]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/sctp_lock_bsd.h
sys/{x86,amd64}: remove one of doubled ;s
[FreeBSD/FreeBSD.git] / sys / netinet / sctp_lock_bsd.h
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
5  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * a) Redistributions of source code must retain the above copyright notice,
12  *   this list of conditions and the following disclaimer.
13  *
14  * b) Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *   the documentation and/or other materials provided with the distribution.
17  *
18  * c) Neither the name of Cisco Systems, Inc. nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #ifndef _NETINET_SCTP_LOCK_BSD_H_
39 #define _NETINET_SCTP_LOCK_BSD_H_
40
41 /*
42  * General locking concepts: The goal of our locking is to of course provide
43  * consistency and yet minimize overhead. We will attempt to use
44  * non-recursive locks which are supposed to be quite inexpensive. Now in
45  * order to do this the goal is that most functions are not aware of locking.
46  * Once we have a TCB we lock it and unlock when we are through. This means
47  * that the TCB lock is kind-of a "global" lock when working on an
48  * association. Caution must be used when asserting a TCB_LOCK since if we
49  * recurse we deadlock.
50  *
51  * Most other locks (INP and INFO) attempt to localize the locking i.e. we try
52  * to contain the lock and unlock within the function that needs to lock it.
53  * This sometimes mean we do extra locks and unlocks and lose a bit of
54  * efficiency, but if the performance statements about non-recursive locks are
55  * true this should not be a problem.  One issue that arises with this only
56  * lock when needed is that if an implicit association setup is done we have
57  * a problem. If at the time I lookup an association I have NULL in the tcb
58  * return, by the time I call to create the association some other processor
59  * could have created it. This is what the CREATE lock on the endpoint.
60  * Places where we will be implicitly creating the association OR just
61  * creating an association (the connect call) will assert the CREATE_INP
62  * lock. This will assure us that during all the lookup of INP and INFO if
63  * another creator is also locking/looking up we can gate the two to
64  * synchronize. So the CREATE_INP lock is also another one we must use
65  * extreme caution in locking to make sure we don't hit a re-entrancy issue.
66  *
67  * For non FreeBSD 5.x we provide a bunch of EMPTY lock macros so we can
68  * blatantly put locks everywhere and they reduce to nothing on
69  * NetBSD/OpenBSD and FreeBSD 4.x
70  *
71  */
72
73 /*
74  * When working with the global SCTP lists we lock and unlock the INP_INFO
75  * lock. So when we go to lookup an association we will want to do a
76  * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to
77  * the SCTP_BASE_INFO() list's we will do a SCTP_INP_INFO_WLOCK().
78  */
79
80 extern struct sctp_foo_stuff sctp_logoff[];
81 extern int sctp_logoff_stuff;
82
83 #define SCTP_IPI_COUNT_INIT()
84
85 #define SCTP_STATLOG_INIT_LOCK()
86 #define SCTP_STATLOG_LOCK()
87 #define SCTP_STATLOG_UNLOCK()
88 #define SCTP_STATLOG_DESTROY()
89
90 #define SCTP_INP_INFO_LOCK_DESTROY() do { \
91         if(rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx))) { \
92              rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \
93         } \
94         rw_destroy(&SCTP_BASE_INFO(ipi_ep_mtx)); \
95       }  while (0)
96
97 #define SCTP_INP_INFO_LOCK_INIT() \
98         rw_init(&SCTP_BASE_INFO(ipi_ep_mtx), "sctp-info");
99
100
101 #define SCTP_INP_INFO_RLOCK()   do {                                    \
102              rw_rlock(&SCTP_BASE_INFO(ipi_ep_mtx));                         \
103 } while (0)
104
105 #define SCTP_MCORE_QLOCK_INIT(cpstr) do { \
106                 mtx_init(&(cpstr)->que_mtx,           \
107                          "sctp-mcore_queue","queue_lock",       \
108                          MTX_DEF|MTX_DUPOK);            \
109 } while (0)
110
111 #define SCTP_MCORE_QLOCK(cpstr)  do { \
112                 mtx_lock(&(cpstr)->que_mtx);    \
113 } while (0)
114
115 #define SCTP_MCORE_QUNLOCK(cpstr)  do { \
116                 mtx_unlock(&(cpstr)->que_mtx);  \
117 } while (0)
118
119 #define SCTP_MCORE_QDESTROY(cpstr)  do { \
120         if(mtx_owned(&(cpstr)->core_mtx)) {     \
121                 mtx_unlock(&(cpstr)->que_mtx);  \
122         } \
123         mtx_destroy(&(cpstr)->que_mtx); \
124 } while (0)
125
126
127 #define SCTP_MCORE_LOCK_INIT(cpstr) do { \
128                 mtx_init(&(cpstr)->core_mtx,          \
129                          "sctp-cpulck","cpu_proc_lock", \
130                          MTX_DEF|MTX_DUPOK);            \
131 } while (0)
132
133 #define SCTP_MCORE_LOCK(cpstr)  do { \
134                 mtx_lock(&(cpstr)->core_mtx);   \
135 } while (0)
136
137 #define SCTP_MCORE_UNLOCK(cpstr)  do { \
138                 mtx_unlock(&(cpstr)->core_mtx); \
139 } while (0)
140
141 #define SCTP_MCORE_DESTROY(cpstr)  do { \
142         if(mtx_owned(&(cpstr)->core_mtx)) {     \
143                 mtx_unlock(&(cpstr)->core_mtx); \
144         } \
145         mtx_destroy(&(cpstr)->core_mtx);        \
146 } while (0)
147
148 #define SCTP_INP_INFO_WLOCK()   do {                                    \
149             rw_wlock(&SCTP_BASE_INFO(ipi_ep_mtx));                         \
150 } while (0)
151
152
153 #define SCTP_INP_INFO_RUNLOCK()         rw_runlock(&SCTP_BASE_INFO(ipi_ep_mtx))
154 #define SCTP_INP_INFO_WUNLOCK()         rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx))
155
156
157 #define SCTP_IPI_ADDR_INIT()                                                            \
158         rw_init(&SCTP_BASE_INFO(ipi_addr_mtx), "sctp-addr")
159 #define SCTP_IPI_ADDR_DESTROY() do  { \
160         if(rw_wowned(&SCTP_BASE_INFO(ipi_addr_mtx))) { \
161              rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \
162         } \
163         rw_destroy(&SCTP_BASE_INFO(ipi_addr_mtx)); \
164       }  while (0)
165 #define SCTP_IPI_ADDR_RLOCK()   do {                                    \
166              rw_rlock(&SCTP_BASE_INFO(ipi_addr_mtx));                         \
167 } while (0)
168 #define SCTP_IPI_ADDR_WLOCK()   do {                                    \
169              rw_wlock(&SCTP_BASE_INFO(ipi_addr_mtx));                         \
170 } while (0)
171
172 #define SCTP_IPI_ADDR_RUNLOCK()         rw_runlock(&SCTP_BASE_INFO(ipi_addr_mtx))
173 #define SCTP_IPI_ADDR_WUNLOCK()         rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx))
174
175
176 #define SCTP_IPI_ITERATOR_WQ_INIT() \
177         mtx_init(&sctp_it_ctl.ipi_iterator_wq_mtx, "sctp-it-wq", "sctp_it_wq", MTX_DEF)
178
179 #define SCTP_IPI_ITERATOR_WQ_DESTROY() \
180         mtx_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx)
181
182 #define SCTP_IPI_ITERATOR_WQ_LOCK()     do {                                    \
183              mtx_lock(&sctp_it_ctl.ipi_iterator_wq_mtx);                \
184 } while (0)
185
186 #define SCTP_IPI_ITERATOR_WQ_UNLOCK()           mtx_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx)
187
188
189 #define SCTP_IP_PKTLOG_INIT() \
190         mtx_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), "sctp-pktlog", "packetlog", MTX_DEF)
191
192
193 #define SCTP_IP_PKTLOG_LOCK()   do {                    \
194              mtx_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx));     \
195 } while (0)
196
197 #define SCTP_IP_PKTLOG_UNLOCK() mtx_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx))
198
199 #define SCTP_IP_PKTLOG_DESTROY() \
200         mtx_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx))
201
202
203
204
205
206 /*
207  * The INP locks we will use for locking an SCTP endpoint, so for example if
208  * we want to change something at the endpoint level for example random_store
209  * or cookie secrets we lock the INP level.
210  */
211
212 #define SCTP_INP_READ_INIT(_inp) \
213         mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr", MTX_DEF | MTX_DUPOK)
214
215 #define SCTP_INP_READ_DESTROY(_inp) \
216         mtx_destroy(&(_inp)->inp_rdata_mtx)
217
218 #define SCTP_INP_READ_LOCK(_inp)        do { \
219         mtx_lock(&(_inp)->inp_rdata_mtx);    \
220 } while (0)
221
222
223 #define SCTP_INP_READ_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_rdata_mtx)
224
225
226 #define SCTP_INP_LOCK_INIT(_inp) \
227         mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp", MTX_DEF | MTX_DUPOK)
228 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \
229         mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create", \
230                  MTX_DEF | MTX_DUPOK)
231
232 #define SCTP_INP_LOCK_DESTROY(_inp) \
233         mtx_destroy(&(_inp)->inp_mtx)
234
235 #define SCTP_INP_LOCK_CONTENDED(_inp) ((_inp)->inp_mtx.mtx_lock & MTX_CONTESTED)
236
237 #define SCTP_INP_READ_CONTENDED(_inp) ((_inp)->inp_rdata_mtx.mtx_lock & MTX_CONTESTED)
238
239 #define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp) ((_inp)->inp_create_mtx.mtx_lock & MTX_CONTESTED)
240
241
242 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \
243         mtx_destroy(&(_inp)->inp_create_mtx)
244
245
246 #ifdef SCTP_LOCK_LOGGING
247 #define SCTP_INP_RLOCK(_inp)    do {                                    \
248         if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\
249         mtx_lock(&(_inp)->inp_mtx);                                     \
250 } while (0)
251
252 #define SCTP_INP_WLOCK(_inp)    do {                                    \
253         if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\
254         mtx_lock(&(_inp)->inp_mtx);                                     \
255 } while (0)
256
257 #else
258
259 #define SCTP_INP_RLOCK(_inp)    do {                                    \
260         mtx_lock(&(_inp)->inp_mtx);                                     \
261 } while (0)
262
263 #define SCTP_INP_WLOCK(_inp)    do {                                    \
264         mtx_lock(&(_inp)->inp_mtx);                                     \
265 } while (0)
266
267 #endif
268
269
270 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) \
271         mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs", MTX_DEF | MTX_DUPOK)
272
273 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_send_mtx)
274
275 #define SCTP_TCB_SEND_LOCK(_tcb)  do { \
276         mtx_lock(&(_tcb)->tcb_send_mtx); \
277 } while (0)
278
279 #define SCTP_TCB_SEND_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_send_mtx)
280
281 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
282 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)
283
284
285 #ifdef SCTP_LOCK_LOGGING
286 #define SCTP_ASOC_CREATE_LOCK(_inp) \
287         do {                                                            \
288         if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_CREATE); \
289                 mtx_lock(&(_inp)->inp_create_mtx);                      \
290         } while (0)
291 #else
292
293 #define SCTP_ASOC_CREATE_LOCK(_inp) \
294         do {                                                            \
295                 mtx_lock(&(_inp)->inp_create_mtx);                      \
296         } while (0)
297 #endif
298
299 #define SCTP_INP_RUNLOCK(_inp)          mtx_unlock(&(_inp)->inp_mtx)
300 #define SCTP_INP_WUNLOCK(_inp)          mtx_unlock(&(_inp)->inp_mtx)
301 #define SCTP_ASOC_CREATE_UNLOCK(_inp)   mtx_unlock(&(_inp)->inp_create_mtx)
302
303 /*
304  * For the majority of things (once we have found the association) we will
305  * lock the actual association mutex. This will protect all the assoiciation
306  * level queues and streams and such. We will need to lock the socket layer
307  * when we stuff data up into the receiving sb_mb. I.e. we will need to do an
308  * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
309  */
310
311 #define SCTP_TCB_LOCK_INIT(_tcb) \
312         mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb", MTX_DEF | MTX_DUPOK)
313
314 #define SCTP_TCB_LOCK_DESTROY(_tcb)     mtx_destroy(&(_tcb)->tcb_mtx)
315
316 #ifdef SCTP_LOCK_LOGGING
317 #define SCTP_TCB_LOCK(_tcb)  do {                                       \
318         if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)  sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB);          \
319         mtx_lock(&(_tcb)->tcb_mtx);                                     \
320 } while (0)
321
322 #else
323 #define SCTP_TCB_LOCK(_tcb)  do {                                       \
324         mtx_lock(&(_tcb)->tcb_mtx);                                     \
325 } while (0)
326
327 #endif
328
329
330 #define SCTP_TCB_TRYLOCK(_tcb)  mtx_trylock(&(_tcb)->tcb_mtx)
331
332 #define SCTP_TCB_UNLOCK(_tcb)           mtx_unlock(&(_tcb)->tcb_mtx)
333
334 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb)         do { \
335                                                 if (mtx_owned(&(_tcb)->tcb_mtx)) \
336                                                      mtx_unlock(&(_tcb)->tcb_mtx); \
337                                               } while (0)
338
339
340
341 #ifdef INVARIANTS
342 #define SCTP_TCB_LOCK_ASSERT(_tcb) do { \
343                             if (mtx_owned(&(_tcb)->tcb_mtx) == 0) \
344                                 panic("Don't own TCB lock"); \
345                             } while (0)
346 #else
347 #define SCTP_TCB_LOCK_ASSERT(_tcb)
348 #endif
349
350 #define SCTP_ITERATOR_LOCK_INIT() \
351         mtx_init(&sctp_it_ctl.it_mtx, "sctp-it", "iterator", MTX_DEF)
352
353 #ifdef INVARIANTS
354 #define SCTP_ITERATOR_LOCK() \
355         do {                                                            \
356                 if (mtx_owned(&sctp_it_ctl.it_mtx))                     \
357                         panic("Iterator Lock");                         \
358                 mtx_lock(&sctp_it_ctl.it_mtx);                          \
359         } while (0)
360 #else
361 #define SCTP_ITERATOR_LOCK() \
362         do {                                                            \
363                 mtx_lock(&sctp_it_ctl.it_mtx);                          \
364         } while (0)
365
366 #endif
367
368 #define SCTP_ITERATOR_UNLOCK()          mtx_unlock(&sctp_it_ctl.it_mtx)
369 #define SCTP_ITERATOR_LOCK_DESTROY()    mtx_destroy(&sctp_it_ctl.it_mtx)
370
371
372 #define SCTP_WQ_ADDR_INIT() do { \
373         mtx_init(&SCTP_BASE_INFO(wq_addr_mtx), "sctp-addr-wq","sctp_addr_wq",MTX_DEF); \
374  } while (0)
375
376 #define SCTP_WQ_ADDR_DESTROY() do  { \
377         if(mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx))) { \
378              mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \
379         } \
380             mtx_destroy(&SCTP_BASE_INFO(wq_addr_mtx)); \
381       }  while (0)
382
383 #define SCTP_WQ_ADDR_LOCK()     do { \
384              mtx_lock(&SCTP_BASE_INFO(wq_addr_mtx));  \
385 } while (0)
386 #define SCTP_WQ_ADDR_UNLOCK() do { \
387                 mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \
388 } while (0)
389
390
391
392 #define SCTP_INCR_EP_COUNT() \
393                 do { \
394                        atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \
395                 } while (0)
396
397 #define SCTP_DECR_EP_COUNT() \
398                 do { \
399                        atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \
400                 } while (0)
401
402 #define SCTP_INCR_ASOC_COUNT() \
403                 do { \
404                        atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \
405                 } while (0)
406
407 #define SCTP_DECR_ASOC_COUNT() \
408                 do { \
409                        atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \
410                 } while (0)
411
412 #define SCTP_INCR_LADDR_COUNT() \
413                 do { \
414                        atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \
415                 } while (0)
416
417 #define SCTP_DECR_LADDR_COUNT() \
418                 do { \
419                        atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \
420                 } while (0)
421
422 #define SCTP_INCR_RADDR_COUNT() \
423                 do { \
424                        atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1); \
425                 } while (0)
426
427 #define SCTP_DECR_RADDR_COUNT() \
428                 do { \
429                        atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr),1); \
430                 } while (0)
431
432 #define SCTP_INCR_CHK_COUNT() \
433                 do { \
434                        atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \
435                 } while (0)
436 #ifdef INVARIANTS
437 #define SCTP_DECR_CHK_COUNT() \
438                 do { \
439                        if(SCTP_BASE_INFO(ipi_count_chunk) == 0) \
440                              panic("chunk count to 0?");    \
441                        atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \
442                 } while (0)
443 #else
444 #define SCTP_DECR_CHK_COUNT() \
445                 do { \
446                        if(SCTP_BASE_INFO(ipi_count_chunk) != 0) \
447                        atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \
448                 } while (0)
449 #endif
450 #define SCTP_INCR_READQ_COUNT() \
451                 do { \
452                        atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq),1); \
453                 } while (0)
454
455 #define SCTP_DECR_READQ_COUNT() \
456                 do { \
457                        atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1); \
458                 } while (0)
459
460 #define SCTP_INCR_STRMOQ_COUNT() \
461                 do { \
462                        atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \
463                 } while (0)
464
465 #define SCTP_DECR_STRMOQ_COUNT() \
466                 do { \
467                        atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \
468                 } while (0)
469
470
471 #if defined(SCTP_SO_LOCK_TESTING)
472 #define SCTP_INP_SO(sctpinp)    (sctpinp)->ip_inp.inp.inp_socket
473 #define SCTP_SOCKET_LOCK(so, refcnt)
474 #define SCTP_SOCKET_UNLOCK(so, refcnt)
475 #endif
476
477 #endif