]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/netinet/siftr.c
Adjust the FreeBSD version printed as part of manual pages.
[FreeBSD/releng/8.2.git] / sys / netinet / siftr.c
1 /*-
2  * Copyright (c) 2007-2009
3  *      Swinburne University of Technology, Melbourne, Australia.
4  * Copyright (c) 2009-2010, The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed at the Centre for Advanced
8  * Internet Architectures, Swinburne University of Technology, Melbourne,
9  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32
33 /******************************************************
34  * Statistical Information For TCP Research (SIFTR)
35  *
36  * A FreeBSD kernel module that adds very basic intrumentation to the
37  * TCP stack, allowing internal stats to be recorded to a log file
38  * for experimental, debugging and performance analysis purposes.
39  *
40  * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
41  * working on the NewTCP research project at Swinburne University's Centre for
42  * Advanced Internet Architectures, Melbourne, Australia, which was made
43  * possible in part by a grant from the Cisco University Research Program Fund
44  * at Community Foundation Silicon Valley. More details are available at:
45  *   http://caia.swin.edu.au/urp/newtcp/
46  *
47  * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
48  * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
49  * More details are available at:
50  *   http://www.freebsdfoundation.org/
51  *   http://caia.swin.edu.au/freebsd/etcp09/
52  *
53  * Lawrence Stewart is the current maintainer, and all contact regarding
54  * SIFTR should be directed to him via email: lastewart@swin.edu.au
55  *
56  * Initial release date: June 2007
57  * Most recent update: September 2010
58  ******************************************************/
59
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62
63 #include <sys/param.h>
64 #include <sys/alq.h>
65 #include <sys/errno.h>
66 #include <sys/hash.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/lock.h>
70 #include <sys/mbuf.h>
71 #include <sys/module.h>
72 #include <sys/mutex.h>
73 #include <sys/pcpu.h>
74 #include <sys/proc.h>
75 #include <sys/sbuf.h>
76 #include <sys/smp.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/sysctl.h>
80 #include <sys/unistd.h>
81
82 #include <net/if.h>
83 #include <net/pfil.h>
84
85 #include <netinet/in.h>
86 #include <netinet/in_pcb.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip.h>
90 #include <netinet/tcp_var.h>
91
92 #ifdef SIFTR_IPV6
93 #include <netinet/ip6.h>
94 #include <netinet6/in6_pcb.h>
95 #endif /* SIFTR_IPV6 */
96
97 #include <machine/in_cksum.h>
98
99 /*
100  * Three digit version number refers to X.Y.Z where:
101  * X is the major version number
102  * Y is bumped to mark backwards incompatible changes
103  * Z is bumped to mark backwards compatible changes
104  */
105 #define V_MAJOR         1
106 #define V_BACKBREAK     2
107 #define V_BACKCOMPAT    4
108 #define MODVERSION      __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
109 #define MODVERSION_STR  __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
110     __XSTRING(V_BACKCOMPAT)
111
112 #define HOOK 0
113 #define UNHOOK 1
114 #define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
115 #define SYS_NAME "FreeBSD"
116 #define PACKET_TAG_SIFTR 100
117 #define PACKET_COOKIE_SIFTR 21749576
118 #define SIFTR_LOG_FILE_MODE 0644
119 #define SIFTR_DISABLE 0
120 #define SIFTR_ENABLE 1
121
122 /*
123  * Hard upper limit on the length of log messages. Bump this up if you add new
124  * data fields such that the line length could exceed the below value.
125  */
126 #define MAX_LOG_MSG_LEN 200
127 /* XXX: Make this a sysctl tunable. */
128 #define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
129
130 /*
131  * 1 byte for IP version
132  * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
133  * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
134  */
135 #ifdef SIFTR_IPV6
136 #define FLOW_KEY_LEN 37
137 #else
138 #define FLOW_KEY_LEN 13
139 #endif
140
141 #ifdef SIFTR_IPV6
142 #define SIFTR_IPMODE 6
143 #else
144 #define SIFTR_IPMODE 4
145 #endif
146
147 /* useful macros */
148 #define CAST_PTR_INT(X) (*((int*)(X)))
149
150 #define UPPER_SHORT(X)  (((X) & 0xFFFF0000) >> 16)
151 #define LOWER_SHORT(X)  ((X) & 0x0000FFFF)
152
153 #define FIRST_OCTET(X)  (((X) & 0xFF000000) >> 24)
154 #define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
155 #define THIRD_OCTET(X)  (((X) & 0x0000FF00) >> 8)
156 #define FOURTH_OCTET(X) ((X) & 0x000000FF)
157
158 MALLOC_DECLARE(M_SIFTR);
159 MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
160
161 MALLOC_DECLARE(M_SIFTR_PKTNODE);
162 MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode", "SIFTR pkt_node struct");
163
164 MALLOC_DECLARE(M_SIFTR_HASHNODE);
165 MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode", "SIFTR flow_hash_node struct");
166
167 /* Used as links in the pkt manager queue. */
168 struct pkt_node {
169         /* Timestamp of pkt as noted in the pfil hook. */
170         struct timeval          tval;
171         /* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
172         uint8_t                 direction;
173         /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
174         uint8_t                 ipver;
175         /* Hash of the pkt which triggered the log message. */
176         uint32_t                hash;
177         /* Local/foreign IP address. */
178 #ifdef SIFTR_IPV6
179         uint32_t                ip_laddr[4];
180         uint32_t                ip_faddr[4];
181 #else
182         uint8_t                 ip_laddr[4];
183         uint8_t                 ip_faddr[4];
184 #endif
185         /* Local TCP port. */
186         uint16_t                tcp_localport;
187         /* Foreign TCP port. */
188         uint16_t                tcp_foreignport;
189         /* Congestion Window (bytes). */
190         u_long                  snd_cwnd;
191         /* Sending Window (bytes). */
192         u_long                  snd_wnd;
193         /* Receive Window (bytes). */
194         u_long                  rcv_wnd;
195         /* Bandwidth Controlled Window (bytes). */
196         u_long                  snd_bwnd;
197         /* Slow Start Threshold (bytes). */
198         u_long                  snd_ssthresh;
199         /* Current state of the TCP FSM. */
200         int                     conn_state;
201         /* Max Segment Size (bytes). */
202         u_int                   max_seg_size;
203         /*
204          * Smoothed RTT stored as found in the TCP control block
205          * in units of (TCP_RTT_SCALE*hz).
206          */
207         int                     smoothed_rtt;
208         /* Is SACK enabled? */
209         u_char                  sack_enabled;
210         /* Window scaling for snd window. */
211         u_char                  snd_scale;
212         /* Window scaling for recv window. */
213         u_char                  rcv_scale;
214         /* TCP control block flags. */
215         u_int                   flags;
216         /* Retransmit timeout length. */
217         int                     rxt_length;
218         /* Size of the TCP send buffer in bytes. */
219         u_int                   snd_buf_hiwater;
220         /* Current num bytes in the send socket buffer. */
221         u_int                   snd_buf_cc;
222         /* Size of the TCP receive buffer in bytes. */
223         u_int                   rcv_buf_hiwater;
224         /* Current num bytes in the receive socket buffer. */
225         u_int                   rcv_buf_cc;
226         /* Number of bytes inflight that we are waiting on ACKs for. */
227         u_int                   sent_inflight_bytes;
228         /* Number of segments currently in the reassembly queue. */
229         int                     t_segqlen;
230         /* Link to next pkt_node in the list. */
231         STAILQ_ENTRY(pkt_node)  nodes;
232 };
233
234 struct flow_hash_node
235 {
236         uint16_t counter;
237         uint8_t key[FLOW_KEY_LEN];
238         LIST_ENTRY(flow_hash_node) nodes;
239 };
240
241 struct siftr_stats
242 {
243         /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
244         uint64_t n_in;
245         uint64_t n_out;
246         /* # pkts skipped due to failed malloc calls. */
247         uint32_t nskip_in_malloc;
248         uint32_t nskip_out_malloc;
249         /* # pkts skipped due to failed mtx acquisition. */
250         uint32_t nskip_in_mtx;
251         uint32_t nskip_out_mtx;
252         /* # pkts skipped due to failed inpcb lookups. */
253         uint32_t nskip_in_inpcb;
254         uint32_t nskip_out_inpcb;
255         /* # pkts skipped due to failed tcpcb lookups. */
256         uint32_t nskip_in_tcpcb;
257         uint32_t nskip_out_tcpcb;
258         /* # pkts skipped due to stack reinjection. */
259         uint32_t nskip_in_dejavu;
260         uint32_t nskip_out_dejavu;
261 };
262
263 static DPCPU_DEFINE(struct siftr_stats, ss);
264
265 static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
266 static unsigned int siftr_enabled = 0;
267 static unsigned int siftr_pkts_per_log = 1;
268 static unsigned int siftr_generate_hashes = 0;
269 /* static unsigned int siftr_binary_log = 0; */
270 static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
271 static u_long siftr_hashmask;
272 STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
273 LIST_HEAD(listhead, flow_hash_node) *counter_hash;
274 static int wait_for_pkt;
275 static struct alq *siftr_alq = NULL;
276 static struct mtx siftr_pkt_queue_mtx;
277 static struct mtx siftr_pkt_mgr_mtx;
278 static struct thread *siftr_pkt_manager_thr = NULL;
279 /*
280  * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
281  * which we use as an index into this array.
282  */
283 static char direction[3] = {'\0', 'i','o'};
284
285 /* Required function prototypes. */
286 static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
287 static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
288
289
290 /* Declare the net.inet.siftr sysctl tree and populate it. */
291
292 SYSCTL_DECL(_net_inet_siftr);
293
294 SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
295     "siftr related settings");
296
297 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
298     &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
299     "switch siftr module operations on/off");
300
301 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
302     &siftr_logfile, sizeof(siftr_logfile), &siftr_sysctl_logfile_name_handler,
303     "A", "file to save siftr log messages to");
304
305 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
306     &siftr_pkts_per_log, 1,
307     "number of packets between generating a log message");
308
309 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
310     &siftr_generate_hashes, 0,
311     "enable packet hash generation");
312
313 /* XXX: TODO
314 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
315     &siftr_binary_log, 0,
316     "write log files in binary instead of ascii");
317 */
318
319
320 /* Begin functions. */
321
322 static void
323 siftr_process_pkt(struct pkt_node * pkt_node)
324 {
325         struct flow_hash_node *hash_node;
326         struct listhead *counter_list;
327         struct siftr_stats *ss;
328         struct ale *log_buf;
329         uint8_t key[FLOW_KEY_LEN];
330         uint8_t found_match, key_offset;
331
332         hash_node = NULL;
333         ss = DPCPU_PTR(ss);
334         found_match = 0;
335         key_offset = 1;
336
337         /*
338          * Create the key that will be used to create a hash index
339          * into our hash table. Our key consists of:
340          * ipversion, localip, localport, foreignip, foreignport
341          */
342         key[0] = pkt_node->ipver;
343         memcpy(key + key_offset, &pkt_node->ip_laddr,
344             sizeof(pkt_node->ip_laddr));
345         key_offset += sizeof(pkt_node->ip_laddr);
346         memcpy(key + key_offset, &pkt_node->tcp_localport,
347             sizeof(pkt_node->tcp_localport));
348         key_offset += sizeof(pkt_node->tcp_localport);
349         memcpy(key + key_offset, &pkt_node->ip_faddr,
350             sizeof(pkt_node->ip_faddr));
351         key_offset += sizeof(pkt_node->ip_faddr);
352         memcpy(key + key_offset, &pkt_node->tcp_foreignport,
353             sizeof(pkt_node->tcp_foreignport));
354
355         counter_list = counter_hash +
356             (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
357
358         /*
359          * If the list is not empty i.e. the hash index has
360          * been used by another flow previously.
361          */
362         if (LIST_FIRST(counter_list) != NULL) {
363                 /*
364                  * Loop through the hash nodes in the list.
365                  * There should normally only be 1 hash node in the list,
366                  * except if there have been collisions at the hash index
367                  * computed by hash32_buf().
368                  */
369                 LIST_FOREACH(hash_node, counter_list, nodes) {
370                         /*
371                          * Check if the key for the pkt we are currently
372                          * processing is the same as the key stored in the
373                          * hash node we are currently processing.
374                          * If they are the same, then we've found the
375                          * hash node that stores the counter for the flow
376                          * the pkt belongs to.
377                          */
378                         if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
379                                 found_match = 1;
380                                 break;
381                         }
382                 }
383         }
384
385         /* If this flow hash hasn't been seen before or we have a collision. */
386         if (hash_node == NULL || !found_match) {
387                 /* Create a new hash node to store the flow's counter. */
388                 hash_node = malloc(sizeof(struct flow_hash_node),
389                     M_SIFTR_HASHNODE, M_WAITOK);
390
391                 if (hash_node != NULL) {
392                         /* Initialise our new hash node list entry. */
393                         hash_node->counter = 0;
394                         memcpy(hash_node->key, key, sizeof(key));
395                         LIST_INSERT_HEAD(counter_list, hash_node, nodes);
396                 } else {
397                         /* Malloc failed. */
398                         if (pkt_node->direction == PFIL_IN)
399                                 ss->nskip_in_malloc++;
400                         else
401                                 ss->nskip_out_malloc++;
402
403                         return;
404                 }
405         } else if (siftr_pkts_per_log > 1) {
406                 /*
407                  * Taking the remainder of the counter divided
408                  * by the current value of siftr_pkts_per_log
409                  * and storing that in counter provides a neat
410                  * way to modulate the frequency of log
411                  * messages being written to the log file.
412                  */
413                 hash_node->counter = (hash_node->counter + 1) %
414                     siftr_pkts_per_log;
415
416                 /*
417                  * If we have not seen enough packets since the last time
418                  * we wrote a log message for this connection, return.
419                  */
420                 if (hash_node->counter > 0)
421                         return;
422         }
423
424         log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
425
426         if (log_buf == NULL)
427                 return; /* Should only happen if the ALQ is shutting down. */
428
429 #ifdef SIFTR_IPV6
430         pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
431         pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
432
433         if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
434                 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
435                 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
436                 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
437                 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
438                 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
439                 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
440
441                 /* Construct an IPv6 log message. */
442                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
443                     MAX_LOG_MSG_LEN,
444                     "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
445                     "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
446                     "%u,%d,%u,%u,%u,%u,%u,%u\n",
447                     direction[pkt_node->direction],
448                     pkt_node->hash,
449                     pkt_node->tval.tv_sec,
450                     pkt_node->tval.tv_usec,
451                     UPPER_SHORT(pkt_node->ip_laddr[0]),
452                     LOWER_SHORT(pkt_node->ip_laddr[0]),
453                     UPPER_SHORT(pkt_node->ip_laddr[1]),
454                     LOWER_SHORT(pkt_node->ip_laddr[1]),
455                     UPPER_SHORT(pkt_node->ip_laddr[2]),
456                     LOWER_SHORT(pkt_node->ip_laddr[2]),
457                     UPPER_SHORT(pkt_node->ip_laddr[3]),
458                     LOWER_SHORT(pkt_node->ip_laddr[3]),
459                     ntohs(pkt_node->tcp_localport),
460                     UPPER_SHORT(pkt_node->ip_faddr[0]),
461                     LOWER_SHORT(pkt_node->ip_faddr[0]),
462                     UPPER_SHORT(pkt_node->ip_faddr[1]),
463                     LOWER_SHORT(pkt_node->ip_faddr[1]),
464                     UPPER_SHORT(pkt_node->ip_faddr[2]),
465                     LOWER_SHORT(pkt_node->ip_faddr[2]),
466                     UPPER_SHORT(pkt_node->ip_faddr[3]),
467                     LOWER_SHORT(pkt_node->ip_faddr[3]),
468                     ntohs(pkt_node->tcp_foreignport),
469                     pkt_node->snd_ssthresh,
470                     pkt_node->snd_cwnd,
471                     pkt_node->snd_bwnd,
472                     pkt_node->snd_wnd,
473                     pkt_node->rcv_wnd,
474                     pkt_node->snd_scale,
475                     pkt_node->rcv_scale,
476                     pkt_node->conn_state,
477                     pkt_node->max_seg_size,
478                     pkt_node->smoothed_rtt,
479                     pkt_node->sack_enabled,
480                     pkt_node->flags,
481                     pkt_node->rxt_length,
482                     pkt_node->snd_buf_hiwater,
483                     pkt_node->snd_buf_cc,
484                     pkt_node->rcv_buf_hiwater,
485                     pkt_node->rcv_buf_cc,
486                     pkt_node->sent_inflight_bytes,
487                     pkt_node->t_segqlen);
488         } else { /* IPv4 packet */
489                 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
490                 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
491                 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
492                 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
493                 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
494                 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
495                 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
496                 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
497 #endif /* SIFTR_IPV6 */
498
499                 /* Construct an IPv4 log message. */
500                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
501                     MAX_LOG_MSG_LEN,
502                     "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
503                     "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u\n",
504                     direction[pkt_node->direction],
505                     pkt_node->hash,
506                     (intmax_t)pkt_node->tval.tv_sec,
507                     pkt_node->tval.tv_usec,
508                     pkt_node->ip_laddr[0],
509                     pkt_node->ip_laddr[1],
510                     pkt_node->ip_laddr[2],
511                     pkt_node->ip_laddr[3],
512                     ntohs(pkt_node->tcp_localport),
513                     pkt_node->ip_faddr[0],
514                     pkt_node->ip_faddr[1],
515                     pkt_node->ip_faddr[2],
516                     pkt_node->ip_faddr[3],
517                     ntohs(pkt_node->tcp_foreignport),
518                     pkt_node->snd_ssthresh,
519                     pkt_node->snd_cwnd,
520                     pkt_node->snd_bwnd,
521                     pkt_node->snd_wnd,
522                     pkt_node->rcv_wnd,
523                     pkt_node->snd_scale,
524                     pkt_node->rcv_scale,
525                     pkt_node->conn_state,
526                     pkt_node->max_seg_size,
527                     pkt_node->smoothed_rtt,
528                     pkt_node->sack_enabled,
529                     pkt_node->flags,
530                     pkt_node->rxt_length,
531                     pkt_node->snd_buf_hiwater,
532                     pkt_node->snd_buf_cc,
533                     pkt_node->rcv_buf_hiwater,
534                     pkt_node->rcv_buf_cc,
535                     pkt_node->sent_inflight_bytes,
536                     pkt_node->t_segqlen);
537 #ifdef SIFTR_IPV6
538         }
539 #endif
540
541         alq_post_flags(siftr_alq, log_buf, 0);
542 }
543
544
545 static void
546 siftr_pkt_manager_thread(void *arg)
547 {
548         STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
549             STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
550         struct pkt_node *pkt_node, *pkt_node_temp;
551         uint8_t draining;
552
553         draining = 2;
554
555         mtx_lock(&siftr_pkt_mgr_mtx);
556
557         /* draining == 0 when queue has been flushed and it's safe to exit. */
558         while (draining) {
559                 /*
560                  * Sleep until we are signalled to wake because thread has
561                  * been told to exit or until 1 tick has passed.
562                  */
563                 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
564                     1);
565
566                 /* Gain exclusive access to the pkt_node queue. */
567                 mtx_lock(&siftr_pkt_queue_mtx);
568
569                 /*
570                  * Move pkt_queue to tmp_pkt_queue, which leaves
571                  * pkt_queue empty and ready to receive more pkt_nodes.
572                  */
573                 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
574
575                 /*
576                  * We've finished making changes to the list. Unlock it
577                  * so the pfil hooks can continue queuing pkt_nodes.
578                  */
579                 mtx_unlock(&siftr_pkt_queue_mtx);
580
581                 /*
582                  * We can't hold a mutex whilst calling siftr_process_pkt
583                  * because ALQ might sleep waiting for buffer space.
584                  */
585                 mtx_unlock(&siftr_pkt_mgr_mtx);
586
587                 /* Flush all pkt_nodes to the log file. */
588                 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
589                     pkt_node_temp) {
590                         siftr_process_pkt(pkt_node);
591                         STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
592                         free(pkt_node, M_SIFTR_PKTNODE);
593                 }
594
595                 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
596                     ("SIFTR tmp_pkt_queue not empty after flush"));
597
598                 mtx_lock(&siftr_pkt_mgr_mtx);
599
600                 /*
601                  * If siftr_exit_pkt_manager_thread gets set during the window
602                  * where we are draining the tmp_pkt_queue above, there might
603                  * still be pkts in pkt_queue that need to be drained.
604                  * Allow one further iteration to occur after
605                  * siftr_exit_pkt_manager_thread has been set to ensure
606                  * pkt_queue is completely empty before we kill the thread.
607                  *
608                  * siftr_exit_pkt_manager_thread is set only after the pfil
609                  * hooks have been removed, so only 1 extra iteration
610                  * is needed to drain the queue.
611                  */
612                 if (siftr_exit_pkt_manager_thread)
613                         draining--;
614         }
615
616         mtx_unlock(&siftr_pkt_mgr_mtx);
617
618         /* Calls wakeup on this thread's struct thread ptr. */
619         kthread_exit();
620 }
621
622
623 static uint32_t
624 hash_pkt(struct mbuf *m, uint32_t offset)
625 {
626         uint32_t hash;
627
628         hash = 0;
629
630         while (m != NULL && offset > m->m_len) {
631                 /*
632                  * The IP packet payload does not start in this mbuf, so
633                  * need to figure out which mbuf it starts in and what offset
634                  * into the mbuf's data region the payload starts at.
635                  */
636                 offset -= m->m_len;
637                 m = m->m_next;
638         }
639
640         while (m != NULL) {
641                 /* Ensure there is data in the mbuf */
642                 if ((m->m_len - offset) > 0)
643                         hash = hash32_buf(m->m_data + offset,
644                             m->m_len - offset, hash);
645
646                 m = m->m_next;
647                 offset = 0;
648         }
649
650         return (hash);
651 }
652
653
654 /*
655  * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
656  * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
657  * Return value >0 means the caller should skip processing this mbuf.
658  */
659 static inline int
660 siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
661 {
662         if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
663             != NULL) {
664                 if (dir == PFIL_IN)
665                         ss->nskip_in_dejavu++;
666                 else
667                         ss->nskip_out_dejavu++;
668
669                 return (1);
670         } else {
671                 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
672                     PACKET_TAG_SIFTR, 0, M_NOWAIT);
673                 if (tag == NULL) {
674                         if (dir == PFIL_IN)
675                                 ss->nskip_in_malloc++;
676                         else
677                                 ss->nskip_out_malloc++;
678
679                         return (1);
680                 }
681
682                 m_tag_prepend(m, tag);
683         }
684
685         return (0);
686 }
687
688
689 /*
690  * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
691  * otherwise.
692  */
693 static inline struct inpcb *
694 siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
695     uint16_t dport, int dir, struct siftr_stats *ss)
696 {
697         struct inpcb *inp;
698
699         /* We need the tcbinfo lock. */
700         INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
701         INP_INFO_RLOCK(&V_tcbinfo);
702
703         if (dir == PFIL_IN)
704                 inp = (ipver == INP_IPV4 ?
705                     in_pcblookup_hash(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
706                     dport, 0, m->m_pkthdr.rcvif)
707                     :
708 #ifdef SIFTR_IPV6
709                     in6_pcblookup_hash(&V_tcbinfo,
710                     &((struct ip6_hdr *)ip)->ip6_src, sport,
711                     &((struct ip6_hdr *)ip)->ip6_dst, dport, 0,
712                     m->m_pkthdr.rcvif)
713 #else
714                     NULL
715 #endif
716                     );
717
718         else
719                 inp = (ipver == INP_IPV4 ?
720                     in_pcblookup_hash(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
721                     sport, 0, m->m_pkthdr.rcvif)
722                     :
723 #ifdef SIFTR_IPV6
724                     in6_pcblookup_hash(&V_tcbinfo,
725                     &((struct ip6_hdr *)ip)->ip6_dst, dport,
726                     &((struct ip6_hdr *)ip)->ip6_src, sport, 0,
727                     m->m_pkthdr.rcvif)
728 #else
729                     NULL
730 #endif
731                     );
732
733         /* If we can't find the inpcb, bail. */
734         if (inp == NULL) {
735                 if (dir == PFIL_IN)
736                         ss->nskip_in_inpcb++;
737                 else
738                         ss->nskip_out_inpcb++;
739         } else {
740                 /* Acquire the inpcb lock. */
741                 INP_UNLOCK_ASSERT(inp);
742                 INP_RLOCK(inp);
743         }
744         INP_INFO_RUNLOCK(&V_tcbinfo);
745
746         return (inp);
747 }
748
749
750 static inline void
751 siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
752     int ipver, int dir, int inp_locally_locked)
753 {
754 #ifdef SIFTR_IPV6
755         if (ipver == INP_IPV4) {
756                 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
757                 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
758 #else
759                 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
760                 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
761 #endif
762 #ifdef SIFTR_IPV6
763         } else {
764                 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
765                 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
766                 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
767                 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
768                 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
769                 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
770                 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
771                 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
772         }
773 #endif
774         pn->tcp_localport = inp->inp_lport;
775         pn->tcp_foreignport = inp->inp_fport;
776         pn->snd_cwnd = tp->snd_cwnd;
777         pn->snd_wnd = tp->snd_wnd;
778         pn->rcv_wnd = tp->rcv_wnd;
779         pn->snd_bwnd = tp->snd_bwnd;
780         pn->snd_ssthresh = tp->snd_ssthresh;
781         pn->snd_scale = tp->snd_scale;
782         pn->rcv_scale = tp->rcv_scale;
783         pn->conn_state = tp->t_state;
784         pn->max_seg_size = tp->t_maxseg;
785         pn->smoothed_rtt = tp->t_srtt;
786         pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
787         pn->flags = tp->t_flags;
788         pn->rxt_length = tp->t_rxtcur;
789         pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
790         pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
791         pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
792         pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
793         pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
794         pn->t_segqlen = tp->t_segqlen;
795
796         /* We've finished accessing the tcb so release the lock. */
797         if (inp_locally_locked)
798                 INP_RUNLOCK(inp);
799
800         pn->ipver = ipver;
801         pn->direction = dir;
802
803         /*
804          * Significantly more accurate than using getmicrotime(), but slower!
805          * Gives true microsecond resolution at the expense of a hit to
806          * maximum pps throughput processing when SIFTR is loaded and enabled.
807          */
808         microtime(&pn->tval);
809 }
810
811
812 /*
813  * pfil hook that is called for each IPv4 packet making its way through the
814  * stack in either direction.
815  * The pfil subsystem holds a non-sleepable mutex somewhere when
816  * calling our hook function, so we can't sleep at all.
817  * It's very important to use the M_NOWAIT flag with all function calls
818  * that support it so that they won't sleep, otherwise you get a panic.
819  */
820 static int
821 siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
822     struct inpcb *inp)
823 {
824         struct pkt_node *pn;
825         struct ip *ip;
826         struct tcphdr *th;
827         struct tcpcb *tp;
828         struct siftr_stats *ss;
829         unsigned int ip_hl;
830         int inp_locally_locked;
831
832         inp_locally_locked = 0;
833         ss = DPCPU_PTR(ss);
834
835         /*
836          * m_pullup is not required here because ip_{input|output}
837          * already do the heavy lifting for us.
838          */
839
840         ip = mtod(*m, struct ip *);
841
842         /* Only continue processing if the packet is TCP. */
843         if (ip->ip_p != IPPROTO_TCP)
844                 goto ret;
845
846         /*
847          * If a kernel subsystem reinjects packets into the stack, our pfil
848          * hook will be called multiple times for the same packet.
849          * Make sure we only process unique packets.
850          */
851         if (siftr_chkreinject(*m, dir, ss))
852                 goto ret;
853
854         if (dir == PFIL_IN)
855                 ss->n_in++;
856         else
857                 ss->n_out++;
858
859         /*
860          * Create a tcphdr struct starting at the correct offset
861          * in the IP packet. ip->ip_hl gives the ip header length
862          * in 4-byte words, so multiply it to get the size in bytes.
863          */
864         ip_hl = (ip->ip_hl << 2);
865         th = (struct tcphdr *)((caddr_t)ip + ip_hl);
866
867         /*
868          * If the pfil hooks don't provide a pointer to the
869          * inpcb, we need to find it ourselves and lock it.
870          */
871         if (!inp) {
872                 /* Find the corresponding inpcb for this pkt. */
873                 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
874                     th->th_dport, dir, ss);
875
876                 if (inp == NULL)
877                         goto ret;
878                 else
879                         inp_locally_locked = 1;
880         }
881
882         INP_LOCK_ASSERT(inp);
883
884         /* Find the TCP control block that corresponds with this packet */
885         tp = intotcpcb(inp);
886
887         /*
888          * If we can't find the TCP control block (happens occasionaly for a
889          * packet sent during the shutdown phase of a TCP connection),
890          * or we're in the timewait state, bail
891          */
892         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
893                 if (dir == PFIL_IN)
894                         ss->nskip_in_tcpcb++;
895                 else
896                         ss->nskip_out_tcpcb++;
897
898                 goto inp_unlock;
899         }
900
901         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
902
903         if (pn == NULL) {
904                 if (dir == PFIL_IN)
905                         ss->nskip_in_malloc++;
906                 else
907                         ss->nskip_out_malloc++;
908
909                 goto inp_unlock;
910         }
911
912         siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
913
914         if (siftr_generate_hashes) {
915                 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
916                         /*
917                          * For outbound packets, the TCP checksum isn't
918                          * calculated yet. This is a problem for our packet
919                          * hashing as the receiver will calc a different hash
920                          * to ours if we don't include the correct TCP checksum
921                          * in the bytes being hashed. To work around this
922                          * problem, we manually calc the TCP checksum here in
923                          * software. We unset the CSUM_TCP flag so the lower
924                          * layers don't recalc it.
925                          */
926                         (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
927
928                         /*
929                          * Calculate the TCP checksum in software and assign
930                          * to correct TCP header field, which will follow the
931                          * packet mbuf down the stack. The trick here is that
932                          * tcp_output() sets th->th_sum to the checksum of the
933                          * pseudo header for us already. Because of the nature
934                          * of the checksumming algorithm, we can sum over the
935                          * entire IP payload (i.e. TCP header and data), which
936                          * will include the already calculated pseduo header
937                          * checksum, thus giving us the complete TCP checksum.
938                          *
939                          * To put it in simple terms, if checksum(1,2,3,4)=10,
940                          * then checksum(1,2,3,4,5) == checksum(10,5).
941                          * This property is what allows us to "cheat" and
942                          * checksum only the IP payload which has the TCP
943                          * th_sum field populated with the pseudo header's
944                          * checksum, and not need to futz around checksumming
945                          * pseudo header bytes and TCP header/data in one hit.
946                          * Refer to RFC 1071 for more info.
947                          *
948                          * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
949                          * in_cksum_skip 2nd argument is NOT the number of
950                          * bytes to read from the mbuf at "skip" bytes offset
951                          * from the start of the mbuf (very counter intuitive!).
952                          * The number of bytes to read is calculated internally
953                          * by the function as len-skip i.e. to sum over the IP
954                          * payload (TCP header + data) bytes, it is INCORRECT
955                          * to call the function like this:
956                          * in_cksum_skip(at, ip->ip_len - offset, offset)
957                          * Rather, it should be called like this:
958                          * in_cksum_skip(at, ip->ip_len, offset)
959                          * which means read "ip->ip_len - offset" bytes from
960                          * the mbuf cluster "at" at offset "offset" bytes from
961                          * the beginning of the "at" mbuf's data pointer.
962                          */
963                         th->th_sum = in_cksum_skip(*m, ip->ip_len, ip_hl);
964                 }
965
966                 /*
967                  * XXX: Having to calculate the checksum in software and then
968                  * hash over all bytes is really inefficient. Would be nice to
969                  * find a way to create the hash and checksum in the same pass
970                  * over the bytes.
971                  */
972                 pn->hash = hash_pkt(*m, ip_hl);
973         }
974
975         mtx_lock(&siftr_pkt_queue_mtx);
976         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
977         mtx_unlock(&siftr_pkt_queue_mtx);
978         goto ret;
979
980 inp_unlock:
981         if (inp_locally_locked)
982                 INP_RUNLOCK(inp);
983
984 ret:
985         /* Returning 0 ensures pfil will not discard the pkt */
986         return (0);
987 }
988
989
990 #ifdef SIFTR_IPV6
991 static int
992 siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
993     struct inpcb *inp)
994 {
995         struct pkt_node *pn;
996         struct ip6_hdr *ip6;
997         struct tcphdr *th;
998         struct tcpcb *tp;
999         struct siftr_stats *ss;
1000         unsigned int ip6_hl;
1001         int inp_locally_locked;
1002
1003         inp_locally_locked = 0;
1004         ss = DPCPU_PTR(ss);
1005
1006         /*
1007          * m_pullup is not required here because ip6_{input|output}
1008          * already do the heavy lifting for us.
1009          */
1010
1011         ip6 = mtod(*m, struct ip6_hdr *);
1012
1013         /*
1014          * Only continue processing if the packet is TCP
1015          * XXX: We should follow the next header fields
1016          * as shown on Pg 6 RFC 2460, but right now we'll
1017          * only check pkts that have no extension headers.
1018          */
1019         if (ip6->ip6_nxt != IPPROTO_TCP)
1020                 goto ret6;
1021
1022         /*
1023          * If a kernel subsystem reinjects packets into the stack, our pfil
1024          * hook will be called multiple times for the same packet.
1025          * Make sure we only process unique packets.
1026          */
1027         if (siftr_chkreinject(*m, dir, ss))
1028                 goto ret6;
1029
1030         if (dir == PFIL_IN)
1031                 ss->n_in++;
1032         else
1033                 ss->n_out++;
1034
1035         ip6_hl = sizeof(struct ip6_hdr);
1036
1037         /*
1038          * Create a tcphdr struct starting at the correct offset
1039          * in the ipv6 packet. ip->ip_hl gives the ip header length
1040          * in 4-byte words, so multiply it to get the size in bytes.
1041          */
1042         th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1043
1044         /*
1045          * For inbound packets, the pfil hooks don't provide a pointer to the
1046          * inpcb, so we need to find it ourselves and lock it.
1047          */
1048         if (!inp) {
1049                 /* Find the corresponding inpcb for this pkt. */
1050                 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1051                     th->th_sport, th->th_dport, dir, ss);
1052
1053                 if (inp == NULL)
1054                         goto ret6;
1055                 else
1056                         inp_locally_locked = 1;
1057         }
1058
1059         /* Find the TCP control block that corresponds with this packet. */
1060         tp = intotcpcb(inp);
1061
1062         /*
1063          * If we can't find the TCP control block (happens occasionaly for a
1064          * packet sent during the shutdown phase of a TCP connection),
1065          * or we're in the timewait state, bail.
1066          */
1067         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1068                 if (dir == PFIL_IN)
1069                         ss->nskip_in_tcpcb++;
1070                 else
1071                         ss->nskip_out_tcpcb++;
1072
1073                 goto inp_unlock6;
1074         }
1075
1076         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1077
1078         if (pn == NULL) {
1079                 if (dir == PFIL_IN)
1080                         ss->nskip_in_malloc++;
1081                 else
1082                         ss->nskip_out_malloc++;
1083
1084                 goto inp_unlock6;
1085         }
1086
1087         siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1088
1089         /* XXX: Figure out how to generate hashes for IPv6 packets. */
1090
1091         mtx_lock(&siftr_pkt_queue_mtx);
1092         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1093         mtx_unlock(&siftr_pkt_queue_mtx);
1094         goto ret6;
1095
1096 inp_unlock6:
1097         if (inp_locally_locked)
1098                 INP_RUNLOCK(inp);
1099
1100 ret6:
1101         /* Returning 0 ensures pfil will not discard the pkt. */
1102         return (0);
1103 }
1104 #endif /* #ifdef SIFTR_IPV6 */
1105
1106
1107 static int
1108 siftr_pfil(int action)
1109 {
1110         struct pfil_head *pfh_inet;
1111 #ifdef SIFTR_IPV6
1112         struct pfil_head *pfh_inet6;
1113 #endif
1114         VNET_ITERATOR_DECL(vnet_iter);
1115
1116         VNET_LIST_RLOCK();
1117         VNET_FOREACH(vnet_iter) {
1118                 CURVNET_SET(vnet_iter);
1119                 pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1120 #ifdef SIFTR_IPV6
1121                 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1122 #endif
1123
1124                 if (action == HOOK) {
1125                         pfil_add_hook(siftr_chkpkt, NULL,
1126                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1127 #ifdef SIFTR_IPV6
1128                         pfil_add_hook(siftr_chkpkt6, NULL,
1129                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1130 #endif
1131                 } else if (action == UNHOOK) {
1132                         pfil_remove_hook(siftr_chkpkt, NULL,
1133                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1134 #ifdef SIFTR_IPV6
1135                         pfil_remove_hook(siftr_chkpkt6, NULL,
1136                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1137 #endif
1138                 }
1139                 CURVNET_RESTORE();
1140         }
1141         VNET_LIST_RUNLOCK();
1142
1143         return (0);
1144 }
1145
1146
1147 static int
1148 siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1149 {
1150         struct alq *new_alq;
1151         int error;
1152
1153         if (req->newptr == NULL)
1154                 goto skip;
1155
1156         /* If old filename and new filename are different. */
1157         if (strncmp(siftr_logfile, (char *)req->newptr, PATH_MAX)) {
1158
1159                 error = alq_open(&new_alq, req->newptr, curthread->td_ucred,
1160                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1161
1162                 /* Bail if unable to create new alq. */
1163                 if (error)
1164                         return (1);
1165
1166                 /*
1167                  * If disabled, siftr_alq == NULL so we simply close
1168                  * the alq as we've proved it can be opened.
1169                  * If enabled, close the existing alq and switch the old
1170                  * for the new.
1171                  */
1172                 if (siftr_alq == NULL)
1173                         alq_close(new_alq);
1174                 else {
1175                         alq_close(siftr_alq);
1176                         siftr_alq = new_alq;
1177                 }
1178         }
1179
1180 skip:
1181         return (sysctl_handle_string(oidp, arg1, arg2, req));
1182 }
1183
1184
1185 static int
1186 siftr_manage_ops(uint8_t action)
1187 {
1188         struct siftr_stats totalss;
1189         struct timeval tval;
1190         struct flow_hash_node *counter, *tmp_counter;
1191         struct sbuf *s;
1192         int i, key_index, ret, error;
1193         uint32_t bytes_to_write, total_skipped_pkts;
1194         uint16_t lport, fport;
1195         uint8_t *key, ipver;
1196
1197 #ifdef SIFTR_IPV6
1198         uint32_t laddr[4];
1199         uint32_t faddr[4];
1200 #else
1201         uint8_t laddr[4];
1202         uint8_t faddr[4];
1203 #endif
1204
1205         error = 0;
1206         total_skipped_pkts = 0;
1207
1208         /* Init an autosizing sbuf that initially holds 200 chars. */
1209         if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1210                 return (-1);
1211
1212         if (action == SIFTR_ENABLE) {
1213                 /*
1214                  * Create our alq
1215                  * XXX: We should abort if alq_open fails!
1216                  */
1217                 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1218                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1219
1220                 STAILQ_INIT(&pkt_queue);
1221
1222                 DPCPU_ZERO(ss);
1223
1224                 siftr_exit_pkt_manager_thread = 0;
1225
1226                 ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1227                     &siftr_pkt_manager_thr, RFNOWAIT, 0,
1228                     "siftr_pkt_manager_thr");
1229
1230                 siftr_pfil(HOOK);
1231
1232                 microtime(&tval);
1233
1234                 sbuf_printf(s,
1235                     "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1236                     "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1237                     "sysver=%u\tipmode=%u\n",
1238                     (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1239                     TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1240
1241                 sbuf_finish(s);
1242                 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1243
1244         } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1245                 /*
1246                  * Remove the pfil hook functions. All threads currently in
1247                  * the hook functions are allowed to exit before siftr_pfil()
1248                  * returns.
1249                  */
1250                 siftr_pfil(UNHOOK);
1251
1252                 /* This will block until the pkt manager thread unlocks it. */
1253                 mtx_lock(&siftr_pkt_mgr_mtx);
1254
1255                 /* Tell the pkt manager thread that it should exit now. */
1256                 siftr_exit_pkt_manager_thread = 1;
1257
1258                 /*
1259                  * Wake the pkt_manager thread so it realises that
1260                  * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1261                  * The wakeup won't be delivered until we unlock
1262                  * siftr_pkt_mgr_mtx so this isn't racy.
1263                  */
1264                 wakeup(&wait_for_pkt);
1265
1266                 /* Wait for the pkt_manager thread to exit. */
1267                 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1268                     "thrwait", 0);
1269
1270                 siftr_pkt_manager_thr = NULL;
1271                 mtx_unlock(&siftr_pkt_mgr_mtx);
1272
1273                 totalss.n_in = DPCPU_VARSUM(ss, n_in);
1274                 totalss.n_out = DPCPU_VARSUM(ss, n_out);
1275                 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1276                 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1277                 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1278                 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1279                 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1280                 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1281                 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1282                 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1283
1284                 total_skipped_pkts = totalss.nskip_in_malloc +
1285                     totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1286                     totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1287                     totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1288                     totalss.nskip_out_inpcb;
1289
1290                 microtime(&tval);
1291
1292                 sbuf_printf(s,
1293                     "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1294                     "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1295                     "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1296                     "num_outbound_skipped_pkts_malloc=%u\t"
1297                     "num_inbound_skipped_pkts_mtx=%u\t"
1298                     "num_outbound_skipped_pkts_mtx=%u\t"
1299                     "num_inbound_skipped_pkts_tcpcb=%u\t"
1300                     "num_outbound_skipped_pkts_tcpcb=%u\t"
1301                     "num_inbound_skipped_pkts_inpcb=%u\t"
1302                     "num_outbound_skipped_pkts_inpcb=%u\t"
1303                     "total_skipped_tcp_pkts=%u\tflow_list=",
1304                     (intmax_t)tval.tv_sec,
1305                     tval.tv_usec,
1306                     (uintmax_t)totalss.n_in,
1307                     (uintmax_t)totalss.n_out,
1308                     (uintmax_t)(totalss.n_in + totalss.n_out),
1309                     totalss.nskip_in_malloc,
1310                     totalss.nskip_out_malloc,
1311                     totalss.nskip_in_mtx,
1312                     totalss.nskip_out_mtx,
1313                     totalss.nskip_in_tcpcb,
1314                     totalss.nskip_out_tcpcb,
1315                     totalss.nskip_in_inpcb,
1316                     totalss.nskip_out_inpcb,
1317                     total_skipped_pkts);
1318
1319                 /*
1320                  * Iterate over the flow hash, printing a summary of each
1321                  * flow seen and freeing any malloc'd memory.
1322                  * The hash consists of an array of LISTs (man 3 queue).
1323                  */
1324                 for (i = 0; i < siftr_hashmask; i++) {
1325                         LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1326                             tmp_counter) {
1327                                 key = counter->key;
1328                                 key_index = 1;
1329
1330                                 ipver = key[0];
1331
1332                                 memcpy(laddr, key + key_index, sizeof(laddr));
1333                                 key_index += sizeof(laddr);
1334                                 memcpy(&lport, key + key_index, sizeof(lport));
1335                                 key_index += sizeof(lport);
1336                                 memcpy(faddr, key + key_index, sizeof(faddr));
1337                                 key_index += sizeof(faddr);
1338                                 memcpy(&fport, key + key_index, sizeof(fport));
1339
1340 #ifdef SIFTR_IPV6
1341                                 laddr[3] = ntohl(laddr[3]);
1342                                 faddr[3] = ntohl(faddr[3]);
1343
1344                                 if (ipver == INP_IPV6) {
1345                                         laddr[0] = ntohl(laddr[0]);
1346                                         laddr[1] = ntohl(laddr[1]);
1347                                         laddr[2] = ntohl(laddr[2]);
1348                                         faddr[0] = ntohl(faddr[0]);
1349                                         faddr[1] = ntohl(faddr[1]);
1350                                         faddr[2] = ntohl(faddr[2]);
1351
1352                                         sbuf_printf(s,
1353                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1354                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1355                                             UPPER_SHORT(laddr[0]),
1356                                             LOWER_SHORT(laddr[0]),
1357                                             UPPER_SHORT(laddr[1]),
1358                                             LOWER_SHORT(laddr[1]),
1359                                             UPPER_SHORT(laddr[2]),
1360                                             LOWER_SHORT(laddr[2]),
1361                                             UPPER_SHORT(laddr[3]),
1362                                             LOWER_SHORT(laddr[3]),
1363                                             ntohs(lport),
1364                                             UPPER_SHORT(faddr[0]),
1365                                             LOWER_SHORT(faddr[0]),
1366                                             UPPER_SHORT(faddr[1]),
1367                                             LOWER_SHORT(faddr[1]),
1368                                             UPPER_SHORT(faddr[2]),
1369                                             LOWER_SHORT(faddr[2]),
1370                                             UPPER_SHORT(faddr[3]),
1371                                             LOWER_SHORT(faddr[3]),
1372                                             ntohs(fport));
1373                                 } else {
1374                                         laddr[0] = FIRST_OCTET(laddr[3]);
1375                                         laddr[1] = SECOND_OCTET(laddr[3]);
1376                                         laddr[2] = THIRD_OCTET(laddr[3]);
1377                                         laddr[3] = FOURTH_OCTET(laddr[3]);
1378                                         faddr[0] = FIRST_OCTET(faddr[3]);
1379                                         faddr[1] = SECOND_OCTET(faddr[3]);
1380                                         faddr[2] = THIRD_OCTET(faddr[3]);
1381                                         faddr[3] = FOURTH_OCTET(faddr[3]);
1382 #endif
1383                                         sbuf_printf(s,
1384                                             "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1385                                             laddr[0],
1386                                             laddr[1],
1387                                             laddr[2],
1388                                             laddr[3],
1389                                             ntohs(lport),
1390                                             faddr[0],
1391                                             faddr[1],
1392                                             faddr[2],
1393                                             faddr[3],
1394                                             ntohs(fport));
1395 #ifdef SIFTR_IPV6
1396                                 }
1397 #endif
1398
1399                                 free(counter, M_SIFTR_HASHNODE);
1400                         }
1401
1402                         LIST_INIT(counter_hash + i);
1403                 }
1404
1405                 sbuf_printf(s, "\n");
1406                 sbuf_finish(s);
1407
1408                 i = 0;
1409                 do {
1410                         bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1411                         alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1412                         i += bytes_to_write;
1413                 } while (i < sbuf_len(s));
1414
1415                 alq_close(siftr_alq);
1416                 siftr_alq = NULL;
1417         }
1418
1419         sbuf_delete(s);
1420
1421         /*
1422          * XXX: Should be using ret to check if any functions fail
1423          * and set error appropriately
1424          */
1425
1426         return (error);
1427 }
1428
1429
1430 static int
1431 siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1432 {
1433         if (req->newptr == NULL)
1434                 goto skip;
1435
1436         /* If the value passed in isn't 0 or 1, return an error. */
1437         if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
1438                 return (1);
1439
1440         /* If we are changing state (0 to 1 or 1 to 0). */
1441         if (CAST_PTR_INT(req->newptr) != siftr_enabled )
1442                 if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
1443                         siftr_manage_ops(SIFTR_DISABLE);
1444                         return (1);
1445                 }
1446
1447 skip:
1448         return (sysctl_handle_int(oidp, arg1, arg2, req));
1449 }
1450
1451
1452 static void
1453 siftr_shutdown_handler(void *arg)
1454 {
1455         siftr_manage_ops(SIFTR_DISABLE);
1456 }
1457
1458
1459 /*
1460  * Module is being unloaded or machine is shutting down. Take care of cleanup.
1461  */
1462 static int
1463 deinit_siftr(void)
1464 {
1465         /* Cleanup. */
1466         siftr_manage_ops(SIFTR_DISABLE);
1467         hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1468         mtx_destroy(&siftr_pkt_queue_mtx);
1469         mtx_destroy(&siftr_pkt_mgr_mtx);
1470
1471         return (0);
1472 }
1473
1474
1475 /*
1476  * Module has just been loaded into the kernel.
1477  */
1478 static int
1479 init_siftr(void)
1480 {
1481         EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1482             SHUTDOWN_PRI_FIRST);
1483
1484         /* Initialise our flow counter hash table. */
1485         counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1486             &siftr_hashmask);
1487
1488         mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1489         mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1490
1491         /* Print message to the user's current terminal. */
1492         uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1493             "          http://caia.swin.edu.au/urp/newtcp\n\n",
1494             MODVERSION_STR);
1495
1496         return (0);
1497 }
1498
1499
1500 /*
1501  * This is the function that is called to load and unload the module.
1502  * When the module is loaded, this function is called once with
1503  * "what" == MOD_LOAD
1504  * When the module is unloaded, this function is called twice with
1505  * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1506  * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1507  * this function is called once with "what" = MOD_SHUTDOWN
1508  * When the system is shut down, the handler isn't called until the very end
1509  * of the shutdown sequence i.e. after the disks have been synced.
1510  */
1511 static int
1512 siftr_load_handler(module_t mod, int what, void *arg)
1513 {
1514         int ret;
1515
1516         switch (what) {
1517         case MOD_LOAD:
1518                 ret = init_siftr();
1519                 break;
1520
1521         case MOD_QUIESCE:
1522         case MOD_SHUTDOWN:
1523                 ret = deinit_siftr();
1524                 break;
1525
1526         case MOD_UNLOAD:
1527                 ret = 0;
1528                 break;
1529
1530         default:
1531                 ret = EINVAL;
1532                 break;
1533         }
1534
1535         return (ret);
1536 }
1537
1538
1539 static moduledata_t siftr_mod = {
1540         .name = "siftr",
1541         .evhand = siftr_load_handler,
1542 };
1543
1544 /*
1545  * Param 1: name of the kernel module
1546  * Param 2: moduledata_t struct containing info about the kernel module
1547  *          and the execution entry point for the module
1548  * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1549  *          Defines the module initialisation order
1550  * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1551  *          Defines the initialisation order of this kld relative to others
1552  *          within the same subsystem as defined by param 3
1553  */
1554 DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
1555 MODULE_DEPEND(siftr, alq, 1, 1, 1);
1556 MODULE_VERSION(siftr, MODVERSION);