]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_hpts.c
Makefile.libcompat: Sort
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_hpts.c
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33
34 /**
35  * Some notes about usage.
36  *
37  * The tcp_hpts system is designed to provide a high precision timer
38  * system for tcp. Its main purpose is to provide a mechanism for
39  * pacing packets out onto the wire. It can be used in two ways
40  * by a given TCP stack (and those two methods can be used simultaneously).
41  *
42  * First, and probably the main thing its used by Rack and BBR, it can
43  * be used to call tcp_output() of a transport stack at some time in the future.
44  * The normal way this is done is that tcp_output() of the stack schedules
45  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46  * slot is the time from now that the stack wants to be called but it
47  * must be converted to tcp_hpts's notion of slot. This is done with
48  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49  * call from the tcp_output() routine might look like:
50  *
51  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52  *
53  * The above would schedule tcp_ouput() to be called in 550 useconds.
54  * Note that if using this mechanism the stack will want to add near
55  * its top a check to prevent unwanted calls (from user land or the
56  * arrival of incoming ack's). So it would add something like:
57  *
58  * if (tcp_in_hpts(inp))
59  *    return;
60  *
61  * to prevent output processing until the time alotted has gone by.
62  * Of course this is a bare bones example and the stack will probably
63  * have more consideration then just the above.
64  *
65  * In order to run input queued segments from the HPTS context the
66  * tcp stack must define an input function for
67  * tfb_do_queued_segments(). This function understands
68  * how to dequeue a array of packets that were input and
69  * knows how to call the correct processing routine.
70  *
71  * Locking in this is important as well so most likely the
72  * stack will need to define the tfb_do_segment_nounlock()
73  * splitting tfb_do_segment() into two parts. The main processing
74  * part that does not unlock the INP and returns a value of 1 or 0.
75  * It returns 0 if all is well and the lock was not released. It
76  * returns 1 if we had to destroy the TCB (a reset received etc).
77  * The remains of tfb_do_segment() then become just a simple call
78  * to the tfb_do_segment_nounlock() function and check the return
79  * code and possibly unlock.
80  *
81  * The stack must also set the flag on the INP that it supports this
82  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
83  * this flag as well and will queue packets when it is set.
84  * There are other flags as well INP_MBUF_QUEUE_READY and
85  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
86  * that we are in the pacer for output so there is no
87  * need to wake up the hpts system to get immediate
88  * input. The second tells the LRO code that its okay
89  * if a SACK arrives you can still defer input and let
90  * the current hpts timer run (this is usually set when
91  * a rack timer is up so we know SACK's are happening
92  * on the connection already and don't want to wakeup yet).
93  *
94  * There is a common functions within the rack_bbr_common code
95  * version i.e. ctf_do_queued_segments(). This function
96  * knows how to take the input queue of packets from
97  * tp->t_in_pkts and process them digging out
98  * all the arguments, calling any bpf tap and
99  * calling into tfb_do_segment_nounlock(). The common
100  * function (ctf_do_queued_segments())  requires that
101  * you have defined the tfb_do_segment_nounlock() as
102  * described above.
103  */
104
105 #include <sys/param.h>
106 #include <sys/bus.h>
107 #include <sys/interrupt.h>
108 #include <sys/module.h>
109 #include <sys/kernel.h>
110 #include <sys/hhook.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/proc.h>           /* for proc0 declaration */
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/sysctl.h>
117 #include <sys/systm.h>
118 #include <sys/refcount.h>
119 #include <sys/sched.h>
120 #include <sys/queue.h>
121 #include <sys/smp.h>
122 #include <sys/counter.h>
123 #include <sys/time.h>
124 #include <sys/kthread.h>
125 #include <sys/kern_prefetch.h>
126
127 #include <vm/uma.h>
128 #include <vm/vm.h>
129
130 #include <net/route.h>
131 #include <net/vnet.h>
132
133 #ifdef RSS
134 #include <net/netisr.h>
135 #include <net/rss_config.h>
136 #endif
137
138 #define TCPSTATES               /* for logging */
139
140 #include <netinet/in.h>
141 #include <netinet/in_kdtrace.h>
142 #include <netinet/in_pcb.h>
143 #include <netinet/ip.h>
144 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
145 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
146 #include <netinet/ip_var.h>
147 #include <netinet/ip6.h>
148 #include <netinet6/in6_pcb.h>
149 #include <netinet6/ip6_var.h>
150 #include <netinet/tcp.h>
151 #include <netinet/tcp_fsm.h>
152 #include <netinet/tcp_seq.h>
153 #include <netinet/tcp_timer.h>
154 #include <netinet/tcp_var.h>
155 #include <netinet/tcpip.h>
156 #include <netinet/cc/cc.h>
157 #include <netinet/tcp_hpts.h>
158 #include <netinet/tcp_log_buf.h>
159
160 #ifdef tcpdebug
161 #include <netinet/tcp_debug.h>
162 #endif                          /* tcpdebug */
163 #ifdef tcp_offload
164 #include <netinet/tcp_offload.h>
165 #endif
166
167 /*
168  * The hpts uses a 102400 wheel. The wheel
169  * defines the time in 10 usec increments (102400 x 10).
170  * This gives a range of 10usec - 1024ms to place
171  * an entry within. If the user requests more than
172  * 1.024 second, a remaineder is attached and the hpts
173  * when seeing the remainder will re-insert the
174  * inpcb forward in time from where it is until
175  * the remainder is zero.
176  */
177
178 #define NUM_OF_HPTSI_SLOTS 102400
179
180 /* Each hpts has its own p_mtx which is used for locking */
181 #define HPTS_MTX_ASSERT(hpts)   mtx_assert(&(hpts)->p_mtx, MA_OWNED)
182 #define HPTS_LOCK(hpts)         mtx_lock(&(hpts)->p_mtx)
183 #define HPTS_UNLOCK(hpts)       mtx_unlock(&(hpts)->p_mtx)
184 struct tcp_hpts_entry {
185         /* Cache line 0x00 */
186         struct mtx p_mtx;       /* Mutex for hpts */
187         struct timeval p_mysleep;       /* Our min sleep time */
188         uint64_t syscall_cnt;
189         uint64_t sleeping;      /* What the actual sleep was (if sleeping) */
190         uint16_t p_hpts_active; /* Flag that says hpts is awake  */
191         uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
192         uint32_t p_curtick;     /* Tick in 10 us the hpts is going to */
193         uint32_t p_runningslot; /* Current tick we are at if we are running */
194         uint32_t p_prev_slot;   /* Previous slot we were on */
195         uint32_t p_cur_slot;    /* Current slot in wheel hpts is draining */
196         uint32_t p_nxt_slot;    /* The next slot outside the current range of
197                                  * slots that the hpts is running on. */
198         int32_t p_on_queue_cnt; /* Count on queue in this hpts */
199         uint32_t p_lasttick;    /* Last tick before the current one */
200         uint8_t p_direct_wake :1, /* boolean */
201                 p_on_min_sleep:1, /* boolean */
202                 p_hpts_wake_scheduled:1, /* boolean */
203                 p_avail:5;
204         uint8_t p_fill[3];        /* Fill to 32 bits */
205         /* Cache line 0x40 */
206         struct hptsh {
207                 TAILQ_HEAD(, inpcb)     head;
208                 uint32_t                count;
209                 uint32_t                gencnt;
210         } *p_hptss;                     /* Hptsi wheel */
211         uint32_t p_hpts_sleep_time;     /* Current sleep interval having a max
212                                          * of 255ms */
213         uint32_t overidden_sleep;       /* what was overrided by min-sleep for logging */
214         uint32_t saved_lasttick;        /* for logging */
215         uint32_t saved_curtick;         /* for logging */
216         uint32_t saved_curslot;         /* for logging */
217         uint32_t saved_prev_slot;       /* for logging */
218         uint32_t p_delayed_by;  /* How much were we delayed by */
219         /* Cache line 0x80 */
220         struct sysctl_ctx_list hpts_ctx;
221         struct sysctl_oid *hpts_root;
222         struct intr_event *ie;
223         void *ie_cookie;
224         uint16_t p_num;         /* The hpts number one per cpu */
225         uint16_t p_cpu;         /* The hpts CPU */
226         /* There is extra space in here */
227         /* Cache line 0x100 */
228         struct callout co __aligned(CACHE_LINE_SIZE);
229 }               __aligned(CACHE_LINE_SIZE);
230
231 static struct tcp_hptsi {
232         struct tcp_hpts_entry **rp_ent; /* Array of hptss */
233         uint32_t *cts_last_ran;
234         uint32_t rp_num_hptss;  /* Number of hpts threads */
235 } tcp_pace;
236
237 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
238 #ifdef RSS
239 static int tcp_bind_threads = 1;
240 #else
241 static int tcp_bind_threads = 2;
242 #endif
243 static int tcp_use_irq_cpu = 0;
244 static uint32_t *cts_last_ran;
245 static int hpts_does_tp_logging = 0;
246 static int hpts_use_assigned_cpu = 1;
247 static int32_t hpts_uses_oldest = OLDEST_THRESHOLD;
248
249 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
250 static void tcp_hpts_thread(void *ctx);
251 static void tcp_init_hptsi(void *st);
252
253 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
254 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
255 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
256 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
257
258
259
260 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
261     "TCP Hpts controls");
262 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
263     "TCP Hpts statistics");
264
265 #define timersub(tvp, uvp, vvp)                                         \
266         do {                                                            \
267                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
268                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
269                 if ((vvp)->tv_usec < 0) {                               \
270                         (vvp)->tv_sec--;                                \
271                         (vvp)->tv_usec += 1000000;                      \
272                 }                                                       \
273         } while (0)
274
275 static int32_t tcp_hpts_precision = 120;
276
277 static struct hpts_domain_info {
278         int count;
279         int cpu[MAXCPU];
280 } hpts_domains[MAXMEMDOM];
281
282 enum {
283         IHPTS_NONE = 0,
284         IHPTS_ONQUEUE,
285         IHPTS_MOVING,
286 };
287
288 counter_u64_t hpts_hopelessly_behind;
289
290 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
291     &hpts_hopelessly_behind,
292     "Number of times hpts could not catch up and was behind hopelessly");
293
294 counter_u64_t hpts_loops;
295
296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
297     &hpts_loops, "Number of times hpts had to loop to catch up");
298
299 counter_u64_t back_tosleep;
300
301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
302     &back_tosleep, "Number of times hpts found no tcbs");
303
304 counter_u64_t combined_wheel_wrap;
305
306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
307     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
308
309 counter_u64_t wheel_wrap;
310
311 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
312     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
313
314 counter_u64_t hpts_direct_call;
315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
316     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
317
318 counter_u64_t hpts_wake_timeout;
319
320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
321     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
322
323 counter_u64_t hpts_direct_awakening;
324
325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
326     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
327
328 counter_u64_t hpts_back_tosleep;
329
330 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
331     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
332
333 counter_u64_t cpu_uses_flowid;
334 counter_u64_t cpu_uses_random;
335
336 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
337     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
338 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
339     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
340
341 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
342 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
344     &tcp_bind_threads, 2,
345     "Thread Binding tunable");
346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
347     &tcp_use_irq_cpu, 0,
348     "Use of irq CPU  tunable");
349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
350     &tcp_hpts_precision, 120,
351     "Value for PRE() precision of callout");
352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
353     &conn_cnt_thresh, 0,
354     "How many connections (below) make us use the callout based mechanism");
355 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
356     &hpts_does_tp_logging, 0,
357     "Do we add to any tp that has logging on pacer logs");
358 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_assigned_cpu, CTLFLAG_RW,
359     &hpts_use_assigned_cpu, 0,
360     "Do we start any hpts timer on the assigned cpu?");
361 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_oldest, CTLFLAG_RW,
362     &hpts_uses_oldest, OLDEST_THRESHOLD,
363     "Do syscalls look for the hpts that has been the longest since running (or just use cpu no if 0)?");
364 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
365     &dynamic_min_sleep, 250,
366     "What is the dynamic minsleep value?");
367 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
368     &dynamic_max_sleep, 5000,
369     "What is the dynamic maxsleep value?");
370
371
372
373
374
375 static int32_t max_pacer_loops = 10;
376 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
377     &max_pacer_loops, 10,
378     "What is the maximum number of times the pacer will loop trying to catch up");
379
380 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
381
382 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
383
384 static int
385 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
386 {
387         int error;
388         uint32_t new;
389
390         new = hpts_sleep_max;
391         error = sysctl_handle_int(oidp, &new, 0, req);
392         if (error == 0 && req->newptr) {
393                 if ((new < dynamic_min_sleep) ||
394                     (new > HPTS_MAX_SLEEP_ALLOWED))
395                         error = EINVAL;
396                 else
397                         hpts_sleep_max = new;
398         }
399         return (error);
400 }
401
402 static int
403 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
404 {
405         int error;
406         uint32_t new;
407
408         new = tcp_min_hptsi_time;
409         error = sysctl_handle_int(oidp, &new, 0, req);
410         if (error == 0 && req->newptr) {
411                 if (new < LOWEST_SLEEP_ALLOWED)
412                         error = EINVAL;
413                 else
414                         tcp_min_hptsi_time = new;
415         }
416         return (error);
417 }
418
419 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
420     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
421     &hpts_sleep_max, 0,
422     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
423     "Maximum time hpts will sleep");
424
425 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
426     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
427     &tcp_min_hptsi_time, 0,
428     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
429     "The minimum time the hpts must sleep before processing more slots");
430
431 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
432 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
433 static int tcp_hpts_no_wake_over_thresh = 1;
434
435 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
436     &ticks_indicate_more_sleep, 0,
437     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
438 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
439     &ticks_indicate_less_sleep, 0,
440     "If we process this many or more on a timeout, we need less sleep on the next callout");
441 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
442     &tcp_hpts_no_wake_over_thresh, 0,
443     "When we are over the threshold on the pacer do we prohibit wakeups?");
444
445 static void
446 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
447              int slots_to_run, int idx, int from_callout)
448 {
449         union tcp_log_stackspecific log;
450         /*
451          * Unused logs are
452          * 64 bit - delRate, rttProp, bw_inuse
453          * 16 bit - cwnd_gain
454          *  8 bit - bbr_state, bbr_substate, inhpts;
455          */
456         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
457         log.u_bbr.flex1 = hpts->p_nxt_slot;
458         log.u_bbr.flex2 = hpts->p_cur_slot;
459         log.u_bbr.flex3 = hpts->p_prev_slot;
460         log.u_bbr.flex4 = idx;
461         log.u_bbr.flex5 = hpts->p_curtick;
462         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
463         log.u_bbr.flex7 = hpts->p_cpu;
464         log.u_bbr.flex8 = (uint8_t)from_callout;
465         log.u_bbr.inflight = slots_to_run;
466         log.u_bbr.applimited = hpts->overidden_sleep;
467         log.u_bbr.delivered = hpts->saved_curtick;
468         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
469         log.u_bbr.epoch = hpts->saved_curslot;
470         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
471         log.u_bbr.pkts_out = hpts->p_delayed_by;
472         log.u_bbr.lost = hpts->p_hpts_sleep_time;
473         log.u_bbr.pacing_gain = hpts->p_cpu;
474         log.u_bbr.pkt_epoch = hpts->p_runningslot;
475         log.u_bbr.use_lt_bw = 1;
476         TCP_LOG_EVENTP(tp, NULL,
477                        &tp->t_inpcb->inp_socket->so_rcv,
478                        &tp->t_inpcb->inp_socket->so_snd,
479                        BBR_LOG_HPTSDIAG, 0,
480                        0, &log, false, tv);
481 }
482
483 static void
484 tcp_wakehpts(struct tcp_hpts_entry *hpts)
485 {
486         HPTS_MTX_ASSERT(hpts);
487
488         if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
489                 hpts->p_direct_wake = 0;
490                 return;
491         }
492         if (hpts->p_hpts_wake_scheduled == 0) {
493                 hpts->p_hpts_wake_scheduled = 1;
494                 swi_sched(hpts->ie_cookie, 0);
495         }
496 }
497
498 static void
499 hpts_timeout_swi(void *arg)
500 {
501         struct tcp_hpts_entry *hpts;
502
503         hpts = (struct tcp_hpts_entry *)arg;
504         swi_sched(hpts->ie_cookie, 0);
505 }
506
507 static void
508 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
509 {
510         struct hptsh *hptsh;
511
512         INP_WLOCK_ASSERT(inp);
513         HPTS_MTX_ASSERT(hpts);
514         MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
515         MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
516
517         hptsh = &hpts->p_hptss[inp->inp_hptsslot];
518
519         if (inp->inp_in_hpts == IHPTS_NONE) {
520                 inp->inp_in_hpts = IHPTS_ONQUEUE;
521                 in_pcbref(inp);
522         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
523                 inp->inp_in_hpts = IHPTS_ONQUEUE;
524         } else
525                 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
526         inp->inp_hpts_gencnt = hptsh->gencnt;
527
528         TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
529         hptsh->count++;
530         hpts->p_on_queue_cnt++;
531 }
532
533 static struct tcp_hpts_entry *
534 tcp_hpts_lock(struct inpcb *inp)
535 {
536         struct tcp_hpts_entry *hpts;
537
538         INP_LOCK_ASSERT(inp);
539
540         hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
541         HPTS_LOCK(hpts);
542
543         return (hpts);
544 }
545
546 static void
547 inp_hpts_release(struct inpcb *inp)
548 {
549         bool released __diagused;
550
551         inp->inp_in_hpts = IHPTS_NONE;
552         released = in_pcbrele_wlocked(inp);
553         MPASS(released == false);
554 }
555
556 /*
557  * Called normally with the INP_LOCKED but it
558  * does not matter, the hpts lock is the key
559  * but the lock order allows us to hold the
560  * INP lock and then get the hpts lock.
561  */
562 void
563 tcp_hpts_remove(struct inpcb *inp)
564 {
565         struct tcp_hpts_entry *hpts;
566         struct hptsh *hptsh;
567
568         INP_WLOCK_ASSERT(inp);
569
570         hpts = tcp_hpts_lock(inp);
571         if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
572                 hptsh = &hpts->p_hptss[inp->inp_hptsslot];
573                 inp->inp_hpts_request = 0;
574                 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
575                         TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
576                         MPASS(hptsh->count > 0);
577                         hptsh->count--;
578                         MPASS(hpts->p_on_queue_cnt > 0);
579                         hpts->p_on_queue_cnt--;
580                         inp_hpts_release(inp);
581                 } else {
582                         /*
583                          * tcp_hptsi() now owns the TAILQ head of this inp.
584                          * Can't TAILQ_REMOVE, just mark it.
585                          */
586 #ifdef INVARIANTS
587                         struct inpcb *tmp;
588
589                         TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
590                                 MPASS(tmp != inp);
591 #endif
592                         inp->inp_in_hpts = IHPTS_MOVING;
593                         inp->inp_hptsslot = -1;
594                 }
595         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
596                 /*
597                  * Handle a special race condition:
598                  * tcp_hptsi() moves inpcb to detached tailq
599                  * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
600                  * tcp_hpts_insert() sets slot to a meaningful value
601                  * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
602                  * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
603                  */
604                 inp->inp_hptsslot = -1;
605         }
606         HPTS_UNLOCK(hpts);
607 }
608
609 bool
610 tcp_in_hpts(struct inpcb *inp)
611 {
612
613         return (inp->inp_in_hpts == IHPTS_ONQUEUE);
614 }
615
616 static inline int
617 hpts_slot(uint32_t wheel_slot, uint32_t plus)
618 {
619         /*
620          * Given a slot on the wheel, what slot
621          * is that plus ticks out?
622          */
623         KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
624         return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
625 }
626
627 static inline int
628 tick_to_wheel(uint32_t cts_in_wticks)
629 {
630         /*
631          * Given a timestamp in ticks (so by
632          * default to get it to a real time one
633          * would multiply by 10.. i.e the number
634          * of ticks in a slot) map it to our limited
635          * space wheel.
636          */
637         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
638 }
639
640 static inline int
641 hpts_slots_diff(int prev_slot, int slot_now)
642 {
643         /*
644          * Given two slots that are someplace
645          * on our wheel. How far are they apart?
646          */
647         if (slot_now > prev_slot)
648                 return (slot_now - prev_slot);
649         else if (slot_now == prev_slot)
650                 /*
651                  * Special case, same means we can go all of our
652                  * wheel less one slot.
653                  */
654                 return (NUM_OF_HPTSI_SLOTS - 1);
655         else
656                 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
657 }
658
659 /*
660  * Given a slot on the wheel that is the current time
661  * mapped to the wheel (wheel_slot), what is the maximum
662  * distance forward that can be obtained without
663  * wrapping past either prev_slot or running_slot
664  * depending on the htps state? Also if passed
665  * a uint32_t *, fill it with the slot location.
666  *
667  * Note if you do not give this function the current
668  * time (that you think it is) mapped to the wheel slot
669  * then the results will not be what you expect and
670  * could lead to invalid inserts.
671  */
672 static inline int32_t
673 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
674 {
675         uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
676
677         if ((hpts->p_hpts_active == 1) &&
678             (hpts->p_wheel_complete == 0)) {
679                 end_slot = hpts->p_runningslot;
680                 /* Back up one tick */
681                 if (end_slot == 0)
682                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
683                 else
684                         end_slot--;
685                 if (target_slot)
686                         *target_slot = end_slot;
687         } else {
688                 /*
689                  * For the case where we are
690                  * not active, or we have
691                  * completed the pass over
692                  * the wheel, we can use the
693                  * prev tick and subtract one from it. This puts us
694                  * as far out as possible on the wheel.
695                  */
696                 end_slot = hpts->p_prev_slot;
697                 if (end_slot == 0)
698                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
699                 else
700                         end_slot--;
701                 if (target_slot)
702                         *target_slot = end_slot;
703                 /*
704                  * Now we have close to the full wheel left minus the
705                  * time it has been since the pacer went to sleep. Note
706                  * that wheel_tick, passed in, should be the current time
707                  * from the perspective of the caller, mapped to the wheel.
708                  */
709                 if (hpts->p_prev_slot != wheel_slot)
710                         dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
711                 else
712                         dis_to_travel = 1;
713                 /*
714                  * dis_to_travel in this case is the space from when the
715                  * pacer stopped (p_prev_slot) and where our wheel_slot
716                  * is now. To know how many slots we can put it in we
717                  * subtract from the wheel size. We would not want
718                  * to place something after p_prev_slot or it will
719                  * get ran too soon.
720                  */
721                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
722         }
723         /*
724          * So how many slots are open between p_runningslot -> p_cur_slot
725          * that is what is currently un-available for insertion. Special
726          * case when we are at the last slot, this gets 1, so that
727          * the answer to how many slots are available is all but 1.
728          */
729         if (hpts->p_runningslot == hpts->p_cur_slot)
730                 dis_to_travel = 1;
731         else
732                 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
733         /*
734          * How long has the pacer been running?
735          */
736         if (hpts->p_cur_slot != wheel_slot) {
737                 /* The pacer is a bit late */
738                 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
739         } else {
740                 /* The pacer is right on time, now == pacers start time */
741                 pacer_to_now = 0;
742         }
743         /*
744          * To get the number left we can insert into we simply
745          * subract the distance the pacer has to run from how
746          * many slots there are.
747          */
748         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
749         /*
750          * Now how many of those we will eat due to the pacer's
751          * time (p_cur_slot) of start being behind the
752          * real time (wheel_slot)?
753          */
754         if (avail_on_wheel <= pacer_to_now) {
755                 /*
756                  * Wheel wrap, we can't fit on the wheel, that
757                  * is unusual the system must be way overloaded!
758                  * Insert into the assured slot, and return special
759                  * "0".
760                  */
761                 counter_u64_add(combined_wheel_wrap, 1);
762                 *target_slot = hpts->p_nxt_slot;
763                 return (0);
764         } else {
765                 /*
766                  * We know how many slots are open
767                  * on the wheel (the reverse of what
768                  * is left to run. Take away the time
769                  * the pacer started to now (wheel_slot)
770                  * and that tells you how many slots are
771                  * open that can be inserted into that won't
772                  * be touched by the pacer until later.
773                  */
774                 return (avail_on_wheel - pacer_to_now);
775         }
776 }
777
778
779 #ifdef INVARIANTS
780 static void
781 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
782 {
783         /*
784          * Sanity checks for the pacer with invariants
785          * on insert.
786          */
787         KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
788                 ("hpts:%p inp:%p slot:%d > max",
789                  hpts, inp, inp_hptsslot));
790         if ((hpts->p_hpts_active) &&
791             (hpts->p_wheel_complete == 0)) {
792                 /*
793                  * If the pacer is processing a arc
794                  * of the wheel, we need to make
795                  * sure we are not inserting within
796                  * that arc.
797                  */
798                 int distance, yet_to_run;
799
800                 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
801                 if (hpts->p_runningslot != hpts->p_cur_slot)
802                         yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
803                 else
804                         yet_to_run = 0; /* processing last slot */
805                 KASSERT(yet_to_run <= distance,
806                         ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
807                          hpts, inp, inp_hptsslot,
808                          distance, yet_to_run,
809                          hpts->p_runningslot, hpts->p_cur_slot));
810         }
811 }
812 #endif
813
814 uint32_t
815 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
816 {
817         struct tcp_hpts_entry *hpts;
818         struct timeval tv;
819         uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
820         int32_t wheel_slot, maxslots;
821         int cpu;
822         bool need_wakeup = false;
823
824         INP_WLOCK_ASSERT(inp);
825         MPASS(!tcp_in_hpts(inp));
826         MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
827
828         /*
829          * We now return the next-slot the hpts will be on, beyond its
830          * current run (if up) or where it was when it stopped if it is
831          * sleeping.
832          */
833         hpts = tcp_hpts_lock(inp);
834         microuptime(&tv);
835         if (diag) {
836                 memset(diag, 0, sizeof(struct hpts_diag));
837                 diag->p_hpts_active = hpts->p_hpts_active;
838                 diag->p_prev_slot = hpts->p_prev_slot;
839                 diag->p_runningslot = hpts->p_runningslot;
840                 diag->p_nxt_slot = hpts->p_nxt_slot;
841                 diag->p_cur_slot = hpts->p_cur_slot;
842                 diag->p_curtick = hpts->p_curtick;
843                 diag->p_lasttick = hpts->p_lasttick;
844                 diag->slot_req = slot;
845                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
846                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
847         }
848         if (slot == 0) {
849                 /* Ok we need to set it on the hpts in the current slot */
850                 inp->inp_hpts_request = 0;
851                 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
852                         /*
853                          * A sleeping hpts we want in next slot to run
854                          * note that in this state p_prev_slot == p_cur_slot
855                          */
856                         inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
857                         if ((hpts->p_on_min_sleep == 0) &&
858                             (hpts->p_hpts_active == 0))
859                                 need_wakeup = true;
860                 } else
861                         inp->inp_hptsslot = hpts->p_runningslot;
862                 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
863                         inp_hpts_insert(inp, hpts);
864                 if (need_wakeup) {
865                         /*
866                          * Activate the hpts if it is sleeping and its
867                          * timeout is not 1.
868                          */
869                         hpts->p_direct_wake = 1;
870                         tcp_wakehpts(hpts);
871                 }
872                 slot_on = hpts->p_nxt_slot;
873                 HPTS_UNLOCK(hpts);
874
875                 return (slot_on);
876         }
877         /* Get the current time relative to the wheel */
878         wheel_cts = tcp_tv_to_hptstick(&tv);
879         /* Map it onto the wheel */
880         wheel_slot = tick_to_wheel(wheel_cts);
881         /* Now what's the max we can place it at? */
882         maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
883         if (diag) {
884                 diag->wheel_slot = wheel_slot;
885                 diag->maxslots = maxslots;
886                 diag->wheel_cts = wheel_cts;
887         }
888         if (maxslots == 0) {
889                 /* The pacer is in a wheel wrap behind, yikes! */
890                 if (slot > 1) {
891                         /*
892                          * Reduce by 1 to prevent a forever loop in
893                          * case something else is wrong. Note this
894                          * probably does not hurt because the pacer
895                          * if its true is so far behind we will be
896                          * > 1second late calling anyway.
897                          */
898                         slot--;
899                 }
900                 inp->inp_hptsslot = last_slot;
901                 inp->inp_hpts_request = slot;
902         } else  if (maxslots >= slot) {
903                 /* It all fits on the wheel */
904                 inp->inp_hpts_request = 0;
905                 inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
906         } else {
907                 /* It does not fit */
908                 inp->inp_hpts_request = slot - maxslots;
909                 inp->inp_hptsslot = last_slot;
910         }
911         if (diag) {
912                 diag->slot_remaining = inp->inp_hpts_request;
913                 diag->inp_hptsslot = inp->inp_hptsslot;
914         }
915 #ifdef INVARIANTS
916         check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
917 #endif
918         if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
919                 inp_hpts_insert(inp, hpts);
920         if ((hpts->p_hpts_active == 0) &&
921             (inp->inp_hpts_request == 0) &&
922             (hpts->p_on_min_sleep == 0)) {
923                 /*
924                  * The hpts is sleeping and NOT on a minimum
925                  * sleep time, we need to figure out where
926                  * it will wake up at and if we need to reschedule
927                  * its time-out.
928                  */
929                 uint32_t have_slept, yet_to_sleep;
930
931                 /* Now do we need to restart the hpts's timer? */
932                 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
933                 if (have_slept < hpts->p_hpts_sleep_time)
934                         yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
935                 else {
936                         /* We are over-due */
937                         yet_to_sleep = 0;
938                         need_wakeup = 1;
939                 }
940                 if (diag) {
941                         diag->have_slept = have_slept;
942                         diag->yet_to_sleep = yet_to_sleep;
943                 }
944                 if (yet_to_sleep &&
945                     (yet_to_sleep > slot)) {
946                         /*
947                          * We need to reschedule the hpts's time-out.
948                          */
949                         hpts->p_hpts_sleep_time = slot;
950                         need_new_to = slot * HPTS_TICKS_PER_SLOT;
951                 }
952         }
953         /*
954          * Now how far is the hpts sleeping to? if active is 1, its
955          * up and ticking we do nothing, otherwise we may need to
956          * reschedule its callout if need_new_to is set from above.
957          */
958         if (need_wakeup) {
959                 hpts->p_direct_wake = 1;
960                 tcp_wakehpts(hpts);
961                 if (diag) {
962                         diag->need_new_to = 0;
963                         diag->co_ret = 0xffff0000;
964                 }
965         } else if (need_new_to) {
966                 int32_t co_ret;
967                 struct timeval tv;
968                 sbintime_t sb;
969
970                 tv.tv_sec = 0;
971                 tv.tv_usec = 0;
972                 while (need_new_to > HPTS_USEC_IN_SEC) {
973                         tv.tv_sec++;
974                         need_new_to -= HPTS_USEC_IN_SEC;
975                 }
976                 tv.tv_usec = need_new_to;
977                 sb = tvtosbt(tv);
978                 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
979                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
980                                               hpts_timeout_swi, hpts, cpu,
981                                               (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
982                 if (diag) {
983                         diag->need_new_to = need_new_to;
984                         diag->co_ret = co_ret;
985                 }
986         }
987         slot_on = hpts->p_nxt_slot;
988         HPTS_UNLOCK(hpts);
989
990         return (slot_on);
991 }
992
993 uint16_t
994 hpts_random_cpu(struct inpcb *inp){
995         /*
996          * No flow type set distribute the load randomly.
997          */
998         uint16_t cpuid;
999         uint32_t ran;
1000
1001         /*
1002          * Shortcut if it is already set. XXXGL: does it happen?
1003          */
1004         if (inp->inp_hpts_cpu_set) {
1005                 return (inp->inp_hpts_cpu);
1006         }
1007         /* Nothing set use a random number */
1008         ran = arc4random();
1009         cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
1010         return (cpuid);
1011 }
1012
1013 static uint16_t
1014 hpts_cpuid(struct inpcb *inp, int *failed)
1015 {
1016         u_int cpuid;
1017 #if !defined(RSS) && defined(NUMA)
1018         struct hpts_domain_info *di;
1019 #endif
1020
1021         *failed = 0;
1022         if (inp->inp_hpts_cpu_set) {
1023                 return (inp->inp_hpts_cpu);
1024         }
1025         /*
1026          * If we are using the irq cpu set by LRO or
1027          * the driver then it overrides all other domains.
1028          */
1029         if (tcp_use_irq_cpu) {
1030                 if (inp->inp_irq_cpu_set == 0) {
1031                         *failed = 1;
1032                         return(0);
1033                 }
1034                 return(inp->inp_irq_cpu);
1035         }
1036         /* If one is set the other must be the same */
1037 #ifdef RSS
1038         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1039         if (cpuid == NETISR_CPUID_NONE)
1040                 return (hpts_random_cpu(inp));
1041         else
1042                 return (cpuid);
1043 #else
1044         /*
1045          * We don't have a flowid -> cpuid mapping, so cheat and just map
1046          * unknown cpuids to curcpu.  Not the best, but apparently better
1047          * than defaulting to swi 0.
1048          */
1049         if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1050                 counter_u64_add(cpu_uses_random, 1);
1051                 return (hpts_random_cpu(inp));
1052         }
1053         /*
1054          * Hash to a thread based on the flowid.  If we are using numa,
1055          * then restrict the hash to the numa domain where the inp lives.
1056          */
1057 #ifdef NUMA
1058         if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1059                 di = &hpts_domains[inp->inp_numa_domain];
1060                 cpuid = di->cpu[inp->inp_flowid % di->count];
1061         } else
1062 #endif
1063                 cpuid = inp->inp_flowid % mp_ncpus;
1064         counter_u64_add(cpu_uses_flowid, 1);
1065         return (cpuid);
1066 #endif
1067 }
1068
1069 static void
1070 tcp_drop_in_pkts(struct tcpcb *tp)
1071 {
1072         struct mbuf *m, *n;
1073
1074         m = tp->t_in_pkt;
1075         if (m)
1076                 n = m->m_nextpkt;
1077         else
1078                 n = NULL;
1079         tp->t_in_pkt = NULL;
1080         while (m) {
1081                 m_freem(m);
1082                 m = n;
1083                 if (m)
1084                         n = m->m_nextpkt;
1085         }
1086 }
1087
1088 static void
1089 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1090 {
1091         uint32_t t = 0, i, fnd = 0;
1092
1093         if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1094                 /*
1095                  * Find next slot that is occupied and use that to
1096                  * be the sleep time.
1097                  */
1098                 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1099                         if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1100                                 fnd = 1;
1101                                 break;
1102                         }
1103                         t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1104                 }
1105                 KASSERT(fnd != 0, ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1106                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1107         } else {
1108                 /* No one on the wheel sleep for all but 400 slots or sleep max  */
1109                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1110         }
1111 }
1112
1113 static int32_t
1114 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1115 {
1116         struct tcpcb *tp;
1117         struct inpcb *inp;
1118         struct timeval tv;
1119         uint64_t total_slots_processed = 0;
1120         int32_t slots_to_run, i, error;
1121         int32_t paced_cnt = 0;
1122         int32_t loop_cnt = 0;
1123         int32_t did_prefetch = 0;
1124         int32_t prefetch_ninp = 0;
1125         int32_t prefetch_tp = 0;
1126         int32_t wrap_loop_cnt = 0;
1127         int32_t slot_pos_of_endpoint = 0;
1128         int32_t orig_exit_slot;
1129         int8_t completed_measure = 0, seen_endpoint = 0;
1130
1131         HPTS_MTX_ASSERT(hpts);
1132         NET_EPOCH_ASSERT();
1133         /* record previous info for any logging */
1134         hpts->saved_lasttick = hpts->p_lasttick;
1135         hpts->saved_curtick = hpts->p_curtick;
1136         hpts->saved_curslot = hpts->p_cur_slot;
1137         hpts->saved_prev_slot = hpts->p_prev_slot;
1138
1139         hpts->p_lasttick = hpts->p_curtick;
1140         hpts->p_curtick = tcp_gethptstick(&tv);
1141         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1142         orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1143         if ((hpts->p_on_queue_cnt == 0) ||
1144             (hpts->p_lasttick == hpts->p_curtick)) {
1145                 /*
1146                  * No time has yet passed,
1147                  * or nothing to do.
1148                  */
1149                 hpts->p_prev_slot = hpts->p_cur_slot;
1150                 hpts->p_lasttick = hpts->p_curtick;
1151                 goto no_run;
1152         }
1153 again:
1154         hpts->p_wheel_complete = 0;
1155         HPTS_MTX_ASSERT(hpts);
1156         slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1157         if (((hpts->p_curtick - hpts->p_lasttick) >
1158              ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1159             (hpts->p_on_queue_cnt != 0)) {
1160                 /*
1161                  * Wheel wrap is occuring, basically we
1162                  * are behind and the distance between
1163                  * run's has spread so much it has exceeded
1164                  * the time on the wheel (1.024 seconds). This
1165                  * is ugly and should NOT be happening. We
1166                  * need to run the entire wheel. We last processed
1167                  * p_prev_slot, so that needs to be the last slot
1168                  * we run. The next slot after that should be our
1169                  * reserved first slot for new, and then starts
1170                  * the running postion. Now the problem is the
1171                  * reserved "not to yet" place does not exist
1172                  * and there may be inp's in there that need
1173                  * running. We can merge those into the
1174                  * first slot at the head.
1175                  */
1176                 wrap_loop_cnt++;
1177                 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1178                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1179                 /*
1180                  * Adjust p_cur_slot to be where we are starting from
1181                  * hopefully we will catch up (fat chance if something
1182                  * is broken this bad :( )
1183                  */
1184                 hpts->p_cur_slot = hpts->p_prev_slot;
1185                 /*
1186                  * The next slot has guys to run too, and that would
1187                  * be where we would normally start, lets move them into
1188                  * the next slot (p_prev_slot + 2) so that we will
1189                  * run them, the extra 10usecs of late (by being
1190                  * put behind) does not really matter in this situation.
1191                  */
1192                 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1193                     inp_hpts) {
1194                         MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
1195                         MPASS(inp->inp_hpts_gencnt ==
1196                             hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1197                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1198
1199                         /*
1200                          * Update gencnt and nextslot accordingly to match
1201                          * the new location. This is safe since it takes both
1202                          * the INP lock and the pacer mutex to change the
1203                          * inp_hptsslot and inp_hpts_gencnt.
1204                          */
1205                         inp->inp_hpts_gencnt =
1206                             hpts->p_hptss[hpts->p_runningslot].gencnt;
1207                         inp->inp_hptsslot = hpts->p_runningslot;
1208                 }
1209                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1210                     &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
1211                 hpts->p_hptss[hpts->p_runningslot].count +=
1212                     hpts->p_hptss[hpts->p_nxt_slot].count;
1213                 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1214                 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1215                 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1216                 counter_u64_add(wheel_wrap, 1);
1217         } else {
1218                 /*
1219                  * Nxt slot is always one after p_runningslot though
1220                  * its not used usually unless we are doing wheel wrap.
1221                  */
1222                 hpts->p_nxt_slot = hpts->p_prev_slot;
1223                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1224         }
1225         if (hpts->p_on_queue_cnt == 0) {
1226                 goto no_one;
1227         }
1228         for (i = 0; i < slots_to_run; i++) {
1229                 struct inpcb *inp, *ninp;
1230                 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
1231                 struct hptsh *hptsh;
1232                 uint32_t runningslot;
1233
1234                 /*
1235                  * Calculate our delay, if there are no extra ticks there
1236                  * was not any (i.e. if slots_to_run == 1, no delay).
1237                  */
1238                 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1239                     HPTS_TICKS_PER_SLOT;
1240
1241                 runningslot = hpts->p_runningslot;
1242                 hptsh = &hpts->p_hptss[runningslot];
1243                 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
1244                 hpts->p_on_queue_cnt -= hptsh->count;
1245                 hptsh->count = 0;
1246                 hptsh->gencnt++;
1247
1248                 HPTS_UNLOCK(hpts);
1249
1250                 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
1251                         bool set_cpu;
1252
1253                         if (ninp != NULL) {
1254                                 /* We prefetch the next inp if possible */
1255                                 kern_prefetch(ninp, &prefetch_ninp);
1256                                 prefetch_ninp = 1;
1257                         }
1258
1259                         /* For debugging */
1260                         if (seen_endpoint == 0) {
1261                                 seen_endpoint = 1;
1262                                 orig_exit_slot = slot_pos_of_endpoint =
1263                                     runningslot;
1264                         } else if (completed_measure == 0) {
1265                                 /* Record the new position */
1266                                 orig_exit_slot = runningslot;
1267                         }
1268                         total_slots_processed++;
1269                         paced_cnt++;
1270
1271                         INP_WLOCK(inp);
1272                         if (inp->inp_hpts_cpu_set == 0) {
1273                                 set_cpu = true;
1274                         } else {
1275                                 set_cpu = false;
1276                         }
1277
1278                         if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
1279                                 if (inp->inp_hptsslot == -1) {
1280                                         inp->inp_in_hpts = IHPTS_NONE;
1281                                         if (in_pcbrele_wlocked(inp) == false)
1282                                                 INP_WUNLOCK(inp);
1283                                 } else {
1284                                         HPTS_LOCK(hpts);
1285                                         inp_hpts_insert(inp, hpts);
1286                                         HPTS_UNLOCK(hpts);
1287                                         INP_WUNLOCK(inp);
1288                                 }
1289                                 continue;
1290                         }
1291
1292                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1293                         MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
1294                         KASSERT(runningslot == inp->inp_hptsslot,
1295                                 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1296                                  hpts, inp, runningslot, inp->inp_hptsslot));
1297
1298                         if (inp->inp_hpts_request) {
1299                                 /*
1300                                  * This guy is deferred out further in time
1301                                  * then our wheel had available on it.
1302                                  * Push him back on the wheel or run it
1303                                  * depending.
1304                                  */
1305                                 uint32_t maxslots, last_slot, remaining_slots;
1306
1307                                 remaining_slots = slots_to_run - (i + 1);
1308                                 if (inp->inp_hpts_request > remaining_slots) {
1309                                         HPTS_LOCK(hpts);
1310                                         /*
1311                                          * How far out can we go?
1312                                          */
1313                                         maxslots = max_slots_available(hpts,
1314                                             hpts->p_cur_slot, &last_slot);
1315                                         if (maxslots >= inp->inp_hpts_request) {
1316                                                 /* We can place it finally to
1317                                                  * be processed.  */
1318                                                 inp->inp_hptsslot = hpts_slot(
1319                                                     hpts->p_runningslot,
1320                                                     inp->inp_hpts_request);
1321                                                 inp->inp_hpts_request = 0;
1322                                         } else {
1323                                                 /* Work off some more time */
1324                                                 inp->inp_hptsslot = last_slot;
1325                                                 inp->inp_hpts_request -=
1326                                                     maxslots;
1327                                         }
1328                                         inp_hpts_insert(inp, hpts);
1329                                         HPTS_UNLOCK(hpts);
1330                                         INP_WUNLOCK(inp);
1331                                         continue;
1332                                 }
1333                                 inp->inp_hpts_request = 0;
1334                                 /* Fall through we will so do it now */
1335                         }
1336
1337                         inp_hpts_release(inp);
1338                         tp = intotcpcb(inp);
1339                         MPASS(tp);
1340                         if (set_cpu) {
1341                                 /*
1342                                  * Setup so the next time we will move to
1343                                  * the right CPU. This should be a rare
1344                                  * event. It will sometimes happens when we
1345                                  * are the client side (usually not the
1346                                  * server). Somehow tcp_output() gets called
1347                                  * before the tcp_do_segment() sets the
1348                                  * intial state. This means the r_cpu and
1349                                  * r_hpts_cpu is 0. We get on the hpts, and
1350                                  * then tcp_input() gets called setting up
1351                                  * the r_cpu to the correct value. The hpts
1352                                  * goes off and sees the mis-match. We
1353                                  * simply correct it here and the CPU will
1354                                  * switch to the new hpts nextime the tcb
1355                                  * gets added to the the hpts (not this one)
1356                                  * :-)
1357                                  */
1358                                 tcp_set_hpts(inp);
1359                         }
1360                         CURVNET_SET(inp->inp_vnet);
1361                         /* Lets do any logging that we might want to */
1362                         if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1363                                 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1364                         }
1365
1366                         if (tp->t_fb_ptr != NULL) {
1367                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1368                                 did_prefetch = 1;
1369                         }
1370                         if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1371                                 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1372                                 if (error) {
1373                                         /* The input killed the connection */
1374                                         goto skip_pacing;
1375                                 }
1376                         }
1377                         inp->inp_hpts_calls = 1;
1378                         error = tcp_output(tp);
1379                         if (error < 0)
1380                                 goto skip_pacing;
1381                         inp->inp_hpts_calls = 0;
1382                         if (ninp && ninp->inp_ppcb) {
1383                                 /*
1384                                  * If we have a nxt inp, see if we can
1385                                  * prefetch its ppcb. Note this may seem
1386                                  * "risky" since we have no locks (other
1387                                  * than the previous inp) and there no
1388                                  * assurance that ninp was not pulled while
1389                                  * we were processing inp and freed. If this
1390                                  * occured it could mean that either:
1391                                  *
1392                                  * a) Its NULL (which is fine we won't go
1393                                  * here) <or> b) Its valid (which is cool we
1394                                  * will prefetch it) <or> c) The inp got
1395                                  * freed back to the slab which was
1396                                  * reallocated. Then the piece of memory was
1397                                  * re-used and something else (not an
1398                                  * address) is in inp_ppcb. If that occurs
1399                                  * we don't crash, but take a TLB shootdown
1400                                  * performance hit (same as if it was NULL
1401                                  * and we tried to pre-fetch it).
1402                                  *
1403                                  * Considering that the likelyhood of <c> is
1404                                  * quite rare we will take a risk on doing
1405                                  * this. If performance drops after testing
1406                                  * we can always take this out. NB: the
1407                                  * kern_prefetch on amd64 actually has
1408                                  * protection against a bad address now via
1409                                  * the DMAP_() tests. This will prevent the
1410                                  * TLB hit, and instead if <c> occurs just
1411                                  * cause us to load cache with a useless
1412                                  * address (to us).
1413                                  */
1414                                 kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1415                                 prefetch_tp = 1;
1416                         }
1417                         INP_WUNLOCK(inp);
1418                 skip_pacing:
1419                         CURVNET_RESTORE();
1420                 }
1421                 if (seen_endpoint) {
1422                         /*
1423                          * We now have a accurate distance between
1424                          * slot_pos_of_endpoint <-> orig_exit_slot
1425                          * to tell us how late we were, orig_exit_slot
1426                          * is where we calculated the end of our cycle to
1427                          * be when we first entered.
1428                          */
1429                         completed_measure = 1;
1430                 }
1431                 HPTS_LOCK(hpts);
1432                 hpts->p_runningslot++;
1433                 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1434                         hpts->p_runningslot = 0;
1435                 }
1436         }
1437 no_one:
1438         HPTS_MTX_ASSERT(hpts);
1439         hpts->p_delayed_by = 0;
1440         /*
1441          * Check to see if we took an excess amount of time and need to run
1442          * more ticks (if we did not hit eno-bufs).
1443          */
1444         hpts->p_prev_slot = hpts->p_cur_slot;
1445         hpts->p_lasttick = hpts->p_curtick;
1446         if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1447                 /*
1448                  * Something is serious slow we have
1449                  * looped through processing the wheel
1450                  * and by the time we cleared the
1451                  * needs to run max_pacer_loops time
1452                  * we still needed to run. That means
1453                  * the system is hopelessly behind and
1454                  * can never catch up :(
1455                  *
1456                  * We will just lie to this thread
1457                  * and let it thing p_curtick is
1458                  * correct. When it next awakens
1459                  * it will find itself further behind.
1460                  */
1461                 if (from_callout)
1462                         counter_u64_add(hpts_hopelessly_behind, 1);
1463                 goto no_run;
1464         }
1465         hpts->p_curtick = tcp_gethptstick(&tv);
1466         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1467         if (seen_endpoint == 0) {
1468                 /* We saw no endpoint but we may be looping */
1469                 orig_exit_slot = hpts->p_cur_slot;
1470         }
1471         if ((wrap_loop_cnt < 2) &&
1472             (hpts->p_lasttick != hpts->p_curtick)) {
1473                 counter_u64_add(hpts_loops, 1);
1474                 loop_cnt++;
1475                 goto again;
1476         }
1477 no_run:
1478         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1479         /*
1480          * Set flag to tell that we are done for
1481          * any slot input that happens during
1482          * input.
1483          */
1484         hpts->p_wheel_complete = 1;
1485         /*
1486          * Now did we spend too long running input and need to run more ticks?
1487          * Note that if wrap_loop_cnt < 2 then we should have the conditions
1488          * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1489          * is greater than 2, then the condtion most likely are *not* true.
1490          * Also if we are called not from the callout, we don't run the wheel
1491          * multiple times so the slots may not align either.
1492          */
1493         KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1494                  (wrap_loop_cnt >= 2) || (from_callout == 0)),
1495                 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1496                  hpts->p_prev_slot, hpts->p_cur_slot));
1497         KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1498                  || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1499                 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1500                  hpts->p_lasttick, hpts->p_curtick));
1501         if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1502                 hpts->p_curtick = tcp_gethptstick(&tv);
1503                 counter_u64_add(hpts_loops, 1);
1504                 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1505                 goto again;
1506         }
1507
1508         if (from_callout){
1509                 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1510         }
1511         if (seen_endpoint)
1512                 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1513         else
1514                 return (0);
1515 }
1516
1517 void
1518 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1519 {
1520         struct tcp_hpts_entry *hpts;
1521         int failed;
1522
1523         INP_WLOCK_ASSERT(inp);
1524         hpts = tcp_hpts_lock(inp);
1525         if ((inp->inp_in_hpts == 0) &&
1526             (inp->inp_hpts_cpu_set == 0)) {
1527                 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1528                 if (failed == 0)
1529                         inp->inp_hpts_cpu_set = 1;
1530         }
1531         mtx_unlock(&hpts->p_mtx);
1532 }
1533
1534 static void
1535 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1536 {
1537         int ticks_ran;
1538
1539         if (hpts->p_hpts_active) {
1540                 /* Already active */
1541                 return;
1542         }
1543         if (mtx_trylock(&hpts->p_mtx) == 0) {
1544                 /* Someone else got the lock */
1545                 return;
1546         }
1547         if (hpts->p_hpts_active)
1548                 goto out_with_mtx;
1549         hpts->syscall_cnt++;
1550         counter_u64_add(hpts_direct_call, 1);
1551         hpts->p_hpts_active = 1;
1552         ticks_ran = tcp_hptsi(hpts, 0);
1553         /* We may want to adjust the sleep values here */
1554         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1555                 if (ticks_ran > ticks_indicate_less_sleep) {
1556                         struct timeval tv;
1557                         sbintime_t sb;
1558                         int cpu;
1559
1560                         hpts->p_mysleep.tv_usec /= 2;
1561                         if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1562                                 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1563                         /* Reschedule with new to value */
1564                         tcp_hpts_set_max_sleep(hpts, 0);
1565                         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1566                         /* Validate its in the right ranges */
1567                         if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1568                                 hpts->overidden_sleep = tv.tv_usec;
1569                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1570                         } else if (tv.tv_usec > dynamic_max_sleep) {
1571                                 /* Lets not let sleep get above this value */
1572                                 hpts->overidden_sleep = tv.tv_usec;
1573                                 tv.tv_usec = dynamic_max_sleep;
1574                         }
1575                         /*
1576                          * In this mode the timer is a backstop to
1577                          * all the userret/lro_flushes so we use
1578                          * the dynamic value and set the on_min_sleep
1579                          * flag so we will not be awoken.
1580                          */
1581                         sb = tvtosbt(tv);
1582                         cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
1583                         /* Store off to make visible the actual sleep time */
1584                         hpts->sleeping = tv.tv_usec;
1585                         callout_reset_sbt_on(&hpts->co, sb, 0,
1586                                              hpts_timeout_swi, hpts, cpu,
1587                                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1588                 } else if (ticks_ran < ticks_indicate_more_sleep) {
1589                         /* For the further sleep, don't reschedule  hpts */
1590                         hpts->p_mysleep.tv_usec *= 2;
1591                         if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1592                                 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1593                 }
1594                 hpts->p_on_min_sleep = 1;
1595         }
1596         hpts->p_hpts_active = 0;
1597 out_with_mtx:
1598         HPTS_MTX_ASSERT(hpts);
1599         mtx_unlock(&hpts->p_mtx);
1600 }
1601
1602 static struct tcp_hpts_entry *
1603 tcp_choose_hpts_to_run()
1604 {
1605         int i, oldest_idx;
1606         uint32_t cts, time_since_ran, calc;
1607
1608         if ((hpts_uses_oldest == 0) ||
1609             ((hpts_uses_oldest > 1) &&
1610              (tcp_pace.rp_ent[(tcp_pace.rp_num_hptss-1)]->p_on_queue_cnt >= hpts_uses_oldest))) {
1611                 /*
1612                  * We have either disabled the feature (0), or
1613                  * we have crossed over the oldest threshold on the
1614                  * last hpts. We use the last one for simplification
1615                  * since we don't want to use the first one (it may
1616                  * have starting connections that have not settled
1617                  * on the cpu yet).
1618                  */
1619                 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1620         }
1621         /* Lets find the oldest hpts to attempt to run */
1622         cts = tcp_get_usecs(NULL);
1623         time_since_ran = 0;
1624         oldest_idx = -1;
1625         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1626                 if (TSTMP_GT(cts, cts_last_ran[i]))
1627                         calc = cts - cts_last_ran[i];
1628                 else
1629                         calc = 0;
1630                 if (calc > time_since_ran) {
1631                         oldest_idx = i;
1632                         time_since_ran = calc;
1633                 }
1634         }
1635         if (oldest_idx >= 0)
1636                 return(tcp_pace.rp_ent[oldest_idx]);
1637         else
1638                 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1639 }
1640
1641
1642 void
1643 tcp_run_hpts(void)
1644 {
1645         static struct tcp_hpts_entry *hpts;
1646         struct epoch_tracker et;
1647
1648         NET_EPOCH_ENTER(et);
1649         hpts = tcp_choose_hpts_to_run();
1650         __tcp_run_hpts(hpts);
1651         NET_EPOCH_EXIT(et);
1652 }
1653
1654
1655 static void
1656 tcp_hpts_thread(void *ctx)
1657 {
1658         struct tcp_hpts_entry *hpts;
1659         struct epoch_tracker et;
1660         struct timeval tv;
1661         sbintime_t sb;
1662         int cpu, ticks_ran;
1663
1664         hpts = (struct tcp_hpts_entry *)ctx;
1665         mtx_lock(&hpts->p_mtx);
1666         if (hpts->p_direct_wake) {
1667                 /* Signaled by input or output with low occupancy count. */
1668                 callout_stop(&hpts->co);
1669                 counter_u64_add(hpts_direct_awakening, 1);
1670         } else {
1671                 /* Timed out, the normal case. */
1672                 counter_u64_add(hpts_wake_timeout, 1);
1673                 if (callout_pending(&hpts->co) ||
1674                     !callout_active(&hpts->co)) {
1675                         mtx_unlock(&hpts->p_mtx);
1676                         return;
1677                 }
1678         }
1679         callout_deactivate(&hpts->co);
1680         hpts->p_hpts_wake_scheduled = 0;
1681         NET_EPOCH_ENTER(et);
1682         if (hpts->p_hpts_active) {
1683                 /*
1684                  * We are active already. This means that a syscall
1685                  * trap or LRO is running in behalf of hpts. In that case
1686                  * we need to double our timeout since there seems to be
1687                  * enough activity in the system that we don't need to
1688                  * run as often (if we were not directly woken).
1689                  */
1690                 if (hpts->p_direct_wake == 0) {
1691                         counter_u64_add(hpts_back_tosleep, 1);
1692                         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1693                                 hpts->p_mysleep.tv_usec *= 2;
1694                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1695                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1696                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1697                                 hpts->p_on_min_sleep = 1;
1698                         } else {
1699                                 /*
1700                                  * Here we have low count on the wheel, but
1701                                  * somehow we still collided with one of the
1702                                  * connections. Lets go back to sleep for a
1703                                  * min sleep time, but clear the flag so we
1704                                  * can be awoken by insert.
1705                                  */
1706                                 hpts->p_on_min_sleep = 0;
1707                                 tv.tv_usec = tcp_min_hptsi_time;
1708                         }
1709                 } else {
1710                         /*
1711                          * Directly woken most likely to reset the
1712                          * callout time.
1713                          */
1714                         tv.tv_sec = 0;
1715                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1716                 }
1717                 goto back_to_sleep;
1718         }
1719         hpts->sleeping = 0;
1720         hpts->p_hpts_active = 1;
1721         ticks_ran = tcp_hptsi(hpts, 1);
1722         tv.tv_sec = 0;
1723         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1724         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1725                 if(hpts->p_direct_wake == 0) {
1726                         /*
1727                          * Only adjust sleep time if we were
1728                          * called from the callout i.e. direct_wake == 0.
1729                          */
1730                         if (ticks_ran < ticks_indicate_more_sleep) {
1731                                 hpts->p_mysleep.tv_usec *= 2;
1732                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1733                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1734                         } else if (ticks_ran > ticks_indicate_less_sleep) {
1735                                 hpts->p_mysleep.tv_usec /= 2;
1736                                 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1737                                         hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1738                         }
1739                 }
1740                 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1741                         hpts->overidden_sleep = tv.tv_usec;
1742                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1743                 } else if (tv.tv_usec > dynamic_max_sleep) {
1744                         /* Lets not let sleep get above this value */
1745                         hpts->overidden_sleep = tv.tv_usec;
1746                         tv.tv_usec = dynamic_max_sleep;
1747                 }
1748                 /*
1749                  * In this mode the timer is a backstop to
1750                  * all the userret/lro_flushes so we use
1751                  * the dynamic value and set the on_min_sleep
1752                  * flag so we will not be awoken.
1753                  */
1754                 hpts->p_on_min_sleep = 1;
1755         } else if (hpts->p_on_queue_cnt == 0)  {
1756                 /*
1757                  * No one on the wheel, please wake us up
1758                  * if you insert on the wheel.
1759                  */
1760                 hpts->p_on_min_sleep = 0;
1761                 hpts->overidden_sleep = 0;
1762         } else {
1763                 /*
1764                  * We hit here when we have a low number of
1765                  * clients on the wheel (our else clause).
1766                  * We may need to go on min sleep, if we set
1767                  * the flag we will not be awoken if someone
1768                  * is inserted ahead of us. Clearing the flag
1769                  * means we can be awoken. This is "old mode"
1770                  * where the timer is what runs hpts mainly.
1771                  */
1772                 if (tv.tv_usec < tcp_min_hptsi_time) {
1773                         /*
1774                          * Yes on min sleep, which means
1775                          * we cannot be awoken.
1776                          */
1777                         hpts->overidden_sleep = tv.tv_usec;
1778                         tv.tv_usec = tcp_min_hptsi_time;
1779                         hpts->p_on_min_sleep = 1;
1780                 } else {
1781                         /* Clear the min sleep flag */
1782                         hpts->overidden_sleep = 0;
1783                         hpts->p_on_min_sleep = 0;
1784                 }
1785         }
1786         HPTS_MTX_ASSERT(hpts);
1787         hpts->p_hpts_active = 0;
1788 back_to_sleep:
1789         hpts->p_direct_wake = 0;
1790         sb = tvtosbt(tv);
1791         cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
1792         /* Store off to make visible the actual sleep time */
1793         hpts->sleeping = tv.tv_usec;
1794         callout_reset_sbt_on(&hpts->co, sb, 0,
1795                              hpts_timeout_swi, hpts, cpu,
1796                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1797         NET_EPOCH_EXIT(et);
1798         mtx_unlock(&hpts->p_mtx);
1799 }
1800
1801 #undef  timersub
1802
1803 static void
1804 tcp_init_hptsi(void *st)
1805 {
1806         int32_t i, j, error, bound = 0, created = 0;
1807         size_t sz, asz;
1808         struct timeval tv;
1809         sbintime_t sb;
1810         struct tcp_hpts_entry *hpts;
1811         struct pcpu *pc;
1812         cpuset_t cs;
1813         char unit[16];
1814         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1815         int count, domain, cpu;
1816
1817         tcp_pace.rp_num_hptss = ncpus;
1818         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1819         hpts_loops = counter_u64_alloc(M_WAITOK);
1820         back_tosleep = counter_u64_alloc(M_WAITOK);
1821         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1822         wheel_wrap = counter_u64_alloc(M_WAITOK);
1823         hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1824         hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1825         hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1826         hpts_direct_call = counter_u64_alloc(M_WAITOK);
1827         cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1828         cpu_uses_random = counter_u64_alloc(M_WAITOK);
1829
1830
1831         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1832         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1833         sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1834         cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1835         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1836         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1837                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1838                     M_TCPHPTS, M_WAITOK | M_ZERO);
1839                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
1840                     M_TCPHPTS, M_WAITOK);
1841                 hpts = tcp_pace.rp_ent[i];
1842                 /*
1843                  * Init all the hpts structures that are not specifically
1844                  * zero'd by the allocations. Also lets attach them to the
1845                  * appropriate sysctl block as well.
1846                  */
1847                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1848                     "hpts", MTX_DEF | MTX_DUPOK);
1849                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1850                         TAILQ_INIT(&hpts->p_hptss[j].head);
1851                         hpts->p_hptss[j].count = 0;
1852                         hpts->p_hptss[j].gencnt = 0;
1853                 }
1854                 sysctl_ctx_init(&hpts->hpts_ctx);
1855                 sprintf(unit, "%d", i);
1856                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1857                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1858                     OID_AUTO,
1859                     unit,
1860                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1861                     "");
1862                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1863                     SYSCTL_CHILDREN(hpts->hpts_root),
1864                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
1865                     &hpts->p_on_queue_cnt, 0,
1866                     "Count TCB's awaiting output processing");
1867                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1868                     SYSCTL_CHILDREN(hpts->hpts_root),
1869                     OID_AUTO, "active", CTLFLAG_RD,
1870                     &hpts->p_hpts_active, 0,
1871                     "Is the hpts active");
1872                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1873                     SYSCTL_CHILDREN(hpts->hpts_root),
1874                     OID_AUTO, "curslot", CTLFLAG_RD,
1875                     &hpts->p_cur_slot, 0,
1876                     "What the current running pacers goal");
1877                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1878                     SYSCTL_CHILDREN(hpts->hpts_root),
1879                     OID_AUTO, "runtick", CTLFLAG_RD,
1880                     &hpts->p_runningslot, 0,
1881                     "What the running pacers current slot is");
1882                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1883                     SYSCTL_CHILDREN(hpts->hpts_root),
1884                     OID_AUTO, "curtick", CTLFLAG_RD,
1885                     &hpts->p_curtick, 0,
1886                     "What the running pacers last tick mapped to the wheel was");
1887                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1888                     SYSCTL_CHILDREN(hpts->hpts_root),
1889                     OID_AUTO, "lastran", CTLFLAG_RD,
1890                     &cts_last_ran[i], 0,
1891                     "The last usec tick that this hpts ran");
1892                 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1893                     SYSCTL_CHILDREN(hpts->hpts_root),
1894                     OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1895                     &hpts->p_mysleep.tv_usec,
1896                     "What the running pacers is using for p_mysleep.tv_usec");
1897                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1898                     SYSCTL_CHILDREN(hpts->hpts_root),
1899                     OID_AUTO, "now_sleeping", CTLFLAG_RD,
1900                     &hpts->sleeping, 0,
1901                     "What the running pacers is actually sleeping for");
1902                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1903                     SYSCTL_CHILDREN(hpts->hpts_root),
1904                     OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1905                     &hpts->syscall_cnt, 0,
1906                     "How many times we had syscalls on this hpts");
1907
1908                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1909                 hpts->p_num = i;
1910                 hpts->p_curtick = tcp_gethptstick(&tv);
1911                 cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1912                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1913                 hpts->p_cpu = 0xffff;
1914                 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1915                 callout_init(&hpts->co, 1);
1916         }
1917
1918         /* Don't try to bind to NUMA domains if we don't have any */
1919         if (vm_ndomains == 1 && tcp_bind_threads == 2)
1920                 tcp_bind_threads = 0;
1921
1922         /*
1923          * Now lets start ithreads to handle the hptss.
1924          */
1925         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1926                 hpts = tcp_pace.rp_ent[i];
1927                 hpts->p_cpu = i;
1928                 error = swi_add(&hpts->ie, "hpts",
1929                     tcp_hpts_thread, (void *)hpts,
1930                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1931                 KASSERT(error == 0,
1932                         ("Can't add hpts:%p i:%d err:%d",
1933                          hpts, i, error));
1934                 created++;
1935                 hpts->p_mysleep.tv_sec = 0;
1936                 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1937                 if (tcp_bind_threads == 1) {
1938                         if (intr_event_bind(hpts->ie, i) == 0)
1939                                 bound++;
1940                 } else if (tcp_bind_threads == 2) {
1941                         pc = pcpu_find(i);
1942                         domain = pc->pc_domain;
1943                         CPU_COPY(&cpuset_domain[domain], &cs);
1944                         if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
1945                             == 0) {
1946                                 bound++;
1947                                 count = hpts_domains[domain].count;
1948                                 hpts_domains[domain].cpu[count] = i;
1949                                 hpts_domains[domain].count++;
1950                         }
1951                 }
1952                 tv.tv_sec = 0;
1953                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1954                 hpts->sleeping = tv.tv_usec;
1955                 sb = tvtosbt(tv);
1956                 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
1957                 callout_reset_sbt_on(&hpts->co, sb, 0,
1958                                      hpts_timeout_swi, hpts, cpu,
1959                                      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1960         }
1961         /*
1962          * If we somehow have an empty domain, fall back to choosing
1963          * among all htps threads.
1964          */
1965         for (i = 0; i < vm_ndomains; i++) {
1966                 if (hpts_domains[i].count == 0) {
1967                         tcp_bind_threads = 0;
1968                         break;
1969                 }
1970         }
1971         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
1972             created, bound,
1973             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
1974 #ifdef INVARIANTS
1975         printf("HPTS is in INVARIANT mode!!\n");
1976 #endif
1977 }
1978
1979 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
1980 MODULE_VERSION(tcphpts, 1);