]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_hpts.c
ident(1): Normalizing date format
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_hpts.c
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33
34 /**
35  * Some notes about usage.
36  *
37  * The tcp_hpts system is designed to provide a high precision timer
38  * system for tcp. Its main purpose is to provide a mechanism for
39  * pacing packets out onto the wire. It can be used in two ways
40  * by a given TCP stack (and those two methods can be used simultaneously).
41  *
42  * First, and probably the main thing its used by Rack and BBR, it can
43  * be used to call tcp_output() of a transport stack at some time in the future.
44  * The normal way this is done is that tcp_output() of the stack schedules
45  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46  * slot is the time from now that the stack wants to be called but it
47  * must be converted to tcp_hpts's notion of slot. This is done with
48  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49  * call from the tcp_output() routine might look like:
50  *
51  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52  *
53  * The above would schedule tcp_ouput() to be called in 550 useconds.
54  * Note that if using this mechanism the stack will want to add near
55  * its top a check to prevent unwanted calls (from user land or the
56  * arrival of incoming ack's). So it would add something like:
57  *
58  * if (inp->inp_in_hpts)
59  *    return;
60  *
61  * to prevent output processing until the time alotted has gone by.
62  * Of course this is a bare bones example and the stack will probably
63  * have more consideration then just the above.
64  *
65  * Now the second function (actually two functions I guess :D)
66  * the tcp_hpts system provides is the  ability to either abort
67  * a connection (later) or process input on a connection.
68  * Why would you want to do this? To keep processor locality
69  * and or not have to worry about untangling any recursive
70  * locks. The input function now is hooked to the new LRO
71  * system as well.
72  *
73  * In order to use the input redirection function the
74  * tcp stack must define an input function for
75  * tfb_do_queued_segments(). This function understands
76  * how to dequeue a array of packets that were input and
77  * knows how to call the correct processing routine.
78  *
79  * Locking in this is important as well so most likely the
80  * stack will need to define the tfb_do_segment_nounlock()
81  * splitting tfb_do_segment() into two parts. The main processing
82  * part that does not unlock the INP and returns a value of 1 or 0.
83  * It returns 0 if all is well and the lock was not released. It
84  * returns 1 if we had to destroy the TCB (a reset received etc).
85  * The remains of tfb_do_segment() then become just a simple call
86  * to the tfb_do_segment_nounlock() function and check the return
87  * code and possibly unlock.
88  *
89  * The stack must also set the flag on the INP that it supports this
90  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
91  * this flag as well and will queue packets when it is set.
92  * There are other flags as well INP_MBUF_QUEUE_READY and
93  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
94  * that we are in the pacer for output so there is no
95  * need to wake up the hpts system to get immediate
96  * input. The second tells the LRO code that its okay
97  * if a SACK arrives you can still defer input and let
98  * the current hpts timer run (this is usually set when
99  * a rack timer is up so we know SACK's are happening
100  * on the connection already and don't want to wakeup yet).
101  *
102  * There is a common functions within the rack_bbr_common code
103  * version i.e. ctf_do_queued_segments(). This function
104  * knows how to take the input queue of packets from
105  * tp->t_in_pkts and process them digging out
106  * all the arguments, calling any bpf tap and
107  * calling into tfb_do_segment_nounlock(). The common
108  * function (ctf_do_queued_segments())  requires that
109  * you have defined the tfb_do_segment_nounlock() as
110  * described above.
111  *
112  * The second feature of the input side of hpts is the
113  * dropping of a connection. This is due to the way that
114  * locking may have occured on the INP_WLOCK. So if
115  * a stack wants to drop a connection it calls:
116  *
117  *     tcp_set_inp_to_drop(tp, ETIMEDOUT)
118  *
119  * To schedule the tcp_hpts system to call
120  *
121  *    tcp_drop(tp, drop_reason)
122  *
123  * at a future point. This is quite handy to prevent locking
124  * issues when dropping connections.
125  *
126  */
127
128 #include <sys/param.h>
129 #include <sys/bus.h>
130 #include <sys/interrupt.h>
131 #include <sys/module.h>
132 #include <sys/kernel.h>
133 #include <sys/hhook.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/proc.h>           /* for proc0 declaration */
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/sysctl.h>
140 #include <sys/systm.h>
141 #include <sys/refcount.h>
142 #include <sys/sched.h>
143 #include <sys/queue.h>
144 #include <sys/smp.h>
145 #include <sys/counter.h>
146 #include <sys/time.h>
147 #include <sys/kthread.h>
148 #include <sys/kern_prefetch.h>
149
150 #include <vm/uma.h>
151 #include <vm/vm.h>
152
153 #include <net/route.h>
154 #include <net/vnet.h>
155
156 #ifdef RSS
157 #include <net/netisr.h>
158 #include <net/rss_config.h>
159 #endif
160
161 #define TCPSTATES               /* for logging */
162
163 #include <netinet/in.h>
164 #include <netinet/in_kdtrace.h>
165 #include <netinet/in_pcb.h>
166 #include <netinet/ip.h>
167 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
168 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
169 #include <netinet/ip_var.h>
170 #include <netinet/ip6.h>
171 #include <netinet6/in6_pcb.h>
172 #include <netinet6/ip6_var.h>
173 #include <netinet/tcp.h>
174 #include <netinet/tcp_fsm.h>
175 #include <netinet/tcp_seq.h>
176 #include <netinet/tcp_timer.h>
177 #include <netinet/tcp_var.h>
178 #include <netinet/tcpip.h>
179 #include <netinet/cc/cc.h>
180 #include <netinet/tcp_hpts.h>
181 #include <netinet/tcp_log_buf.h>
182
183 #ifdef tcpdebug
184 #include <netinet/tcp_debug.h>
185 #endif                          /* tcpdebug */
186 #ifdef tcp_offload
187 #include <netinet/tcp_offload.h>
188 #endif
189
190 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
191 #ifdef RSS
192 static int tcp_bind_threads = 1;
193 #else
194 static int tcp_bind_threads = 2;
195 #endif
196 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
197
198 static struct tcp_hptsi tcp_pace;
199 static int hpts_does_tp_logging = 0;
200
201 static void tcp_wakehpts(struct tcp_hpts_entry *p);
202 static void tcp_wakeinput(struct tcp_hpts_entry *p);
203 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv);
204 static void tcp_hptsi(struct tcp_hpts_entry *hpts);
205 static void tcp_hpts_thread(void *ctx);
206 static void tcp_init_hptsi(void *st);
207
208 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
209 static int32_t tcp_hpts_callout_skip_swi = 0;
210
211 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
212     "TCP Hpts controls");
213
214 #define timersub(tvp, uvp, vvp)                                         \
215         do {                                                            \
216                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
217                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
218                 if ((vvp)->tv_usec < 0) {                               \
219                         (vvp)->tv_sec--;                                \
220                         (vvp)->tv_usec += 1000000;                      \
221                 }                                                       \
222         } while (0)
223
224 static int32_t tcp_hpts_precision = 120;
225
226 struct hpts_domain_info {
227         int count;
228         int cpu[MAXCPU];
229 };
230
231 struct hpts_domain_info hpts_domains[MAXMEMDOM];
232
233 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
234     &tcp_hpts_precision, 120,
235     "Value for PRE() precision of callout");
236
237 counter_u64_t hpts_hopelessly_behind;
238
239 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD,
240     &hpts_hopelessly_behind,
241     "Number of times hpts could not catch up and was behind hopelessly");
242
243 counter_u64_t hpts_loops;
244
245 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD,
246     &hpts_loops, "Number of times hpts had to loop to catch up");
247
248 counter_u64_t back_tosleep;
249
250 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
251     &back_tosleep, "Number of times hpts found no tcbs");
252
253 counter_u64_t combined_wheel_wrap;
254
255 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
256     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
257
258 counter_u64_t wheel_wrap;
259
260 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD,
261     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
262
263 static int32_t out_ts_percision = 0;
264
265 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW,
266     &out_ts_percision, 0,
267     "Do we use a percise timestamp for every output cts");
268 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
269     &hpts_does_tp_logging, 0,
270     "Do we add to any tp that has logging on pacer logs");
271
272 static int32_t max_pacer_loops = 10;
273 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
274     &max_pacer_loops, 10,
275     "What is the maximum number of times the pacer will loop trying to catch up");
276
277 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
278
279 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
280
281 static int
282 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
283 {
284         int error;
285         uint32_t new;
286
287         new = hpts_sleep_max;
288         error = sysctl_handle_int(oidp, &new, 0, req);
289         if (error == 0 && req->newptr) {
290                 if ((new < (NUM_OF_HPTSI_SLOTS / 4)) ||
291                     (new > HPTS_MAX_SLEEP_ALLOWED))
292                         error = EINVAL;
293                 else
294                         hpts_sleep_max = new;
295         }
296         return (error);
297 }
298
299 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
300     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
301     &hpts_sleep_max, 0,
302     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
303     "Maximum time hpts will sleep");
304
305 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW,
306     &tcp_min_hptsi_time, 0,
307     "The minimum time the hpts must sleep before processing more slots");
308
309 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW,
310     &tcp_hpts_callout_skip_swi, 0,
311     "Do we have the callout call directly to the hpts?");
312
313 static void
314 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
315              int ticks_to_run, int idx)
316 {
317         union tcp_log_stackspecific log;
318
319         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
320         log.u_bbr.flex1 = hpts->p_nxt_slot;
321         log.u_bbr.flex2 = hpts->p_cur_slot;
322         log.u_bbr.flex3 = hpts->p_prev_slot;
323         log.u_bbr.flex4 = idx;
324         log.u_bbr.flex5 = hpts->p_curtick;
325         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
326         log.u_bbr.use_lt_bw = 1;
327         log.u_bbr.inflight = ticks_to_run;
328         log.u_bbr.applimited = hpts->overidden_sleep;
329         log.u_bbr.delivered = hpts->saved_curtick;
330         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
331         log.u_bbr.epoch = hpts->saved_curslot;
332         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
333         log.u_bbr.pkts_out = hpts->p_delayed_by;
334         log.u_bbr.lost = hpts->p_hpts_sleep_time;
335         log.u_bbr.cur_del_rate = hpts->p_runningtick;
336         TCP_LOG_EVENTP(tp, NULL,
337                        &tp->t_inpcb->inp_socket->so_rcv,
338                        &tp->t_inpcb->inp_socket->so_snd,
339                        BBR_LOG_HPTSDIAG, 0,
340                        0, &log, false, tv);
341 }
342
343 static void
344 hpts_timeout_swi(void *arg)
345 {
346         struct tcp_hpts_entry *hpts;
347
348         hpts = (struct tcp_hpts_entry *)arg;
349         swi_sched(hpts->ie_cookie, 0);
350 }
351
352 static void
353 hpts_timeout_dir(void *arg)
354 {
355         tcp_hpts_thread(arg);
356 }
357
358 static inline void
359 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear)
360 {
361 #ifdef INVARIANTS
362         if (mtx_owned(&hpts->p_mtx) == 0) {
363                 /* We don't own the mutex? */
364                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
365         }
366         if (hpts->p_cpu != inp->inp_hpts_cpu) {
367                 /* It is not the right cpu/mutex? */
368                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
369         }
370         if (inp->inp_in_hpts == 0) {
371                 /* We are not on the hpts? */
372                 panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp);
373         }
374 #endif
375         TAILQ_REMOVE(head, inp, inp_hpts);
376         hpts->p_on_queue_cnt--;
377         if (hpts->p_on_queue_cnt < 0) {
378                 /* Count should not go negative .. */
379 #ifdef INVARIANTS
380                 panic("Hpts goes negative inp:%p hpts:%p",
381                     inp, hpts);
382 #endif
383                 hpts->p_on_queue_cnt = 0;
384         }
385         if (clear) {
386                 inp->inp_hpts_request = 0;
387                 inp->inp_in_hpts = 0;
388         }
389 }
390
391 static inline void
392 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref)
393 {
394 #ifdef INVARIANTS
395         if (mtx_owned(&hpts->p_mtx) == 0) {
396                 /* We don't own the mutex? */
397                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
398         }
399         if (hpts->p_cpu != inp->inp_hpts_cpu) {
400                 /* It is not the right cpu/mutex? */
401                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
402         }
403         if ((noref == 0) && (inp->inp_in_hpts == 1)) {
404                 /* We are already on the hpts? */
405                 panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp);
406         }
407 #endif
408         TAILQ_INSERT_TAIL(head, inp, inp_hpts);
409         inp->inp_in_hpts = 1;
410         hpts->p_on_queue_cnt++;
411         if (noref == 0) {
412                 in_pcbref(inp);
413         }
414 }
415
416 static inline void
417 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear)
418 {
419 #ifdef INVARIANTS
420         if (mtx_owned(&hpts->p_mtx) == 0) {
421                 /* We don't own the mutex? */
422                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
423         }
424         if (hpts->p_cpu != inp->inp_input_cpu) {
425                 /* It is not the right cpu/mutex? */
426                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
427         }
428         if (inp->inp_in_input == 0) {
429                 /* We are not on the input hpts? */
430                 panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp);
431         }
432 #endif
433         TAILQ_REMOVE(&hpts->p_input, inp, inp_input);
434         hpts->p_on_inqueue_cnt--;
435         if (hpts->p_on_inqueue_cnt < 0) {
436 #ifdef INVARIANTS
437                 panic("Hpts in goes negative inp:%p hpts:%p",
438                     inp, hpts);
439 #endif
440                 hpts->p_on_inqueue_cnt = 0;
441         }
442 #ifdef INVARIANTS
443         if (TAILQ_EMPTY(&hpts->p_input) &&
444             (hpts->p_on_inqueue_cnt != 0)) {
445                 /* We should not be empty with a queue count */
446                 panic("%s hpts:%p in_hpts input empty but cnt:%d",
447                     __FUNCTION__, hpts, hpts->p_on_inqueue_cnt);
448         }
449 #endif
450         if (clear)
451                 inp->inp_in_input = 0;
452 }
453
454 static inline void
455 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line)
456 {
457 #ifdef INVARIANTS
458         if (mtx_owned(&hpts->p_mtx) == 0) {
459                 /* We don't own the mutex? */
460                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
461         }
462         if (hpts->p_cpu != inp->inp_input_cpu) {
463                 /* It is not the right cpu/mutex? */
464                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
465         }
466         if (inp->inp_in_input == 1) {
467                 /* We are already on the input hpts? */
468                 panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp);
469         }
470 #endif
471         TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input);
472         inp->inp_in_input = 1;
473         hpts->p_on_inqueue_cnt++;
474         in_pcbref(inp);
475 }
476
477 static void
478 tcp_wakehpts(struct tcp_hpts_entry *hpts)
479 {
480         HPTS_MTX_ASSERT(hpts);
481         if (hpts->p_hpts_wake_scheduled == 0) {
482                 hpts->p_hpts_wake_scheduled = 1;
483                 swi_sched(hpts->ie_cookie, 0);
484         }
485 }
486
487 static void
488 tcp_wakeinput(struct tcp_hpts_entry *hpts)
489 {
490         HPTS_MTX_ASSERT(hpts);
491         if (hpts->p_hpts_wake_scheduled == 0) {
492                 hpts->p_hpts_wake_scheduled = 1;
493                 swi_sched(hpts->ie_cookie, 0);
494         }
495 }
496
497 struct tcp_hpts_entry *
498 tcp_cur_hpts(struct inpcb *inp)
499 {
500         int32_t hpts_num;
501         struct tcp_hpts_entry *hpts;
502
503         hpts_num = inp->inp_hpts_cpu;
504         hpts = tcp_pace.rp_ent[hpts_num];
505         return (hpts);
506 }
507
508 struct tcp_hpts_entry *
509 tcp_hpts_lock(struct inpcb *inp)
510 {
511         struct tcp_hpts_entry *hpts;
512         int32_t hpts_num;
513
514 again:
515         hpts_num = inp->inp_hpts_cpu;
516         hpts = tcp_pace.rp_ent[hpts_num];
517 #ifdef INVARIANTS
518         if (mtx_owned(&hpts->p_mtx)) {
519                 panic("Hpts:%p owns mtx prior-to lock line:%d",
520                     hpts, __LINE__);
521         }
522 #endif
523         mtx_lock(&hpts->p_mtx);
524         if (hpts_num != inp->inp_hpts_cpu) {
525                 mtx_unlock(&hpts->p_mtx);
526                 goto again;
527         }
528         return (hpts);
529 }
530
531 struct tcp_hpts_entry *
532 tcp_input_lock(struct inpcb *inp)
533 {
534         struct tcp_hpts_entry *hpts;
535         int32_t hpts_num;
536
537 again:
538         hpts_num = inp->inp_input_cpu;
539         hpts = tcp_pace.rp_ent[hpts_num];
540 #ifdef INVARIANTS
541         if (mtx_owned(&hpts->p_mtx)) {
542                 panic("Hpts:%p owns mtx prior-to lock line:%d",
543                     hpts, __LINE__);
544         }
545 #endif
546         mtx_lock(&hpts->p_mtx);
547         if (hpts_num != inp->inp_input_cpu) {
548                 mtx_unlock(&hpts->p_mtx);
549                 goto again;
550         }
551         return (hpts);
552 }
553
554 static void
555 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line)
556 {
557         int32_t add_freed;
558
559         if (inp->inp_flags2 & INP_FREED) {
560                 /*
561                  * Need to play a special trick so that in_pcbrele_wlocked
562                  * does not return 1 when it really should have returned 0.
563                  */
564                 add_freed = 1;
565                 inp->inp_flags2 &= ~INP_FREED;
566         } else {
567                 add_freed = 0;
568         }
569 #ifndef INP_REF_DEBUG
570         if (in_pcbrele_wlocked(inp)) {
571                 /*
572                  * This should not happen. We have the inpcb referred to by
573                  * the main socket (why we are called) and the hpts. It
574                  * should always return 0.
575                  */
576                 panic("inpcb:%p release ret 1",
577                     inp);
578         }
579 #else
580         if (__in_pcbrele_wlocked(inp, line)) {
581                 /*
582                  * This should not happen. We have the inpcb referred to by
583                  * the main socket (why we are called) and the hpts. It
584                  * should always return 0.
585                  */
586                 panic("inpcb:%p release ret 1",
587                     inp);
588         }
589 #endif
590         if (add_freed) {
591                 inp->inp_flags2 |= INP_FREED;
592         }
593 }
594
595 static void
596 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
597 {
598         if (inp->inp_in_hpts) {
599                 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1);
600                 tcp_remove_hpts_ref(inp, hpts, line);
601         }
602 }
603
604 static void
605 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
606 {
607         HPTS_MTX_ASSERT(hpts);
608         if (inp->inp_in_input) {
609                 hpts_sane_input_remove(hpts, inp, 1);
610                 tcp_remove_hpts_ref(inp, hpts, line);
611         }
612 }
613
614 /*
615  * Called normally with the INP_LOCKED but it
616  * does not matter, the hpts lock is the key
617  * but the lock order allows us to hold the
618  * INP lock and then get the hpts lock.
619  *
620  * Valid values in the flags are
621  * HPTS_REMOVE_OUTPUT - remove from the output of the hpts.
622  * HPTS_REMOVE_INPUT - remove from the input of the hpts.
623  * Note that you can use one or both values together
624  * and get two actions.
625  */
626 void
627 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line)
628 {
629         struct tcp_hpts_entry *hpts;
630
631         INP_WLOCK_ASSERT(inp);
632         if (flags & HPTS_REMOVE_OUTPUT) {
633                 hpts = tcp_hpts_lock(inp);
634                 tcp_hpts_remove_locked_output(hpts, inp, flags, line);
635                 mtx_unlock(&hpts->p_mtx);
636         }
637         if (flags & HPTS_REMOVE_INPUT) {
638                 hpts = tcp_input_lock(inp);
639                 tcp_hpts_remove_locked_input(hpts, inp, flags, line);
640                 mtx_unlock(&hpts->p_mtx);
641         }
642 }
643
644 static inline int
645 hpts_tick(uint32_t wheel_tick, uint32_t plus)
646 {
647         /*
648          * Given a slot on the wheel, what slot
649          * is that plus ticks out?
650          */
651         KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick));
652         return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS);
653 }
654
655 static inline int
656 tick_to_wheel(uint32_t cts_in_wticks)
657 {
658         /*
659          * Given a timestamp in wheel ticks (10usec inc's)
660          * map it to our limited space wheel.
661          */
662         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
663 }
664
665 static inline int
666 hpts_ticks_diff(int prev_tick, int tick_now)
667 {
668         /*
669          * Given two ticks that are someplace
670          * on our wheel. How far are they apart?
671          */
672         if (tick_now > prev_tick)
673                 return (tick_now - prev_tick);
674         else if (tick_now == prev_tick)
675                 /*
676                  * Special case, same means we can go all of our
677                  * wheel less one slot.
678                  */
679                 return (NUM_OF_HPTSI_SLOTS - 1);
680         else
681                 return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now);
682 }
683
684 /*
685  * Given a tick on the wheel that is the current time
686  * mapped to the wheel (wheel_tick), what is the maximum
687  * distance forward that can be obtained without
688  * wrapping past either prev_tick or running_tick
689  * depending on the htps state? Also if passed
690  * a uint32_t *, fill it with the tick location.
691  *
692  * Note if you do not give this function the current
693  * time (that you think it is) mapped to the wheel
694  * then the results will not be what you expect and
695  * could lead to invalid inserts.
696  */
697 static inline int32_t
698 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick)
699 {
700         uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel;
701
702         if ((hpts->p_hpts_active == 1) &&
703             (hpts->p_wheel_complete == 0)) {
704                 end_tick = hpts->p_runningtick;
705                 /* Back up one tick */
706                 if (end_tick == 0)
707                         end_tick = NUM_OF_HPTSI_SLOTS - 1;
708                 else
709                         end_tick--;
710                 if (target_tick)
711                         *target_tick = end_tick;
712         } else {
713                 /*
714                  * For the case where we are
715                  * not active, or we have
716                  * completed the pass over
717                  * the wheel, we can use the
718                  * prev tick and subtract one from it. This puts us
719                  * as far out as possible on the wheel.
720                  */
721                 end_tick = hpts->p_prev_slot;
722                 if (end_tick == 0)
723                         end_tick = NUM_OF_HPTSI_SLOTS - 1;
724                 else
725                         end_tick--;
726                 if (target_tick)
727                         *target_tick = end_tick;
728                 /*
729                  * Now we have close to the full wheel left minus the
730                  * time it has been since the pacer went to sleep. Note
731                  * that wheel_tick, passed in, should be the current time
732                  * from the perspective of the caller, mapped to the wheel.
733                  */
734                 if (hpts->p_prev_slot != wheel_tick)
735                         dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
736                 else
737                         dis_to_travel = 1;
738                 /*
739                  * dis_to_travel in this case is the space from when the
740                  * pacer stopped (p_prev_slot) and where our wheel_tick
741                  * is now. To know how many slots we can put it in we
742                  * subtract from the wheel size. We would not want
743                  * to place something after p_prev_slot or it will
744                  * get ran too soon.
745                  */
746                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
747         }
748         /*
749          * So how many slots are open between p_runningtick -> p_cur_slot
750          * that is what is currently un-available for insertion. Special
751          * case when we are at the last slot, this gets 1, so that
752          * the answer to how many slots are available is all but 1.
753          */
754         if (hpts->p_runningtick == hpts->p_cur_slot)
755                 dis_to_travel = 1;
756         else
757                 dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
758         /*
759          * How long has the pacer been running?
760          */
761         if (hpts->p_cur_slot != wheel_tick) {
762                 /* The pacer is a bit late */
763                 pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick);
764         } else {
765                 /* The pacer is right on time, now == pacers start time */
766                 pacer_to_now = 0;
767         }
768         /*
769          * To get the number left we can insert into we simply
770          * subract the distance the pacer has to run from how
771          * many slots there are.
772          */
773         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
774         /*
775          * Now how many of those we will eat due to the pacer's
776          * time (p_cur_slot) of start being behind the
777          * real time (wheel_tick)?
778          */
779         if (avail_on_wheel <= pacer_to_now) {
780                 /*
781                  * Wheel wrap, we can't fit on the wheel, that
782                  * is unusual the system must be way overloaded!
783                  * Insert into the assured tick, and return special
784                  * "0".
785                  */
786                 counter_u64_add(combined_wheel_wrap, 1);
787                 *target_tick = hpts->p_nxt_slot;
788                 return (0);
789         } else {
790                 /*
791                  * We know how many slots are open
792                  * on the wheel (the reverse of what
793                  * is left to run. Take away the time
794                  * the pacer started to now (wheel_tick)
795                  * and that tells you how many slots are
796                  * open that can be inserted into that won't
797                  * be touched by the pacer until later.
798                  */
799                 return (avail_on_wheel - pacer_to_now);
800         }
801 }
802
803 static int
804 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref)
805 {
806         uint32_t need_wake = 0;
807
808         HPTS_MTX_ASSERT(hpts);
809         if (inp->inp_in_hpts == 0) {
810                 /* Ok we need to set it on the hpts in the current slot */
811                 inp->inp_hpts_request = 0;
812                 if ((hpts->p_hpts_active == 0) ||
813                     (hpts->p_wheel_complete)) {
814                         /*
815                          * A sleeping hpts we want in next slot to run
816                          * note that in this state p_prev_slot == p_cur_slot
817                          */
818                         inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1);
819                         if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0))
820                                 need_wake = 1;
821                 } else if ((void *)inp == hpts->p_inp) {
822                         /*
823                          * The hpts system is running and the caller
824                          * was awoken by the hpts system.
825                          * We can't allow you to go into the same slot we
826                          * are in (we don't want a loop :-D).
827                          */
828                         inp->inp_hptsslot = hpts->p_nxt_slot;
829                 } else
830                         inp->inp_hptsslot = hpts->p_runningtick;
831                 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
832                 if (need_wake) {
833                         /*
834                          * Activate the hpts if it is sleeping and its
835                          * timeout is not 1.
836                          */
837                         hpts->p_direct_wake = 1;
838                         tcp_wakehpts(hpts);
839                 }
840         }
841         return (need_wake);
842 }
843
844 int
845 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line)
846 {
847         int32_t ret;
848         struct tcp_hpts_entry *hpts;
849
850         INP_WLOCK_ASSERT(inp);
851         hpts = tcp_hpts_lock(inp);
852         ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
853         mtx_unlock(&hpts->p_mtx);
854         return (ret);
855 }
856
857 #ifdef INVARIANTS
858 static void
859 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
860 {
861         /*
862          * Sanity checks for the pacer with invariants
863          * on insert.
864          */
865         if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS)
866                 panic("hpts:%p inp:%p slot:%d > max",
867                       hpts, inp, inp_hptsslot);
868         if ((hpts->p_hpts_active) &&
869             (hpts->p_wheel_complete == 0)) {
870                 /*
871                  * If the pacer is processing a arc
872                  * of the wheel, we need to make
873                  * sure we are not inserting within
874                  * that arc.
875                  */
876                 int distance, yet_to_run;
877
878                 distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot);
879                 if (hpts->p_runningtick != hpts->p_cur_slot)
880                         yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
881                 else
882                         yet_to_run = 0; /* processing last slot */
883                 if (yet_to_run > distance) {
884                         panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
885                               hpts, inp, inp_hptsslot,
886                               distance, yet_to_run,
887                               hpts->p_runningtick, hpts->p_cur_slot);
888                 }
889         }
890 }
891 #endif
892
893 static void
894 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line,
895                        struct hpts_diag *diag, struct timeval *tv)
896 {
897         uint32_t need_new_to = 0;
898         uint32_t wheel_cts, last_tick;
899         int32_t wheel_tick, maxticks;
900         int8_t need_wakeup = 0;
901
902         HPTS_MTX_ASSERT(hpts);
903         if (diag) {
904                 memset(diag, 0, sizeof(struct hpts_diag));
905                 diag->p_hpts_active = hpts->p_hpts_active;
906                 diag->p_prev_slot = hpts->p_prev_slot;
907                 diag->p_runningtick = hpts->p_runningtick;
908                 diag->p_nxt_slot = hpts->p_nxt_slot;
909                 diag->p_cur_slot = hpts->p_cur_slot;
910                 diag->p_curtick = hpts->p_curtick;
911                 diag->p_lasttick = hpts->p_lasttick;
912                 diag->slot_req = slot;
913                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
914                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
915         }
916         if (inp->inp_in_hpts == 0) {
917                 if (slot == 0) {
918                         /* Immediate */
919                         tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
920                         return;
921                 }
922                 /* Get the current time relative to the wheel */
923                 wheel_cts = tcp_tv_to_hptstick(tv);
924                 /* Map it onto the wheel */
925                 wheel_tick = tick_to_wheel(wheel_cts);
926                 /* Now what's the max we can place it at? */
927                 maxticks = max_ticks_available(hpts, wheel_tick, &last_tick);
928                 if (diag) {
929                         diag->wheel_tick = wheel_tick;
930                         diag->maxticks = maxticks;
931                         diag->wheel_cts = wheel_cts;
932                 }
933                 if (maxticks == 0) {
934                         /* The pacer is in a wheel wrap behind, yikes! */
935                         if (slot > 1) {
936                                 /*
937                                  * Reduce by 1 to prevent a forever loop in
938                                  * case something else is wrong. Note this
939                                  * probably does not hurt because the pacer
940                                  * if its true is so far behind we will be
941                                  * > 1second late calling anyway.
942                                  */
943                                 slot--;
944                         }
945                         inp->inp_hptsslot = last_tick;
946                         inp->inp_hpts_request = slot;
947                 } else  if (maxticks >= slot) {
948                         /* It all fits on the wheel */
949                         inp->inp_hpts_request = 0;
950                         inp->inp_hptsslot = hpts_tick(wheel_tick, slot);
951                 } else {
952                         /* It does not fit */
953                         inp->inp_hpts_request = slot - maxticks;
954                         inp->inp_hptsslot = last_tick;
955                 }
956                 if (diag) {
957                         diag->slot_remaining = inp->inp_hpts_request;
958                         diag->inp_hptsslot = inp->inp_hptsslot;
959                 }
960 #ifdef INVARIANTS
961                 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
962 #endif
963                 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0);
964                 if ((hpts->p_hpts_active == 0) &&
965                     (inp->inp_hpts_request == 0) &&
966                     (hpts->p_on_min_sleep == 0)) {
967                         /*
968                          * The hpts is sleeping and not on a minimum
969                          * sleep time, we need to figure out where
970                          * it will wake up at and if we need to reschedule
971                          * its time-out.
972                          */
973                         uint32_t have_slept, yet_to_sleep;
974
975                         /* Now do we need to restart the hpts's timer? */
976                         have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
977                         if (have_slept < hpts->p_hpts_sleep_time)
978                                 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
979                         else {
980                                 /* We are over-due */
981                                 yet_to_sleep = 0;
982                                 need_wakeup = 1;
983                         }
984                         if (diag) {
985                                 diag->have_slept = have_slept;
986                                 diag->yet_to_sleep = yet_to_sleep;
987                         }
988                         if (yet_to_sleep &&
989                             (yet_to_sleep > slot)) {
990                                 /*
991                                  * We need to reschedule the hpts's time-out.
992                                  */
993                                 hpts->p_hpts_sleep_time = slot;
994                                 need_new_to = slot * HPTS_TICKS_PER_USEC;
995                         }
996                 }
997                 /*
998                  * Now how far is the hpts sleeping to? if active is 1, its
999                  * up and ticking we do nothing, otherwise we may need to
1000                  * reschedule its callout if need_new_to is set from above.
1001                  */
1002                 if (need_wakeup) {
1003                         hpts->p_direct_wake = 1;
1004                         tcp_wakehpts(hpts);
1005                         if (diag) {
1006                                 diag->need_new_to = 0;
1007                                 diag->co_ret = 0xffff0000;
1008                         }
1009                 } else if (need_new_to) {
1010                         int32_t co_ret;
1011                         struct timeval tv;
1012                         sbintime_t sb;
1013
1014                         tv.tv_sec = 0;
1015                         tv.tv_usec = 0;
1016                         while (need_new_to > HPTS_USEC_IN_SEC) {
1017                                 tv.tv_sec++;
1018                                 need_new_to -= HPTS_USEC_IN_SEC;
1019                         }
1020                         tv.tv_usec = need_new_to;
1021                         sb = tvtosbt(tv);
1022                         if (tcp_hpts_callout_skip_swi == 0) {
1023                                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1024                                     hpts_timeout_swi, hpts, hpts->p_cpu,
1025                                     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1026                         } else {
1027                                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1028                                     hpts_timeout_dir, hpts,
1029                                     hpts->p_cpu,
1030                                     C_PREL(tcp_hpts_precision));
1031                         }
1032                         if (diag) {
1033                                 diag->need_new_to = need_new_to;
1034                                 diag->co_ret = co_ret;
1035                         }
1036                 }
1037         } else {
1038 #ifdef INVARIANTS
1039                 panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp);
1040 #endif
1041         }
1042 }
1043
1044 uint32_t
1045 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
1046 {
1047         struct tcp_hpts_entry *hpts;
1048         uint32_t slot_on;
1049         struct timeval tv;
1050
1051         /*
1052          * We now return the next-slot the hpts will be on, beyond its
1053          * current run (if up) or where it was when it stopped if it is
1054          * sleeping.
1055          */
1056         INP_WLOCK_ASSERT(inp);
1057         hpts = tcp_hpts_lock(inp);
1058         microuptime(&tv);
1059         tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv);
1060         slot_on = hpts->p_nxt_slot;
1061         mtx_unlock(&hpts->p_mtx);
1062         return (slot_on);
1063 }
1064
1065 uint32_t
1066 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){
1067         return (tcp_hpts_insert_diag(inp, slot, line, NULL));
1068 }
1069 int
1070 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line)
1071 {
1072         int32_t retval = 0;
1073
1074         HPTS_MTX_ASSERT(hpts);
1075         if (inp->inp_in_input == 0) {
1076                 /* Ok we need to set it on the hpts in the current slot */
1077                 hpts_sane_input_insert(hpts, inp, line);
1078                 retval = 1;
1079                 if (hpts->p_hpts_active == 0) {
1080                         /*
1081                          * Activate the hpts if it is sleeping.
1082                          */
1083                         retval = 2;
1084                         hpts->p_direct_wake = 1;
1085                         tcp_wakeinput(hpts);
1086                 }
1087         } else if (hpts->p_hpts_active == 0) {
1088                 retval = 4;
1089                 hpts->p_direct_wake = 1;
1090                 tcp_wakeinput(hpts);
1091         }
1092         return (retval);
1093 }
1094
1095 int32_t
1096 __tcp_queue_to_input(struct inpcb *inp, int line)
1097 {
1098         struct tcp_hpts_entry *hpts;
1099         int32_t ret;
1100
1101         hpts = tcp_input_lock(inp);
1102         ret = __tcp_queue_to_input_locked(inp, hpts, line);
1103         mtx_unlock(&hpts->p_mtx);
1104         return (ret);
1105 }
1106
1107 void
1108 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line)
1109 {
1110         struct tcp_hpts_entry *hpts;
1111         struct tcpcb *tp;
1112
1113         tp = intotcpcb(inp);
1114         hpts = tcp_input_lock(tp->t_inpcb);
1115         if (inp->inp_in_input == 0) {
1116                 /* Ok we need to set it on the hpts in the current slot */
1117                 hpts_sane_input_insert(hpts, inp, line);
1118                 if (hpts->p_hpts_active == 0) {
1119                         /*
1120                          * Activate the hpts if it is sleeping.
1121                          */
1122                         hpts->p_direct_wake = 1;
1123                         tcp_wakeinput(hpts);
1124                 }
1125         } else if (hpts->p_hpts_active == 0) {
1126                 hpts->p_direct_wake = 1;
1127                 tcp_wakeinput(hpts);
1128         }
1129         inp->inp_hpts_drop_reas = reason;
1130         mtx_unlock(&hpts->p_mtx);
1131 }
1132
1133 static uint16_t
1134 hpts_random_cpu(struct inpcb *inp){
1135         /*
1136          * No flow type set distribute the load randomly.
1137          */
1138         uint16_t cpuid;
1139         uint32_t ran;
1140
1141         /*
1142          * If one has been set use it i.e. we want both in and out on the
1143          * same hpts.
1144          */
1145         if (inp->inp_input_cpu_set) {
1146                 return (inp->inp_input_cpu);
1147         } else if (inp->inp_hpts_cpu_set) {
1148                 return (inp->inp_hpts_cpu);
1149         }
1150         /* Nothing set use a random number */
1151         ran = arc4random();
1152         cpuid = (ran & 0xffff) % mp_ncpus;
1153         return (cpuid);
1154 }
1155
1156 static uint16_t
1157 hpts_cpuid(struct inpcb *inp)
1158 {
1159         u_int cpuid;
1160 #if !defined(RSS) && defined(NUMA)
1161         struct hpts_domain_info *di;
1162 #endif
1163
1164         /*
1165          * If one has been set use it i.e. we want both in and out on the
1166          * same hpts.
1167          */
1168         if (inp->inp_input_cpu_set) {
1169                 return (inp->inp_input_cpu);
1170         } else if (inp->inp_hpts_cpu_set) {
1171                 return (inp->inp_hpts_cpu);
1172         }
1173         /* If one is set the other must be the same */
1174 #ifdef RSS
1175         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1176         if (cpuid == NETISR_CPUID_NONE)
1177                 return (hpts_random_cpu(inp));
1178         else
1179                 return (cpuid);
1180 #else
1181         /*
1182          * We don't have a flowid -> cpuid mapping, so cheat and just map
1183          * unknown cpuids to curcpu.  Not the best, but apparently better
1184          * than defaulting to swi 0.
1185          */
1186
1187         if (inp->inp_flowtype == M_HASHTYPE_NONE)
1188                 return (hpts_random_cpu(inp));
1189         /*
1190          * Hash to a thread based on the flowid.  If we are using numa,
1191          * then restrict the hash to the numa domain where the inp lives.
1192          */
1193 #ifdef NUMA
1194         if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1195                 di = &hpts_domains[inp->inp_numa_domain];
1196                 cpuid = di->cpu[inp->inp_flowid % di->count];
1197         } else
1198 #endif
1199                 cpuid = inp->inp_flowid % mp_ncpus;
1200
1201         return (cpuid);
1202 #endif
1203 }
1204
1205 static void
1206 tcp_drop_in_pkts(struct tcpcb *tp)
1207 {
1208         struct mbuf *m, *n;
1209
1210         m = tp->t_in_pkt;
1211         if (m)
1212                 n = m->m_nextpkt;
1213         else
1214                 n = NULL;
1215         tp->t_in_pkt = NULL;
1216         while (m) {
1217                 m_freem(m);
1218                 m = n;
1219                 if (m)
1220                         n = m->m_nextpkt;
1221         }
1222 }
1223
1224 /*
1225  * Do NOT try to optimize the processing of inp's
1226  * by first pulling off all the inp's into a temporary
1227  * list (e.g. TAILQ_CONCAT). If you do that the subtle
1228  * interactions of switching CPU's will kill because of
1229  * problems in the linked list manipulation. Basically
1230  * you would switch cpu's with the hpts mutex locked
1231  * but then while you were processing one of the inp's
1232  * some other one that you switch will get a new
1233  * packet on the different CPU. It will insert it
1234  * on the new hpts's input list. Creating a temporary
1235  * link in the inp will not fix it either, since
1236  * the other hpts will be doing the same thing and
1237  * you will both end up using the temporary link.
1238  *
1239  * You will die in an ASSERT for tailq corruption if you
1240  * run INVARIANTS or you will die horribly without
1241  * INVARIANTS in some unknown way with a corrupt linked
1242  * list.
1243  */
1244 static void
1245 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv)
1246 {
1247         struct tcpcb *tp;
1248         struct inpcb *inp;
1249         uint16_t drop_reason;
1250         int16_t set_cpu;
1251         uint32_t did_prefetch = 0;
1252         int dropped;
1253
1254         HPTS_MTX_ASSERT(hpts);
1255         NET_EPOCH_ASSERT();
1256
1257         while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) {
1258                 HPTS_MTX_ASSERT(hpts);
1259                 hpts_sane_input_remove(hpts, inp, 0);
1260                 if (inp->inp_input_cpu_set == 0) {
1261                         set_cpu = 1;
1262                 } else {
1263                         set_cpu = 0;
1264                 }
1265                 hpts->p_inp = inp;
1266                 drop_reason = inp->inp_hpts_drop_reas;
1267                 inp->inp_in_input = 0;
1268                 mtx_unlock(&hpts->p_mtx);
1269                 INP_WLOCK(inp);
1270 #ifdef VIMAGE
1271                 CURVNET_SET(inp->inp_vnet);
1272 #endif
1273                 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1274                     (inp->inp_flags2 & INP_FREED)) {
1275 out:
1276                         hpts->p_inp = NULL;
1277                         if (in_pcbrele_wlocked(inp) == 0) {
1278                                 INP_WUNLOCK(inp);
1279                         }
1280 #ifdef VIMAGE
1281                         CURVNET_RESTORE();
1282 #endif
1283                         mtx_lock(&hpts->p_mtx);
1284                         continue;
1285                 }
1286                 tp = intotcpcb(inp);
1287                 if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1288                         goto out;
1289                 }
1290                 if (drop_reason) {
1291                         /* This tcb is being destroyed for drop_reason */
1292                         tcp_drop_in_pkts(tp);
1293                         tp = tcp_drop(tp, drop_reason);
1294                         if (tp == NULL) {
1295                                 INP_WLOCK(inp);
1296                         }
1297                         if (in_pcbrele_wlocked(inp) == 0)
1298                                 INP_WUNLOCK(inp);
1299 #ifdef VIMAGE
1300                         CURVNET_RESTORE();
1301 #endif
1302                         mtx_lock(&hpts->p_mtx);
1303                         continue;
1304                 }
1305                 if (set_cpu) {
1306                         /*
1307                          * Setup so the next time we will move to the right
1308                          * CPU. This should be a rare event. It will
1309                          * sometimes happens when we are the client side
1310                          * (usually not the server). Somehow tcp_output()
1311                          * gets called before the tcp_do_segment() sets the
1312                          * intial state. This means the r_cpu and r_hpts_cpu
1313                          * is 0. We get on the hpts, and then tcp_input()
1314                          * gets called setting up the r_cpu to the correct
1315                          * value. The hpts goes off and sees the mis-match.
1316                          * We simply correct it here and the CPU will switch
1317                          * to the new hpts nextime the tcb gets added to the
1318                          * the hpts (not this time) :-)
1319                          */
1320                         tcp_set_hpts(inp);
1321                 }
1322                 if (tp->t_fb_ptr != NULL) {
1323                         kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1324                         did_prefetch = 1;
1325                 }
1326                 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1327                         if (inp->inp_in_input)
1328                                 tcp_hpts_remove(inp, HPTS_REMOVE_INPUT);
1329                         dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1330                         if (dropped) {
1331                                 /* Re-acquire the wlock so we can release the reference */
1332                                 INP_WLOCK(inp);
1333                         }
1334                 } else if (tp->t_in_pkt) {
1335                         /*
1336                          * We reach here only if we had a
1337                          * stack that supported INP_SUPPORTS_MBUFQ
1338                          * and then somehow switched to a stack that
1339                          * does not. The packets are basically stranded
1340                          * and would hang with the connection until
1341                          * cleanup without this code. Its not the
1342                          * best way but I know of no other way to
1343                          * handle it since the stack needs functions
1344                          * it does not have to handle queued packets.
1345                          */
1346                         tcp_drop_in_pkts(tp);
1347                 }
1348                 if (in_pcbrele_wlocked(inp) == 0)
1349                         INP_WUNLOCK(inp);
1350                 INP_UNLOCK_ASSERT(inp);
1351 #ifdef VIMAGE
1352                 CURVNET_RESTORE();
1353 #endif
1354                 mtx_lock(&hpts->p_mtx);
1355                 hpts->p_inp = NULL;
1356         }
1357 }
1358
1359 static void
1360 tcp_hptsi(struct tcp_hpts_entry *hpts)
1361 {
1362         struct tcpcb *tp;
1363         struct inpcb *inp = NULL, *ninp;
1364         struct timeval tv;
1365         int32_t ticks_to_run, i, error;
1366         int32_t paced_cnt = 0;
1367         int32_t loop_cnt = 0;
1368         int32_t did_prefetch = 0;
1369         int32_t prefetch_ninp = 0;
1370         int32_t prefetch_tp = 0;
1371         int32_t wrap_loop_cnt = 0;
1372         int16_t set_cpu;
1373
1374         HPTS_MTX_ASSERT(hpts);
1375         NET_EPOCH_ASSERT();
1376
1377         /* record previous info for any logging */
1378         hpts->saved_lasttick = hpts->p_lasttick;
1379         hpts->saved_curtick = hpts->p_curtick;
1380         hpts->saved_curslot = hpts->p_cur_slot;
1381         hpts->saved_prev_slot = hpts->p_prev_slot;
1382
1383         hpts->p_lasttick = hpts->p_curtick;
1384         hpts->p_curtick = tcp_gethptstick(&tv);
1385         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1386         if ((hpts->p_on_queue_cnt == 0) ||
1387             (hpts->p_lasttick == hpts->p_curtick)) {
1388                 /*
1389                  * No time has yet passed,
1390                  * or nothing to do.
1391                  */
1392                 hpts->p_prev_slot = hpts->p_cur_slot;
1393                 hpts->p_lasttick = hpts->p_curtick;
1394                 goto no_run;
1395         }
1396 again:
1397         hpts->p_wheel_complete = 0;
1398         HPTS_MTX_ASSERT(hpts);
1399         ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1400         if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) &&
1401             (hpts->p_on_queue_cnt != 0)) {
1402                 /*
1403                  * Wheel wrap is occuring, basically we
1404                  * are behind and the distance between
1405                  * run's has spread so much it has exceeded
1406                  * the time on the wheel (1.024 seconds). This
1407                  * is ugly and should NOT be happening. We
1408                  * need to run the entire wheel. We last processed
1409                  * p_prev_slot, so that needs to be the last slot
1410                  * we run. The next slot after that should be our
1411                  * reserved first slot for new, and then starts
1412                  * the running postion. Now the problem is the
1413                  * reserved "not to yet" place does not exist
1414                  * and there may be inp's in there that need
1415                  * running. We can merge those into the
1416                  * first slot at the head.
1417                  */
1418                 wrap_loop_cnt++;
1419                 hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1);
1420                 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2);
1421                 /*
1422                  * Adjust p_cur_slot to be where we are starting from
1423                  * hopefully we will catch up (fat chance if something
1424                  * is broken this bad :( )
1425                  */
1426                 hpts->p_cur_slot = hpts->p_prev_slot;
1427                 /*
1428                  * The next slot has guys to run too, and that would
1429                  * be where we would normally start, lets move them into
1430                  * the next slot (p_prev_slot + 2) so that we will
1431                  * run them, the extra 10usecs of late (by being
1432                  * put behind) does not really matter in this situation.
1433                  */
1434 #ifdef INVARIANTS
1435                 /*
1436                  * To prevent a panic we need to update the inpslot to the
1437                  * new location. This is safe since it takes both the
1438                  * INP lock and the pacer mutex to change the inp_hptsslot.
1439                  */
1440                 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) {
1441                         inp->inp_hptsslot = hpts->p_runningtick;
1442                 }
1443 #endif
1444                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick],
1445                              &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts);
1446                 ticks_to_run = NUM_OF_HPTSI_SLOTS - 1;
1447                 counter_u64_add(wheel_wrap, 1);
1448         } else {
1449                 /*
1450                  * Nxt slot is always one after p_runningtick though
1451                  * its not used usually unless we are doing wheel wrap.
1452                  */
1453                 hpts->p_nxt_slot = hpts->p_prev_slot;
1454                 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1);
1455         }
1456 #ifdef INVARIANTS
1457         if (TAILQ_EMPTY(&hpts->p_input) &&
1458             (hpts->p_on_inqueue_cnt != 0)) {
1459                 panic("tp:%p in_hpts input empty but cnt:%d",
1460                       hpts, hpts->p_on_inqueue_cnt);
1461         }
1462 #endif
1463         HPTS_MTX_ASSERT(hpts);
1464         if (hpts->p_on_queue_cnt == 0) {
1465                 goto no_one;
1466         }
1467         HPTS_MTX_ASSERT(hpts);
1468         for (i = 0; i < ticks_to_run; i++) {
1469                 /*
1470                  * Calculate our delay, if there are no extra ticks there
1471                  * was not any (i.e. if ticks_to_run == 1, no delay).
1472                  */
1473                 hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC;
1474                 HPTS_MTX_ASSERT(hpts);
1475                 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1476                         /* For debugging */
1477                         hpts->p_inp = inp;
1478                         paced_cnt++;
1479 #ifdef INVARIANTS
1480                         if (hpts->p_runningtick != inp->inp_hptsslot) {
1481                                 panic("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1482                                       hpts, inp, hpts->p_runningtick, inp->inp_hptsslot);
1483                         }
1484 #endif
1485                         /* Now pull it */
1486                         if (inp->inp_hpts_cpu_set == 0) {
1487                                 set_cpu = 1;
1488                         } else {
1489                                 set_cpu = 0;
1490                         }
1491                         hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0);
1492                         if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1493                                 /* We prefetch the next inp if possible */
1494                                 kern_prefetch(ninp, &prefetch_ninp);
1495                                 prefetch_ninp = 1;
1496                         }
1497                         if (inp->inp_hpts_request) {
1498                                 /*
1499                                  * This guy is deferred out further in time
1500                                  * then our wheel had available on it.
1501                                  * Push him back on the wheel or run it
1502                                  * depending.
1503                                  */
1504                                 uint32_t maxticks, last_tick, remaining_slots;
1505
1506                                 remaining_slots = ticks_to_run - (i + 1);
1507                                 if (inp->inp_hpts_request > remaining_slots) {
1508                                         /*
1509                                          * How far out can we go?
1510                                          */
1511                                         maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick);
1512                                         if (maxticks >= inp->inp_hpts_request) {
1513                                                 /* we can place it finally to be processed  */
1514                                                 inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request);
1515                                                 inp->inp_hpts_request = 0;
1516                                         } else {
1517                                                 /* Work off some more time */
1518                                                 inp->inp_hptsslot = last_tick;
1519                                                 inp->inp_hpts_request-= maxticks;
1520                                         }
1521                                         hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1);
1522                                         hpts->p_inp = NULL;
1523                                         continue;
1524                                 }
1525                                 inp->inp_hpts_request = 0;
1526                                 /* Fall through we will so do it now */
1527                         }
1528                         /*
1529                          * We clear the hpts flag here after dealing with
1530                          * remaining slots. This way anyone looking with the
1531                          * TCB lock will see its on the hpts until just
1532                          * before we unlock.
1533                          */
1534                         inp->inp_in_hpts = 0;
1535                         mtx_unlock(&hpts->p_mtx);
1536                         INP_WLOCK(inp);
1537                         if (in_pcbrele_wlocked(inp)) {
1538                                 mtx_lock(&hpts->p_mtx);
1539                                 hpts->p_inp = NULL;
1540                                 continue;
1541                         }
1542                         if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1543                             (inp->inp_flags2 & INP_FREED)) {
1544                         out_now:
1545 #ifdef INVARIANTS
1546                                 if (mtx_owned(&hpts->p_mtx)) {
1547                                         panic("Hpts:%p owns mtx prior-to lock line:%d",
1548                                               hpts, __LINE__);
1549                                 }
1550 #endif
1551                                 INP_WUNLOCK(inp);
1552                                 mtx_lock(&hpts->p_mtx);
1553                                 hpts->p_inp = NULL;
1554                                 continue;
1555                         }
1556                         tp = intotcpcb(inp);
1557                         if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1558                                 goto out_now;
1559                         }
1560                         if (set_cpu) {
1561                                 /*
1562                                  * Setup so the next time we will move to
1563                                  * the right CPU. This should be a rare
1564                                  * event. It will sometimes happens when we
1565                                  * are the client side (usually not the
1566                                  * server). Somehow tcp_output() gets called
1567                                  * before the tcp_do_segment() sets the
1568                                  * intial state. This means the r_cpu and
1569                                  * r_hpts_cpu is 0. We get on the hpts, and
1570                                  * then tcp_input() gets called setting up
1571                                  * the r_cpu to the correct value. The hpts
1572                                  * goes off and sees the mis-match. We
1573                                  * simply correct it here and the CPU will
1574                                  * switch to the new hpts nextime the tcb
1575                                  * gets added to the the hpts (not this one)
1576                                  * :-)
1577                                  */
1578                                 tcp_set_hpts(inp);
1579                         }
1580 #ifdef VIMAGE
1581                         CURVNET_SET(inp->inp_vnet);
1582 #endif
1583                         /* Lets do any logging that we might want to */
1584                         if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1585                                 tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i);
1586                         }
1587                         /*
1588                          * There is a hole here, we get the refcnt on the
1589                          * inp so it will still be preserved but to make
1590                          * sure we can get the INP we need to hold the p_mtx
1591                          * above while we pull out the tp/inp,  as long as
1592                          * fini gets the lock first we are assured of having
1593                          * a sane INP we can lock and test.
1594                          */
1595 #ifdef INVARIANTS
1596                         if (mtx_owned(&hpts->p_mtx)) {
1597                                 panic("Hpts:%p owns mtx before tcp-output:%d",
1598                                       hpts, __LINE__);
1599                         }
1600 #endif
1601                         if (tp->t_fb_ptr != NULL) {
1602                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1603                                 did_prefetch = 1;
1604                         }
1605                         if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1606                                 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1607                                 if (error) {
1608                                         /* The input killed the connection */
1609                                         goto skip_pacing;
1610                                 }
1611                         }
1612                         inp->inp_hpts_calls = 1;
1613                         error = tp->t_fb->tfb_tcp_output(tp);
1614                         inp->inp_hpts_calls = 0;
1615                         if (ninp && ninp->inp_ppcb) {
1616                                 /*
1617                                  * If we have a nxt inp, see if we can
1618                                  * prefetch its ppcb. Note this may seem
1619                                  * "risky" since we have no locks (other
1620                                  * than the previous inp) and there no
1621                                  * assurance that ninp was not pulled while
1622                                  * we were processing inp and freed. If this
1623                                  * occured it could mean that either:
1624                                  *
1625                                  * a) Its NULL (which is fine we won't go
1626                                  * here) <or> b) Its valid (which is cool we
1627                                  * will prefetch it) <or> c) The inp got
1628                                  * freed back to the slab which was
1629                                  * reallocated. Then the piece of memory was
1630                                  * re-used and something else (not an
1631                                  * address) is in inp_ppcb. If that occurs
1632                                  * we don't crash, but take a TLB shootdown
1633                                  * performance hit (same as if it was NULL
1634                                  * and we tried to pre-fetch it).
1635                                  *
1636                                  * Considering that the likelyhood of <c> is
1637                                  * quite rare we will take a risk on doing
1638                                  * this. If performance drops after testing
1639                                  * we can always take this out. NB: the
1640                                  * kern_prefetch on amd64 actually has
1641                                  * protection against a bad address now via
1642                                  * the DMAP_() tests. This will prevent the
1643                                  * TLB hit, and instead if <c> occurs just
1644                                  * cause us to load cache with a useless
1645                                  * address (to us).
1646                                  */
1647                                 kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1648                                 prefetch_tp = 1;
1649                         }
1650                         INP_WUNLOCK(inp);
1651                 skip_pacing:
1652 #ifdef VIMAGE
1653                         CURVNET_RESTORE();
1654 #endif
1655                         INP_UNLOCK_ASSERT(inp);
1656 #ifdef INVARIANTS
1657                         if (mtx_owned(&hpts->p_mtx)) {
1658                                 panic("Hpts:%p owns mtx prior-to lock line:%d",
1659                                       hpts, __LINE__);
1660                         }
1661 #endif
1662                         mtx_lock(&hpts->p_mtx);
1663                         hpts->p_inp = NULL;
1664                 }
1665                 HPTS_MTX_ASSERT(hpts);
1666                 hpts->p_inp = NULL;
1667                 hpts->p_runningtick++;
1668                 if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) {
1669                         hpts->p_runningtick = 0;
1670                 }
1671         }
1672 no_one:
1673         HPTS_MTX_ASSERT(hpts);
1674         hpts->p_delayed_by = 0;
1675         /*
1676          * Check to see if we took an excess amount of time and need to run
1677          * more ticks (if we did not hit eno-bufs).
1678          */
1679 #ifdef INVARIANTS
1680         if (TAILQ_EMPTY(&hpts->p_input) &&
1681             (hpts->p_on_inqueue_cnt != 0)) {
1682                 panic("tp:%p in_hpts input empty but cnt:%d",
1683                       hpts, hpts->p_on_inqueue_cnt);
1684         }
1685 #endif
1686         hpts->p_prev_slot = hpts->p_cur_slot;
1687         hpts->p_lasttick = hpts->p_curtick;
1688         if (loop_cnt > max_pacer_loops) {
1689                 /*
1690                  * Something is serious slow we have
1691                  * looped through processing the wheel
1692                  * and by the time we cleared the
1693                  * needs to run max_pacer_loops time
1694                  * we still needed to run. That means
1695                  * the system is hopelessly behind and
1696                  * can never catch up :(
1697                  *
1698                  * We will just lie to this thread
1699                  * and let it thing p_curtick is
1700                  * correct. When it next awakens
1701                  * it will find itself further behind.
1702                  */
1703                 counter_u64_add(hpts_hopelessly_behind, 1);
1704                 goto no_run;
1705         }
1706         hpts->p_curtick = tcp_gethptstick(&tv);
1707         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1708         if ((wrap_loop_cnt < 2) &&
1709             (hpts->p_lasttick != hpts->p_curtick)) {
1710                 counter_u64_add(hpts_loops, 1);
1711                 loop_cnt++;
1712                 goto again;
1713         }
1714 no_run:
1715         /*
1716          * Set flag to tell that we are done for
1717          * any slot input that happens during
1718          * input.
1719          */
1720         hpts->p_wheel_complete = 1;
1721         /*
1722          * Run any input that may be there not covered
1723          * in running data.
1724          */
1725         if (!TAILQ_EMPTY(&hpts->p_input)) {
1726                 tcp_input_data(hpts, &tv);
1727                 /*
1728                  * Now did we spend too long running
1729                  * input and need to run more ticks?
1730                  */
1731                 KASSERT(hpts->p_prev_slot == hpts->p_cur_slot,
1732                         ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1733                          hpts->p_prev_slot, hpts->p_cur_slot));
1734                 KASSERT(hpts->p_lasttick == hpts->p_curtick,
1735                         ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1736                          hpts->p_lasttick, hpts->p_curtick));
1737                 hpts->p_curtick = tcp_gethptstick(&tv);
1738                 if (hpts->p_lasttick != hpts->p_curtick) {
1739                         counter_u64_add(hpts_loops, 1);
1740                         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1741                         goto again;
1742                 }
1743         }
1744         {
1745                 uint32_t t = 0, i, fnd = 0;
1746
1747                 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1748                         /*
1749                          * Find next slot that is occupied and use that to
1750                          * be the sleep time.
1751                          */
1752                         for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1753                                 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) {
1754                                         fnd = 1;
1755                                         break;
1756                                 }
1757                                 t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1758                         }
1759                         if (fnd) {
1760                                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1761                         } else {
1762 #ifdef INVARIANTS
1763                                 panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt);
1764 #endif
1765                                 counter_u64_add(back_tosleep, 1);
1766                                 hpts->p_on_queue_cnt = 0;
1767                                 goto non_found;
1768                         }
1769                 } else if (wrap_loop_cnt >= 2) {
1770                         /* Special case handling */
1771                         hpts->p_hpts_sleep_time = tcp_min_hptsi_time;
1772                 } else {
1773                         /* No one on the wheel sleep for all but 400 slots or sleep max  */
1774                 non_found:
1775                         hpts->p_hpts_sleep_time = hpts_sleep_max;
1776                 }
1777         }
1778 }
1779
1780 void
1781 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1782 {
1783         struct tcp_hpts_entry *hpts;
1784
1785         INP_WLOCK_ASSERT(inp);
1786         hpts = tcp_hpts_lock(inp);
1787         if ((inp->inp_in_hpts == 0) &&
1788             (inp->inp_hpts_cpu_set == 0)) {
1789                 inp->inp_hpts_cpu = hpts_cpuid(inp);
1790                 inp->inp_hpts_cpu_set = 1;
1791         }
1792         mtx_unlock(&hpts->p_mtx);
1793         hpts = tcp_input_lock(inp);
1794         if ((inp->inp_input_cpu_set == 0) &&
1795             (inp->inp_in_input == 0)) {
1796                 inp->inp_input_cpu = hpts_cpuid(inp);
1797                 inp->inp_input_cpu_set = 1;
1798         }
1799         mtx_unlock(&hpts->p_mtx);
1800 }
1801
1802 uint16_t
1803 tcp_hpts_delayedby(struct inpcb *inp){
1804         return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by);
1805 }
1806
1807 static void
1808 tcp_hpts_thread(void *ctx)
1809 {
1810         struct tcp_hpts_entry *hpts;
1811         struct epoch_tracker et;
1812         struct timeval tv;
1813         sbintime_t sb;
1814
1815         hpts = (struct tcp_hpts_entry *)ctx;
1816         mtx_lock(&hpts->p_mtx);
1817         if (hpts->p_direct_wake) {
1818                 /* Signaled by input */
1819                 callout_stop(&hpts->co);
1820         } else {
1821                 /* Timed out */
1822                 if (callout_pending(&hpts->co) ||
1823                     !callout_active(&hpts->co)) {
1824                         mtx_unlock(&hpts->p_mtx);
1825                         return;
1826                 }
1827                 callout_deactivate(&hpts->co);
1828         }
1829         hpts->p_hpts_wake_scheduled = 0;
1830         hpts->p_hpts_active = 1;
1831         NET_EPOCH_ENTER(et);
1832         tcp_hptsi(hpts);
1833         NET_EPOCH_EXIT(et);
1834         HPTS_MTX_ASSERT(hpts);
1835         tv.tv_sec = 0;
1836         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1837         if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) {
1838                 hpts->overidden_sleep = tv.tv_usec;
1839                 tv.tv_usec = tcp_min_hptsi_time;
1840                 hpts->p_on_min_sleep = 1;
1841         } else {
1842                 /* Clear the min sleep flag */
1843                 hpts->overidden_sleep = 0;
1844                 hpts->p_on_min_sleep = 0;
1845         }
1846         hpts->p_hpts_active = 0;
1847         sb = tvtosbt(tv);
1848         if (tcp_hpts_callout_skip_swi == 0) {
1849                 callout_reset_sbt_on(&hpts->co, sb, 0,
1850                     hpts_timeout_swi, hpts, hpts->p_cpu,
1851                     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1852         } else {
1853                 callout_reset_sbt_on(&hpts->co, sb, 0,
1854                     hpts_timeout_dir, hpts,
1855                     hpts->p_cpu,
1856                     C_PREL(tcp_hpts_precision));
1857         }
1858         hpts->p_direct_wake = 0;
1859         mtx_unlock(&hpts->p_mtx);
1860 }
1861
1862 #undef  timersub
1863
1864 static void
1865 tcp_init_hptsi(void *st)
1866 {
1867         int32_t i, j, error, bound = 0, created = 0;
1868         size_t sz, asz;
1869         struct timeval tv;
1870         sbintime_t sb;
1871         struct tcp_hpts_entry *hpts;
1872         struct pcpu *pc;
1873         cpuset_t cs;
1874         char unit[16];
1875         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1876         int count, domain;
1877
1878         tcp_pace.rp_proc = NULL;
1879         tcp_pace.rp_num_hptss = ncpus;
1880         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1881         hpts_loops = counter_u64_alloc(M_WAITOK);
1882         back_tosleep = counter_u64_alloc(M_WAITOK);
1883         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1884         wheel_wrap = counter_u64_alloc(M_WAITOK);
1885         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1886         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1887         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1888         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1889                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1890                     M_TCPHPTS, M_WAITOK | M_ZERO);
1891                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
1892                     M_TCPHPTS, M_WAITOK);
1893                 hpts = tcp_pace.rp_ent[i];
1894                 /*
1895                  * Init all the hpts structures that are not specifically
1896                  * zero'd by the allocations. Also lets attach them to the
1897                  * appropriate sysctl block as well.
1898                  */
1899                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1900                     "hpts", MTX_DEF | MTX_DUPOK);
1901                 TAILQ_INIT(&hpts->p_input);
1902                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1903                         TAILQ_INIT(&hpts->p_hptss[j]);
1904                 }
1905                 sysctl_ctx_init(&hpts->hpts_ctx);
1906                 sprintf(unit, "%d", i);
1907                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1908                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1909                     OID_AUTO,
1910                     unit,
1911                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1912                     "");
1913                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1914                     SYSCTL_CHILDREN(hpts->hpts_root),
1915                     OID_AUTO, "in_qcnt", CTLFLAG_RD,
1916                     &hpts->p_on_inqueue_cnt, 0,
1917                     "Count TCB's awaiting input processing");
1918                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1919                     SYSCTL_CHILDREN(hpts->hpts_root),
1920                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
1921                     &hpts->p_on_queue_cnt, 0,
1922                     "Count TCB's awaiting output processing");
1923                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1924                     SYSCTL_CHILDREN(hpts->hpts_root),
1925                     OID_AUTO, "active", CTLFLAG_RD,
1926                     &hpts->p_hpts_active, 0,
1927                     "Is the hpts active");
1928                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1929                     SYSCTL_CHILDREN(hpts->hpts_root),
1930                     OID_AUTO, "curslot", CTLFLAG_RD,
1931                     &hpts->p_cur_slot, 0,
1932                     "What the current running pacers goal");
1933                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1934                     SYSCTL_CHILDREN(hpts->hpts_root),
1935                     OID_AUTO, "runtick", CTLFLAG_RD,
1936                     &hpts->p_runningtick, 0,
1937                     "What the running pacers current slot is");
1938                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1939                     SYSCTL_CHILDREN(hpts->hpts_root),
1940                     OID_AUTO, "curtick", CTLFLAG_RD,
1941                     &hpts->p_curtick, 0,
1942                     "What the running pacers last tick mapped to the wheel was");
1943                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1944                 hpts->p_num = i;
1945                 hpts->p_curtick = tcp_gethptstick(&tv);
1946                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1947                 hpts->p_cpu = 0xffff;
1948                 hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1);
1949                 callout_init(&hpts->co, 1);
1950         }
1951
1952         /* Don't try to bind to NUMA domains if we don't have any */
1953         if (vm_ndomains == 1 && tcp_bind_threads == 2)
1954                 tcp_bind_threads = 0;
1955
1956         /*
1957          * Now lets start ithreads to handle the hptss.
1958          */
1959         CPU_FOREACH(i) {
1960                 hpts = tcp_pace.rp_ent[i];
1961                 hpts->p_cpu = i;
1962                 error = swi_add(&hpts->ie, "hpts",
1963                     tcp_hpts_thread, (void *)hpts,
1964                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1965                 if (error) {
1966                         panic("Can't add hpts:%p i:%d err:%d",
1967                             hpts, i, error);
1968                 }
1969                 created++;
1970                 if (tcp_bind_threads == 1) {
1971                         if (intr_event_bind(hpts->ie, i) == 0)
1972                                 bound++;
1973                 } else if (tcp_bind_threads == 2) {
1974                         pc = pcpu_find(i);
1975                         domain = pc->pc_domain;
1976                         CPU_COPY(&cpuset_domain[domain], &cs);
1977                         if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
1978                             == 0) {
1979                                 bound++;
1980                                 count = hpts_domains[domain].count;
1981                                 hpts_domains[domain].cpu[count] = i;
1982                                 hpts_domains[domain].count++;
1983                         }
1984                 }
1985                 tv.tv_sec = 0;
1986                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1987                 sb = tvtosbt(tv);
1988                 if (tcp_hpts_callout_skip_swi == 0) {
1989                         callout_reset_sbt_on(&hpts->co, sb, 0,
1990                             hpts_timeout_swi, hpts, hpts->p_cpu,
1991                             (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1992                 } else {
1993                         callout_reset_sbt_on(&hpts->co, sb, 0,
1994                             hpts_timeout_dir, hpts,
1995                             hpts->p_cpu,
1996                             C_PREL(tcp_hpts_precision));
1997                 }
1998         }
1999         /*
2000          * If we somehow have an empty domain, fall back to choosing
2001          * among all htps threads.
2002          */
2003         for (i = 0; i < vm_ndomains; i++) {
2004                 if (hpts_domains[i].count == 0) {
2005                         tcp_bind_threads = 0;
2006                         break;
2007                 }
2008         }
2009
2010         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2011             created, bound,
2012             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2013 }
2014
2015 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2016 MODULE_VERSION(tcphpts, 1);