]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/siftr.c
Use devctl.h instead of bus.h to reduce newbus pollution.
[FreeBSD/FreeBSD.git] / sys / netinet / siftr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007-2009
5  *      Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010, The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed at the Centre for Advanced
10  * Internet Architectures, Swinburne University of Technology, Melbourne,
11  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 /******************************************************
36  * Statistical Information For TCP Research (SIFTR)
37  *
38  * A FreeBSD kernel module that adds very basic intrumentation to the
39  * TCP stack, allowing internal stats to be recorded to a log file
40  * for experimental, debugging and performance analysis purposes.
41  *
42  * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
43  * working on the NewTCP research project at Swinburne University of
44  * Technology's Centre for Advanced Internet Architectures, Melbourne,
45  * Australia, which was made possible in part by a grant from the Cisco
46  * University Research Program Fund at Community Foundation Silicon Valley.
47  * More details are available at:
48  *   http://caia.swin.edu.au/urp/newtcp/
49  *
50  * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
51  * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
52  * More details are available at:
53  *   http://www.freebsdfoundation.org/
54  *   http://caia.swin.edu.au/freebsd/etcp09/
55  *
56  * Lawrence Stewart is the current maintainer, and all contact regarding
57  * SIFTR should be directed to him via email: lastewart@swin.edu.au
58  *
59  * Initial release date: June 2007
60  * Most recent update: September 2010
61  ******************************************************/
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65
66 #include <sys/param.h>
67 #include <sys/alq.h>
68 #include <sys/errno.h>
69 #include <sys/eventhandler.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/kthread.h>
73 #include <sys/lock.h>
74 #include <sys/mbuf.h>
75 #include <sys/module.h>
76 #include <sys/mutex.h>
77 #include <sys/pcpu.h>
78 #include <sys/proc.h>
79 #include <sys/sbuf.h>
80 #include <sys/sdt.h>
81 #include <sys/smp.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/unistd.h>
86
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/pfil.h>
90
91 #include <netinet/in.h>
92 #include <netinet/in_kdtrace.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/tcp_var.h>
99
100 #ifdef SIFTR_IPV6
101 #include <netinet/ip6.h>
102 #include <netinet/ip6_var.h>
103 #include <netinet6/in6_pcb.h>
104 #endif /* SIFTR_IPV6 */
105
106 #include <machine/in_cksum.h>
107
108 /*
109  * Three digit version number refers to X.Y.Z where:
110  * X is the major version number
111  * Y is bumped to mark backwards incompatible changes
112  * Z is bumped to mark backwards compatible changes
113  */
114 #define V_MAJOR         1
115 #define V_BACKBREAK     2
116 #define V_BACKCOMPAT    4
117 #define MODVERSION      __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
118 #define MODVERSION_STR  __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
119     __XSTRING(V_BACKCOMPAT)
120
121 #define HOOK 0
122 #define UNHOOK 1
123 #define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
124 #define SYS_NAME "FreeBSD"
125 #define PACKET_TAG_SIFTR 100
126 #define PACKET_COOKIE_SIFTR 21749576
127 #define SIFTR_LOG_FILE_MODE 0644
128 #define SIFTR_DISABLE 0
129 #define SIFTR_ENABLE 1
130
131 /*
132  * Hard upper limit on the length of log messages. Bump this up if you add new
133  * data fields such that the line length could exceed the below value.
134  */
135 #define MAX_LOG_MSG_LEN 200
136 /* XXX: Make this a sysctl tunable. */
137 #define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
138
139 /*
140  * 1 byte for IP version
141  * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
142  * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
143  */
144 #ifdef SIFTR_IPV6
145 #define FLOW_KEY_LEN 37
146 #else
147 #define FLOW_KEY_LEN 13
148 #endif
149
150 #ifdef SIFTR_IPV6
151 #define SIFTR_IPMODE 6
152 #else
153 #define SIFTR_IPMODE 4
154 #endif
155
156 /* useful macros */
157 #define UPPER_SHORT(X)  (((X) & 0xFFFF0000) >> 16)
158 #define LOWER_SHORT(X)  ((X) & 0x0000FFFF)
159
160 #define FIRST_OCTET(X)  (((X) & 0xFF000000) >> 24)
161 #define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
162 #define THIRD_OCTET(X)  (((X) & 0x0000FF00) >> 8)
163 #define FOURTH_OCTET(X) ((X) & 0x000000FF)
164
165 static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
166 static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
167     "SIFTR pkt_node struct");
168 static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
169     "SIFTR flow_hash_node struct");
170
171 /* Used as links in the pkt manager queue. */
172 struct pkt_node {
173         /* Timestamp of pkt as noted in the pfil hook. */
174         struct timeval          tval;
175         /* Direction pkt is travelling. */
176         enum {
177                 DIR_IN = 0,
178                 DIR_OUT = 1,
179         }                       direction;
180         /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
181         uint8_t                 ipver;
182         /* Hash of the pkt which triggered the log message. */
183         uint32_t                hash;
184         /* Local/foreign IP address. */
185 #ifdef SIFTR_IPV6
186         uint32_t                ip_laddr[4];
187         uint32_t                ip_faddr[4];
188 #else
189         uint8_t                 ip_laddr[4];
190         uint8_t                 ip_faddr[4];
191 #endif
192         /* Local TCP port. */
193         uint16_t                tcp_localport;
194         /* Foreign TCP port. */
195         uint16_t                tcp_foreignport;
196         /* Congestion Window (bytes). */
197         u_long                  snd_cwnd;
198         /* Sending Window (bytes). */
199         u_long                  snd_wnd;
200         /* Receive Window (bytes). */
201         u_long                  rcv_wnd;
202         /* Unused (was: Bandwidth Controlled Window (bytes)). */
203         u_long                  snd_bwnd;
204         /* Slow Start Threshold (bytes). */
205         u_long                  snd_ssthresh;
206         /* Current state of the TCP FSM. */
207         int                     conn_state;
208         /* Max Segment Size (bytes). */
209         u_int                   max_seg_size;
210         /*
211          * Smoothed RTT stored as found in the TCP control block
212          * in units of (TCP_RTT_SCALE*hz).
213          */
214         int                     smoothed_rtt;
215         /* Is SACK enabled? */
216         u_char                  sack_enabled;
217         /* Window scaling for snd window. */
218         u_char                  snd_scale;
219         /* Window scaling for recv window. */
220         u_char                  rcv_scale;
221         /* TCP control block flags. */
222         u_int                   flags;
223         /* Retransmit timeout length. */
224         int                     rxt_length;
225         /* Size of the TCP send buffer in bytes. */
226         u_int                   snd_buf_hiwater;
227         /* Current num bytes in the send socket buffer. */
228         u_int                   snd_buf_cc;
229         /* Size of the TCP receive buffer in bytes. */
230         u_int                   rcv_buf_hiwater;
231         /* Current num bytes in the receive socket buffer. */
232         u_int                   rcv_buf_cc;
233         /* Number of bytes inflight that we are waiting on ACKs for. */
234         u_int                   sent_inflight_bytes;
235         /* Number of segments currently in the reassembly queue. */
236         int                     t_segqlen;
237         /* Flowid for the connection. */
238         u_int                   flowid;
239         /* Flow type for the connection. */
240         u_int                   flowtype;
241         /* Link to next pkt_node in the list. */
242         STAILQ_ENTRY(pkt_node)  nodes;
243 };
244
245 struct flow_hash_node
246 {
247         uint16_t counter;
248         uint8_t key[FLOW_KEY_LEN];
249         LIST_ENTRY(flow_hash_node) nodes;
250 };
251
252 struct siftr_stats
253 {
254         /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
255         uint64_t n_in;
256         uint64_t n_out;
257         /* # pkts skipped due to failed malloc calls. */
258         uint32_t nskip_in_malloc;
259         uint32_t nskip_out_malloc;
260         /* # pkts skipped due to failed mtx acquisition. */
261         uint32_t nskip_in_mtx;
262         uint32_t nskip_out_mtx;
263         /* # pkts skipped due to failed inpcb lookups. */
264         uint32_t nskip_in_inpcb;
265         uint32_t nskip_out_inpcb;
266         /* # pkts skipped due to failed tcpcb lookups. */
267         uint32_t nskip_in_tcpcb;
268         uint32_t nskip_out_tcpcb;
269         /* # pkts skipped due to stack reinjection. */
270         uint32_t nskip_in_dejavu;
271         uint32_t nskip_out_dejavu;
272 };
273
274 DPCPU_DEFINE_STATIC(struct siftr_stats, ss);
275
276 static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
277 static unsigned int siftr_enabled = 0;
278 static unsigned int siftr_pkts_per_log = 1;
279 static unsigned int siftr_generate_hashes = 0;
280 static uint16_t     siftr_port_filter = 0;
281 /* static unsigned int siftr_binary_log = 0; */
282 static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
283 static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
284 static u_long siftr_hashmask;
285 STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
286 LIST_HEAD(listhead, flow_hash_node) *counter_hash;
287 static int wait_for_pkt;
288 static struct alq *siftr_alq = NULL;
289 static struct mtx siftr_pkt_queue_mtx;
290 static struct mtx siftr_pkt_mgr_mtx;
291 static struct thread *siftr_pkt_manager_thr = NULL;
292 static char direction[2] = {'i','o'};
293
294 /* Required function prototypes. */
295 static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
296 static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
297
298
299 /* Declare the net.inet.siftr sysctl tree and populate it. */
300
301 SYSCTL_DECL(_net_inet_siftr);
302
303 SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
304     "siftr related settings");
305
306 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled,
307     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
308     &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
309     "switch siftr module operations on/off");
310
311 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile,
312     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &siftr_logfile_shadow,
313     sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler, "A",
314     "file to save siftr log messages to");
315
316 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
317     &siftr_pkts_per_log, 1,
318     "number of packets between generating a log message");
319
320 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
321     &siftr_generate_hashes, 0,
322     "enable packet hash generation");
323
324 SYSCTL_U16(_net_inet_siftr, OID_AUTO, port_filter, CTLFLAG_RW,
325     &siftr_port_filter, 0,
326     "enable packet filter on a TCP port");
327
328 /* XXX: TODO
329 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
330     &siftr_binary_log, 0,
331     "write log files in binary instead of ascii");
332 */
333
334
335 /* Begin functions. */
336
337 static void
338 siftr_process_pkt(struct pkt_node * pkt_node)
339 {
340         struct flow_hash_node *hash_node;
341         struct listhead *counter_list;
342         struct siftr_stats *ss;
343         struct ale *log_buf;
344         uint8_t key[FLOW_KEY_LEN];
345         uint8_t found_match, key_offset;
346
347         hash_node = NULL;
348         ss = DPCPU_PTR(ss);
349         found_match = 0;
350         key_offset = 1;
351
352         /*
353          * Create the key that will be used to create a hash index
354          * into our hash table. Our key consists of:
355          * ipversion, localip, localport, foreignip, foreignport
356          */
357         key[0] = pkt_node->ipver;
358         memcpy(key + key_offset, &pkt_node->ip_laddr,
359             sizeof(pkt_node->ip_laddr));
360         key_offset += sizeof(pkt_node->ip_laddr);
361         memcpy(key + key_offset, &pkt_node->tcp_localport,
362             sizeof(pkt_node->tcp_localport));
363         key_offset += sizeof(pkt_node->tcp_localport);
364         memcpy(key + key_offset, &pkt_node->ip_faddr,
365             sizeof(pkt_node->ip_faddr));
366         key_offset += sizeof(pkt_node->ip_faddr);
367         memcpy(key + key_offset, &pkt_node->tcp_foreignport,
368             sizeof(pkt_node->tcp_foreignport));
369
370         counter_list = counter_hash +
371             (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
372
373         /*
374          * If the list is not empty i.e. the hash index has
375          * been used by another flow previously.
376          */
377         if (LIST_FIRST(counter_list) != NULL) {
378                 /*
379                  * Loop through the hash nodes in the list.
380                  * There should normally only be 1 hash node in the list,
381                  * except if there have been collisions at the hash index
382                  * computed by hash32_buf().
383                  */
384                 LIST_FOREACH(hash_node, counter_list, nodes) {
385                         /*
386                          * Check if the key for the pkt we are currently
387                          * processing is the same as the key stored in the
388                          * hash node we are currently processing.
389                          * If they are the same, then we've found the
390                          * hash node that stores the counter for the flow
391                          * the pkt belongs to.
392                          */
393                         if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
394                                 found_match = 1;
395                                 break;
396                         }
397                 }
398         }
399
400         /* If this flow hash hasn't been seen before or we have a collision. */
401         if (hash_node == NULL || !found_match) {
402                 /* Create a new hash node to store the flow's counter. */
403                 hash_node = malloc(sizeof(struct flow_hash_node),
404                     M_SIFTR_HASHNODE, M_WAITOK);
405
406                 if (hash_node != NULL) {
407                         /* Initialise our new hash node list entry. */
408                         hash_node->counter = 0;
409                         memcpy(hash_node->key, key, sizeof(key));
410                         LIST_INSERT_HEAD(counter_list, hash_node, nodes);
411                 } else {
412                         /* Malloc failed. */
413                         if (pkt_node->direction == DIR_IN)
414                                 ss->nskip_in_malloc++;
415                         else
416                                 ss->nskip_out_malloc++;
417
418                         return;
419                 }
420         } else if (siftr_pkts_per_log > 1) {
421                 /*
422                  * Taking the remainder of the counter divided
423                  * by the current value of siftr_pkts_per_log
424                  * and storing that in counter provides a neat
425                  * way to modulate the frequency of log
426                  * messages being written to the log file.
427                  */
428                 hash_node->counter = (hash_node->counter + 1) %
429                     siftr_pkts_per_log;
430
431                 /*
432                  * If we have not seen enough packets since the last time
433                  * we wrote a log message for this connection, return.
434                  */
435                 if (hash_node->counter > 0)
436                         return;
437         }
438
439         log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
440
441         if (log_buf == NULL)
442                 return; /* Should only happen if the ALQ is shutting down. */
443
444 #ifdef SIFTR_IPV6
445         pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
446         pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
447
448         if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
449                 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
450                 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
451                 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
452                 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
453                 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
454                 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
455
456                 /* Construct an IPv6 log message. */
457                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
458                     MAX_LOG_MSG_LEN,
459                     "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
460                     "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
461                     "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
462                     direction[pkt_node->direction],
463                     pkt_node->hash,
464                     pkt_node->tval.tv_sec,
465                     pkt_node->tval.tv_usec,
466                     UPPER_SHORT(pkt_node->ip_laddr[0]),
467                     LOWER_SHORT(pkt_node->ip_laddr[0]),
468                     UPPER_SHORT(pkt_node->ip_laddr[1]),
469                     LOWER_SHORT(pkt_node->ip_laddr[1]),
470                     UPPER_SHORT(pkt_node->ip_laddr[2]),
471                     LOWER_SHORT(pkt_node->ip_laddr[2]),
472                     UPPER_SHORT(pkt_node->ip_laddr[3]),
473                     LOWER_SHORT(pkt_node->ip_laddr[3]),
474                     ntohs(pkt_node->tcp_localport),
475                     UPPER_SHORT(pkt_node->ip_faddr[0]),
476                     LOWER_SHORT(pkt_node->ip_faddr[0]),
477                     UPPER_SHORT(pkt_node->ip_faddr[1]),
478                     LOWER_SHORT(pkt_node->ip_faddr[1]),
479                     UPPER_SHORT(pkt_node->ip_faddr[2]),
480                     LOWER_SHORT(pkt_node->ip_faddr[2]),
481                     UPPER_SHORT(pkt_node->ip_faddr[3]),
482                     LOWER_SHORT(pkt_node->ip_faddr[3]),
483                     ntohs(pkt_node->tcp_foreignport),
484                     pkt_node->snd_ssthresh,
485                     pkt_node->snd_cwnd,
486                     pkt_node->snd_bwnd,
487                     pkt_node->snd_wnd,
488                     pkt_node->rcv_wnd,
489                     pkt_node->snd_scale,
490                     pkt_node->rcv_scale,
491                     pkt_node->conn_state,
492                     pkt_node->max_seg_size,
493                     pkt_node->smoothed_rtt,
494                     pkt_node->sack_enabled,
495                     pkt_node->flags,
496                     pkt_node->rxt_length,
497                     pkt_node->snd_buf_hiwater,
498                     pkt_node->snd_buf_cc,
499                     pkt_node->rcv_buf_hiwater,
500                     pkt_node->rcv_buf_cc,
501                     pkt_node->sent_inflight_bytes,
502                     pkt_node->t_segqlen,
503                     pkt_node->flowid,
504                     pkt_node->flowtype);
505         } else { /* IPv4 packet */
506                 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
507                 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
508                 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
509                 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
510                 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
511                 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
512                 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
513                 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
514 #endif /* SIFTR_IPV6 */
515
516                 /* Construct an IPv4 log message. */
517                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
518                     MAX_LOG_MSG_LEN,
519                     "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
520                     "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
521                     direction[pkt_node->direction],
522                     pkt_node->hash,
523                     (intmax_t)pkt_node->tval.tv_sec,
524                     pkt_node->tval.tv_usec,
525                     pkt_node->ip_laddr[0],
526                     pkt_node->ip_laddr[1],
527                     pkt_node->ip_laddr[2],
528                     pkt_node->ip_laddr[3],
529                     ntohs(pkt_node->tcp_localport),
530                     pkt_node->ip_faddr[0],
531                     pkt_node->ip_faddr[1],
532                     pkt_node->ip_faddr[2],
533                     pkt_node->ip_faddr[3],
534                     ntohs(pkt_node->tcp_foreignport),
535                     pkt_node->snd_ssthresh,
536                     pkt_node->snd_cwnd,
537                     pkt_node->snd_bwnd,
538                     pkt_node->snd_wnd,
539                     pkt_node->rcv_wnd,
540                     pkt_node->snd_scale,
541                     pkt_node->rcv_scale,
542                     pkt_node->conn_state,
543                     pkt_node->max_seg_size,
544                     pkt_node->smoothed_rtt,
545                     pkt_node->sack_enabled,
546                     pkt_node->flags,
547                     pkt_node->rxt_length,
548                     pkt_node->snd_buf_hiwater,
549                     pkt_node->snd_buf_cc,
550                     pkt_node->rcv_buf_hiwater,
551                     pkt_node->rcv_buf_cc,
552                     pkt_node->sent_inflight_bytes,
553                     pkt_node->t_segqlen,
554                     pkt_node->flowid,
555                     pkt_node->flowtype);
556 #ifdef SIFTR_IPV6
557         }
558 #endif
559
560         alq_post_flags(siftr_alq, log_buf, 0);
561 }
562
563
564 static void
565 siftr_pkt_manager_thread(void *arg)
566 {
567         STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
568             STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
569         struct pkt_node *pkt_node, *pkt_node_temp;
570         uint8_t draining;
571
572         draining = 2;
573
574         mtx_lock(&siftr_pkt_mgr_mtx);
575
576         /* draining == 0 when queue has been flushed and it's safe to exit. */
577         while (draining) {
578                 /*
579                  * Sleep until we are signalled to wake because thread has
580                  * been told to exit or until 1 tick has passed.
581                  */
582                 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
583                     1);
584
585                 /* Gain exclusive access to the pkt_node queue. */
586                 mtx_lock(&siftr_pkt_queue_mtx);
587
588                 /*
589                  * Move pkt_queue to tmp_pkt_queue, which leaves
590                  * pkt_queue empty and ready to receive more pkt_nodes.
591                  */
592                 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
593
594                 /*
595                  * We've finished making changes to the list. Unlock it
596                  * so the pfil hooks can continue queuing pkt_nodes.
597                  */
598                 mtx_unlock(&siftr_pkt_queue_mtx);
599
600                 /*
601                  * We can't hold a mutex whilst calling siftr_process_pkt
602                  * because ALQ might sleep waiting for buffer space.
603                  */
604                 mtx_unlock(&siftr_pkt_mgr_mtx);
605
606                 /* Flush all pkt_nodes to the log file. */
607                 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
608                     pkt_node_temp) {
609                         siftr_process_pkt(pkt_node);
610                         STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
611                         free(pkt_node, M_SIFTR_PKTNODE);
612                 }
613
614                 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
615                     ("SIFTR tmp_pkt_queue not empty after flush"));
616
617                 mtx_lock(&siftr_pkt_mgr_mtx);
618
619                 /*
620                  * If siftr_exit_pkt_manager_thread gets set during the window
621                  * where we are draining the tmp_pkt_queue above, there might
622                  * still be pkts in pkt_queue that need to be drained.
623                  * Allow one further iteration to occur after
624                  * siftr_exit_pkt_manager_thread has been set to ensure
625                  * pkt_queue is completely empty before we kill the thread.
626                  *
627                  * siftr_exit_pkt_manager_thread is set only after the pfil
628                  * hooks have been removed, so only 1 extra iteration
629                  * is needed to drain the queue.
630                  */
631                 if (siftr_exit_pkt_manager_thread)
632                         draining--;
633         }
634
635         mtx_unlock(&siftr_pkt_mgr_mtx);
636
637         /* Calls wakeup on this thread's struct thread ptr. */
638         kthread_exit();
639 }
640
641
642 static uint32_t
643 hash_pkt(struct mbuf *m, uint32_t offset)
644 {
645         uint32_t hash;
646
647         hash = 0;
648
649         while (m != NULL && offset > m->m_len) {
650                 /*
651                  * The IP packet payload does not start in this mbuf, so
652                  * need to figure out which mbuf it starts in and what offset
653                  * into the mbuf's data region the payload starts at.
654                  */
655                 offset -= m->m_len;
656                 m = m->m_next;
657         }
658
659         while (m != NULL) {
660                 /* Ensure there is data in the mbuf */
661                 if ((m->m_len - offset) > 0)
662                         hash = hash32_buf(m->m_data + offset,
663                             m->m_len - offset, hash);
664
665                 m = m->m_next;
666                 offset = 0;
667         }
668
669         return (hash);
670 }
671
672
673 /*
674  * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
675  * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
676  * Return value >0 means the caller should skip processing this mbuf.
677  */
678 static inline int
679 siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
680 {
681         if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
682             != NULL) {
683                 if (dir == PFIL_IN)
684                         ss->nskip_in_dejavu++;
685                 else
686                         ss->nskip_out_dejavu++;
687
688                 return (1);
689         } else {
690                 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
691                     PACKET_TAG_SIFTR, 0, M_NOWAIT);
692                 if (tag == NULL) {
693                         if (dir == PFIL_IN)
694                                 ss->nskip_in_malloc++;
695                         else
696                                 ss->nskip_out_malloc++;
697
698                         return (1);
699                 }
700
701                 m_tag_prepend(m, tag);
702         }
703
704         return (0);
705 }
706
707
708 /*
709  * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
710  * otherwise.
711  */
712 static inline struct inpcb *
713 siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
714     uint16_t dport, int dir, struct siftr_stats *ss)
715 {
716         struct inpcb *inp;
717
718         /* We need the tcbinfo lock. */
719         INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
720
721         if (dir == PFIL_IN)
722                 inp = (ipver == INP_IPV4 ?
723                     in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
724                     dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
725                     :
726 #ifdef SIFTR_IPV6
727                     in6_pcblookup(&V_tcbinfo,
728                     &((struct ip6_hdr *)ip)->ip6_src, sport,
729                     &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
730                     m->m_pkthdr.rcvif)
731 #else
732                     NULL
733 #endif
734                     );
735
736         else
737                 inp = (ipver == INP_IPV4 ?
738                     in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
739                     sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
740                     :
741 #ifdef SIFTR_IPV6
742                     in6_pcblookup(&V_tcbinfo,
743                     &((struct ip6_hdr *)ip)->ip6_dst, dport,
744                     &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
745                     m->m_pkthdr.rcvif)
746 #else
747                     NULL
748 #endif
749                     );
750
751         /* If we can't find the inpcb, bail. */
752         if (inp == NULL) {
753                 if (dir == PFIL_IN)
754                         ss->nskip_in_inpcb++;
755                 else
756                         ss->nskip_out_inpcb++;
757         }
758
759         return (inp);
760 }
761
762
763 static inline void
764 siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
765     int ipver, int dir, int inp_locally_locked)
766 {
767 #ifdef SIFTR_IPV6
768         if (ipver == INP_IPV4) {
769                 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
770                 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
771 #else
772                 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
773                 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
774 #endif
775 #ifdef SIFTR_IPV6
776         } else {
777                 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
778                 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
779                 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
780                 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
781                 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
782                 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
783                 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
784                 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
785         }
786 #endif
787         pn->tcp_localport = inp->inp_lport;
788         pn->tcp_foreignport = inp->inp_fport;
789         pn->snd_cwnd = tp->snd_cwnd;
790         pn->snd_wnd = tp->snd_wnd;
791         pn->rcv_wnd = tp->rcv_wnd;
792         pn->snd_bwnd = 0;               /* Unused, kept for compat. */
793         pn->snd_ssthresh = tp->snd_ssthresh;
794         pn->snd_scale = tp->snd_scale;
795         pn->rcv_scale = tp->rcv_scale;
796         pn->conn_state = tp->t_state;
797         pn->max_seg_size = tp->t_maxseg;
798         pn->smoothed_rtt = tp->t_srtt;
799         pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
800         pn->flags = tp->t_flags;
801         pn->rxt_length = tp->t_rxtcur;
802         pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
803         pn->snd_buf_cc = sbused(&inp->inp_socket->so_snd);
804         pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
805         pn->rcv_buf_cc = sbused(&inp->inp_socket->so_rcv);
806         pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
807         pn->t_segqlen = tp->t_segqlen;
808         pn->flowid = inp->inp_flowid;
809         pn->flowtype = inp->inp_flowtype;
810
811         /* We've finished accessing the tcb so release the lock. */
812         if (inp_locally_locked)
813                 INP_RUNLOCK(inp);
814
815         pn->ipver = ipver;
816         pn->direction = (dir == PFIL_IN ? DIR_IN : DIR_OUT);
817
818         /*
819          * Significantly more accurate than using getmicrotime(), but slower!
820          * Gives true microsecond resolution at the expense of a hit to
821          * maximum pps throughput processing when SIFTR is loaded and enabled.
822          */
823         microtime(&pn->tval);
824         TCP_PROBE1(siftr, &pn);
825
826 }
827
828
829 /*
830  * pfil hook that is called for each IPv4 packet making its way through the
831  * stack in either direction.
832  * The pfil subsystem holds a non-sleepable mutex somewhere when
833  * calling our hook function, so we can't sleep at all.
834  * It's very important to use the M_NOWAIT flag with all function calls
835  * that support it so that they won't sleep, otherwise you get a panic.
836  */
837 static pfil_return_t
838 siftr_chkpkt(struct mbuf **m, struct ifnet *ifp, int flags,
839     void *ruleset __unused, struct inpcb *inp)
840 {
841         struct pkt_node *pn;
842         struct ip *ip;
843         struct tcphdr *th;
844         struct tcpcb *tp;
845         struct siftr_stats *ss;
846         unsigned int ip_hl;
847         int inp_locally_locked, dir;
848
849         inp_locally_locked = 0;
850         dir = PFIL_DIR(flags);
851         ss = DPCPU_PTR(ss);
852
853         /*
854          * m_pullup is not required here because ip_{input|output}
855          * already do the heavy lifting for us.
856          */
857
858         ip = mtod(*m, struct ip *);
859
860         /* Only continue processing if the packet is TCP. */
861         if (ip->ip_p != IPPROTO_TCP)
862                 goto ret;
863
864         /*
865          * If a kernel subsystem reinjects packets into the stack, our pfil
866          * hook will be called multiple times for the same packet.
867          * Make sure we only process unique packets.
868          */
869         if (siftr_chkreinject(*m, dir, ss))
870                 goto ret;
871
872         if (dir == PFIL_IN)
873                 ss->n_in++;
874         else
875                 ss->n_out++;
876
877         /*
878          * Create a tcphdr struct starting at the correct offset
879          * in the IP packet. ip->ip_hl gives the ip header length
880          * in 4-byte words, so multiply it to get the size in bytes.
881          */
882         ip_hl = (ip->ip_hl << 2);
883         th = (struct tcphdr *)((caddr_t)ip + ip_hl);
884
885         /*
886          * If the pfil hooks don't provide a pointer to the
887          * inpcb, we need to find it ourselves and lock it.
888          */
889         if (!inp) {
890                 /* Find the corresponding inpcb for this pkt. */
891                 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
892                     th->th_dport, dir, ss);
893
894                 if (inp == NULL)
895                         goto ret;
896                 else
897                         inp_locally_locked = 1;
898         }
899
900         INP_LOCK_ASSERT(inp);
901
902         /* Find the TCP control block that corresponds with this packet */
903         tp = intotcpcb(inp);
904
905         /*
906          * If we can't find the TCP control block (happens occasionaly for a
907          * packet sent during the shutdown phase of a TCP connection),
908          * or we're in the timewait state, bail
909          */
910         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
911                 if (dir == PFIL_IN)
912                         ss->nskip_in_tcpcb++;
913                 else
914                         ss->nskip_out_tcpcb++;
915
916                 goto inp_unlock;
917         }
918
919         /*
920          * Only pkts selected by the tcp port filter
921          * can be inserted into the pkt_queue
922          */
923         if ((siftr_port_filter != 0) &&
924             (siftr_port_filter != ntohs(inp->inp_lport)) &&
925             (siftr_port_filter != ntohs(inp->inp_fport))) {
926                 goto inp_unlock;
927         }
928
929         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
930
931         if (pn == NULL) {
932                 if (dir == PFIL_IN)
933                         ss->nskip_in_malloc++;
934                 else
935                         ss->nskip_out_malloc++;
936
937                 goto inp_unlock;
938         }
939
940         siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
941
942         if (siftr_generate_hashes) {
943                 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
944                         /*
945                          * For outbound packets, the TCP checksum isn't
946                          * calculated yet. This is a problem for our packet
947                          * hashing as the receiver will calc a different hash
948                          * to ours if we don't include the correct TCP checksum
949                          * in the bytes being hashed. To work around this
950                          * problem, we manually calc the TCP checksum here in
951                          * software. We unset the CSUM_TCP flag so the lower
952                          * layers don't recalc it.
953                          */
954                         (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
955
956                         /*
957                          * Calculate the TCP checksum in software and assign
958                          * to correct TCP header field, which will follow the
959                          * packet mbuf down the stack. The trick here is that
960                          * tcp_output() sets th->th_sum to the checksum of the
961                          * pseudo header for us already. Because of the nature
962                          * of the checksumming algorithm, we can sum over the
963                          * entire IP payload (i.e. TCP header and data), which
964                          * will include the already calculated pseduo header
965                          * checksum, thus giving us the complete TCP checksum.
966                          *
967                          * To put it in simple terms, if checksum(1,2,3,4)=10,
968                          * then checksum(1,2,3,4,5) == checksum(10,5).
969                          * This property is what allows us to "cheat" and
970                          * checksum only the IP payload which has the TCP
971                          * th_sum field populated with the pseudo header's
972                          * checksum, and not need to futz around checksumming
973                          * pseudo header bytes and TCP header/data in one hit.
974                          * Refer to RFC 1071 for more info.
975                          *
976                          * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
977                          * in_cksum_skip 2nd argument is NOT the number of
978                          * bytes to read from the mbuf at "skip" bytes offset
979                          * from the start of the mbuf (very counter intuitive!).
980                          * The number of bytes to read is calculated internally
981                          * by the function as len-skip i.e. to sum over the IP
982                          * payload (TCP header + data) bytes, it is INCORRECT
983                          * to call the function like this:
984                          * in_cksum_skip(at, ip->ip_len - offset, offset)
985                          * Rather, it should be called like this:
986                          * in_cksum_skip(at, ip->ip_len, offset)
987                          * which means read "ip->ip_len - offset" bytes from
988                          * the mbuf cluster "at" at offset "offset" bytes from
989                          * the beginning of the "at" mbuf's data pointer.
990                          */
991                         th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
992                             ip_hl);
993                 }
994
995                 /*
996                  * XXX: Having to calculate the checksum in software and then
997                  * hash over all bytes is really inefficient. Would be nice to
998                  * find a way to create the hash and checksum in the same pass
999                  * over the bytes.
1000                  */
1001                 pn->hash = hash_pkt(*m, ip_hl);
1002         }
1003
1004         mtx_lock(&siftr_pkt_queue_mtx);
1005         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1006         mtx_unlock(&siftr_pkt_queue_mtx);
1007         goto ret;
1008
1009 inp_unlock:
1010         if (inp_locally_locked)
1011                 INP_RUNLOCK(inp);
1012
1013 ret:
1014         return (PFIL_PASS);
1015 }
1016
1017
1018 #ifdef SIFTR_IPV6
1019 static int
1020 siftr_chkpkt6(struct mbuf **m, struct ifnet *ifp, int flags, struct inpcb *inp)
1021 {
1022         struct pkt_node *pn;
1023         struct ip6_hdr *ip6;
1024         struct tcphdr *th;
1025         struct tcpcb *tp;
1026         struct siftr_stats *ss;
1027         unsigned int ip6_hl;
1028         int inp_locally_locked, dir;
1029
1030         inp_locally_locked = 0;
1031         dir = PFIL_DIR(flags);
1032         ss = DPCPU_PTR(ss);
1033
1034         /*
1035          * m_pullup is not required here because ip6_{input|output}
1036          * already do the heavy lifting for us.
1037          */
1038
1039         ip6 = mtod(*m, struct ip6_hdr *);
1040
1041         /*
1042          * Only continue processing if the packet is TCP
1043          * XXX: We should follow the next header fields
1044          * as shown on Pg 6 RFC 2460, but right now we'll
1045          * only check pkts that have no extension headers.
1046          */
1047         if (ip6->ip6_nxt != IPPROTO_TCP)
1048                 goto ret6;
1049
1050         /*
1051          * If a kernel subsystem reinjects packets into the stack, our pfil
1052          * hook will be called multiple times for the same packet.
1053          * Make sure we only process unique packets.
1054          */
1055         if (siftr_chkreinject(*m, dir, ss))
1056                 goto ret6;
1057
1058         if (dir == PFIL_IN)
1059                 ss->n_in++;
1060         else
1061                 ss->n_out++;
1062
1063         ip6_hl = sizeof(struct ip6_hdr);
1064
1065         /*
1066          * Create a tcphdr struct starting at the correct offset
1067          * in the ipv6 packet. ip->ip_hl gives the ip header length
1068          * in 4-byte words, so multiply it to get the size in bytes.
1069          */
1070         th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1071
1072         /*
1073          * For inbound packets, the pfil hooks don't provide a pointer to the
1074          * inpcb, so we need to find it ourselves and lock it.
1075          */
1076         if (!inp) {
1077                 /* Find the corresponding inpcb for this pkt. */
1078                 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1079                     th->th_sport, th->th_dport, dir, ss);
1080
1081                 if (inp == NULL)
1082                         goto ret6;
1083                 else
1084                         inp_locally_locked = 1;
1085         }
1086
1087         /* Find the TCP control block that corresponds with this packet. */
1088         tp = intotcpcb(inp);
1089
1090         /*
1091          * If we can't find the TCP control block (happens occasionaly for a
1092          * packet sent during the shutdown phase of a TCP connection),
1093          * or we're in the timewait state, bail.
1094          */
1095         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1096                 if (dir == PFIL_IN)
1097                         ss->nskip_in_tcpcb++;
1098                 else
1099                         ss->nskip_out_tcpcb++;
1100
1101                 goto inp_unlock6;
1102         }
1103
1104         /*
1105          * Only pkts selected by the tcp port filter
1106          * can be inserted into the pkt_queue
1107          */
1108         if ((siftr_port_filter != 0) &&
1109             (siftr_port_filter != ntohs(inp->inp_lport)) &&
1110             (siftr_port_filter != ntohs(inp->inp_fport))) {
1111                 goto inp_unlock6;
1112         }
1113
1114         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1115
1116         if (pn == NULL) {
1117                 if (dir == PFIL_IN)
1118                         ss->nskip_in_malloc++;
1119                 else
1120                         ss->nskip_out_malloc++;
1121
1122                 goto inp_unlock6;
1123         }
1124
1125         siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1126
1127         /* XXX: Figure out how to generate hashes for IPv6 packets. */
1128
1129         mtx_lock(&siftr_pkt_queue_mtx);
1130         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1131         mtx_unlock(&siftr_pkt_queue_mtx);
1132         goto ret6;
1133
1134 inp_unlock6:
1135         if (inp_locally_locked)
1136                 INP_RUNLOCK(inp);
1137
1138 ret6:
1139         /* Returning 0 ensures pfil will not discard the pkt. */
1140         return (0);
1141 }
1142 #endif /* #ifdef SIFTR_IPV6 */
1143
1144 VNET_DEFINE_STATIC(pfil_hook_t, siftr_inet_hook);
1145 #define V_siftr_inet_hook       VNET(siftr_inet_hook)
1146 #ifdef INET6
1147 VNET_DEFINE_STATIC(pfil_hook_t, siftr_inet6_hook);
1148 #define V_siftr_inet6_hook      VNET(siftr_inet6_hook)
1149 #endif
1150 static int
1151 siftr_pfil(int action)
1152 {
1153         struct pfil_hook_args pha;
1154         struct pfil_link_args pla;
1155
1156         pha.pa_version = PFIL_VERSION;
1157         pha.pa_flags = PFIL_IN | PFIL_OUT;
1158         pha.pa_modname = "siftr";
1159         pha.pa_ruleset = NULL;
1160         pha.pa_rulname = "default";
1161
1162         pla.pa_version = PFIL_VERSION;
1163         pla.pa_flags = PFIL_IN | PFIL_OUT |
1164             PFIL_HEADPTR | PFIL_HOOKPTR;
1165
1166         VNET_ITERATOR_DECL(vnet_iter);
1167
1168         VNET_LIST_RLOCK();
1169         VNET_FOREACH(vnet_iter) {
1170                 CURVNET_SET(vnet_iter);
1171
1172                 if (action == HOOK) {
1173                         pha.pa_func = siftr_chkpkt;
1174                         pha.pa_type = PFIL_TYPE_IP4;
1175                         V_siftr_inet_hook = pfil_add_hook(&pha);
1176                         pla.pa_hook = V_siftr_inet_hook;
1177                         pla.pa_head = V_inet_pfil_head;
1178                         (void)pfil_link(&pla);
1179 #ifdef SIFTR_IPV6
1180                         pha.pa_func = siftr_chkpkt6;
1181                         pha.pa_type = PFIL_TYPE_IP6;
1182                         V_siftr_inet6_hook = pfil_add_hook(&pha);
1183                         pla.pa_hook = V_siftr_inet6_hook;
1184                         pla.pa_head = V_inet6_pfil_head;
1185                         (void)pfil_link(&pla);
1186 #endif
1187                 } else if (action == UNHOOK) {
1188                         pfil_remove_hook(V_siftr_inet_hook);
1189 #ifdef SIFTR_IPV6
1190                         pfil_remove_hook(V_siftr_inet6_hook);
1191 #endif
1192                 }
1193                 CURVNET_RESTORE();
1194         }
1195         VNET_LIST_RUNLOCK();
1196
1197         return (0);
1198 }
1199
1200
1201 static int
1202 siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1203 {
1204         struct alq *new_alq;
1205         int error;
1206
1207         error = sysctl_handle_string(oidp, arg1, arg2, req);
1208
1209         /* Check for error or same filename */
1210         if (error != 0 || req->newptr == NULL ||
1211             strncmp(siftr_logfile, arg1, arg2) == 0)
1212                 goto done;
1213
1214         /* Filname changed */
1215         error = alq_open(&new_alq, arg1, curthread->td_ucred,
1216             SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1217         if (error != 0)
1218                 goto done;
1219
1220         /*
1221          * If disabled, siftr_alq == NULL so we simply close
1222          * the alq as we've proved it can be opened.
1223          * If enabled, close the existing alq and switch the old
1224          * for the new.
1225          */
1226         if (siftr_alq == NULL) {
1227                 alq_close(new_alq);
1228         } else {
1229                 alq_close(siftr_alq);
1230                 siftr_alq = new_alq;
1231         }
1232
1233         /* Update filename upon success */
1234         strlcpy(siftr_logfile, arg1, arg2);
1235 done:
1236         return (error);
1237 }
1238
1239 static int
1240 siftr_manage_ops(uint8_t action)
1241 {
1242         struct siftr_stats totalss;
1243         struct timeval tval;
1244         struct flow_hash_node *counter, *tmp_counter;
1245         struct sbuf *s;
1246         int i, key_index, error;
1247         uint32_t bytes_to_write, total_skipped_pkts;
1248         uint16_t lport, fport;
1249         uint8_t *key, ipver __unused;
1250
1251 #ifdef SIFTR_IPV6
1252         uint32_t laddr[4];
1253         uint32_t faddr[4];
1254 #else
1255         uint8_t laddr[4];
1256         uint8_t faddr[4];
1257 #endif
1258
1259         error = 0;
1260         total_skipped_pkts = 0;
1261
1262         /* Init an autosizing sbuf that initially holds 200 chars. */
1263         if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1264                 return (-1);
1265
1266         if (action == SIFTR_ENABLE && siftr_pkt_manager_thr == NULL) {
1267                 /*
1268                  * Create our alq
1269                  * XXX: We should abort if alq_open fails!
1270                  */
1271                 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1272                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1273
1274                 STAILQ_INIT(&pkt_queue);
1275
1276                 DPCPU_ZERO(ss);
1277
1278                 siftr_exit_pkt_manager_thread = 0;
1279
1280                 kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1281                     &siftr_pkt_manager_thr, RFNOWAIT, 0,
1282                     "siftr_pkt_manager_thr");
1283
1284                 siftr_pfil(HOOK);
1285
1286                 microtime(&tval);
1287
1288                 sbuf_printf(s,
1289                     "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1290                     "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1291                     "sysver=%u\tipmode=%u\n",
1292                     (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1293                     TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1294
1295                 sbuf_finish(s);
1296                 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1297
1298         } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1299                 /*
1300                  * Remove the pfil hook functions. All threads currently in
1301                  * the hook functions are allowed to exit before siftr_pfil()
1302                  * returns.
1303                  */
1304                 siftr_pfil(UNHOOK);
1305
1306                 /* This will block until the pkt manager thread unlocks it. */
1307                 mtx_lock(&siftr_pkt_mgr_mtx);
1308
1309                 /* Tell the pkt manager thread that it should exit now. */
1310                 siftr_exit_pkt_manager_thread = 1;
1311
1312                 /*
1313                  * Wake the pkt_manager thread so it realises that
1314                  * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1315                  * The wakeup won't be delivered until we unlock
1316                  * siftr_pkt_mgr_mtx so this isn't racy.
1317                  */
1318                 wakeup(&wait_for_pkt);
1319
1320                 /* Wait for the pkt_manager thread to exit. */
1321                 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1322                     "thrwait", 0);
1323
1324                 siftr_pkt_manager_thr = NULL;
1325                 mtx_unlock(&siftr_pkt_mgr_mtx);
1326
1327                 totalss.n_in = DPCPU_VARSUM(ss, n_in);
1328                 totalss.n_out = DPCPU_VARSUM(ss, n_out);
1329                 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1330                 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1331                 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1332                 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1333                 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1334                 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1335                 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1336                 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1337
1338                 total_skipped_pkts = totalss.nskip_in_malloc +
1339                     totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1340                     totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1341                     totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1342                     totalss.nskip_out_inpcb;
1343
1344                 microtime(&tval);
1345
1346                 sbuf_printf(s,
1347                     "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1348                     "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1349                     "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1350                     "num_outbound_skipped_pkts_malloc=%u\t"
1351                     "num_inbound_skipped_pkts_mtx=%u\t"
1352                     "num_outbound_skipped_pkts_mtx=%u\t"
1353                     "num_inbound_skipped_pkts_tcpcb=%u\t"
1354                     "num_outbound_skipped_pkts_tcpcb=%u\t"
1355                     "num_inbound_skipped_pkts_inpcb=%u\t"
1356                     "num_outbound_skipped_pkts_inpcb=%u\t"
1357                     "total_skipped_tcp_pkts=%u\tflow_list=",
1358                     (intmax_t)tval.tv_sec,
1359                     tval.tv_usec,
1360                     (uintmax_t)totalss.n_in,
1361                     (uintmax_t)totalss.n_out,
1362                     (uintmax_t)(totalss.n_in + totalss.n_out),
1363                     totalss.nskip_in_malloc,
1364                     totalss.nskip_out_malloc,
1365                     totalss.nskip_in_mtx,
1366                     totalss.nskip_out_mtx,
1367                     totalss.nskip_in_tcpcb,
1368                     totalss.nskip_out_tcpcb,
1369                     totalss.nskip_in_inpcb,
1370                     totalss.nskip_out_inpcb,
1371                     total_skipped_pkts);
1372
1373                 /*
1374                  * Iterate over the flow hash, printing a summary of each
1375                  * flow seen and freeing any malloc'd memory.
1376                  * The hash consists of an array of LISTs (man 3 queue).
1377                  */
1378                 for (i = 0; i <= siftr_hashmask; i++) {
1379                         LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1380                             tmp_counter) {
1381                                 key = counter->key;
1382                                 key_index = 1;
1383
1384                                 ipver = key[0];
1385
1386                                 memcpy(laddr, key + key_index, sizeof(laddr));
1387                                 key_index += sizeof(laddr);
1388                                 memcpy(&lport, key + key_index, sizeof(lport));
1389                                 key_index += sizeof(lport);
1390                                 memcpy(faddr, key + key_index, sizeof(faddr));
1391                                 key_index += sizeof(faddr);
1392                                 memcpy(&fport, key + key_index, sizeof(fport));
1393
1394 #ifdef SIFTR_IPV6
1395                                 laddr[3] = ntohl(laddr[3]);
1396                                 faddr[3] = ntohl(faddr[3]);
1397
1398                                 if (ipver == INP_IPV6) {
1399                                         laddr[0] = ntohl(laddr[0]);
1400                                         laddr[1] = ntohl(laddr[1]);
1401                                         laddr[2] = ntohl(laddr[2]);
1402                                         faddr[0] = ntohl(faddr[0]);
1403                                         faddr[1] = ntohl(faddr[1]);
1404                                         faddr[2] = ntohl(faddr[2]);
1405
1406                                         sbuf_printf(s,
1407                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1408                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1409                                             UPPER_SHORT(laddr[0]),
1410                                             LOWER_SHORT(laddr[0]),
1411                                             UPPER_SHORT(laddr[1]),
1412                                             LOWER_SHORT(laddr[1]),
1413                                             UPPER_SHORT(laddr[2]),
1414                                             LOWER_SHORT(laddr[2]),
1415                                             UPPER_SHORT(laddr[3]),
1416                                             LOWER_SHORT(laddr[3]),
1417                                             ntohs(lport),
1418                                             UPPER_SHORT(faddr[0]),
1419                                             LOWER_SHORT(faddr[0]),
1420                                             UPPER_SHORT(faddr[1]),
1421                                             LOWER_SHORT(faddr[1]),
1422                                             UPPER_SHORT(faddr[2]),
1423                                             LOWER_SHORT(faddr[2]),
1424                                             UPPER_SHORT(faddr[3]),
1425                                             LOWER_SHORT(faddr[3]),
1426                                             ntohs(fport));
1427                                 } else {
1428                                         laddr[0] = FIRST_OCTET(laddr[3]);
1429                                         laddr[1] = SECOND_OCTET(laddr[3]);
1430                                         laddr[2] = THIRD_OCTET(laddr[3]);
1431                                         laddr[3] = FOURTH_OCTET(laddr[3]);
1432                                         faddr[0] = FIRST_OCTET(faddr[3]);
1433                                         faddr[1] = SECOND_OCTET(faddr[3]);
1434                                         faddr[2] = THIRD_OCTET(faddr[3]);
1435                                         faddr[3] = FOURTH_OCTET(faddr[3]);
1436 #endif
1437                                         sbuf_printf(s,
1438                                             "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1439                                             laddr[0],
1440                                             laddr[1],
1441                                             laddr[2],
1442                                             laddr[3],
1443                                             ntohs(lport),
1444                                             faddr[0],
1445                                             faddr[1],
1446                                             faddr[2],
1447                                             faddr[3],
1448                                             ntohs(fport));
1449 #ifdef SIFTR_IPV6
1450                                 }
1451 #endif
1452
1453                                 free(counter, M_SIFTR_HASHNODE);
1454                         }
1455
1456                         LIST_INIT(counter_hash + i);
1457                 }
1458
1459                 sbuf_printf(s, "\n");
1460                 sbuf_finish(s);
1461
1462                 i = 0;
1463                 do {
1464                         bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1465                         alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1466                         i += bytes_to_write;
1467                 } while (i < sbuf_len(s));
1468
1469                 alq_close(siftr_alq);
1470                 siftr_alq = NULL;
1471         } else
1472                 error = EINVAL;
1473
1474         sbuf_delete(s);
1475
1476         /*
1477          * XXX: Should be using ret to check if any functions fail
1478          * and set error appropriately
1479          */
1480
1481         return (error);
1482 }
1483
1484
1485 static int
1486 siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1487 {
1488         int error;
1489         uint32_t new;
1490
1491         new = siftr_enabled;
1492         error = sysctl_handle_int(oidp, &new, 0, req);
1493         if (error == 0 && req->newptr != NULL) {
1494                 if (new > 1)
1495                         return (EINVAL);
1496                 else if (new != siftr_enabled) {
1497                         if ((error = siftr_manage_ops(new)) == 0) {
1498                                 siftr_enabled = new;
1499                         } else {
1500                                 siftr_manage_ops(SIFTR_DISABLE);
1501                         }
1502                 }
1503         }
1504
1505         return (error);
1506 }
1507
1508
1509 static void
1510 siftr_shutdown_handler(void *arg)
1511 {
1512         if (siftr_enabled == 1) {
1513                 siftr_manage_ops(SIFTR_DISABLE);
1514         }
1515 }
1516
1517
1518 /*
1519  * Module is being unloaded or machine is shutting down. Take care of cleanup.
1520  */
1521 static int
1522 deinit_siftr(void)
1523 {
1524         /* Cleanup. */
1525         siftr_manage_ops(SIFTR_DISABLE);
1526         hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1527         mtx_destroy(&siftr_pkt_queue_mtx);
1528         mtx_destroy(&siftr_pkt_mgr_mtx);
1529
1530         return (0);
1531 }
1532
1533
1534 /*
1535  * Module has just been loaded into the kernel.
1536  */
1537 static int
1538 init_siftr(void)
1539 {
1540         EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1541             SHUTDOWN_PRI_FIRST);
1542
1543         /* Initialise our flow counter hash table. */
1544         counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1545             &siftr_hashmask);
1546
1547         mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1548         mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1549
1550         /* Print message to the user's current terminal. */
1551         uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1552             "          http://caia.swin.edu.au/urp/newtcp\n\n",
1553             MODVERSION_STR);
1554
1555         return (0);
1556 }
1557
1558
1559 /*
1560  * This is the function that is called to load and unload the module.
1561  * When the module is loaded, this function is called once with
1562  * "what" == MOD_LOAD
1563  * When the module is unloaded, this function is called twice with
1564  * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1565  * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1566  * this function is called once with "what" = MOD_SHUTDOWN
1567  * When the system is shut down, the handler isn't called until the very end
1568  * of the shutdown sequence i.e. after the disks have been synced.
1569  */
1570 static int
1571 siftr_load_handler(module_t mod, int what, void *arg)
1572 {
1573         int ret;
1574
1575         switch (what) {
1576         case MOD_LOAD:
1577                 ret = init_siftr();
1578                 break;
1579
1580         case MOD_QUIESCE:
1581         case MOD_SHUTDOWN:
1582                 ret = deinit_siftr();
1583                 break;
1584
1585         case MOD_UNLOAD:
1586                 ret = 0;
1587                 break;
1588
1589         default:
1590                 ret = EINVAL;
1591                 break;
1592         }
1593
1594         return (ret);
1595 }
1596
1597
1598 static moduledata_t siftr_mod = {
1599         .name = "siftr",
1600         .evhand = siftr_load_handler,
1601 };
1602
1603 /*
1604  * Param 1: name of the kernel module
1605  * Param 2: moduledata_t struct containing info about the kernel module
1606  *          and the execution entry point for the module
1607  * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1608  *          Defines the module initialisation order
1609  * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1610  *          Defines the initialisation order of this kld relative to others
1611  *          within the same subsystem as defined by param 3
1612  */
1613 DECLARE_MODULE(siftr, siftr_mod, SI_SUB_LAST, SI_ORDER_ANY);
1614 MODULE_DEPEND(siftr, alq, 1, 1, 1);
1615 MODULE_VERSION(siftr, MODVERSION);