]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/ip_id.c
Merge branch 'releng/11.3' into releng-CDN/11.3
[FreeBSD/FreeBSD.git] / sys / netinet / ip_id.c
1
2 /*-
3  * Copyright (c) 2008 Michael J. Silbersack.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 /*
32  * IP ID generation is a fascinating topic.
33  *
34  * In order to avoid ID collisions during packet reassembly, common sense
35  * dictates that the period between reuse of IDs be as large as possible.
36  * This leads to the classic implementation of a system-wide counter, thereby
37  * ensuring that IDs repeat only once every 2^16 packets.
38  *
39  * Subsequent security researchers have pointed out that using a global
40  * counter makes ID values predictable.  This predictability allows traffic
41  * analysis, idle scanning, and even packet injection in specific cases.
42  * These results suggest that IP IDs should be as random as possible.
43  *
44  * The "searchable queues" algorithm used in this IP ID implementation was
45  * proposed by Amit Klein.  It is a compromise between the above two
46  * viewpoints that has provable behavior that can be tuned to the user's
47  * requirements.
48  *
49  * The basic concept is that we supplement a standard random number generator
50  * with a queue of the last L IDs that we have handed out to ensure that all
51  * IDs have a period of at least L.
52  *
53  * To efficiently implement this idea, we keep two data structures: a
54  * circular array of IDs of size L and a bitstring of 65536 bits.
55  *
56  * To start, we ask the RNG for a new ID.  A quick index into the bitstring
57  * is used to determine if this is a recently used value.  The process is
58  * repeated until a value is returned that is not in the bitstring.
59  *
60  * Having found a usable ID, we remove the ID stored at the current position
61  * in the queue from the bitstring and replace it with our new ID.  Our new
62  * ID is then added to the bitstring and the queue pointer is incremented.
63  *
64  * The lower limit of 512 was chosen because there doesn't seem to be much
65  * point to having a smaller value.  The upper limit of 32768 was chosen for
66  * two reasons.  First, every step above 32768 decreases the entropy.  Taken
67  * to an extreme, 65533 would offer 1 bit of entropy.  Second, the number of
68  * attempts it takes the algorithm to find an unused ID drastically
69  * increases, killing performance.  The default value of 8192 was chosen
70  * because it provides a good tradeoff between randomness and non-repetition.
71  *
72  * With L=8192, the queue will use 16K of memory.  The bitstring always
73  * uses 8K of memory.  No memory is allocated until the use of random ids is
74  * enabled.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/counter.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/random.h>
85 #include <sys/smp.h>
86 #include <sys/sysctl.h>
87 #include <sys/bitstring.h>
88
89 #include <net/vnet.h>
90
91 #include <netinet/in.h>
92 #include <netinet/ip.h>
93 #include <netinet/ip_var.h>
94
95 /*
96  * By default we generate IP ID only for non-atomic datagrams, as
97  * suggested by RFC6864.  We use per-CPU counter for that, or if
98  * user wants to, we can turn on random ID generation.
99  */
100 static VNET_DEFINE(int, ip_rfc6864) = 1;
101 static VNET_DEFINE(int, ip_do_randomid) = 0;
102 #define V_ip_rfc6864            VNET(ip_rfc6864)
103 #define V_ip_do_randomid        VNET(ip_do_randomid)
104
105 /*
106  * Random ID state engine.
107  */
108 static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state");
109 static VNET_DEFINE(uint16_t *, id_array);
110 static VNET_DEFINE(bitstr_t *, id_bits);
111 static VNET_DEFINE(int, array_ptr);
112 static VNET_DEFINE(int, array_size);
113 static VNET_DEFINE(int, random_id_collisions);
114 static VNET_DEFINE(int, random_id_total);
115 static VNET_DEFINE(struct mtx, ip_id_mtx);
116 #define V_id_array      VNET(id_array)
117 #define V_id_bits       VNET(id_bits)
118 #define V_array_ptr     VNET(array_ptr)
119 #define V_array_size    VNET(array_size)
120 #define V_random_id_collisions  VNET(random_id_collisions)
121 #define V_random_id_total       VNET(random_id_total)
122 #define V_ip_id_mtx     VNET(ip_id_mtx)
123
124 /*
125  * Non-random ID state engine is simply a per-cpu counter.
126  */
127 static VNET_DEFINE(counter_u64_t, ip_id);
128 #define V_ip_id         VNET(ip_id)
129
130 static int      sysctl_ip_randomid(SYSCTL_HANDLER_ARGS);
131 static int      sysctl_ip_id_change(SYSCTL_HANDLER_ARGS);
132 static void     ip_initid(int);
133 static uint16_t ip_randomid(void);
134 static void     ipid_sysinit(void);
135 static void     ipid_sysuninit(void);
136
137 SYSCTL_DECL(_net_inet_ip);
138 SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id,
139     CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU",
141     "Assign random ip_id values");
142 SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET | CTLFLAG_RW,
143     &VNET_NAME(ip_rfc6864), 0,
144     "Use constant IP ID for atomic datagrams");
145 SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id_period,
146     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET,
147     &VNET_NAME(array_size), 0, sysctl_ip_id_change, "IU", "IP ID Array size");
148 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_collisions,
149     CTLFLAG_RD | CTLFLAG_VNET,
150     &VNET_NAME(random_id_collisions), 0, "Count of IP ID collisions");
151 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_total, CTLFLAG_RD | CTLFLAG_VNET,
152     &VNET_NAME(random_id_total), 0, "Count of IP IDs created");
153
154 static int
155 sysctl_ip_randomid(SYSCTL_HANDLER_ARGS)
156 {
157         int error, new;
158
159         new = V_ip_do_randomid;
160         error = sysctl_handle_int(oidp, &new, 0, req);
161         if (error || req->newptr == NULL)
162                 return (error);
163         if (new != 0 && new != 1)
164                 return (EINVAL);
165         if (new == V_ip_do_randomid)
166                 return (0);
167         if (new == 1 && V_ip_do_randomid == 0)
168                 ip_initid(8192);
169         /* We don't free memory when turning random ID off, due to race. */
170         V_ip_do_randomid = new;
171         return (0);
172 }
173
174 static int
175 sysctl_ip_id_change(SYSCTL_HANDLER_ARGS)
176 {
177         int error, new;
178
179         new = V_array_size;
180         error = sysctl_handle_int(oidp, &new, 0, req);
181         if (error == 0 && req->newptr) {
182                 if (new >= 512 && new <= 32768)
183                         ip_initid(new);
184                 else
185                         error = EINVAL;
186         }
187         return (error);
188 }
189
190 static void
191 ip_initid(int new_size)
192 {
193         uint16_t *new_array;
194         bitstr_t *new_bits;
195
196         new_array = malloc(new_size * sizeof(uint16_t), M_IPID,
197             M_WAITOK | M_ZERO);
198         new_bits = malloc(bitstr_size(65536), M_IPID, M_WAITOK | M_ZERO);
199
200         mtx_lock(&V_ip_id_mtx);
201         if (V_id_array != NULL) {
202                 free(V_id_array, M_IPID);
203                 free(V_id_bits, M_IPID);
204         }
205         V_id_array = new_array;
206         V_id_bits = new_bits;
207         V_array_size = new_size;
208         V_array_ptr = 0;
209         V_random_id_collisions = 0;
210         V_random_id_total = 0;
211         mtx_unlock(&V_ip_id_mtx);
212 }
213
214 static uint16_t
215 ip_randomid(void)
216 {
217         uint16_t new_id;
218
219         mtx_lock(&V_ip_id_mtx);
220         /*
221          * To avoid a conflict with the zeros that the array is initially
222          * filled with, we never hand out an id of zero.
223          */
224         new_id = 0;
225         do {
226                 if (new_id != 0)
227                         V_random_id_collisions++;
228                 arc4rand(&new_id, sizeof(new_id), 0);
229         } while (bit_test(V_id_bits, new_id) || new_id == 0);
230         bit_clear(V_id_bits, V_id_array[V_array_ptr]);
231         bit_set(V_id_bits, new_id);
232         V_id_array[V_array_ptr] = new_id;
233         V_array_ptr++;
234         if (V_array_ptr == V_array_size)
235                 V_array_ptr = 0;
236         V_random_id_total++;
237         mtx_unlock(&V_ip_id_mtx);
238         return (new_id);
239 }
240
241 void
242 ip_fillid(struct ip *ip)
243 {
244
245         /*
246          * Per RFC6864 Section 4
247          *
248          * o  Atomic datagrams: (DF==1) && (MF==0) && (frag_offset==0)
249          * o  Non-atomic datagrams: (DF==0) || (MF==1) || (frag_offset>0)
250          */
251         if (V_ip_rfc6864 && (ip->ip_off & htons(IP_DF)) == htons(IP_DF))
252                 ip->ip_id = 0;
253         else if (V_ip_do_randomid)
254                 ip->ip_id = ip_randomid();
255         else {
256                 counter_u64_add(V_ip_id, 1);
257                 /*
258                  * There are two issues about this trick, to be kept in mind.
259                  * 1) We can migrate between counter_u64_add() and next
260                  *    line, and grab counter from other CPU, resulting in too
261                  *    quick ID reuse. This is tolerable in our particular case,
262                  *    since probability of such event is much lower then reuse
263                  *    of ID due to legitimate overflow, that at modern Internet
264                  *    speeds happens all the time.
265                  * 2) We are relying on the fact that counter(9) is based on
266                  *    UMA_ZONE_PCPU uma(9) zone. We also take only last
267                  *    sixteen bits of a counter, so we don't care about the
268                  *    fact that machines with 32-bit word update their counters
269                  *    not atomically.
270                  */
271                 ip->ip_id = htons((*(uint64_t *)zpcpu_get(V_ip_id)) & 0xffff);
272         }
273 }
274
275 static void
276 ipid_sysinit(void)
277 {
278         int i;
279
280         mtx_init(&V_ip_id_mtx, "ip_id_mtx", NULL, MTX_DEF);
281         V_ip_id = counter_u64_alloc(M_WAITOK);
282         
283         CPU_FOREACH(i)
284                 arc4rand(zpcpu_get_cpu(V_ip_id, i), sizeof(uint64_t), 0);
285 }
286 VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL);
287
288 static void
289 ipid_sysuninit(void)
290 {
291
292         if (V_id_array != NULL) {
293                 free(V_id_array, M_IPID);
294                 free(V_id_bits, M_IPID);
295         }
296         counter_u64_free(V_ip_id);
297         mtx_destroy(&V_ip_id_mtx);
298 }
299 VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ipid_sysuninit, NULL);