]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_hpts.c
tcp: Inconsistent use of hpts_calling flag
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_hpts.c
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32
33 /**
34  * Some notes about usage.
35  *
36  * The tcp_hpts system is designed to provide a high precision timer
37  * system for tcp. Its main purpose is to provide a mechanism for
38  * pacing packets out onto the wire. It can be used in two ways
39  * by a given TCP stack (and those two methods can be used simultaneously).
40  *
41  * First, and probably the main thing its used by Rack and BBR, it can
42  * be used to call tcp_output() of a transport stack at some time in the future.
43  * The normal way this is done is that tcp_output() of the stack schedules
44  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
45  * slot is the time from now that the stack wants to be called but it
46  * must be converted to tcp_hpts's notion of slot. This is done with
47  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
48  * call from the tcp_output() routine might look like:
49  *
50  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
51  *
52  * The above would schedule tcp_ouput() to be called in 550 useconds.
53  * Note that if using this mechanism the stack will want to add near
54  * its top a check to prevent unwanted calls (from user land or the
55  * arrival of incoming ack's). So it would add something like:
56  *
57  * if (tcp_in_hpts(inp))
58  *    return;
59  *
60  * to prevent output processing until the time alotted has gone by.
61  * Of course this is a bare bones example and the stack will probably
62  * have more consideration then just the above.
63  *
64  * In order to run input queued segments from the HPTS context the
65  * tcp stack must define an input function for
66  * tfb_do_queued_segments(). This function understands
67  * how to dequeue a array of packets that were input and
68  * knows how to call the correct processing routine.
69  *
70  * Locking in this is important as well so most likely the
71  * stack will need to define the tfb_do_segment_nounlock()
72  * splitting tfb_do_segment() into two parts. The main processing
73  * part that does not unlock the INP and returns a value of 1 or 0.
74  * It returns 0 if all is well and the lock was not released. It
75  * returns 1 if we had to destroy the TCB (a reset received etc).
76  * The remains of tfb_do_segment() then become just a simple call
77  * to the tfb_do_segment_nounlock() function and check the return
78  * code and possibly unlock.
79  *
80  * The stack must also set the flag on the INP that it supports this
81  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
82  * this flag as well and will queue packets when it is set.
83  * There are other flags as well INP_MBUF_QUEUE_READY and
84  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
85  * that we are in the pacer for output so there is no
86  * need to wake up the hpts system to get immediate
87  * input. The second tells the LRO code that its okay
88  * if a SACK arrives you can still defer input and let
89  * the current hpts timer run (this is usually set when
90  * a rack timer is up so we know SACK's are happening
91  * on the connection already and don't want to wakeup yet).
92  *
93  * There is a common functions within the rack_bbr_common code
94  * version i.e. ctf_do_queued_segments(). This function
95  * knows how to take the input queue of packets from tp->t_inqueue
96  * and process them digging out all the arguments, calling any bpf tap and
97  * calling into tfb_do_segment_nounlock(). The common
98  * function (ctf_do_queued_segments())  requires that
99  * you have defined the tfb_do_segment_nounlock() as
100  * described above.
101  */
102
103 #include <sys/param.h>
104 #include <sys/bus.h>
105 #include <sys/interrupt.h>
106 #include <sys/module.h>
107 #include <sys/kernel.h>
108 #include <sys/hhook.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/proc.h>           /* for proc0 declaration */
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #include <sys/sysctl.h>
115 #include <sys/systm.h>
116 #include <sys/refcount.h>
117 #include <sys/sched.h>
118 #include <sys/queue.h>
119 #include <sys/smp.h>
120 #include <sys/counter.h>
121 #include <sys/time.h>
122 #include <sys/kthread.h>
123 #include <sys/kern_prefetch.h>
124
125 #include <vm/uma.h>
126 #include <vm/vm.h>
127
128 #include <net/route.h>
129 #include <net/vnet.h>
130
131 #ifdef RSS
132 #include <net/netisr.h>
133 #include <net/rss_config.h>
134 #endif
135
136 #define TCPSTATES               /* for logging */
137
138 #include <netinet/in.h>
139 #include <netinet/in_kdtrace.h>
140 #include <netinet/in_pcb.h>
141 #include <netinet/ip.h>
142 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
143 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
144 #include <netinet/ip_var.h>
145 #include <netinet/ip6.h>
146 #include <netinet6/in6_pcb.h>
147 #include <netinet6/ip6_var.h>
148 #include <netinet/tcp.h>
149 #include <netinet/tcp_fsm.h>
150 #include <netinet/tcp_seq.h>
151 #include <netinet/tcp_timer.h>
152 #include <netinet/tcp_var.h>
153 #include <netinet/tcpip.h>
154 #include <netinet/cc/cc.h>
155 #include <netinet/tcp_hpts.h>
156 #include <netinet/tcp_log_buf.h>
157
158 #ifdef tcp_offload
159 #include <netinet/tcp_offload.h>
160 #endif
161
162 /*
163  * The hpts uses a 102400 wheel. The wheel
164  * defines the time in 10 usec increments (102400 x 10).
165  * This gives a range of 10usec - 1024ms to place
166  * an entry within. If the user requests more than
167  * 1.024 second, a remaineder is attached and the hpts
168  * when seeing the remainder will re-insert the
169  * inpcb forward in time from where it is until
170  * the remainder is zero.
171  */
172
173 #define NUM_OF_HPTSI_SLOTS 102400
174
175 /* Each hpts has its own p_mtx which is used for locking */
176 #define HPTS_MTX_ASSERT(hpts)   mtx_assert(&(hpts)->p_mtx, MA_OWNED)
177 #define HPTS_LOCK(hpts)         mtx_lock(&(hpts)->p_mtx)
178 #define HPTS_UNLOCK(hpts)       mtx_unlock(&(hpts)->p_mtx)
179 struct tcp_hpts_entry {
180         /* Cache line 0x00 */
181         struct mtx p_mtx;       /* Mutex for hpts */
182         struct timeval p_mysleep;       /* Our min sleep time */
183         uint64_t syscall_cnt;
184         uint64_t sleeping;      /* What the actual sleep was (if sleeping) */
185         uint16_t p_hpts_active; /* Flag that says hpts is awake  */
186         uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
187         uint32_t p_curtick;     /* Tick in 10 us the hpts is going to */
188         uint32_t p_runningslot; /* Current tick we are at if we are running */
189         uint32_t p_prev_slot;   /* Previous slot we were on */
190         uint32_t p_cur_slot;    /* Current slot in wheel hpts is draining */
191         uint32_t p_nxt_slot;    /* The next slot outside the current range of
192                                  * slots that the hpts is running on. */
193         int32_t p_on_queue_cnt; /* Count on queue in this hpts */
194         uint32_t p_lasttick;    /* Last tick before the current one */
195         uint8_t p_direct_wake :1, /* boolean */
196                 p_on_min_sleep:1, /* boolean */
197                 p_hpts_wake_scheduled:1, /* boolean */
198                 p_avail:5;
199         uint8_t p_fill[3];        /* Fill to 32 bits */
200         /* Cache line 0x40 */
201         struct hptsh {
202                 TAILQ_HEAD(, inpcb)     head;
203                 uint32_t                count;
204                 uint32_t                gencnt;
205         } *p_hptss;                     /* Hptsi wheel */
206         uint32_t p_hpts_sleep_time;     /* Current sleep interval having a max
207                                          * of 255ms */
208         uint32_t overidden_sleep;       /* what was overrided by min-sleep for logging */
209         uint32_t saved_lasttick;        /* for logging */
210         uint32_t saved_curtick;         /* for logging */
211         uint32_t saved_curslot;         /* for logging */
212         uint32_t saved_prev_slot;       /* for logging */
213         uint32_t p_delayed_by;  /* How much were we delayed by */
214         /* Cache line 0x80 */
215         struct sysctl_ctx_list hpts_ctx;
216         struct sysctl_oid *hpts_root;
217         struct intr_event *ie;
218         void *ie_cookie;
219         uint16_t p_num;         /* The hpts number one per cpu */
220         uint16_t p_cpu;         /* The hpts CPU */
221         /* There is extra space in here */
222         /* Cache line 0x100 */
223         struct callout co __aligned(CACHE_LINE_SIZE);
224 }               __aligned(CACHE_LINE_SIZE);
225
226 static struct tcp_hptsi {
227         struct cpu_group **grps;
228         struct tcp_hpts_entry **rp_ent; /* Array of hptss */
229         uint32_t *cts_last_ran;
230         uint32_t grp_cnt;
231         uint32_t rp_num_hptss;  /* Number of hpts threads */
232 } tcp_pace;
233
234 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
235 #ifdef RSS
236 static int tcp_bind_threads = 1;
237 #else
238 static int tcp_bind_threads = 2;
239 #endif
240 static int tcp_use_irq_cpu = 0;
241 static uint32_t *cts_last_ran;
242 static int hpts_does_tp_logging = 0;
243
244 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
245 static void tcp_hpts_thread(void *ctx);
246 static void tcp_init_hptsi(void *st);
247
248 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
249 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
250 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
251 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
252
253
254 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
255     "TCP Hpts controls");
256 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
257     "TCP Hpts statistics");
258
259 #define timersub(tvp, uvp, vvp)                                         \
260         do {                                                            \
261                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
262                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
263                 if ((vvp)->tv_usec < 0) {                               \
264                         (vvp)->tv_sec--;                                \
265                         (vvp)->tv_usec += 1000000;                      \
266                 }                                                       \
267         } while (0)
268
269 static int32_t tcp_hpts_precision = 120;
270
271 static struct hpts_domain_info {
272         int count;
273         int cpu[MAXCPU];
274 } hpts_domains[MAXMEMDOM];
275
276 enum {
277         IHPTS_NONE = 0,
278         IHPTS_ONQUEUE,
279         IHPTS_MOVING,
280 };
281
282 counter_u64_t hpts_hopelessly_behind;
283
284 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
285     &hpts_hopelessly_behind,
286     "Number of times hpts could not catch up and was behind hopelessly");
287
288 counter_u64_t hpts_loops;
289
290 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
291     &hpts_loops, "Number of times hpts had to loop to catch up");
292
293 counter_u64_t back_tosleep;
294
295 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
296     &back_tosleep, "Number of times hpts found no tcbs");
297
298 counter_u64_t combined_wheel_wrap;
299
300 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
301     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
302
303 counter_u64_t wheel_wrap;
304
305 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
306     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
307
308 counter_u64_t hpts_direct_call;
309 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
310     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
311
312 counter_u64_t hpts_wake_timeout;
313
314 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
315     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
316
317 counter_u64_t hpts_direct_awakening;
318
319 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
320     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
321
322 counter_u64_t hpts_back_tosleep;
323
324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
325     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
326
327 counter_u64_t cpu_uses_flowid;
328 counter_u64_t cpu_uses_random;
329
330 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
331     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
332 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
333     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
334
335 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
336 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
337 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
338     &tcp_bind_threads, 2,
339     "Thread Binding tunable");
340 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
341     &tcp_use_irq_cpu, 0,
342     "Use of irq CPU  tunable");
343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
344     &tcp_hpts_precision, 120,
345     "Value for PRE() precision of callout");
346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
347     &conn_cnt_thresh, 0,
348     "How many connections (below) make us use the callout based mechanism");
349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
350     &hpts_does_tp_logging, 0,
351     "Do we add to any tp that has logging on pacer logs");
352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
353     &dynamic_min_sleep, 250,
354     "What is the dynamic minsleep value?");
355 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
356     &dynamic_max_sleep, 5000,
357     "What is the dynamic maxsleep value?");
358
359 static int32_t max_pacer_loops = 10;
360 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
361     &max_pacer_loops, 10,
362     "What is the maximum number of times the pacer will loop trying to catch up");
363
364 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
365
366 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
367
368 static int
369 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
370 {
371         int error;
372         uint32_t new;
373
374         new = hpts_sleep_max;
375         error = sysctl_handle_int(oidp, &new, 0, req);
376         if (error == 0 && req->newptr) {
377                 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
378                      (new > HPTS_MAX_SLEEP_ALLOWED))
379                         error = EINVAL;
380                 else
381                         hpts_sleep_max = new;
382         }
383         return (error);
384 }
385
386 static int
387 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
388 {
389         int error;
390         uint32_t new;
391
392         new = tcp_min_hptsi_time;
393         error = sysctl_handle_int(oidp, &new, 0, req);
394         if (error == 0 && req->newptr) {
395                 if (new < LOWEST_SLEEP_ALLOWED)
396                         error = EINVAL;
397                 else
398                         tcp_min_hptsi_time = new;
399         }
400         return (error);
401 }
402
403 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
404     CTLTYPE_UINT | CTLFLAG_RW,
405     &hpts_sleep_max, 0,
406     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
407     "Maximum time hpts will sleep in slots");
408
409 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
410     CTLTYPE_UINT | CTLFLAG_RW,
411     &tcp_min_hptsi_time, 0,
412     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
413     "The minimum time the hpts must sleep before processing more slots");
414
415 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
416 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
417 static int tcp_hpts_no_wake_over_thresh = 1;
418
419 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
420     &ticks_indicate_more_sleep, 0,
421     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
422 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
423     &ticks_indicate_less_sleep, 0,
424     "If we process this many or more on a timeout, we need less sleep on the next callout");
425 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
426     &tcp_hpts_no_wake_over_thresh, 0,
427     "When we are over the threshold on the pacer do we prohibit wakeups?");
428
429 static void
430 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
431              int slots_to_run, int idx, int from_callout)
432 {
433         union tcp_log_stackspecific log;
434         /*
435          * Unused logs are
436          * 64 bit - delRate, rttProp, bw_inuse
437          * 16 bit - cwnd_gain
438          *  8 bit - bbr_state, bbr_substate, inhpts;
439          */
440         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
441         log.u_bbr.flex1 = hpts->p_nxt_slot;
442         log.u_bbr.flex2 = hpts->p_cur_slot;
443         log.u_bbr.flex3 = hpts->p_prev_slot;
444         log.u_bbr.flex4 = idx;
445         log.u_bbr.flex5 = hpts->p_curtick;
446         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
447         log.u_bbr.flex7 = hpts->p_cpu;
448         log.u_bbr.flex8 = (uint8_t)from_callout;
449         log.u_bbr.inflight = slots_to_run;
450         log.u_bbr.applimited = hpts->overidden_sleep;
451         log.u_bbr.delivered = hpts->saved_curtick;
452         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
453         log.u_bbr.epoch = hpts->saved_curslot;
454         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
455         log.u_bbr.pkts_out = hpts->p_delayed_by;
456         log.u_bbr.lost = hpts->p_hpts_sleep_time;
457         log.u_bbr.pacing_gain = hpts->p_cpu;
458         log.u_bbr.pkt_epoch = hpts->p_runningslot;
459         log.u_bbr.use_lt_bw = 1;
460         TCP_LOG_EVENTP(tp, NULL,
461                        &tptosocket(tp)->so_rcv,
462                        &tptosocket(tp)->so_snd,
463                        BBR_LOG_HPTSDIAG, 0,
464                        0, &log, false, tv);
465 }
466
467 static void
468 tcp_wakehpts(struct tcp_hpts_entry *hpts)
469 {
470         HPTS_MTX_ASSERT(hpts);
471
472         if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
473                 hpts->p_direct_wake = 0;
474                 return;
475         }
476         if (hpts->p_hpts_wake_scheduled == 0) {
477                 hpts->p_hpts_wake_scheduled = 1;
478                 swi_sched(hpts->ie_cookie, 0);
479         }
480 }
481
482 static void
483 hpts_timeout_swi(void *arg)
484 {
485         struct tcp_hpts_entry *hpts;
486
487         hpts = (struct tcp_hpts_entry *)arg;
488         swi_sched(hpts->ie_cookie, 0);
489 }
490
491 static void
492 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
493 {
494         struct hptsh *hptsh;
495
496         INP_WLOCK_ASSERT(inp);
497         HPTS_MTX_ASSERT(hpts);
498         MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
499         MPASS(!(inp->inp_flags & INP_DROPPED));
500
501         hptsh = &hpts->p_hptss[inp->inp_hptsslot];
502
503         if (inp->inp_in_hpts == IHPTS_NONE) {
504                 inp->inp_in_hpts = IHPTS_ONQUEUE;
505                 in_pcbref(inp);
506         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
507                 inp->inp_in_hpts = IHPTS_ONQUEUE;
508         } else
509                 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
510         inp->inp_hpts_gencnt = hptsh->gencnt;
511
512         TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
513         hptsh->count++;
514         hpts->p_on_queue_cnt++;
515 }
516
517 static struct tcp_hpts_entry *
518 tcp_hpts_lock(struct inpcb *inp)
519 {
520         struct tcp_hpts_entry *hpts;
521
522         INP_LOCK_ASSERT(inp);
523
524         hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
525         HPTS_LOCK(hpts);
526
527         return (hpts);
528 }
529
530 static void
531 inp_hpts_release(struct inpcb *inp)
532 {
533         bool released __diagused;
534
535         inp->inp_in_hpts = IHPTS_NONE;
536         released = in_pcbrele_wlocked(inp);
537         MPASS(released == false);
538 }
539
540 /*
541  * Called normally with the INP_LOCKED but it
542  * does not matter, the hpts lock is the key
543  * but the lock order allows us to hold the
544  * INP lock and then get the hpts lock.
545  */
546 void
547 tcp_hpts_remove(struct inpcb *inp)
548 {
549         struct tcp_hpts_entry *hpts;
550         struct hptsh *hptsh;
551
552         INP_WLOCK_ASSERT(inp);
553
554         hpts = tcp_hpts_lock(inp);
555         if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
556                 hptsh = &hpts->p_hptss[inp->inp_hptsslot];
557                 inp->inp_hpts_request = 0;
558                 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
559                         TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
560                         MPASS(hptsh->count > 0);
561                         hptsh->count--;
562                         MPASS(hpts->p_on_queue_cnt > 0);
563                         hpts->p_on_queue_cnt--;
564                         inp_hpts_release(inp);
565                 } else {
566                         /*
567                          * tcp_hptsi() now owns the TAILQ head of this inp.
568                          * Can't TAILQ_REMOVE, just mark it.
569                          */
570 #ifdef INVARIANTS
571                         struct inpcb *tmp;
572
573                         TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
574                                 MPASS(tmp != inp);
575 #endif
576                         inp->inp_in_hpts = IHPTS_MOVING;
577                         inp->inp_hptsslot = -1;
578                 }
579         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
580                 /*
581                  * Handle a special race condition:
582                  * tcp_hptsi() moves inpcb to detached tailq
583                  * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
584                  * tcp_hpts_insert() sets slot to a meaningful value
585                  * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
586                  * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
587                  */
588                 inp->inp_hptsslot = -1;
589         }
590         HPTS_UNLOCK(hpts);
591 }
592
593 bool
594 tcp_in_hpts(struct inpcb *inp)
595 {
596
597         return (inp->inp_in_hpts == IHPTS_ONQUEUE);
598 }
599
600 static inline int
601 hpts_slot(uint32_t wheel_slot, uint32_t plus)
602 {
603         /*
604          * Given a slot on the wheel, what slot
605          * is that plus ticks out?
606          */
607         KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
608         return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
609 }
610
611 static inline int
612 tick_to_wheel(uint32_t cts_in_wticks)
613 {
614         /*
615          * Given a timestamp in ticks (so by
616          * default to get it to a real time one
617          * would multiply by 10.. i.e the number
618          * of ticks in a slot) map it to our limited
619          * space wheel.
620          */
621         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
622 }
623
624 static inline int
625 hpts_slots_diff(int prev_slot, int slot_now)
626 {
627         /*
628          * Given two slots that are someplace
629          * on our wheel. How far are they apart?
630          */
631         if (slot_now > prev_slot)
632                 return (slot_now - prev_slot);
633         else if (slot_now == prev_slot)
634                 /*
635                  * Special case, same means we can go all of our
636                  * wheel less one slot.
637                  */
638                 return (NUM_OF_HPTSI_SLOTS - 1);
639         else
640                 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
641 }
642
643 /*
644  * Given a slot on the wheel that is the current time
645  * mapped to the wheel (wheel_slot), what is the maximum
646  * distance forward that can be obtained without
647  * wrapping past either prev_slot or running_slot
648  * depending on the htps state? Also if passed
649  * a uint32_t *, fill it with the slot location.
650  *
651  * Note if you do not give this function the current
652  * time (that you think it is) mapped to the wheel slot
653  * then the results will not be what you expect and
654  * could lead to invalid inserts.
655  */
656 static inline int32_t
657 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
658 {
659         uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
660
661         if ((hpts->p_hpts_active == 1) &&
662             (hpts->p_wheel_complete == 0)) {
663                 end_slot = hpts->p_runningslot;
664                 /* Back up one tick */
665                 if (end_slot == 0)
666                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
667                 else
668                         end_slot--;
669                 if (target_slot)
670                         *target_slot = end_slot;
671         } else {
672                 /*
673                  * For the case where we are
674                  * not active, or we have
675                  * completed the pass over
676                  * the wheel, we can use the
677                  * prev tick and subtract one from it. This puts us
678                  * as far out as possible on the wheel.
679                  */
680                 end_slot = hpts->p_prev_slot;
681                 if (end_slot == 0)
682                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
683                 else
684                         end_slot--;
685                 if (target_slot)
686                         *target_slot = end_slot;
687                 /*
688                  * Now we have close to the full wheel left minus the
689                  * time it has been since the pacer went to sleep. Note
690                  * that wheel_tick, passed in, should be the current time
691                  * from the perspective of the caller, mapped to the wheel.
692                  */
693                 if (hpts->p_prev_slot != wheel_slot)
694                         dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
695                 else
696                         dis_to_travel = 1;
697                 /*
698                  * dis_to_travel in this case is the space from when the
699                  * pacer stopped (p_prev_slot) and where our wheel_slot
700                  * is now. To know how many slots we can put it in we
701                  * subtract from the wheel size. We would not want
702                  * to place something after p_prev_slot or it will
703                  * get ran too soon.
704                  */
705                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
706         }
707         /*
708          * So how many slots are open between p_runningslot -> p_cur_slot
709          * that is what is currently un-available for insertion. Special
710          * case when we are at the last slot, this gets 1, so that
711          * the answer to how many slots are available is all but 1.
712          */
713         if (hpts->p_runningslot == hpts->p_cur_slot)
714                 dis_to_travel = 1;
715         else
716                 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
717         /*
718          * How long has the pacer been running?
719          */
720         if (hpts->p_cur_slot != wheel_slot) {
721                 /* The pacer is a bit late */
722                 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
723         } else {
724                 /* The pacer is right on time, now == pacers start time */
725                 pacer_to_now = 0;
726         }
727         /*
728          * To get the number left we can insert into we simply
729          * subtract the distance the pacer has to run from how
730          * many slots there are.
731          */
732         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
733         /*
734          * Now how many of those we will eat due to the pacer's
735          * time (p_cur_slot) of start being behind the
736          * real time (wheel_slot)?
737          */
738         if (avail_on_wheel <= pacer_to_now) {
739                 /*
740                  * Wheel wrap, we can't fit on the wheel, that
741                  * is unusual the system must be way overloaded!
742                  * Insert into the assured slot, and return special
743                  * "0".
744                  */
745                 counter_u64_add(combined_wheel_wrap, 1);
746                 *target_slot = hpts->p_nxt_slot;
747                 return (0);
748         } else {
749                 /*
750                  * We know how many slots are open
751                  * on the wheel (the reverse of what
752                  * is left to run. Take away the time
753                  * the pacer started to now (wheel_slot)
754                  * and that tells you how many slots are
755                  * open that can be inserted into that won't
756                  * be touched by the pacer until later.
757                  */
758                 return (avail_on_wheel - pacer_to_now);
759         }
760 }
761
762
763 #ifdef INVARIANTS
764 static void
765 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
766 {
767         /*
768          * Sanity checks for the pacer with invariants
769          * on insert.
770          */
771         KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
772                 ("hpts:%p inp:%p slot:%d > max",
773                  hpts, inp, inp_hptsslot));
774         if ((hpts->p_hpts_active) &&
775             (hpts->p_wheel_complete == 0)) {
776                 /*
777                  * If the pacer is processing a arc
778                  * of the wheel, we need to make
779                  * sure we are not inserting within
780                  * that arc.
781                  */
782                 int distance, yet_to_run;
783
784                 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
785                 if (hpts->p_runningslot != hpts->p_cur_slot)
786                         yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
787                 else
788                         yet_to_run = 0; /* processing last slot */
789                 KASSERT(yet_to_run <= distance,
790                         ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
791                          hpts, inp, inp_hptsslot,
792                          distance, yet_to_run,
793                          hpts->p_runningslot, hpts->p_cur_slot));
794         }
795 }
796 #endif
797
798 uint32_t
799 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
800 {
801         struct tcp_hpts_entry *hpts;
802         struct timeval tv;
803         uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
804         int32_t wheel_slot, maxslots;
805         bool need_wakeup = false;
806
807         INP_WLOCK_ASSERT(inp);
808         MPASS(!tcp_in_hpts(inp));
809         MPASS(!(inp->inp_flags & INP_DROPPED));
810
811         /*
812          * We now return the next-slot the hpts will be on, beyond its
813          * current run (if up) or where it was when it stopped if it is
814          * sleeping.
815          */
816         hpts = tcp_hpts_lock(inp);
817         microuptime(&tv);
818         if (diag) {
819                 memset(diag, 0, sizeof(struct hpts_diag));
820                 diag->p_hpts_active = hpts->p_hpts_active;
821                 diag->p_prev_slot = hpts->p_prev_slot;
822                 diag->p_runningslot = hpts->p_runningslot;
823                 diag->p_nxt_slot = hpts->p_nxt_slot;
824                 diag->p_cur_slot = hpts->p_cur_slot;
825                 diag->p_curtick = hpts->p_curtick;
826                 diag->p_lasttick = hpts->p_lasttick;
827                 diag->slot_req = slot;
828                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
829                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
830         }
831         if (slot == 0) {
832                 /* Ok we need to set it on the hpts in the current slot */
833                 inp->inp_hpts_request = 0;
834                 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
835                         /*
836                          * A sleeping hpts we want in next slot to run
837                          * note that in this state p_prev_slot == p_cur_slot
838                          */
839                         inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
840                         if ((hpts->p_on_min_sleep == 0) &&
841                             (hpts->p_hpts_active == 0))
842                                 need_wakeup = true;
843                 } else
844                         inp->inp_hptsslot = hpts->p_runningslot;
845                 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
846                         inp_hpts_insert(inp, hpts);
847                 if (need_wakeup) {
848                         /*
849                          * Activate the hpts if it is sleeping and its
850                          * timeout is not 1.
851                          */
852                         hpts->p_direct_wake = 1;
853                         tcp_wakehpts(hpts);
854                 }
855                 slot_on = hpts->p_nxt_slot;
856                 HPTS_UNLOCK(hpts);
857
858                 return (slot_on);
859         }
860         /* Get the current time relative to the wheel */
861         wheel_cts = tcp_tv_to_hptstick(&tv);
862         /* Map it onto the wheel */
863         wheel_slot = tick_to_wheel(wheel_cts);
864         /* Now what's the max we can place it at? */
865         maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
866         if (diag) {
867                 diag->wheel_slot = wheel_slot;
868                 diag->maxslots = maxslots;
869                 diag->wheel_cts = wheel_cts;
870         }
871         if (maxslots == 0) {
872                 /* The pacer is in a wheel wrap behind, yikes! */
873                 if (slot > 1) {
874                         /*
875                          * Reduce by 1 to prevent a forever loop in
876                          * case something else is wrong. Note this
877                          * probably does not hurt because the pacer
878                          * if its true is so far behind we will be
879                          * > 1second late calling anyway.
880                          */
881                         slot--;
882                 }
883                 inp->inp_hptsslot = last_slot;
884                 inp->inp_hpts_request = slot;
885         } else  if (maxslots >= slot) {
886                 /* It all fits on the wheel */
887                 inp->inp_hpts_request = 0;
888                 inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
889         } else {
890                 /* It does not fit */
891                 inp->inp_hpts_request = slot - maxslots;
892                 inp->inp_hptsslot = last_slot;
893         }
894         if (diag) {
895                 diag->slot_remaining = inp->inp_hpts_request;
896                 diag->inp_hptsslot = inp->inp_hptsslot;
897         }
898 #ifdef INVARIANTS
899         check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
900 #endif
901         if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
902                 inp_hpts_insert(inp, hpts);
903         if ((hpts->p_hpts_active == 0) &&
904             (inp->inp_hpts_request == 0) &&
905             (hpts->p_on_min_sleep == 0)) {
906                 /*
907                  * The hpts is sleeping and NOT on a minimum
908                  * sleep time, we need to figure out where
909                  * it will wake up at and if we need to reschedule
910                  * its time-out.
911                  */
912                 uint32_t have_slept, yet_to_sleep;
913
914                 /* Now do we need to restart the hpts's timer? */
915                 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
916                 if (have_slept < hpts->p_hpts_sleep_time)
917                         yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
918                 else {
919                         /* We are over-due */
920                         yet_to_sleep = 0;
921                         need_wakeup = 1;
922                 }
923                 if (diag) {
924                         diag->have_slept = have_slept;
925                         diag->yet_to_sleep = yet_to_sleep;
926                 }
927                 if (yet_to_sleep &&
928                     (yet_to_sleep > slot)) {
929                         /*
930                          * We need to reschedule the hpts's time-out.
931                          */
932                         hpts->p_hpts_sleep_time = slot;
933                         need_new_to = slot * HPTS_TICKS_PER_SLOT;
934                 }
935         }
936         /*
937          * Now how far is the hpts sleeping to? if active is 1, its
938          * up and ticking we do nothing, otherwise we may need to
939          * reschedule its callout if need_new_to is set from above.
940          */
941         if (need_wakeup) {
942                 hpts->p_direct_wake = 1;
943                 tcp_wakehpts(hpts);
944                 if (diag) {
945                         diag->need_new_to = 0;
946                         diag->co_ret = 0xffff0000;
947                 }
948         } else if (need_new_to) {
949                 int32_t co_ret;
950                 struct timeval tv;
951                 sbintime_t sb;
952
953                 tv.tv_sec = 0;
954                 tv.tv_usec = 0;
955                 while (need_new_to > HPTS_USEC_IN_SEC) {
956                         tv.tv_sec++;
957                         need_new_to -= HPTS_USEC_IN_SEC;
958                 }
959                 tv.tv_usec = need_new_to;
960                 sb = tvtosbt(tv);
961                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
962                                               hpts_timeout_swi, hpts, hpts->p_cpu,
963                                               (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
964                 if (diag) {
965                         diag->need_new_to = need_new_to;
966                         diag->co_ret = co_ret;
967                 }
968         }
969         slot_on = hpts->p_nxt_slot;
970         HPTS_UNLOCK(hpts);
971
972         return (slot_on);
973 }
974
975 uint16_t
976 hpts_random_cpu(struct inpcb *inp){
977         /*
978          * No flow type set distribute the load randomly.
979          */
980         uint16_t cpuid;
981         uint32_t ran;
982
983         /*
984          * Shortcut if it is already set. XXXGL: does it happen?
985          */
986         if (inp->inp_hpts_cpu_set) {
987                 return (inp->inp_hpts_cpu);
988         }
989         /* Nothing set use a random number */
990         ran = arc4random();
991         cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
992         return (cpuid);
993 }
994
995 static uint16_t
996 hpts_cpuid(struct inpcb *inp, int *failed)
997 {
998         u_int cpuid;
999 #ifdef NUMA
1000         struct hpts_domain_info *di;
1001 #endif
1002
1003         *failed = 0;
1004         if (inp->inp_hpts_cpu_set) {
1005                 return (inp->inp_hpts_cpu);
1006         }
1007         /*
1008          * If we are using the irq cpu set by LRO or
1009          * the driver then it overrides all other domains.
1010          */
1011         if (tcp_use_irq_cpu) {
1012                 if (inp->inp_irq_cpu_set == 0) {
1013                         *failed = 1;
1014                         return(0);
1015                 }
1016                 return(inp->inp_irq_cpu);
1017         }
1018         /* If one is set the other must be the same */
1019 #ifdef RSS
1020         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1021         if (cpuid == NETISR_CPUID_NONE)
1022                 return (hpts_random_cpu(inp));
1023         else
1024                 return (cpuid);
1025 #endif
1026         /*
1027          * We don't have a flowid -> cpuid mapping, so cheat and just map
1028          * unknown cpuids to curcpu.  Not the best, but apparently better
1029          * than defaulting to swi 0.
1030          */
1031         if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1032                 counter_u64_add(cpu_uses_random, 1);
1033                 return (hpts_random_cpu(inp));
1034         }
1035         /*
1036          * Hash to a thread based on the flowid.  If we are using numa,
1037          * then restrict the hash to the numa domain where the inp lives.
1038          */
1039
1040 #ifdef NUMA
1041         if ((vm_ndomains == 1) ||
1042             (inp->inp_numa_domain == M_NODOM)) {
1043 #endif
1044                 cpuid = inp->inp_flowid % mp_ncpus;
1045 #ifdef NUMA
1046         } else {
1047                 /* Hash into the cpu's that use that domain */
1048                 di = &hpts_domains[inp->inp_numa_domain];
1049                 cpuid = di->cpu[inp->inp_flowid % di->count];
1050         }
1051 #endif
1052         counter_u64_add(cpu_uses_flowid, 1);
1053         return (cpuid);
1054 }
1055
1056 static void
1057 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1058 {
1059         uint32_t t = 0, i;
1060
1061         if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1062                 /*
1063                  * Find next slot that is occupied and use that to
1064                  * be the sleep time.
1065                  */
1066                 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1067                         if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1068                                 break;
1069                         }
1070                         t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1071                 }
1072                 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1073                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1074         } else {
1075                 /* No one on the wheel sleep for all but 400 slots or sleep max  */
1076                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1077         }
1078 }
1079
1080 static int32_t
1081 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1082 {
1083         struct tcpcb *tp;
1084         struct inpcb *inp;
1085         struct timeval tv;
1086         int32_t slots_to_run, i, error;
1087         int32_t loop_cnt = 0;
1088         int32_t did_prefetch = 0;
1089         int32_t prefetch_ninp = 0;
1090         int32_t prefetch_tp = 0;
1091         int32_t wrap_loop_cnt = 0;
1092         int32_t slot_pos_of_endpoint = 0;
1093         int32_t orig_exit_slot;
1094         int8_t completed_measure = 0, seen_endpoint = 0;
1095
1096         HPTS_MTX_ASSERT(hpts);
1097         NET_EPOCH_ASSERT();
1098         /* record previous info for any logging */
1099         hpts->saved_lasttick = hpts->p_lasttick;
1100         hpts->saved_curtick = hpts->p_curtick;
1101         hpts->saved_curslot = hpts->p_cur_slot;
1102         hpts->saved_prev_slot = hpts->p_prev_slot;
1103
1104         hpts->p_lasttick = hpts->p_curtick;
1105         hpts->p_curtick = tcp_gethptstick(&tv);
1106         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1107         orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1108         if ((hpts->p_on_queue_cnt == 0) ||
1109             (hpts->p_lasttick == hpts->p_curtick)) {
1110                 /*
1111                  * No time has yet passed,
1112                  * or nothing to do.
1113                  */
1114                 hpts->p_prev_slot = hpts->p_cur_slot;
1115                 hpts->p_lasttick = hpts->p_curtick;
1116                 goto no_run;
1117         }
1118 again:
1119         hpts->p_wheel_complete = 0;
1120         HPTS_MTX_ASSERT(hpts);
1121         slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1122         if (((hpts->p_curtick - hpts->p_lasttick) >
1123              ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1124             (hpts->p_on_queue_cnt != 0)) {
1125                 /*
1126                  * Wheel wrap is occuring, basically we
1127                  * are behind and the distance between
1128                  * run's has spread so much it has exceeded
1129                  * the time on the wheel (1.024 seconds). This
1130                  * is ugly and should NOT be happening. We
1131                  * need to run the entire wheel. We last processed
1132                  * p_prev_slot, so that needs to be the last slot
1133                  * we run. The next slot after that should be our
1134                  * reserved first slot for new, and then starts
1135                  * the running position. Now the problem is the
1136                  * reserved "not to yet" place does not exist
1137                  * and there may be inp's in there that need
1138                  * running. We can merge those into the
1139                  * first slot at the head.
1140                  */
1141                 wrap_loop_cnt++;
1142                 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1143                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1144                 /*
1145                  * Adjust p_cur_slot to be where we are starting from
1146                  * hopefully we will catch up (fat chance if something
1147                  * is broken this bad :( )
1148                  */
1149                 hpts->p_cur_slot = hpts->p_prev_slot;
1150                 /*
1151                  * The next slot has guys to run too, and that would
1152                  * be where we would normally start, lets move them into
1153                  * the next slot (p_prev_slot + 2) so that we will
1154                  * run them, the extra 10usecs of late (by being
1155                  * put behind) does not really matter in this situation.
1156                  */
1157                 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1158                     inp_hpts) {
1159                         MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
1160                         MPASS(inp->inp_hpts_gencnt ==
1161                             hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1162                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1163
1164                         /*
1165                          * Update gencnt and nextslot accordingly to match
1166                          * the new location. This is safe since it takes both
1167                          * the INP lock and the pacer mutex to change the
1168                          * inp_hptsslot and inp_hpts_gencnt.
1169                          */
1170                         inp->inp_hpts_gencnt =
1171                             hpts->p_hptss[hpts->p_runningslot].gencnt;
1172                         inp->inp_hptsslot = hpts->p_runningslot;
1173                 }
1174                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1175                     &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
1176                 hpts->p_hptss[hpts->p_runningslot].count +=
1177                     hpts->p_hptss[hpts->p_nxt_slot].count;
1178                 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1179                 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1180                 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1181                 counter_u64_add(wheel_wrap, 1);
1182         } else {
1183                 /*
1184                  * Nxt slot is always one after p_runningslot though
1185                  * its not used usually unless we are doing wheel wrap.
1186                  */
1187                 hpts->p_nxt_slot = hpts->p_prev_slot;
1188                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1189         }
1190         if (hpts->p_on_queue_cnt == 0) {
1191                 goto no_one;
1192         }
1193         for (i = 0; i < slots_to_run; i++) {
1194                 struct inpcb *inp, *ninp;
1195                 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
1196                 struct hptsh *hptsh;
1197                 uint32_t runningslot;
1198
1199                 /*
1200                  * Calculate our delay, if there are no extra ticks there
1201                  * was not any (i.e. if slots_to_run == 1, no delay).
1202                  */
1203                 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1204                     HPTS_TICKS_PER_SLOT;
1205
1206                 runningslot = hpts->p_runningslot;
1207                 hptsh = &hpts->p_hptss[runningslot];
1208                 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
1209                 hpts->p_on_queue_cnt -= hptsh->count;
1210                 hptsh->count = 0;
1211                 hptsh->gencnt++;
1212
1213                 HPTS_UNLOCK(hpts);
1214
1215                 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
1216                         bool set_cpu;
1217
1218                         if (ninp != NULL) {
1219                                 /* We prefetch the next inp if possible */
1220                                 kern_prefetch(ninp, &prefetch_ninp);
1221                                 prefetch_ninp = 1;
1222                         }
1223
1224                         /* For debugging */
1225                         if (seen_endpoint == 0) {
1226                                 seen_endpoint = 1;
1227                                 orig_exit_slot = slot_pos_of_endpoint =
1228                                     runningslot;
1229                         } else if (completed_measure == 0) {
1230                                 /* Record the new position */
1231                                 orig_exit_slot = runningslot;
1232                         }
1233
1234                         INP_WLOCK(inp);
1235                         if (inp->inp_hpts_cpu_set == 0) {
1236                                 set_cpu = true;
1237                         } else {
1238                                 set_cpu = false;
1239                         }
1240
1241                         if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
1242                                 if (inp->inp_hptsslot == -1) {
1243                                         inp->inp_in_hpts = IHPTS_NONE;
1244                                         if (in_pcbrele_wlocked(inp) == false)
1245                                                 INP_WUNLOCK(inp);
1246                                 } else {
1247                                         HPTS_LOCK(hpts);
1248                                         inp_hpts_insert(inp, hpts);
1249                                         HPTS_UNLOCK(hpts);
1250                                         INP_WUNLOCK(inp);
1251                                 }
1252                                 continue;
1253                         }
1254
1255                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1256                         MPASS(!(inp->inp_flags & INP_DROPPED));
1257                         KASSERT(runningslot == inp->inp_hptsslot,
1258                                 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1259                                  hpts, inp, runningslot, inp->inp_hptsslot));
1260
1261                         if (inp->inp_hpts_request) {
1262                                 /*
1263                                  * This guy is deferred out further in time
1264                                  * then our wheel had available on it.
1265                                  * Push him back on the wheel or run it
1266                                  * depending.
1267                                  */
1268                                 uint32_t maxslots, last_slot, remaining_slots;
1269
1270                                 remaining_slots = slots_to_run - (i + 1);
1271                                 if (inp->inp_hpts_request > remaining_slots) {
1272                                         HPTS_LOCK(hpts);
1273                                         /*
1274                                          * How far out can we go?
1275                                          */
1276                                         maxslots = max_slots_available(hpts,
1277                                             hpts->p_cur_slot, &last_slot);
1278                                         if (maxslots >= inp->inp_hpts_request) {
1279                                                 /* We can place it finally to
1280                                                  * be processed.  */
1281                                                 inp->inp_hptsslot = hpts_slot(
1282                                                     hpts->p_runningslot,
1283                                                     inp->inp_hpts_request);
1284                                                 inp->inp_hpts_request = 0;
1285                                         } else {
1286                                                 /* Work off some more time */
1287                                                 inp->inp_hptsslot = last_slot;
1288                                                 inp->inp_hpts_request -=
1289                                                     maxslots;
1290                                         }
1291                                         inp_hpts_insert(inp, hpts);
1292                                         HPTS_UNLOCK(hpts);
1293                                         INP_WUNLOCK(inp);
1294                                         continue;
1295                                 }
1296                                 inp->inp_hpts_request = 0;
1297                                 /* Fall through we will so do it now */
1298                         }
1299
1300                         inp_hpts_release(inp);
1301                         tp = intotcpcb(inp);
1302                         MPASS(tp);
1303                         if (set_cpu) {
1304                                 /*
1305                                  * Setup so the next time we will move to
1306                                  * the right CPU. This should be a rare
1307                                  * event. It will sometimes happens when we
1308                                  * are the client side (usually not the
1309                                  * server). Somehow tcp_output() gets called
1310                                  * before the tcp_do_segment() sets the
1311                                  * intial state. This means the r_cpu and
1312                                  * r_hpts_cpu is 0. We get on the hpts, and
1313                                  * then tcp_input() gets called setting up
1314                                  * the r_cpu to the correct value. The hpts
1315                                  * goes off and sees the mis-match. We
1316                                  * simply correct it here and the CPU will
1317                                  * switch to the new hpts nextime the tcb
1318                                  * gets added to the hpts (not this one)
1319                                  * :-)
1320                                  */
1321                                 tcp_set_hpts(inp);
1322                         }
1323                         CURVNET_SET(inp->inp_vnet);
1324                         /* Lets do any logging that we might want to */
1325                         if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
1326                                 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1327                         }
1328
1329                         if (tp->t_fb_ptr != NULL) {
1330                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1331                                 did_prefetch = 1;
1332                         }
1333                         /*
1334                          * We set inp_hpts_calls to 1 before any possible output.
1335                          * The contract with the transport is that if it cares about
1336                          * hpts calling it should clear the flag. That way next time
1337                          * it is called it will know it is hpts.
1338                          *
1339                          * We also only call tfb_do_queued_segments() <or> tcp_output()
1340                          * it is expected that if segments are queued and come in that
1341                          * the final input mbuf will cause a call to  output if it is needed.
1342                          */
1343                         inp->inp_hpts_calls = 1;
1344                         if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) &&
1345                             !STAILQ_EMPTY(&tp->t_inqueue)) {
1346                                 error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0);
1347                                 if (error) {
1348                                         /* The input killed the connection */
1349                                         goto skip_pacing;
1350                                 }
1351                         } else {
1352                                 error = tcp_output(tp);
1353                                 if (error < 0)
1354                                         goto skip_pacing;
1355                         }
1356                         if (ninp) {
1357                                 /*
1358                                  * If we have a nxt inp, see if we can
1359                                  * prefetch it. Note this may seem
1360                                  * "risky" since we have no locks (other
1361                                  * than the previous inp) and there no
1362                                  * assurance that ninp was not pulled while
1363                                  * we were processing inp and freed. If this
1364                                  * occurred it could mean that either:
1365                                  *
1366                                  * a) Its NULL (which is fine we won't go
1367                                  * here) <or> b) Its valid (which is cool we
1368                                  * will prefetch it) <or> c) The inp got
1369                                  * freed back to the slab which was
1370                                  * reallocated. Then the piece of memory was
1371                                  * re-used and something else (not an
1372                                  * address) is in inp_ppcb. If that occurs
1373                                  * we don't crash, but take a TLB shootdown
1374                                  * performance hit (same as if it was NULL
1375                                  * and we tried to pre-fetch it).
1376                                  *
1377                                  * Considering that the likelyhood of <c> is
1378                                  * quite rare we will take a risk on doing
1379                                  * this. If performance drops after testing
1380                                  * we can always take this out. NB: the
1381                                  * kern_prefetch on amd64 actually has
1382                                  * protection against a bad address now via
1383                                  * the DMAP_() tests. This will prevent the
1384                                  * TLB hit, and instead if <c> occurs just
1385                                  * cause us to load cache with a useless
1386                                  * address (to us).
1387                                  *
1388                                  * XXXGL: with tcpcb == inpcb, I'm unsure this
1389                                  * prefetch is still correct and useful.
1390                                  */
1391                                 kern_prefetch(ninp, &prefetch_tp);
1392                                 prefetch_tp = 1;
1393                         }
1394                         INP_WUNLOCK(inp);
1395                 skip_pacing:
1396                         CURVNET_RESTORE();
1397                 }
1398                 if (seen_endpoint) {
1399                         /*
1400                          * We now have a accurate distance between
1401                          * slot_pos_of_endpoint <-> orig_exit_slot
1402                          * to tell us how late we were, orig_exit_slot
1403                          * is where we calculated the end of our cycle to
1404                          * be when we first entered.
1405                          */
1406                         completed_measure = 1;
1407                 }
1408                 HPTS_LOCK(hpts);
1409                 hpts->p_runningslot++;
1410                 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1411                         hpts->p_runningslot = 0;
1412                 }
1413         }
1414 no_one:
1415         HPTS_MTX_ASSERT(hpts);
1416         hpts->p_delayed_by = 0;
1417         /*
1418          * Check to see if we took an excess amount of time and need to run
1419          * more ticks (if we did not hit eno-bufs).
1420          */
1421         hpts->p_prev_slot = hpts->p_cur_slot;
1422         hpts->p_lasttick = hpts->p_curtick;
1423         if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1424                 /*
1425                  * Something is serious slow we have
1426                  * looped through processing the wheel
1427                  * and by the time we cleared the
1428                  * needs to run max_pacer_loops time
1429                  * we still needed to run. That means
1430                  * the system is hopelessly behind and
1431                  * can never catch up :(
1432                  *
1433                  * We will just lie to this thread
1434                  * and let it thing p_curtick is
1435                  * correct. When it next awakens
1436                  * it will find itself further behind.
1437                  */
1438                 if (from_callout)
1439                         counter_u64_add(hpts_hopelessly_behind, 1);
1440                 goto no_run;
1441         }
1442         hpts->p_curtick = tcp_gethptstick(&tv);
1443         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1444         if (seen_endpoint == 0) {
1445                 /* We saw no endpoint but we may be looping */
1446                 orig_exit_slot = hpts->p_cur_slot;
1447         }
1448         if ((wrap_loop_cnt < 2) &&
1449             (hpts->p_lasttick != hpts->p_curtick)) {
1450                 counter_u64_add(hpts_loops, 1);
1451                 loop_cnt++;
1452                 goto again;
1453         }
1454 no_run:
1455         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1456         /*
1457          * Set flag to tell that we are done for
1458          * any slot input that happens during
1459          * input.
1460          */
1461         hpts->p_wheel_complete = 1;
1462         /*
1463          * Now did we spend too long running input and need to run more ticks?
1464          * Note that if wrap_loop_cnt < 2 then we should have the conditions
1465          * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1466          * is greater than 2, then the condtion most likely are *not* true.
1467          * Also if we are called not from the callout, we don't run the wheel
1468          * multiple times so the slots may not align either.
1469          */
1470         KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1471                  (wrap_loop_cnt >= 2) || (from_callout == 0)),
1472                 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1473                  hpts->p_prev_slot, hpts->p_cur_slot));
1474         KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1475                  || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1476                 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1477                  hpts->p_lasttick, hpts->p_curtick));
1478         if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1479                 hpts->p_curtick = tcp_gethptstick(&tv);
1480                 counter_u64_add(hpts_loops, 1);
1481                 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1482                 goto again;
1483         }
1484
1485         if (from_callout){
1486                 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1487         }
1488         if (seen_endpoint)
1489                 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1490         else
1491                 return (0);
1492 }
1493
1494 void
1495 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1496 {
1497         struct tcp_hpts_entry *hpts;
1498         int failed;
1499
1500         INP_WLOCK_ASSERT(inp);
1501         hpts = tcp_hpts_lock(inp);
1502         if ((inp->inp_in_hpts == 0) &&
1503             (inp->inp_hpts_cpu_set == 0)) {
1504                 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1505                 if (failed == 0)
1506                         inp->inp_hpts_cpu_set = 1;
1507         }
1508         mtx_unlock(&hpts->p_mtx);
1509 }
1510
1511 static void
1512 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1513 {
1514         int ticks_ran;
1515
1516         if (hpts->p_hpts_active) {
1517                 /* Already active */
1518                 return;
1519         }
1520         if (mtx_trylock(&hpts->p_mtx) == 0) {
1521                 /* Someone else got the lock */
1522                 return;
1523         }
1524         if (hpts->p_hpts_active)
1525                 goto out_with_mtx;
1526         hpts->syscall_cnt++;
1527         counter_u64_add(hpts_direct_call, 1);
1528         hpts->p_hpts_active = 1;
1529         ticks_ran = tcp_hptsi(hpts, 0);
1530         /* We may want to adjust the sleep values here */
1531         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1532                 if (ticks_ran > ticks_indicate_less_sleep) {
1533                         struct timeval tv;
1534                         sbintime_t sb;
1535
1536                         hpts->p_mysleep.tv_usec /= 2;
1537                         if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1538                                 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1539                         /* Reschedule with new to value */
1540                         tcp_hpts_set_max_sleep(hpts, 0);
1541                         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1542                         /* Validate its in the right ranges */
1543                         if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1544                                 hpts->overidden_sleep = tv.tv_usec;
1545                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1546                         } else if (tv.tv_usec > dynamic_max_sleep) {
1547                                 /* Lets not let sleep get above this value */
1548                                 hpts->overidden_sleep = tv.tv_usec;
1549                                 tv.tv_usec = dynamic_max_sleep;
1550                         }
1551                         /*
1552                          * In this mode the timer is a backstop to
1553                          * all the userret/lro_flushes so we use
1554                          * the dynamic value and set the on_min_sleep
1555                          * flag so we will not be awoken.
1556                          */
1557                         sb = tvtosbt(tv);
1558                         /* Store off to make visible the actual sleep time */
1559                         hpts->sleeping = tv.tv_usec;
1560                         callout_reset_sbt_on(&hpts->co, sb, 0,
1561                                              hpts_timeout_swi, hpts, hpts->p_cpu,
1562                                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1563                 } else if (ticks_ran < ticks_indicate_more_sleep) {
1564                         /* For the further sleep, don't reschedule  hpts */
1565                         hpts->p_mysleep.tv_usec *= 2;
1566                         if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1567                                 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1568                 }
1569                 hpts->p_on_min_sleep = 1;
1570         }
1571         hpts->p_hpts_active = 0;
1572 out_with_mtx:
1573         HPTS_MTX_ASSERT(hpts);
1574         mtx_unlock(&hpts->p_mtx);
1575 }
1576
1577 static struct tcp_hpts_entry *
1578 tcp_choose_hpts_to_run(void)
1579 {
1580         int i, oldest_idx, start, end;
1581         uint32_t cts, time_since_ran, calc;
1582
1583         cts = tcp_get_usecs(NULL);
1584         time_since_ran = 0;
1585         /* Default is all one group */
1586         start = 0;
1587         end = tcp_pace.rp_num_hptss;
1588         /*
1589          * If we have more than one L3 group figure out which one
1590          * this CPU is in.
1591          */
1592         if (tcp_pace.grp_cnt > 1) {
1593                 for (i = 0; i < tcp_pace.grp_cnt; i++) {
1594                         if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1595                                 start = tcp_pace.grps[i]->cg_first;
1596                                 end = (tcp_pace.grps[i]->cg_last + 1);
1597                                 break;
1598                         }
1599                 }
1600         }
1601         oldest_idx = -1;
1602         for (i = start; i < end; i++) {
1603                 if (TSTMP_GT(cts, cts_last_ran[i]))
1604                         calc = cts - cts_last_ran[i];
1605                 else
1606                         calc = 0;
1607                 if (calc > time_since_ran) {
1608                         oldest_idx = i;
1609                         time_since_ran = calc;
1610                 }
1611         }
1612         if (oldest_idx >= 0)
1613                 return(tcp_pace.rp_ent[oldest_idx]);
1614         else
1615                 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1616 }
1617
1618
1619 void
1620 tcp_run_hpts(void)
1621 {
1622         static struct tcp_hpts_entry *hpts;
1623         struct epoch_tracker et;
1624
1625         NET_EPOCH_ENTER(et);
1626         hpts = tcp_choose_hpts_to_run();
1627         __tcp_run_hpts(hpts);
1628         NET_EPOCH_EXIT(et);
1629 }
1630
1631
1632 static void
1633 tcp_hpts_thread(void *ctx)
1634 {
1635         struct tcp_hpts_entry *hpts;
1636         struct epoch_tracker et;
1637         struct timeval tv;
1638         sbintime_t sb;
1639         int ticks_ran;
1640
1641         hpts = (struct tcp_hpts_entry *)ctx;
1642         mtx_lock(&hpts->p_mtx);
1643         if (hpts->p_direct_wake) {
1644                 /* Signaled by input or output with low occupancy count. */
1645                 callout_stop(&hpts->co);
1646                 counter_u64_add(hpts_direct_awakening, 1);
1647         } else {
1648                 /* Timed out, the normal case. */
1649                 counter_u64_add(hpts_wake_timeout, 1);
1650                 if (callout_pending(&hpts->co) ||
1651                     !callout_active(&hpts->co)) {
1652                         mtx_unlock(&hpts->p_mtx);
1653                         return;
1654                 }
1655         }
1656         callout_deactivate(&hpts->co);
1657         hpts->p_hpts_wake_scheduled = 0;
1658         NET_EPOCH_ENTER(et);
1659         if (hpts->p_hpts_active) {
1660                 /*
1661                  * We are active already. This means that a syscall
1662                  * trap or LRO is running in behalf of hpts. In that case
1663                  * we need to double our timeout since there seems to be
1664                  * enough activity in the system that we don't need to
1665                  * run as often (if we were not directly woken).
1666                  */
1667                 if (hpts->p_direct_wake == 0) {
1668                         counter_u64_add(hpts_back_tosleep, 1);
1669                         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1670                                 hpts->p_mysleep.tv_usec *= 2;
1671                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1672                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1673                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1674                                 hpts->p_on_min_sleep = 1;
1675                         } else {
1676                                 /*
1677                                  * Here we have low count on the wheel, but
1678                                  * somehow we still collided with one of the
1679                                  * connections. Lets go back to sleep for a
1680                                  * min sleep time, but clear the flag so we
1681                                  * can be awoken by insert.
1682                                  */
1683                                 hpts->p_on_min_sleep = 0;
1684                                 tv.tv_usec = tcp_min_hptsi_time;
1685                         }
1686                 } else {
1687                         /*
1688                          * Directly woken most likely to reset the
1689                          * callout time.
1690                          */
1691                         tv.tv_sec = 0;
1692                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1693                 }
1694                 goto back_to_sleep;
1695         }
1696         hpts->sleeping = 0;
1697         hpts->p_hpts_active = 1;
1698         ticks_ran = tcp_hptsi(hpts, 1);
1699         tv.tv_sec = 0;
1700         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1701         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1702                 if(hpts->p_direct_wake == 0) {
1703                         /*
1704                          * Only adjust sleep time if we were
1705                          * called from the callout i.e. direct_wake == 0.
1706                          */
1707                         if (ticks_ran < ticks_indicate_more_sleep) {
1708                                 hpts->p_mysleep.tv_usec *= 2;
1709                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1710                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1711                         } else if (ticks_ran > ticks_indicate_less_sleep) {
1712                                 hpts->p_mysleep.tv_usec /= 2;
1713                                 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1714                                         hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1715                         }
1716                 }
1717                 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1718                         hpts->overidden_sleep = tv.tv_usec;
1719                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1720                 } else if (tv.tv_usec > dynamic_max_sleep) {
1721                         /* Lets not let sleep get above this value */
1722                         hpts->overidden_sleep = tv.tv_usec;
1723                         tv.tv_usec = dynamic_max_sleep;
1724                 }
1725                 /*
1726                  * In this mode the timer is a backstop to
1727                  * all the userret/lro_flushes so we use
1728                  * the dynamic value and set the on_min_sleep
1729                  * flag so we will not be awoken.
1730                  */
1731                 hpts->p_on_min_sleep = 1;
1732         } else if (hpts->p_on_queue_cnt == 0)  {
1733                 /*
1734                  * No one on the wheel, please wake us up
1735                  * if you insert on the wheel.
1736                  */
1737                 hpts->p_on_min_sleep = 0;
1738                 hpts->overidden_sleep = 0;
1739         } else {
1740                 /*
1741                  * We hit here when we have a low number of
1742                  * clients on the wheel (our else clause).
1743                  * We may need to go on min sleep, if we set
1744                  * the flag we will not be awoken if someone
1745                  * is inserted ahead of us. Clearing the flag
1746                  * means we can be awoken. This is "old mode"
1747                  * where the timer is what runs hpts mainly.
1748                  */
1749                 if (tv.tv_usec < tcp_min_hptsi_time) {
1750                         /*
1751                          * Yes on min sleep, which means
1752                          * we cannot be awoken.
1753                          */
1754                         hpts->overidden_sleep = tv.tv_usec;
1755                         tv.tv_usec = tcp_min_hptsi_time;
1756                         hpts->p_on_min_sleep = 1;
1757                 } else {
1758                         /* Clear the min sleep flag */
1759                         hpts->overidden_sleep = 0;
1760                         hpts->p_on_min_sleep = 0;
1761                 }
1762         }
1763         HPTS_MTX_ASSERT(hpts);
1764         hpts->p_hpts_active = 0;
1765 back_to_sleep:
1766         hpts->p_direct_wake = 0;
1767         sb = tvtosbt(tv);
1768         /* Store off to make visible the actual sleep time */
1769         hpts->sleeping = tv.tv_usec;
1770         callout_reset_sbt_on(&hpts->co, sb, 0,
1771                              hpts_timeout_swi, hpts, hpts->p_cpu,
1772                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1773         NET_EPOCH_EXIT(et);
1774         mtx_unlock(&hpts->p_mtx);
1775 }
1776
1777 #undef  timersub
1778
1779 static int32_t
1780 hpts_count_level(struct cpu_group *cg)
1781 {
1782         int32_t count_l3, i;
1783
1784         count_l3 = 0;
1785         if (cg->cg_level == CG_SHARE_L3)
1786                 count_l3++;
1787         /* Walk all the children looking for L3 */
1788         for (i = 0; i < cg->cg_children; i++) {
1789                 count_l3 += hpts_count_level(&cg->cg_child[i]);
1790         }
1791         return (count_l3);
1792 }
1793
1794 static void
1795 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1796 {
1797         int32_t idx, i;
1798
1799         idx = *at;
1800         if (cg->cg_level == CG_SHARE_L3) {
1801                 grps[idx] = cg;
1802                 idx++;
1803                 if (idx == max) {
1804                         *at = idx;
1805                         return;
1806                 }
1807         }
1808         *at = idx;
1809         /* Walk all the children looking for L3 */
1810         for (i = 0; i < cg->cg_children; i++) {
1811                 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1812         }
1813 }
1814
1815 static void
1816 tcp_init_hptsi(void *st)
1817 {
1818         struct cpu_group *cpu_top;
1819         int32_t error __diagused;
1820         int32_t i, j, bound = 0, created = 0;
1821         size_t sz, asz;
1822         struct timeval tv;
1823         sbintime_t sb;
1824         struct tcp_hpts_entry *hpts;
1825         struct pcpu *pc;
1826         char unit[16];
1827         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1828         int count, domain;
1829
1830 #ifdef SMP
1831         cpu_top = smp_topo();
1832 #else
1833         cpu_top = NULL;
1834 #endif
1835         tcp_pace.rp_num_hptss = ncpus;
1836         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1837         hpts_loops = counter_u64_alloc(M_WAITOK);
1838         back_tosleep = counter_u64_alloc(M_WAITOK);
1839         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1840         wheel_wrap = counter_u64_alloc(M_WAITOK);
1841         hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1842         hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1843         hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1844         hpts_direct_call = counter_u64_alloc(M_WAITOK);
1845         cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1846         cpu_uses_random = counter_u64_alloc(M_WAITOK);
1847
1848         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1849         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1850         sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1851         cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1852         tcp_pace.grp_cnt = 0;
1853         if (cpu_top == NULL) {
1854                 tcp_pace.grp_cnt = 1;
1855         } else {
1856                 /* Find out how many cache level 3 domains we have */
1857                 count = 0;
1858                 tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1859                 if (tcp_pace.grp_cnt == 0) {
1860                         tcp_pace.grp_cnt = 1;
1861                 }
1862                 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1863                 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1864                 /* Now populate the groups */
1865                 if (tcp_pace.grp_cnt == 1) {
1866                         /*
1867                          * All we need is the top level all cpu's are in
1868                          * the same cache so when we use grp[0]->cg_mask
1869                          * with the cg_first <-> cg_last it will include
1870                          * all cpu's in it. The level here is probably
1871                          * zero which is ok.
1872                          */
1873                         tcp_pace.grps[0] = cpu_top;
1874                 } else {
1875                         /*
1876                          * Here we must find all the level three cache domains
1877                          * and setup our pointers to them.
1878                          */
1879                         count = 0;
1880                         hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1881                 }
1882         }
1883         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1884         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1885                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1886                     M_TCPHPTS, M_WAITOK | M_ZERO);
1887                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1888                 hpts = tcp_pace.rp_ent[i];
1889                 /*
1890                  * Init all the hpts structures that are not specifically
1891                  * zero'd by the allocations. Also lets attach them to the
1892                  * appropriate sysctl block as well.
1893                  */
1894                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1895                     "hpts", MTX_DEF | MTX_DUPOK);
1896                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1897                         TAILQ_INIT(&hpts->p_hptss[j].head);
1898                         hpts->p_hptss[j].count = 0;
1899                         hpts->p_hptss[j].gencnt = 0;
1900                 }
1901                 sysctl_ctx_init(&hpts->hpts_ctx);
1902                 sprintf(unit, "%d", i);
1903                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1904                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1905                     OID_AUTO,
1906                     unit,
1907                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1908                     "");
1909                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1910                     SYSCTL_CHILDREN(hpts->hpts_root),
1911                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
1912                     &hpts->p_on_queue_cnt, 0,
1913                     "Count TCB's awaiting output processing");
1914                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1915                     SYSCTL_CHILDREN(hpts->hpts_root),
1916                     OID_AUTO, "active", CTLFLAG_RD,
1917                     &hpts->p_hpts_active, 0,
1918                     "Is the hpts active");
1919                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1920                     SYSCTL_CHILDREN(hpts->hpts_root),
1921                     OID_AUTO, "curslot", CTLFLAG_RD,
1922                     &hpts->p_cur_slot, 0,
1923                     "What the current running pacers goal");
1924                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1925                     SYSCTL_CHILDREN(hpts->hpts_root),
1926                     OID_AUTO, "runtick", CTLFLAG_RD,
1927                     &hpts->p_runningslot, 0,
1928                     "What the running pacers current slot is");
1929                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1930                     SYSCTL_CHILDREN(hpts->hpts_root),
1931                     OID_AUTO, "curtick", CTLFLAG_RD,
1932                     &hpts->p_curtick, 0,
1933                     "What the running pacers last tick mapped to the wheel was");
1934                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1935                     SYSCTL_CHILDREN(hpts->hpts_root),
1936                     OID_AUTO, "lastran", CTLFLAG_RD,
1937                     &cts_last_ran[i], 0,
1938                     "The last usec tick that this hpts ran");
1939                 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1940                     SYSCTL_CHILDREN(hpts->hpts_root),
1941                     OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1942                     &hpts->p_mysleep.tv_usec,
1943                     "What the running pacers is using for p_mysleep.tv_usec");
1944                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1945                     SYSCTL_CHILDREN(hpts->hpts_root),
1946                     OID_AUTO, "now_sleeping", CTLFLAG_RD,
1947                     &hpts->sleeping, 0,
1948                     "What the running pacers is actually sleeping for");
1949                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1950                     SYSCTL_CHILDREN(hpts->hpts_root),
1951                     OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1952                     &hpts->syscall_cnt, 0,
1953                     "How many times we had syscalls on this hpts");
1954
1955                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1956                 hpts->p_num = i;
1957                 hpts->p_curtick = tcp_gethptstick(&tv);
1958                 cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1959                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1960                 hpts->p_cpu = 0xffff;
1961                 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1962                 callout_init(&hpts->co, 1);
1963         }
1964         /* Don't try to bind to NUMA domains if we don't have any */
1965         if (vm_ndomains == 1 && tcp_bind_threads == 2)
1966                 tcp_bind_threads = 0;
1967
1968         /*
1969          * Now lets start ithreads to handle the hptss.
1970          */
1971         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1972                 hpts = tcp_pace.rp_ent[i];
1973                 hpts->p_cpu = i;
1974
1975                 error = swi_add(&hpts->ie, "hpts",
1976                     tcp_hpts_thread, (void *)hpts,
1977                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1978                 KASSERT(error == 0,
1979                         ("Can't add hpts:%p i:%d err:%d",
1980                          hpts, i, error));
1981                 created++;
1982                 hpts->p_mysleep.tv_sec = 0;
1983                 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1984                 if (tcp_bind_threads == 1) {
1985                         if (intr_event_bind(hpts->ie, i) == 0)
1986                                 bound++;
1987                 } else if (tcp_bind_threads == 2) {
1988                         /* Find the group for this CPU (i) and bind into it */
1989                         for (j = 0; j < tcp_pace.grp_cnt; j++) {
1990                                 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
1991                                         if (intr_event_bind_ithread_cpuset(hpts->ie,
1992                                                 &tcp_pace.grps[j]->cg_mask) == 0) {
1993                                                 bound++;
1994                                                 pc = pcpu_find(i);
1995                                                 domain = pc->pc_domain;
1996                                                 count = hpts_domains[domain].count;
1997                                                 hpts_domains[domain].cpu[count] = i;
1998                                                 hpts_domains[domain].count++;
1999                                                 break;
2000                                         }
2001                                 }
2002                         }
2003                 }
2004                 tv.tv_sec = 0;
2005                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
2006                 hpts->sleeping = tv.tv_usec;
2007                 sb = tvtosbt(tv);
2008                 callout_reset_sbt_on(&hpts->co, sb, 0,
2009                                      hpts_timeout_swi, hpts, hpts->p_cpu,
2010                                      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2011         }
2012         /*
2013          * If we somehow have an empty domain, fall back to choosing
2014          * among all htps threads.
2015          */
2016         for (i = 0; i < vm_ndomains; i++) {
2017                 if (hpts_domains[i].count == 0) {
2018                         tcp_bind_threads = 0;
2019                         break;
2020                 }
2021         }
2022         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2023             created, bound,
2024             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2025 #ifdef INVARIANTS
2026         printf("HPTS is in INVARIANT mode!!\n");
2027 #endif
2028 }
2029
2030 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2031 MODULE_VERSION(tcphpts, 1);