT:
3758 #ifdef INET6
3759                 case O_UNREACH6:
3760 #endif
3761                 case O_SKIPTO:
3762 check_size:
3763                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3764                                 goto bad_size;
3765 check_action:
3766                         if (have_action) {
3767                                 printf("ipfw: opcode %d, multiple actions"
3768                                         " not allowed\n",
3769                                         cmd->opcode);
3770                                 return EINVAL;
3771                         }
3772                         have_action = 1;
3773                         if (l != cmdlen) {
3774                                 printf("ipfw: opcode %d, action must be"
3775                                         " last opcode\n",
3776                                         cmd->opcode);
3777                                 return EINVAL;
3778                         }
3779                         break;
3780 #ifdef INET6
3781                 case O_IP6_SRC:
3782                 case O_IP6_DST:
3783                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3784                             F_INSN_SIZE(ipfw_insn))
3785                                 goto bad_size;
3786                         break;
3787
3788                 case O_FLOW6ID:
3789                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3790                             ((ipfw_insn_u32 *)cmd)->o.arg1)
3791                                 goto bad_size;
3792                         break;
3793
3794                 case O_IP6_SRC_MASK:
3795                 case O_IP6_DST_MASK:
3796                         if ( !(cmdlen & 1) || cmdlen > 127)
3797                                 goto bad_size;
3798                         break;
3799                 case O_ICMP6TYPE:
3800                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3801                                 goto bad_size;
3802                         break;
3803 #endif
3804
3805                 default:
3806                         switch (cmd->opcode) {
3807 #ifndef INET6
3808                         case O_IP6_SRC_ME:
3809                         case O_IP6_DST_ME:
3810                         case O_EXT_HDR:
3811                         case O_IP6:
3812                         case O_UNREACH6:
3813                         case O_IP6_SRC:
3814                         case O_IP6_DST:
3815                         case O_FLOW6ID:
3816                         case O_IP6_SRC_MASK:
3817                         case O_IP6_DST_MASK:
3818                         case O_ICMP6TYPE:
3819                                 printf("ipfw: no IPv6 support in kernel\n");
3820                                 return EPROTONOSUPPORT;
3821 #endif
3822                         default:
3823                                 printf("ipfw: opcode %d, unknown opcode\n",
3824                                         cmd->opcode);
3825                                 return EINVAL;
3826                         }
3827                 }
3828         }
3829         if (have_action == 0) {
3830                 printf("ipfw: missing action\n");
3831                 return EINVAL;
3832         }
3833         return 0;
3834
3835 bad_size:
3836         printf("ipfw: opcode %d size %d wrong\n",
3837                 cmd->opcode, cmdlen);
3838         return EINVAL;
3839 }
3840
3841 /*
3842  * Copy the static and dynamic rules to the supplied buffer
3843  * and return the amount of space actually used.
3844  */
3845 static size_t
3846 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3847 {
3848         char *bp = buf;
3849         char *ep = bp + space;
3850         struct ip_fw *rule;
3851         int i;
3852
3853         /* XXX this can take a long time and locking will block packet flow */
3854         IPFW_RLOCK(chain);
3855         for (rule = chain->rules; rule ; rule = rule->next) {
3856                 /*
3857                  * Verify the entry fits in the buffer in case the
3858                  * rules changed between calculating buffer space and
3859                  * now.  This would be better done using a generation
3860                  * number but should suffice for now.
3861                  */
3862                 i = RULESIZE(rule);
3863                 if (bp + i <= ep) {
3864                         bcopy(rule, bp, i);
3865                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3866                             sizeof(set_disable));
3867                         bp += i;
3868                 }
3869         }
3870         IPFW_RUNLOCK(chain);
3871         if (ipfw_dyn_v) {
3872                 ipfw_dyn_rule *p, *last = NULL;
3873
3874                 IPFW_DYN_LOCK();
3875                 for (i = 0 ; i < curr_dyn_buckets; i++)
3876                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3877                                 if (bp + sizeof *p <= ep) {
3878                                         ipfw_dyn_rule *dst =
3879                                                 (ipfw_dyn_rule *)bp;
3880                                         bcopy(p, dst, sizeof *p);
3881                                         bcopy(&(p->rule->rulenum), &(dst->rule),
3882                                             sizeof(p->rule->rulenum));
3883                                         /*
3884                                          * store a non-null value in "next".
3885                                          * The userland code will interpret a
3886                                          * NULL here as a marker
3887                                          * for the last dynamic rule.
3888                                          */
3889                                         bcopy(&dst, &dst->next, sizeof(dst));
3890                                         last = dst;
3891                                         dst->expire =
3892                                             TIME_LEQ(dst->expire, time_uptime) ?
3893                                                 0 : dst->expire - time_uptime ;
3894                                         bp += sizeof(ipfw_dyn_rule);
3895                                 }
3896                         }
3897                 IPFW_DYN_UNLOCK();
3898                 if (last != NULL) /* mark last dynamic rule */
3899                         bzero(&last->next, sizeof(last));
3900         }
3901         return (bp - (char *)buf);
3902 }
3903
3904
3905 /**
3906  * {set|get}sockopt parser.
3907  */
3908 static int
3909 ipfw_ctl(struct sockopt *sopt)
3910 {
3911 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
3912         int error, rule_num;
3913         size_t size;
3914         struct ip_fw *buf, *rule;
3915         u_int32_t rulenum[2];
3916
3917         error = suser(sopt->sopt_td);
3918         if (error)
3919                 return (error);
3920
3921         /*
3922          * Disallow modifications in really-really secure mode, but still allow
3923          * the logging counters to be reset.
3924          */
3925         if (sopt->sopt_name == IP_FW_ADD ||
3926             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3927                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3928                 if (error)
3929                         return (error);
3930         }
3931
3932         error = 0;
3933
3934         switch (sopt->sopt_name) {
3935         case IP_FW_GET:
3936                 /*
3937                  * pass up a copy of the current rules. Static rules
3938                  * come first (the last of which has number IPFW_DEFAULT_RULE),
3939                  * followed by a possibly empty list of dynamic rule.
3940                  * The last dynamic rule has NULL in the "next" field.
3941                  *
3942                  * Note that the calculated size is used to bound the
3943                  * amount of data returned to the user.  The rule set may
3944                  * change between calculating the size and returning the
3945                  * data in which case we'll just return what fits.
3946                  */
3947                 size = static_len;      /* size of static rules */
3948                 if (ipfw_dyn_v)         /* add size of dyn.rules */
3949                         size += (dyn_count * sizeof(ipfw_dyn_rule));
3950
3951                 /*
3952                  * XXX todo: if the user passes a short length just to know
3953                  * how much room is needed, do not bother filling up the
3954                  * buffer, just jump to the sooptcopyout.
3955                  */
3956                 buf = malloc(size, M_TEMP, M_WAITOK);
3957                 error = sooptcopyout(sopt, buf,
3958                                 ipfw_getrules(&layer3_chain, buf, size));
3959                 free(buf, M_TEMP);
3960                 break;
3961
3962         case IP_FW_FLUSH:
3963                 /*
3964                  * Normally we cannot release the lock on each iteration.
3965                  * We could do it here only because we start from the head all
3966                  * the times so there is no risk of missing some entries.
3967                  * On the other hand, the risk is that we end up with
3968                  * a very inconsistent ruleset, so better keep the lock
3969                  * around the whole cycle.
3970                  *
3971                  * XXX this code can be improved by resetting the head of
3972                  * the list to point to the default rule, and then freeing
3973                  * the old list without the need for a lock.
3974                  */
3975
3976                 IPFW_WLOCK(&layer3_chain);
3977                 layer3_chain.reap = NULL;
3978                 free_chain(&layer3_chain, 0 /* keep default rule */);
3979                 rule = layer3_chain.reap;
3980                 layer3_chain.reap = NULL;
3981                 IPFW_WUNLOCK(&layer3_chain);
3982                 if (rule != NULL)
3983                         reap_rules(rule);
3984                 break;
3985
3986         case IP_FW_ADD:
3987                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3988                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3989                         sizeof(struct ip_fw) );
3990                 if (error == 0)
3991                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
3992                 if (error == 0) {
3993                         error = add_rule(&layer3_chain, rule);
3994                         size = RULESIZE(rule);
3995                         if (!error && sopt->sopt_dir == SOPT_GET)
3996                                 error = sooptcopyout(sopt, rule, size);
3997                 }
3998                 free(rule, M_TEMP);
3999                 break;
4000
4001         case IP_FW_DEL:
4002                 /*
4003                  * IP_FW_DEL is used for deleting single rules or sets,
4004                  * and (ab)used to atomically manipulate sets. Argument size
4005                  * is used to distinguish between the two:
4006                  *    sizeof(u_int32_t)
4007                  *      delete single rule or set of rules,
4008                  *      or reassign rules (or sets) to a different set.
4009                  *    2*sizeof(u_int32_t)
4010                  *      atomic disable/enable sets.
4011                  *      first u_int32_t contains sets to be disabled,
4012                  *      second u_int32_t contains sets to be enabled.
4013                  */
4014                 error = sooptcopyin(sopt, rulenum,
4015                         2*sizeof(u_int32_t), sizeof(u_int32_t));
4016                 if (error)
4017                         break;
4018                 size = sopt->sopt_valsize;
4019                 if (size == sizeof(u_int32_t))  /* delete or reassign */
4020                         error = del_entry(&layer3_chain, rulenum[0]);
4021                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4022                         set_disable =
4023                             (set_disable | rulenum[0]) & ~rulenum[1] &
4024                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4025                 else
4026                         error = EINVAL;
4027                 break;
4028
4029         case IP_FW_ZERO:
4030         case IP_FW_RESETLOG: /* argument is an int, the rule number */
4031                 rule_num = 0;
4032                 if (sopt->sopt_val != 0) {
4033                     error = sooptcopyin(sopt, &rule_num,
4034                             sizeof(int), sizeof(int));
4035                     if (error)
4036                         break;
4037                 }
4038                 error = zero_entry(&layer3_chain, rule_num,
4039                         sopt->sopt_name == IP_FW_RESETLOG);
4040                 break;
4041
4042         case IP_FW_TABLE_ADD:
4043                 {
4044                         ipfw_table_entry ent;
4045
4046                         error = sooptcopyin(sopt, &ent,
4047                             sizeof(ent), sizeof(ent));
4048                         if (error)
4049                                 break;
4050                         error = add_table_entry(&layer3_chain, ent.tbl,
4051                             ent.addr, ent.masklen, ent.value);
4052                 }
4053                 break;
4054
4055         case IP_FW_TABLE_DEL:
4056                 {
4057                         ipfw_table_entry ent;
4058
4059                         error = sooptcopyin(sopt, &ent,
4060                             sizeof(ent), sizeof(ent));
4061                         if (error)
4062                                 break;
4063                         error = del_table_entry(&layer3_chain, ent.tbl,
4064                             ent.addr, ent.masklen);
4065                 }
4066                 break;
4067
4068         case IP_FW_TABLE_FLUSH:
4069                 {
4070                         u_int16_t tbl;
4071
4072                         error = sooptcopyin(sopt, &tbl,
4073                             sizeof(tbl), sizeof(tbl));
4074                         if (error)
4075                                 break;
4076                         IPFW_WLOCK(&layer3_chain);
4077                         error = flush_table(&layer3_chain, tbl);
4078                         IPFW_WUNLOCK(&layer3_chain);
4079                 }
4080                 break;
4081
4082         case IP_FW_TABLE_GETSIZE:
4083                 {
4084                         u_int32_t tbl, cnt;
4085
4086                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4087                             sizeof(tbl))))
4088                                 break;
4089                         IPFW_RLOCK(&layer3_chain);
4090                         error = count_table(&layer3_chain, tbl, &cnt);
4091                         IPFW_RUNLOCK(&layer3_chain);
4092                         if (error)
4093                                 break;
4094                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4095                 }
4096                 break;
4097
4098         case IP_FW_TABLE_LIST:
4099                 {
4100                         ipfw_table *tbl;
4101
4102                         if (sopt->sopt_valsize < sizeof(*tbl)) {
4103                                 error = EINVAL;
4104                                 break;
4105                         }
4106                         size = sopt->sopt_valsize;
4107                         tbl = malloc(size, M_TEMP, M_WAITOK);
4108                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4109                         if (error) {
4110                                 free(tbl, M_TEMP);
4111                                 break;
4112                         }
4113                         tbl->size = (size - sizeof(*tbl)) /
4114                             sizeof(ipfw_table_entry);
4115                         IPFW_RLOCK(&layer3_chain);
4116                         error = dump_table(&layer3_chain, tbl);
4117                         IPFW_RUNLOCK(&layer3_chain);
4118                         if (error) {
4119                                 free(tbl, M_TEMP);
4120                                 break;
4121                         }
4122                         error = sooptcopyout(sopt, tbl, size);
4123                         free(tbl, M_TEMP);
4124                 }
4125                 break;
4126
4127         default:
4128                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4129                 error = EINVAL;
4130         }
4131
4132         return (error);
4133 #undef RULE_MAXSIZE
4134 }
4135
4136 /**
4137  * dummynet needs a reference to the default rule, because rules can be
4138  * deleted while packets hold a reference to them. When this happens,
4139  * dummynet changes the reference to the default rule (it could well be a
4140  * NULL pointer, but this way we do not need to check for the special
4141  * case, plus here he have info on the default behaviour).
4142  */
4143 struct ip_fw *ip_fw_default_rule;
4144
4145 /*
4146  * This procedure is only used to handle keepalives. It is invoked
4147  * every dyn_keepalive_period
4148  */
4149 static void
4150 ipfw_tick(void * __unused unused)
4151 {
4152         struct mbuf *m0, *m, *mnext, **mtailp;
4153         int i;
4154         ipfw_dyn_rule *q;
4155
4156         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4157                 goto done;
4158
4159         /*
4160          * We make a chain of packets to go out here -- not deferring
4161          * until after we drop the IPFW dynamic rule lock would result
4162          * in a lock order reversal with the normal packet input -> ipfw
4163          * call stack.
4164          */
4165         m0 = NULL;
4166         mtailp = &m0;
4167         IPFW_DYN_LOCK();
4168         for (i = 0 ; i < curr_dyn_buckets ; i++) {
4169                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4170                         if (q->dyn_type == O_LIMIT_PARENT)
4171                                 continue;
4172                         if (q->id.proto != IPPROTO_TCP)
4173                                 continue;
4174                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
4175                                 continue;
4176                         if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4177                             q->expire))
4178                                 continue;       /* too early */
4179                         if (TIME_LEQ(q->expire, time_uptime))
4180                                 continue;       /* too late, rule expired */
4181
4182                         *mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4183                                 q->ack_fwd, TH_SYN);
4184                         if (*mtailp != NULL)
4185                                 mtailp = &(*mtailp)->m_nextpkt;
4186                         *mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4187                                 q->ack_rev, 0);
4188                         if (*mtailp != NULL)
4189                                 mtailp = &(*mtailp)->m_nextpkt;
4190                 }
4191         }
4192         IPFW_DYN_UNLOCK();
4193         for (m = mnext = m0; m != NULL; m = mnext) {
4194                 mnext = m->m_nextpkt;
4195                 m->m_nextpkt = NULL;
4196                 ip_output(m, NULL, NULL, 0, NULL, NULL);
4197         }
4198 done:
4199         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4200 }
4201
4202 int
4203 ipfw_init(void)
4204 {
4205         struct ip_fw default_rule;
4206         int error;
4207
4208 #ifdef INET6
4209         /* Setup IPv6 fw sysctl tree. */
4210         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4211         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4212             SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4213             CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4214         SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4215             OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4216             &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4217         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4218             OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4219             &fw_deny_unknown_exthdrs, 0,
4220             "Deny packets with unknown IPv6 Extension Headers");
4221 #endif
4222
4223         layer3_chain.rules = NULL;
4224         IPFW_LOCK_INIT(&layer3_chain);
4225         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4226             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4227             UMA_ALIGN_PTR, 0);
4228         IPFW_DYN_LOCK_INIT();
4229         callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4230
4231         bzero(&default_rule, sizeof default_rule);
4232
4233         default_rule.act_ofs = 0;
4234         default_rule.rulenum = IPFW_DEFAULT_RULE;
4235         default_rule.cmd_len = 1;
4236         default_rule.set = RESVD_SET;
4237
4238         default_rule.cmd[0].len = 1;
4239         default_rule.cmd[0].opcode =
4240 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4241                                 1 ? O_ACCEPT :
4242 #endif
4243                                 O_DENY;
4244
4245         error = add_rule(&layer3_chain, &default_rule);
4246         if (error != 0) {
4247                 printf("ipfw2: error %u initializing default rule "
4248                         "(support disabled)\n", error);
4249                 IPFW_DYN_LOCK_DESTROY();
4250                 IPFW_LOCK_DESTROY(&layer3_chain);
4251                 uma_zdestroy(ipfw_dyn_rule_zone);
4252                 return (error);
4253         }
4254
4255         ip_fw_default_rule = layer3_chain.rules;
4256         printf("ipfw2 "
4257 #ifdef INET6
4258                 "(+ipv6) "
4259 #endif
4260                 "initialized, divert %s, "
4261                 "rule-based forwarding "
4262 #ifdef IPFIREWALL_FORWARD
4263                 "enabled, "
4264 #else
4265                 "disabled, "
4266 #endif
4267                 "default to %s, logging ",
4268 #ifdef IPDIVERT
4269                 "enabled",
4270 #else
4271                 "loadable",
4272 #endif
4273                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4274
4275 #ifdef IPFIREWALL_VERBOSE
4276         fw_verbose = 1;
4277 #endif
4278 #ifdef IPFIREWALL_VERBOSE_LIMIT
4279         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4280 #endif
4281         if (fw_verbose == 0)
4282                 printf("disabled\n");
4283         else if (verbose_limit == 0)
4284                 printf("unlimited\n");
4285         else
4286                 printf("limited to %d packets/entry by default\n",
4287                     verbose_limit);
4288
4289         error = init_tables(&layer3_chain);
4290         if (error) {
4291                 IPFW_DYN_LOCK_DESTROY();
4292                 IPFW_LOCK_DESTROY(&layer3_chain);
4293                 uma_zdestroy(ipfw_dyn_rule_zone);
4294                 return (error);
4295         }
4296         ip_fw_ctl_ptr = ipfw_ctl;
4297         ip_fw_chk_ptr = ipfw_chk;
4298         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4299
4300         return (0);
4301 }
4302
4303 void
4304 ipfw_destroy(void)
4305 {
4306         struct ip_fw *reap;
4307
4308         ip_fw_chk_ptr = NULL;
4309         ip_fw_ctl_ptr = NULL;
4310         callout_drain(&ipfw_timeout);
4311         IPFW_WLOCK(&layer3_chain);
4312         flush_tables(&layer3_chain);
4313         layer3_chain.reap = NULL;
4314         free_chain(&layer3_chain, 1 /* kill default rule */);
4315         reap = layer3_chain.reap, layer3_chain.reap = NULL;
4316         IPFW_WUNLOCK(&layer3_chain);
4317         if (reap != NULL)
4318                 reap_rules(reap);
4319         IPFW_DYN_LOCK_DESTROY();
4320         uma_zdestroy(ipfw_dyn_rule_zone);
4321         IPFW_LOCK_DESTROY(&layer3_chain);
4322
4323 #ifdef INET6
4324         /* Free IPv6 fw sysctl tree. */
4325         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4326 #endif
4327
4328         printf("IP firewall unloaded\n");
4329 }