]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_hpts.c
dts: Update our copy for arm, arm64 and riscv dts to Linux 5.5
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_hpts.c
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_tcpdebug.h"
32 /**
33  * Some notes about usage.
34  *
35  * The tcp_hpts system is designed to provide a high precision timer
36  * system for tcp. Its main purpose is to provide a mechanism for
37  * pacing packets out onto the wire. It can be used in two ways
38  * by a given TCP stack (and those two methods can be used simultaneously).
39  *
40  * First, and probably the main thing its used by Rack and BBR, it can
41  * be used to call tcp_output() of a transport stack at some time in the future.
42  * The normal way this is done is that tcp_output() of the stack schedules
43  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
44  * slot is the time from now that the stack wants to be called but it
45  * must be converted to tcp_hpts's notion of slot. This is done with
46  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
47  * call from the tcp_output() routine might look like:
48  *
49  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
50  *
51  * The above would schedule tcp_ouput() to be called in 550 useconds.
52  * Note that if using this mechanism the stack will want to add near
53  * its top a check to prevent unwanted calls (from user land or the
54  * arrival of incoming ack's). So it would add something like:
55  *
56  * if (inp->inp_in_hpts)
57  *    return;
58  *
59  * to prevent output processing until the time alotted has gone by.
60  * Of course this is a bare bones example and the stack will probably
61  * have more consideration then just the above.
62  *
63  * Now the second function (actually two functions I guess :D)
64  * the tcp_hpts system provides is the  ability to either abort
65  * a connection (later) or process input on a connection.
66  * Why would you want to do this? To keep processor locality
67  * and or not have to worry about untangling any recursive
68  * locks. The input function now is hooked to the new LRO
69  * system as well.
70  *
71  * In order to use the input redirection function the
72  * tcp stack must define an input function for
73  * tfb_do_queued_segments(). This function understands
74  * how to dequeue a array of packets that were input and
75  * knows how to call the correct processing routine.
76  *
77  * Locking in this is important as well so most likely the
78  * stack will need to define the tfb_do_segment_nounlock()
79  * splitting tfb_do_segment() into two parts. The main processing
80  * part that does not unlock the INP and returns a value of 1 or 0.
81  * It returns 0 if all is well and the lock was not released. It
82  * returns 1 if we had to destroy the TCB (a reset received etc).
83  * The remains of tfb_do_segment() then become just a simple call
84  * to the tfb_do_segment_nounlock() function and check the return
85  * code and possibly unlock.
86  *
87  * The stack must also set the flag on the INP that it supports this
88  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
89  * this flag as well and will queue packets when it is set.
90  * There are other flags as well INP_MBUF_QUEUE_READY and
91  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
92  * that we are in the pacer for output so there is no
93  * need to wake up the hpts system to get immediate
94  * input. The second tells the LRO code that its okay
95  * if a SACK arrives you can still defer input and let
96  * the current hpts timer run (this is usually set when
97  * a rack timer is up so we know SACK's are happening
98  * on the connection already and don't want to wakeup yet).
99  *
100  * There is a common functions within the rack_bbr_common code
101  * version i.e. ctf_do_queued_segments(). This function
102  * knows how to take the input queue of packets from
103  * tp->t_in_pkts and process them digging out
104  * all the arguments, calling any bpf tap and
105  * calling into tfb_do_segment_nounlock(). The common
106  * function (ctf_do_queued_segments())  requires that
107  * you have defined the tfb_do_segment_nounlock() as
108  * described above.
109  *
110  * The second feature of the input side of hpts is the
111  * dropping of a connection. This is due to the way that
112  * locking may have occured on the INP_WLOCK. So if
113  * a stack wants to drop a connection it calls:
114  *
115  *     tcp_set_inp_to_drop(tp, ETIMEDOUT)
116  *
117  * To schedule the tcp_hpts system to call
118  *
119  *    tcp_drop(tp, drop_reason)
120  *
121  * at a future point. This is quite handy to prevent locking
122  * issues when dropping connections.
123  *
124  */
125
126 #include <sys/param.h>
127 #include <sys/bus.h>
128 #include <sys/interrupt.h>
129 #include <sys/module.h>
130 #include <sys/kernel.h>
131 #include <sys/hhook.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/proc.h>           /* for proc0 declaration */
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/sysctl.h>
138 #include <sys/systm.h>
139 #include <sys/refcount.h>
140 #include <sys/sched.h>
141 #include <sys/queue.h>
142 #include <sys/smp.h>
143 #include <sys/counter.h>
144 #include <sys/time.h>
145 #include <sys/kthread.h>
146 #include <sys/kern_prefetch.h>
147
148 #include <vm/uma.h>
149 #include <vm/vm.h>
150
151 #include <net/route.h>
152 #include <net/vnet.h>
153
154 #define TCPSTATES               /* for logging */
155
156 #include <netinet/in.h>
157 #include <netinet/in_kdtrace.h>
158 #include <netinet/in_pcb.h>
159 #include <netinet/ip.h>
160 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
161 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
162 #include <netinet/ip_var.h>
163 #include <netinet/ip6.h>
164 #include <netinet6/in6_pcb.h>
165 #include <netinet6/ip6_var.h>
166 #include <netinet/tcp.h>
167 #include <netinet/tcp_fsm.h>
168 #include <netinet/tcp_seq.h>
169 #include <netinet/tcp_timer.h>
170 #include <netinet/tcp_var.h>
171 #include <netinet/tcpip.h>
172 #include <netinet/cc/cc.h>
173 #include <netinet/tcp_hpts.h>
174 #include <netinet/tcp_log_buf.h>
175
176 #ifdef tcpdebug
177 #include <netinet/tcp_debug.h>
178 #endif                          /* tcpdebug */
179 #ifdef tcp_offload
180 #include <netinet/tcp_offload.h>
181 #endif
182
183 #include "opt_rss.h"
184
185 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
186 #ifdef RSS
187 static int tcp_bind_threads = 1;
188 #else
189 static int tcp_bind_threads = 2;
190 #endif
191 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
192
193 static struct tcp_hptsi tcp_pace;
194 static int hpts_does_tp_logging = 0;
195
196 static void tcp_wakehpts(struct tcp_hpts_entry *p);
197 static void tcp_wakeinput(struct tcp_hpts_entry *p);
198 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv);
199 static void tcp_hptsi(struct tcp_hpts_entry *hpts);
200 static void tcp_hpts_thread(void *ctx);
201 static void tcp_init_hptsi(void *st);
202
203 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
204 static int32_t tcp_hpts_callout_skip_swi = 0;
205
206 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
207     "TCP Hpts controls");
208
209 #define timersub(tvp, uvp, vvp)                                         \
210         do {                                                            \
211                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
212                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
213                 if ((vvp)->tv_usec < 0) {                               \
214                         (vvp)->tv_sec--;                                \
215                         (vvp)->tv_usec += 1000000;                      \
216                 }                                                       \
217         } while (0)
218
219 static int32_t tcp_hpts_precision = 120;
220
221 struct hpts_domain_info {
222         int count;
223         int cpu[MAXCPU];
224 };
225
226 struct hpts_domain_info hpts_domains[MAXMEMDOM];
227
228 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
229     &tcp_hpts_precision, 120,
230     "Value for PRE() precision of callout");
231
232 counter_u64_t hpts_hopelessly_behind;
233
234 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD,
235     &hpts_hopelessly_behind,
236     "Number of times hpts could not catch up and was behind hopelessly");
237
238 counter_u64_t hpts_loops;
239
240 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD,
241     &hpts_loops, "Number of times hpts had to loop to catch up");
242
243
244 counter_u64_t back_tosleep;
245
246 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
247     &back_tosleep, "Number of times hpts found no tcbs");
248
249 counter_u64_t combined_wheel_wrap;
250
251 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
252     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
253
254 counter_u64_t wheel_wrap;
255
256 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD,
257     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
258
259 static int32_t out_ts_percision = 0;
260
261 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW,
262     &out_ts_percision, 0,
263     "Do we use a percise timestamp for every output cts");
264 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
265     &hpts_does_tp_logging, 0,
266     "Do we add to any tp that has logging on pacer logs");
267
268 static int32_t max_pacer_loops = 10;
269 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
270     &max_pacer_loops, 10,
271     "What is the maximum number of times the pacer will loop trying to catch up");
272
273 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
274
275 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
276
277
278 static int
279 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
280 {
281         int error;
282         uint32_t new;
283
284         new = hpts_sleep_max;
285         error = sysctl_handle_int(oidp, &new, 0, req);
286         if (error == 0 && req->newptr) {
287                 if ((new < (NUM_OF_HPTSI_SLOTS / 4)) ||
288                     (new > HPTS_MAX_SLEEP_ALLOWED))
289                         error = EINVAL;
290                 else
291                         hpts_sleep_max = new;
292         }
293         return (error);
294 }
295
296 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
297     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
298     &hpts_sleep_max, 0,
299     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
300     "Maximum time hpts will sleep");
301
302 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW,
303     &tcp_min_hptsi_time, 0,
304     "The minimum time the hpts must sleep before processing more slots");
305
306 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW,
307     &tcp_hpts_callout_skip_swi, 0,
308     "Do we have the callout call directly to the hpts?");
309
310 static void
311 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
312              int ticks_to_run, int idx)
313 {
314         union tcp_log_stackspecific log;
315
316         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
317         log.u_bbr.flex1 = hpts->p_nxt_slot;
318         log.u_bbr.flex2 = hpts->p_cur_slot;
319         log.u_bbr.flex3 = hpts->p_prev_slot;
320         log.u_bbr.flex4 = idx;
321         log.u_bbr.flex5 = hpts->p_curtick;
322         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
323         log.u_bbr.use_lt_bw = 1;
324         log.u_bbr.inflight = ticks_to_run;
325         log.u_bbr.applimited = hpts->overidden_sleep;
326         log.u_bbr.delivered = hpts->saved_curtick;
327         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
328         log.u_bbr.epoch = hpts->saved_curslot;
329         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
330         log.u_bbr.pkts_out = hpts->p_delayed_by;
331         log.u_bbr.lost = hpts->p_hpts_sleep_time;
332         log.u_bbr.cur_del_rate = hpts->p_runningtick;
333         TCP_LOG_EVENTP(tp, NULL,
334                        &tp->t_inpcb->inp_socket->so_rcv,
335                        &tp->t_inpcb->inp_socket->so_snd,
336                        BBR_LOG_HPTSDIAG, 0,
337                        0, &log, false, tv);
338 }
339
340 static void
341 hpts_timeout_swi(void *arg)
342 {
343         struct tcp_hpts_entry *hpts;
344
345         hpts = (struct tcp_hpts_entry *)arg;
346         swi_sched(hpts->ie_cookie, 0);
347 }
348
349 static void
350 hpts_timeout_dir(void *arg)
351 {
352         tcp_hpts_thread(arg);
353 }
354
355 static inline void
356 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear)
357 {
358 #ifdef INVARIANTS
359         if (mtx_owned(&hpts->p_mtx) == 0) {
360                 /* We don't own the mutex? */
361                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
362         }
363         if (hpts->p_cpu != inp->inp_hpts_cpu) {
364                 /* It is not the right cpu/mutex? */
365                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
366         }
367         if (inp->inp_in_hpts == 0) {
368                 /* We are not on the hpts? */
369                 panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp);
370         }
371 #endif
372         TAILQ_REMOVE(head, inp, inp_hpts);
373         hpts->p_on_queue_cnt--;
374         if (hpts->p_on_queue_cnt < 0) {
375                 /* Count should not go negative .. */
376 #ifdef INVARIANTS
377                 panic("Hpts goes negative inp:%p hpts:%p",
378                     inp, hpts);
379 #endif
380                 hpts->p_on_queue_cnt = 0;
381         }
382         if (clear) {
383                 inp->inp_hpts_request = 0;
384                 inp->inp_in_hpts = 0;
385         }
386 }
387
388 static inline void
389 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref)
390 {
391 #ifdef INVARIANTS
392         if (mtx_owned(&hpts->p_mtx) == 0) {
393                 /* We don't own the mutex? */
394                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
395         }
396         if (hpts->p_cpu != inp->inp_hpts_cpu) {
397                 /* It is not the right cpu/mutex? */
398                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
399         }
400         if ((noref == 0) && (inp->inp_in_hpts == 1)) {
401                 /* We are already on the hpts? */
402                 panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp);
403         }
404 #endif
405         TAILQ_INSERT_TAIL(head, inp, inp_hpts);
406         inp->inp_in_hpts = 1;
407         hpts->p_on_queue_cnt++;
408         if (noref == 0) {
409                 in_pcbref(inp);
410         }
411 }
412
413 static inline void
414 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear)
415 {
416 #ifdef INVARIANTS
417         if (mtx_owned(&hpts->p_mtx) == 0) {
418                 /* We don't own the mutex? */
419                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
420         }
421         if (hpts->p_cpu != inp->inp_input_cpu) {
422                 /* It is not the right cpu/mutex? */
423                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
424         }
425         if (inp->inp_in_input == 0) {
426                 /* We are not on the input hpts? */
427                 panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp);
428         }
429 #endif
430         TAILQ_REMOVE(&hpts->p_input, inp, inp_input);
431         hpts->p_on_inqueue_cnt--;
432         if (hpts->p_on_inqueue_cnt < 0) {
433 #ifdef INVARIANTS
434                 panic("Hpts in goes negative inp:%p hpts:%p",
435                     inp, hpts);
436 #endif
437                 hpts->p_on_inqueue_cnt = 0;
438         }
439 #ifdef INVARIANTS
440         if (TAILQ_EMPTY(&hpts->p_input) &&
441             (hpts->p_on_inqueue_cnt != 0)) {
442                 /* We should not be empty with a queue count */
443                 panic("%s hpts:%p in_hpts input empty but cnt:%d",
444                     __FUNCTION__, hpts, hpts->p_on_inqueue_cnt);
445         }
446 #endif
447         if (clear)
448                 inp->inp_in_input = 0;
449 }
450
451 static inline void
452 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line)
453 {
454 #ifdef INVARIANTS
455         if (mtx_owned(&hpts->p_mtx) == 0) {
456                 /* We don't own the mutex? */
457                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
458         }
459         if (hpts->p_cpu != inp->inp_input_cpu) {
460                 /* It is not the right cpu/mutex? */
461                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
462         }
463         if (inp->inp_in_input == 1) {
464                 /* We are already on the input hpts? */
465                 panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp);
466         }
467 #endif
468         TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input);
469         inp->inp_in_input = 1;
470         hpts->p_on_inqueue_cnt++;
471         in_pcbref(inp);
472 }
473
474 static void
475 tcp_wakehpts(struct tcp_hpts_entry *hpts)
476 {
477         HPTS_MTX_ASSERT(hpts);
478         if (hpts->p_hpts_wake_scheduled == 0) {
479                 hpts->p_hpts_wake_scheduled = 1;
480                 swi_sched(hpts->ie_cookie, 0);
481         }
482 }
483
484 static void
485 tcp_wakeinput(struct tcp_hpts_entry *hpts)
486 {
487         HPTS_MTX_ASSERT(hpts);
488         if (hpts->p_hpts_wake_scheduled == 0) {
489                 hpts->p_hpts_wake_scheduled = 1;
490                 swi_sched(hpts->ie_cookie, 0);
491         }
492 }
493
494 struct tcp_hpts_entry *
495 tcp_cur_hpts(struct inpcb *inp)
496 {
497         int32_t hpts_num;
498         struct tcp_hpts_entry *hpts;
499
500         hpts_num = inp->inp_hpts_cpu;
501         hpts = tcp_pace.rp_ent[hpts_num];
502         return (hpts);
503 }
504
505 struct tcp_hpts_entry *
506 tcp_hpts_lock(struct inpcb *inp)
507 {
508         struct tcp_hpts_entry *hpts;
509         int32_t hpts_num;
510
511 again:
512         hpts_num = inp->inp_hpts_cpu;
513         hpts = tcp_pace.rp_ent[hpts_num];
514 #ifdef INVARIANTS
515         if (mtx_owned(&hpts->p_mtx)) {
516                 panic("Hpts:%p owns mtx prior-to lock line:%d",
517                     hpts, __LINE__);
518         }
519 #endif
520         mtx_lock(&hpts->p_mtx);
521         if (hpts_num != inp->inp_hpts_cpu) {
522                 mtx_unlock(&hpts->p_mtx);
523                 goto again;
524         }
525         return (hpts);
526 }
527
528 struct tcp_hpts_entry *
529 tcp_input_lock(struct inpcb *inp)
530 {
531         struct tcp_hpts_entry *hpts;
532         int32_t hpts_num;
533
534 again:
535         hpts_num = inp->inp_input_cpu;
536         hpts = tcp_pace.rp_ent[hpts_num];
537 #ifdef INVARIANTS
538         if (mtx_owned(&hpts->p_mtx)) {
539                 panic("Hpts:%p owns mtx prior-to lock line:%d",
540                     hpts, __LINE__);
541         }
542 #endif
543         mtx_lock(&hpts->p_mtx);
544         if (hpts_num != inp->inp_input_cpu) {
545                 mtx_unlock(&hpts->p_mtx);
546                 goto again;
547         }
548         return (hpts);
549 }
550
551 static void
552 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line)
553 {
554         int32_t add_freed;
555
556         if (inp->inp_flags2 & INP_FREED) {
557                 /*
558                  * Need to play a special trick so that in_pcbrele_wlocked
559                  * does not return 1 when it really should have returned 0.
560                  */
561                 add_freed = 1;
562                 inp->inp_flags2 &= ~INP_FREED;
563         } else {
564                 add_freed = 0;
565         }
566 #ifndef INP_REF_DEBUG
567         if (in_pcbrele_wlocked(inp)) {
568                 /*
569                  * This should not happen. We have the inpcb referred to by
570                  * the main socket (why we are called) and the hpts. It
571                  * should always return 0.
572                  */
573                 panic("inpcb:%p release ret 1",
574                     inp);
575         }
576 #else
577         if (__in_pcbrele_wlocked(inp, line)) {
578                 /*
579                  * This should not happen. We have the inpcb referred to by
580                  * the main socket (why we are called) and the hpts. It
581                  * should always return 0.
582                  */
583                 panic("inpcb:%p release ret 1",
584                     inp);
585         }
586 #endif
587         if (add_freed) {
588                 inp->inp_flags2 |= INP_FREED;
589         }
590 }
591
592 static void
593 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
594 {
595         if (inp->inp_in_hpts) {
596                 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1);
597                 tcp_remove_hpts_ref(inp, hpts, line);
598         }
599 }
600
601 static void
602 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
603 {
604         HPTS_MTX_ASSERT(hpts);
605         if (inp->inp_in_input) {
606                 hpts_sane_input_remove(hpts, inp, 1);
607                 tcp_remove_hpts_ref(inp, hpts, line);
608         }
609 }
610
611 /*
612  * Called normally with the INP_LOCKED but it
613  * does not matter, the hpts lock is the key
614  * but the lock order allows us to hold the
615  * INP lock and then get the hpts lock.
616  *
617  * Valid values in the flags are
618  * HPTS_REMOVE_OUTPUT - remove from the output of the hpts.
619  * HPTS_REMOVE_INPUT - remove from the input of the hpts.
620  * Note that you can use one or both values together
621  * and get two actions.
622  */
623 void
624 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line)
625 {
626         struct tcp_hpts_entry *hpts;
627
628         INP_WLOCK_ASSERT(inp);
629         if (flags & HPTS_REMOVE_OUTPUT) {
630                 hpts = tcp_hpts_lock(inp);
631                 tcp_hpts_remove_locked_output(hpts, inp, flags, line);
632                 mtx_unlock(&hpts->p_mtx);
633         }
634         if (flags & HPTS_REMOVE_INPUT) {
635                 hpts = tcp_input_lock(inp);
636                 tcp_hpts_remove_locked_input(hpts, inp, flags, line);
637                 mtx_unlock(&hpts->p_mtx);
638         }
639 }
640
641 static inline int
642 hpts_tick(uint32_t wheel_tick, uint32_t plus)
643 {
644         /*
645          * Given a slot on the wheel, what slot
646          * is that plus ticks out?
647          */
648         KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick));
649         return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS);
650 }
651
652 static inline int
653 tick_to_wheel(uint32_t cts_in_wticks)
654 {
655         /*
656          * Given a timestamp in wheel ticks (10usec inc's)
657          * map it to our limited space wheel.
658          */
659         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
660 }
661
662 static inline int
663 hpts_ticks_diff(int prev_tick, int tick_now)
664 {
665         /*
666          * Given two ticks that are someplace
667          * on our wheel. How far are they apart?
668          */
669         if (tick_now > prev_tick)
670                 return (tick_now - prev_tick);
671         else if (tick_now == prev_tick)
672                 /*
673                  * Special case, same means we can go all of our
674                  * wheel less one slot.
675                  */
676                 return (NUM_OF_HPTSI_SLOTS - 1);
677         else
678                 return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now);
679 }
680
681 /*
682  * Given a tick on the wheel that is the current time
683  * mapped to the wheel (wheel_tick), what is the maximum
684  * distance forward that can be obtained without
685  * wrapping past either prev_tick or running_tick
686  * depending on the htps state? Also if passed
687  * a uint32_t *, fill it with the tick location.
688  *
689  * Note if you do not give this function the current
690  * time (that you think it is) mapped to the wheel
691  * then the results will not be what you expect and
692  * could lead to invalid inserts.
693  */
694 static inline int32_t
695 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick)
696 {
697         uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel;
698
699         if ((hpts->p_hpts_active == 1) &&
700             (hpts->p_wheel_complete == 0)) {
701                 end_tick = hpts->p_runningtick;
702                 /* Back up one tick */
703                 if (end_tick == 0)
704                         end_tick = NUM_OF_HPTSI_SLOTS - 1;
705                 else
706                         end_tick--;
707                 if (target_tick)
708                         *target_tick = end_tick;
709         } else {
710                 /*
711                  * For the case where we are
712                  * not active, or we have
713                  * completed the pass over
714                  * the wheel, we can use the
715                  * prev tick and subtract one from it. This puts us
716                  * as far out as possible on the wheel.
717                  */
718                 end_tick = hpts->p_prev_slot;
719                 if (end_tick == 0)
720                         end_tick = NUM_OF_HPTSI_SLOTS - 1;
721                 else
722                         end_tick--;
723                 if (target_tick)
724                         *target_tick = end_tick;
725                 /*
726                  * Now we have close to the full wheel left minus the
727                  * time it has been since the pacer went to sleep. Note
728                  * that wheel_tick, passed in, should be the current time
729                  * from the perspective of the caller, mapped to the wheel.
730                  */
731                 if (hpts->p_prev_slot != wheel_tick)
732                         dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
733                 else
734                         dis_to_travel = 1;
735                 /*
736                  * dis_to_travel in this case is the space from when the
737                  * pacer stopped (p_prev_slot) and where our wheel_tick
738                  * is now. To know how many slots we can put it in we
739                  * subtract from the wheel size. We would not want
740                  * to place something after p_prev_slot or it will
741                  * get ran too soon.
742                  */
743                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
744         }
745         /*
746          * So how many slots are open between p_runningtick -> p_cur_slot
747          * that is what is currently un-available for insertion. Special
748          * case when we are at the last slot, this gets 1, so that
749          * the answer to how many slots are available is all but 1.
750          */
751         if (hpts->p_runningtick == hpts->p_cur_slot)
752                 dis_to_travel = 1;
753         else
754                 dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
755         /*
756          * How long has the pacer been running?
757          */
758         if (hpts->p_cur_slot != wheel_tick) {
759                 /* The pacer is a bit late */
760                 pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick);
761         } else {
762                 /* The pacer is right on time, now == pacers start time */
763                 pacer_to_now = 0;
764         }
765         /*
766          * To get the number left we can insert into we simply
767          * subract the distance the pacer has to run from how
768          * many slots there are.
769          */
770         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
771         /*
772          * Now how many of those we will eat due to the pacer's
773          * time (p_cur_slot) of start being behind the
774          * real time (wheel_tick)?
775          */
776         if (avail_on_wheel <= pacer_to_now) {
777                 /*
778                  * Wheel wrap, we can't fit on the wheel, that
779                  * is unusual the system must be way overloaded!
780                  * Insert into the assured tick, and return special
781                  * "0".
782                  */
783                 counter_u64_add(combined_wheel_wrap, 1);
784                 *target_tick = hpts->p_nxt_slot;
785                 return (0);
786         } else {
787                 /*
788                  * We know how many slots are open
789                  * on the wheel (the reverse of what
790                  * is left to run. Take away the time
791                  * the pacer started to now (wheel_tick)
792                  * and that tells you how many slots are
793                  * open that can be inserted into that won't
794                  * be touched by the pacer until later.
795                  */
796                 return (avail_on_wheel - pacer_to_now);
797         }
798 }
799
800 static int
801 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref)
802 {
803         uint32_t need_wake = 0;
804
805         HPTS_MTX_ASSERT(hpts);
806         if (inp->inp_in_hpts == 0) {
807                 /* Ok we need to set it on the hpts in the current slot */
808                 inp->inp_hpts_request = 0;
809                 if ((hpts->p_hpts_active == 0) ||
810                     (hpts->p_wheel_complete)) {
811                         /*
812                          * A sleeping hpts we want in next slot to run
813                          * note that in this state p_prev_slot == p_cur_slot
814                          */
815                         inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1);
816                         if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0))
817                                 need_wake = 1;
818                 } else if ((void *)inp == hpts->p_inp) {
819                         /*
820                          * The hpts system is running and the caller
821                          * was awoken by the hpts system.
822                          * We can't allow you to go into the same slot we
823                          * are in (we don't want a loop :-D).
824                          */
825                         inp->inp_hptsslot = hpts->p_nxt_slot;
826                 } else
827                         inp->inp_hptsslot = hpts->p_runningtick;
828                 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
829                 if (need_wake) {
830                         /*
831                          * Activate the hpts if it is sleeping and its
832                          * timeout is not 1.
833                          */
834                         hpts->p_direct_wake = 1;
835                         tcp_wakehpts(hpts);
836                 }
837         }
838         return (need_wake);
839 }
840
841 int
842 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line)
843 {
844         int32_t ret;
845         struct tcp_hpts_entry *hpts;
846
847         INP_WLOCK_ASSERT(inp);
848         hpts = tcp_hpts_lock(inp);
849         ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
850         mtx_unlock(&hpts->p_mtx);
851         return (ret);
852 }
853
854 #ifdef INVARIANTS
855 static void
856 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
857 {
858         /*
859          * Sanity checks for the pacer with invariants
860          * on insert.
861          */
862         if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS)
863                 panic("hpts:%p inp:%p slot:%d > max",
864                       hpts, inp, inp_hptsslot);
865         if ((hpts->p_hpts_active) &&
866             (hpts->p_wheel_complete == 0)) {
867                 /*
868                  * If the pacer is processing a arc
869                  * of the wheel, we need to make
870                  * sure we are not inserting within
871                  * that arc.
872                  */
873                 int distance, yet_to_run;
874
875                 distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot);
876                 if (hpts->p_runningtick != hpts->p_cur_slot)
877                         yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
878                 else
879                         yet_to_run = 0; /* processing last slot */
880                 if (yet_to_run > distance) {
881                         panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
882                               hpts, inp, inp_hptsslot,
883                               distance, yet_to_run,
884                               hpts->p_runningtick, hpts->p_cur_slot);
885                 }
886         }
887 }
888 #endif
889
890 static void
891 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line,
892                        struct hpts_diag *diag, struct timeval *tv)
893 {
894         uint32_t need_new_to = 0;
895         uint32_t wheel_cts, last_tick;
896         int32_t wheel_tick, maxticks;
897         int8_t need_wakeup = 0;
898
899         HPTS_MTX_ASSERT(hpts);
900         if (diag) {
901                 memset(diag, 0, sizeof(struct hpts_diag));
902                 diag->p_hpts_active = hpts->p_hpts_active;
903                 diag->p_prev_slot = hpts->p_prev_slot;
904                 diag->p_runningtick = hpts->p_runningtick;
905                 diag->p_nxt_slot = hpts->p_nxt_slot;
906                 diag->p_cur_slot = hpts->p_cur_slot;
907                 diag->p_curtick = hpts->p_curtick;
908                 diag->p_lasttick = hpts->p_lasttick;
909                 diag->slot_req = slot;
910                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
911                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
912         }
913         if (inp->inp_in_hpts == 0) {
914                 if (slot == 0) {
915                         /* Immediate */
916                         tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
917                         return;
918                 }
919                 /* Get the current time relative to the wheel */
920                 wheel_cts = tcp_tv_to_hptstick(tv);
921                 /* Map it onto the wheel */
922                 wheel_tick = tick_to_wheel(wheel_cts);
923                 /* Now what's the max we can place it at? */
924                 maxticks = max_ticks_available(hpts, wheel_tick, &last_tick);
925                 if (diag) {
926                         diag->wheel_tick = wheel_tick;
927                         diag->maxticks = maxticks;
928                         diag->wheel_cts = wheel_cts;
929                 }
930                 if (maxticks == 0) {
931                         /* The pacer is in a wheel wrap behind, yikes! */
932                         if (slot > 1) {
933                                 /*
934                                  * Reduce by 1 to prevent a forever loop in
935                                  * case something else is wrong. Note this
936                                  * probably does not hurt because the pacer
937                                  * if its true is so far behind we will be
938                                  * > 1second late calling anyway.
939                                  */
940                                 slot--;
941                         }
942                         inp->inp_hptsslot = last_tick;
943                         inp->inp_hpts_request = slot;
944                 } else  if (maxticks >= slot) {
945                         /* It all fits on the wheel */
946                         inp->inp_hpts_request = 0;
947                         inp->inp_hptsslot = hpts_tick(wheel_tick, slot);
948                 } else {
949                         /* It does not fit */
950                         inp->inp_hpts_request = slot - maxticks;
951                         inp->inp_hptsslot = last_tick;
952                 }
953                 if (diag) {
954                         diag->slot_remaining = inp->inp_hpts_request;
955                         diag->inp_hptsslot = inp->inp_hptsslot;
956                 }
957 #ifdef INVARIANTS
958                 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
959 #endif
960                 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0);
961                 if ((hpts->p_hpts_active == 0) &&
962                     (inp->inp_hpts_request == 0) &&
963                     (hpts->p_on_min_sleep == 0)) {
964                         /*
965                          * The hpts is sleeping and not on a minimum
966                          * sleep time, we need to figure out where
967                          * it will wake up at and if we need to reschedule
968                          * its time-out.
969                          */
970                         uint32_t have_slept, yet_to_sleep;
971
972                         /* Now do we need to restart the hpts's timer? */
973                         have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
974                         if (have_slept < hpts->p_hpts_sleep_time)
975                                 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
976                         else {
977                                 /* We are over-due */
978                                 yet_to_sleep = 0;
979                                 need_wakeup = 1;
980                         }
981                         if (diag) {
982                                 diag->have_slept = have_slept;
983                                 diag->yet_to_sleep = yet_to_sleep;
984                         }
985                         if (yet_to_sleep &&
986                             (yet_to_sleep > slot)) {
987                                 /*
988                                  * We need to reschedule the hpts's time-out.
989                                  */
990                                 hpts->p_hpts_sleep_time = slot;
991                                 need_new_to = slot * HPTS_TICKS_PER_USEC;
992                         }
993                 }
994                 /*
995                  * Now how far is the hpts sleeping to? if active is 1, its
996                  * up and ticking we do nothing, otherwise we may need to
997                  * reschedule its callout if need_new_to is set from above.
998                  */
999                 if (need_wakeup) {
1000                         hpts->p_direct_wake = 1;
1001                         tcp_wakehpts(hpts);
1002                         if (diag) {
1003                                 diag->need_new_to = 0;
1004                                 diag->co_ret = 0xffff0000;
1005                         }
1006                 } else if (need_new_to) {
1007                         int32_t co_ret;
1008                         struct timeval tv;
1009                         sbintime_t sb;
1010
1011                         tv.tv_sec = 0;
1012                         tv.tv_usec = 0;
1013                         while (need_new_to > HPTS_USEC_IN_SEC) {
1014                                 tv.tv_sec++;
1015                                 need_new_to -= HPTS_USEC_IN_SEC;
1016                         }
1017                         tv.tv_usec = need_new_to;
1018                         sb = tvtosbt(tv);
1019                         if (tcp_hpts_callout_skip_swi == 0) {
1020                                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1021                                     hpts_timeout_swi, hpts, hpts->p_cpu,
1022                                     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1023                         } else {
1024                                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1025                                     hpts_timeout_dir, hpts,
1026                                     hpts->p_cpu,
1027                                     C_PREL(tcp_hpts_precision));
1028                         }
1029                         if (diag) {
1030                                 diag->need_new_to = need_new_to;
1031                                 diag->co_ret = co_ret;
1032                         }
1033                 }
1034         } else {
1035 #ifdef INVARIANTS
1036                 panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp);
1037 #endif
1038         }
1039 }
1040
1041 uint32_t
1042 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
1043 {
1044         struct tcp_hpts_entry *hpts;
1045         uint32_t slot_on;
1046         struct timeval tv;
1047
1048         /*
1049          * We now return the next-slot the hpts will be on, beyond its
1050          * current run (if up) or where it was when it stopped if it is
1051          * sleeping.
1052          */
1053         INP_WLOCK_ASSERT(inp);
1054         hpts = tcp_hpts_lock(inp);
1055         microuptime(&tv);
1056         tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv);
1057         slot_on = hpts->p_nxt_slot;
1058         mtx_unlock(&hpts->p_mtx);
1059         return (slot_on);
1060 }
1061
1062 uint32_t
1063 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){
1064         return (tcp_hpts_insert_diag(inp, slot, line, NULL));
1065 }
1066 int
1067 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line)
1068 {
1069         int32_t retval = 0;
1070
1071         HPTS_MTX_ASSERT(hpts);
1072         if (inp->inp_in_input == 0) {
1073                 /* Ok we need to set it on the hpts in the current slot */
1074                 hpts_sane_input_insert(hpts, inp, line);
1075                 retval = 1;
1076                 if (hpts->p_hpts_active == 0) {
1077                         /*
1078                          * Activate the hpts if it is sleeping.
1079                          */
1080                         retval = 2;
1081                         hpts->p_direct_wake = 1;
1082                         tcp_wakeinput(hpts);
1083                 }
1084         } else if (hpts->p_hpts_active == 0) {
1085                 retval = 4;
1086                 hpts->p_direct_wake = 1;
1087                 tcp_wakeinput(hpts);
1088         }
1089         return (retval);
1090 }
1091
1092 int32_t
1093 __tcp_queue_to_input(struct inpcb *inp, int line)
1094 {
1095         struct tcp_hpts_entry *hpts;
1096         int32_t ret;
1097
1098         hpts = tcp_input_lock(inp);
1099         ret = __tcp_queue_to_input_locked(inp, hpts, line);
1100         mtx_unlock(&hpts->p_mtx);
1101         return (ret);
1102 }
1103
1104 void
1105 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line)
1106 {
1107         struct tcp_hpts_entry *hpts;
1108         struct tcpcb *tp;
1109
1110         tp = intotcpcb(inp);
1111         hpts = tcp_input_lock(tp->t_inpcb);
1112         if (inp->inp_in_input == 0) {
1113                 /* Ok we need to set it on the hpts in the current slot */
1114                 hpts_sane_input_insert(hpts, inp, line);
1115                 if (hpts->p_hpts_active == 0) {
1116                         /*
1117                          * Activate the hpts if it is sleeping.
1118                          */
1119                         hpts->p_direct_wake = 1;
1120                         tcp_wakeinput(hpts);
1121                 }
1122         } else if (hpts->p_hpts_active == 0) {
1123                 hpts->p_direct_wake = 1;
1124                 tcp_wakeinput(hpts);
1125         }
1126         inp->inp_hpts_drop_reas = reason;
1127         mtx_unlock(&hpts->p_mtx);
1128 }
1129
1130 static uint16_t
1131 hpts_random_cpu(struct inpcb *inp){
1132         /*
1133          * No flow type set distribute the load randomly.
1134          */
1135         uint16_t cpuid;
1136         uint32_t ran;
1137
1138         /*
1139          * If one has been set use it i.e. we want both in and out on the
1140          * same hpts.
1141          */
1142         if (inp->inp_input_cpu_set) {
1143                 return (inp->inp_input_cpu);
1144         } else if (inp->inp_hpts_cpu_set) {
1145                 return (inp->inp_hpts_cpu);
1146         }
1147         /* Nothing set use a random number */
1148         ran = arc4random();
1149         cpuid = (ran & 0xffff) % mp_ncpus;
1150         return (cpuid);
1151 }
1152
1153 static uint16_t
1154 hpts_cpuid(struct inpcb *inp){
1155         u_int cpuid;
1156 #ifdef NUMA
1157         struct hpts_domain_info *di;
1158 #endif
1159
1160         /*
1161          * If one has been set use it i.e. we want both in and out on the
1162          * same hpts.
1163          */
1164         if (inp->inp_input_cpu_set) {
1165                 return (inp->inp_input_cpu);
1166         } else if (inp->inp_hpts_cpu_set) {
1167                 return (inp->inp_hpts_cpu);
1168         }
1169         /* If one is set the other must be the same */
1170 #ifdef  RSS
1171         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1172         if (cpuid == NETISR_CPUID_NONE)
1173                 return (hpts_random_cpu(inp));
1174         else
1175                 return (cpuid);
1176 #else
1177         /*
1178          * We don't have a flowid -> cpuid mapping, so cheat and just map
1179          * unknown cpuids to curcpu.  Not the best, but apparently better
1180          * than defaulting to swi 0.
1181          */
1182
1183         if (inp->inp_flowtype == M_HASHTYPE_NONE)
1184                 return (hpts_random_cpu(inp));
1185         /*
1186          * Hash to a thread based on the flowid.  If we are using numa,
1187          * then restrict the hash to the numa domain where the inp lives.
1188          */
1189 #ifdef NUMA
1190         if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1191                 di = &hpts_domains[inp->inp_numa_domain];
1192                 cpuid = di->cpu[inp->inp_flowid % di->count];
1193         } else
1194 #endif
1195                 cpuid = inp->inp_flowid % mp_ncpus;
1196
1197         return (cpuid);
1198 #endif
1199 }
1200
1201 static void
1202 tcp_drop_in_pkts(struct tcpcb *tp)
1203 {
1204         struct mbuf *m, *n;
1205
1206         m = tp->t_in_pkt;
1207         if (m)
1208                 n = m->m_nextpkt;
1209         else
1210                 n = NULL;
1211         tp->t_in_pkt = NULL;
1212         while (m) {
1213                 m_freem(m);
1214                 m = n;
1215                 if (m)
1216                         n = m->m_nextpkt;
1217         }
1218 }
1219
1220 /*
1221  * Do NOT try to optimize the processing of inp's
1222  * by first pulling off all the inp's into a temporary
1223  * list (e.g. TAILQ_CONCAT). If you do that the subtle
1224  * interactions of switching CPU's will kill because of
1225  * problems in the linked list manipulation. Basically
1226  * you would switch cpu's with the hpts mutex locked
1227  * but then while you were processing one of the inp's
1228  * some other one that you switch will get a new
1229  * packet on the different CPU. It will insert it
1230  * on the new hpts's input list. Creating a temporary
1231  * link in the inp will not fix it either, since
1232  * the other hpts will be doing the same thing and
1233  * you will both end up using the temporary link.
1234  *
1235  * You will die in an ASSERT for tailq corruption if you
1236  * run INVARIANTS or you will die horribly without
1237  * INVARIANTS in some unknown way with a corrupt linked
1238  * list.
1239  */
1240 static void
1241 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv)
1242 {
1243         struct tcpcb *tp;
1244         struct inpcb *inp;
1245         uint16_t drop_reason;
1246         int16_t set_cpu;
1247         uint32_t did_prefetch = 0;
1248         int dropped;
1249
1250         HPTS_MTX_ASSERT(hpts);
1251         NET_EPOCH_ASSERT();
1252
1253         while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) {
1254                 HPTS_MTX_ASSERT(hpts);
1255                 hpts_sane_input_remove(hpts, inp, 0);
1256                 if (inp->inp_input_cpu_set == 0) {
1257                         set_cpu = 1;
1258                 } else {
1259                         set_cpu = 0;
1260                 }
1261                 hpts->p_inp = inp;
1262                 drop_reason = inp->inp_hpts_drop_reas;
1263                 inp->inp_in_input = 0;
1264                 mtx_unlock(&hpts->p_mtx);
1265                 INP_WLOCK(inp);
1266 #ifdef VIMAGE
1267                 CURVNET_SET(inp->inp_vnet);
1268 #endif
1269                 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1270                     (inp->inp_flags2 & INP_FREED)) {
1271 out:
1272                         hpts->p_inp = NULL;
1273                         if (in_pcbrele_wlocked(inp) == 0) {
1274                                 INP_WUNLOCK(inp);
1275                         }
1276 #ifdef VIMAGE
1277                         CURVNET_RESTORE();
1278 #endif
1279                         mtx_lock(&hpts->p_mtx);
1280                         continue;
1281                 }
1282                 tp = intotcpcb(inp);
1283                 if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1284                         goto out;
1285                 }
1286                 if (drop_reason) {
1287                         /* This tcb is being destroyed for drop_reason */
1288                         tcp_drop_in_pkts(tp);
1289                         tp = tcp_drop(tp, drop_reason);
1290                         if (tp == NULL) {
1291                                 INP_WLOCK(inp);
1292                         }
1293                         if (in_pcbrele_wlocked(inp) == 0)
1294                                 INP_WUNLOCK(inp);
1295 #ifdef VIMAGE
1296                         CURVNET_RESTORE();
1297 #endif
1298                         mtx_lock(&hpts->p_mtx);
1299                         continue;
1300                 }
1301                 if (set_cpu) {
1302                         /*
1303                          * Setup so the next time we will move to the right
1304                          * CPU. This should be a rare event. It will
1305                          * sometimes happens when we are the client side
1306                          * (usually not the server). Somehow tcp_output()
1307                          * gets called before the tcp_do_segment() sets the
1308                          * intial state. This means the r_cpu and r_hpts_cpu
1309                          * is 0. We get on the hpts, and then tcp_input()
1310                          * gets called setting up the r_cpu to the correct
1311                          * value. The hpts goes off and sees the mis-match.
1312                          * We simply correct it here and the CPU will switch
1313                          * to the new hpts nextime the tcb gets added to the
1314                          * the hpts (not this time) :-)
1315                          */
1316                         tcp_set_hpts(inp);
1317                 }
1318                 if (tp->t_fb_ptr != NULL) {
1319                         kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1320                         did_prefetch = 1;
1321                 }
1322                 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1323                         if (inp->inp_in_input)
1324                                 tcp_hpts_remove(inp, HPTS_REMOVE_INPUT);
1325                         dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1326                         if (dropped) {
1327                                 /* Re-acquire the wlock so we can release the reference */
1328                                 INP_WLOCK(inp);
1329                         }
1330                 } else if (tp->t_in_pkt) {
1331                         /*
1332                          * We reach here only if we had a
1333                          * stack that supported INP_SUPPORTS_MBUFQ
1334                          * and then somehow switched to a stack that
1335                          * does not. The packets are basically stranded
1336                          * and would hang with the connection until
1337                          * cleanup without this code. Its not the
1338                          * best way but I know of no other way to
1339                          * handle it since the stack needs functions
1340                          * it does not have to handle queued packets.
1341                          */
1342                         tcp_drop_in_pkts(tp);
1343                 }
1344                 if (in_pcbrele_wlocked(inp) == 0)
1345                         INP_WUNLOCK(inp);
1346                 INP_UNLOCK_ASSERT(inp);
1347 #ifdef VIMAGE
1348                 CURVNET_RESTORE();
1349 #endif
1350                 mtx_lock(&hpts->p_mtx);
1351                 hpts->p_inp = NULL;
1352         }
1353 }
1354
1355 static void
1356 tcp_hptsi(struct tcp_hpts_entry *hpts)
1357 {
1358         struct tcpcb *tp;
1359         struct inpcb *inp = NULL, *ninp;
1360         struct timeval tv;
1361         int32_t ticks_to_run, i, error;
1362         int32_t paced_cnt = 0;
1363         int32_t loop_cnt = 0;
1364         int32_t did_prefetch = 0;
1365         int32_t prefetch_ninp = 0;
1366         int32_t prefetch_tp = 0;
1367         int32_t wrap_loop_cnt = 0;
1368         int16_t set_cpu;
1369
1370         HPTS_MTX_ASSERT(hpts);
1371         NET_EPOCH_ASSERT();
1372
1373         /* record previous info for any logging */
1374         hpts->saved_lasttick = hpts->p_lasttick;
1375         hpts->saved_curtick = hpts->p_curtick;
1376         hpts->saved_curslot = hpts->p_cur_slot;
1377         hpts->saved_prev_slot = hpts->p_prev_slot;
1378
1379         hpts->p_lasttick = hpts->p_curtick;
1380         hpts->p_curtick = tcp_gethptstick(&tv);
1381         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1382         if ((hpts->p_on_queue_cnt == 0) ||
1383             (hpts->p_lasttick == hpts->p_curtick)) {
1384                 /*
1385                  * No time has yet passed,
1386                  * or nothing to do.
1387                  */
1388                 hpts->p_prev_slot = hpts->p_cur_slot;
1389                 hpts->p_lasttick = hpts->p_curtick;
1390                 goto no_run;
1391         }
1392 again:
1393         hpts->p_wheel_complete = 0;
1394         HPTS_MTX_ASSERT(hpts);
1395         ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1396         if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) &&
1397             (hpts->p_on_queue_cnt != 0)) {
1398                 /*
1399                  * Wheel wrap is occuring, basically we
1400                  * are behind and the distance between
1401                  * run's has spread so much it has exceeded
1402                  * the time on the wheel (1.024 seconds). This
1403                  * is ugly and should NOT be happening. We
1404                  * need to run the entire wheel. We last processed
1405                  * p_prev_slot, so that needs to be the last slot
1406                  * we run. The next slot after that should be our
1407                  * reserved first slot for new, and then starts
1408                  * the running postion. Now the problem is the
1409                  * reserved "not to yet" place does not exist
1410                  * and there may be inp's in there that need
1411                  * running. We can merge those into the
1412                  * first slot at the head.
1413                  */
1414                 wrap_loop_cnt++;
1415                 hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1);
1416                 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2);
1417                 /*
1418                  * Adjust p_cur_slot to be where we are starting from
1419                  * hopefully we will catch up (fat chance if something
1420                  * is broken this bad :( )
1421                  */
1422                 hpts->p_cur_slot = hpts->p_prev_slot;
1423                 /*
1424                  * The next slot has guys to run too, and that would
1425                  * be where we would normally start, lets move them into
1426                  * the next slot (p_prev_slot + 2) so that we will
1427                  * run them, the extra 10usecs of late (by being
1428                  * put behind) does not really matter in this situation.
1429                  */
1430 #ifdef INVARIANTS
1431                 /*
1432                  * To prevent a panic we need to update the inpslot to the
1433                  * new location. This is safe since it takes both the
1434                  * INP lock and the pacer mutex to change the inp_hptsslot.
1435                  */
1436                 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) {
1437                         inp->inp_hptsslot = hpts->p_runningtick;
1438                 }
1439 #endif
1440                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick],
1441                              &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts);
1442                 ticks_to_run = NUM_OF_HPTSI_SLOTS - 1;
1443                 counter_u64_add(wheel_wrap, 1);
1444         } else {
1445                 /*
1446                  * Nxt slot is always one after p_runningtick though
1447                  * its not used usually unless we are doing wheel wrap.
1448                  */
1449                 hpts->p_nxt_slot = hpts->p_prev_slot;
1450                 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1);
1451         }
1452 #ifdef INVARIANTS
1453         if (TAILQ_EMPTY(&hpts->p_input) &&
1454             (hpts->p_on_inqueue_cnt != 0)) {
1455                 panic("tp:%p in_hpts input empty but cnt:%d",
1456                       hpts, hpts->p_on_inqueue_cnt);
1457         }
1458 #endif
1459         HPTS_MTX_ASSERT(hpts);
1460         if (hpts->p_on_queue_cnt == 0) {
1461                 goto no_one;
1462         }
1463         HPTS_MTX_ASSERT(hpts);
1464         for (i = 0; i < ticks_to_run; i++) {
1465                 /*
1466                  * Calculate our delay, if there are no extra ticks there
1467                  * was not any (i.e. if ticks_to_run == 1, no delay).
1468                  */
1469                 hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC;
1470                 HPTS_MTX_ASSERT(hpts);
1471                 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1472                         /* For debugging */
1473                         hpts->p_inp = inp;
1474                         paced_cnt++;
1475 #ifdef INVARIANTS
1476                         if (hpts->p_runningtick != inp->inp_hptsslot) {
1477                                 panic("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1478                                       hpts, inp, hpts->p_runningtick, inp->inp_hptsslot);
1479                         }
1480 #endif
1481                         /* Now pull it */
1482                         if (inp->inp_hpts_cpu_set == 0) {
1483                                 set_cpu = 1;
1484                         } else {
1485                                 set_cpu = 0;
1486                         }
1487                         hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0);
1488                         if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1489                                 /* We prefetch the next inp if possible */
1490                                 kern_prefetch(ninp, &prefetch_ninp);
1491                                 prefetch_ninp = 1;
1492                         }
1493                         if (inp->inp_hpts_request) {
1494                                 /*
1495                                  * This guy is deferred out further in time
1496                                  * then our wheel had available on it.
1497                                  * Push him back on the wheel or run it
1498                                  * depending.
1499                                  */
1500                                 uint32_t maxticks, last_tick, remaining_slots;
1501
1502                                 remaining_slots = ticks_to_run - (i + 1);
1503                                 if (inp->inp_hpts_request > remaining_slots) {
1504                                         /*
1505                                          * How far out can we go?
1506                                          */
1507                                         maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick);
1508                                         if (maxticks >= inp->inp_hpts_request) {
1509                                                 /* we can place it finally to be processed  */
1510                                                 inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request);
1511                                                 inp->inp_hpts_request = 0;
1512                                         } else {
1513                                                 /* Work off some more time */
1514                                                 inp->inp_hptsslot = last_tick;
1515                                                 inp->inp_hpts_request-= maxticks;
1516                                         }
1517                                         hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1);
1518                                         hpts->p_inp = NULL;
1519                                         continue;
1520                                 }
1521                                 inp->inp_hpts_request = 0;
1522                                 /* Fall through we will so do it now */
1523                         }
1524                         /*
1525                          * We clear the hpts flag here after dealing with
1526                          * remaining slots. This way anyone looking with the
1527                          * TCB lock will see its on the hpts until just
1528                          * before we unlock.
1529                          */
1530                         inp->inp_in_hpts = 0;
1531                         mtx_unlock(&hpts->p_mtx);
1532                         INP_WLOCK(inp);
1533                         if (in_pcbrele_wlocked(inp)) {
1534                                 mtx_lock(&hpts->p_mtx);
1535                                 hpts->p_inp = NULL;
1536                                 continue;
1537                         }
1538                         if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1539                             (inp->inp_flags2 & INP_FREED)) {
1540                         out_now:
1541 #ifdef INVARIANTS
1542                                 if (mtx_owned(&hpts->p_mtx)) {
1543                                         panic("Hpts:%p owns mtx prior-to lock line:%d",
1544                                               hpts, __LINE__);
1545                                 }
1546 #endif
1547                                 INP_WUNLOCK(inp);
1548                                 mtx_lock(&hpts->p_mtx);
1549                                 hpts->p_inp = NULL;
1550                                 continue;
1551                         }
1552                         tp = intotcpcb(inp);
1553                         if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1554                                 goto out_now;
1555                         }
1556                         if (set_cpu) {
1557                                 /*
1558                                  * Setup so the next time we will move to
1559                                  * the right CPU. This should be a rare
1560                                  * event. It will sometimes happens when we
1561                                  * are the client side (usually not the
1562                                  * server). Somehow tcp_output() gets called
1563                                  * before the tcp_do_segment() sets the
1564                                  * intial state. This means the r_cpu and
1565                                  * r_hpts_cpu is 0. We get on the hpts, and
1566                                  * then tcp_input() gets called setting up
1567                                  * the r_cpu to the correct value. The hpts
1568                                  * goes off and sees the mis-match. We
1569                                  * simply correct it here and the CPU will
1570                                  * switch to the new hpts nextime the tcb
1571                                  * gets added to the the hpts (not this one)
1572                                  * :-)
1573                                  */
1574                                 tcp_set_hpts(inp);
1575                         }
1576 #ifdef VIMAGE
1577                         CURVNET_SET(inp->inp_vnet);
1578 #endif
1579                         /* Lets do any logging that we might want to */
1580                         if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1581                                 tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i);
1582                         }
1583                         /*
1584                          * There is a hole here, we get the refcnt on the
1585                          * inp so it will still be preserved but to make
1586                          * sure we can get the INP we need to hold the p_mtx
1587                          * above while we pull out the tp/inp,  as long as
1588                          * fini gets the lock first we are assured of having
1589                          * a sane INP we can lock and test.
1590                          */
1591 #ifdef INVARIANTS
1592                         if (mtx_owned(&hpts->p_mtx)) {
1593                                 panic("Hpts:%p owns mtx before tcp-output:%d",
1594                                       hpts, __LINE__);
1595                         }
1596 #endif
1597                         if (tp->t_fb_ptr != NULL) {
1598                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1599                                 did_prefetch = 1;
1600                         }
1601                         if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1602                                 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1603                                 if (error) {
1604                                         /* The input killed the connection */
1605                                         goto skip_pacing;
1606                                 }
1607                         }
1608                         inp->inp_hpts_calls = 1;
1609                         error = tp->t_fb->tfb_tcp_output(tp);
1610                         inp->inp_hpts_calls = 0;
1611                         if (ninp && ninp->inp_ppcb) {
1612                                 /*
1613                                  * If we have a nxt inp, see if we can
1614                                  * prefetch its ppcb. Note this may seem
1615                                  * "risky" since we have no locks (other
1616                                  * than the previous inp) and there no
1617                                  * assurance that ninp was not pulled while
1618                                  * we were processing inp and freed. If this
1619                                  * occured it could mean that either:
1620                                  *
1621                                  * a) Its NULL (which is fine we won't go
1622                                  * here) <or> b) Its valid (which is cool we
1623                                  * will prefetch it) <or> c) The inp got
1624                                  * freed back to the slab which was
1625                                  * reallocated. Then the piece of memory was
1626                                  * re-used and something else (not an
1627                                  * address) is in inp_ppcb. If that occurs
1628                                  * we don't crash, but take a TLB shootdown
1629                                  * performance hit (same as if it was NULL
1630                                  * and we tried to pre-fetch it).
1631                                  *
1632                                  * Considering that the likelyhood of <c> is
1633                                  * quite rare we will take a risk on doing
1634                                  * this. If performance drops after testing
1635                                  * we can always take this out. NB: the
1636                                  * kern_prefetch on amd64 actually has
1637                                  * protection against a bad address now via
1638                                  * the DMAP_() tests. This will prevent the
1639                                  * TLB hit, and instead if <c> occurs just
1640                                  * cause us to load cache with a useless
1641                                  * address (to us).
1642                                  */
1643                                 kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1644                                 prefetch_tp = 1;
1645                         }
1646                         INP_WUNLOCK(inp);
1647                 skip_pacing:
1648 #ifdef VIMAGE
1649                         CURVNET_RESTORE();
1650 #endif
1651                         INP_UNLOCK_ASSERT(inp);
1652 #ifdef INVARIANTS
1653                         if (mtx_owned(&hpts->p_mtx)) {
1654                                 panic("Hpts:%p owns mtx prior-to lock line:%d",
1655                                       hpts, __LINE__);
1656                         }
1657 #endif
1658                         mtx_lock(&hpts->p_mtx);
1659                         hpts->p_inp = NULL;
1660                 }
1661                 HPTS_MTX_ASSERT(hpts);
1662                 hpts->p_inp = NULL;
1663                 hpts->p_runningtick++;
1664                 if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) {
1665                         hpts->p_runningtick = 0;
1666                 }
1667         }
1668 no_one:
1669         HPTS_MTX_ASSERT(hpts);
1670         hpts->p_delayed_by = 0;
1671         /*
1672          * Check to see if we took an excess amount of time and need to run
1673          * more ticks (if we did not hit eno-bufs).
1674          */
1675 #ifdef INVARIANTS
1676         if (TAILQ_EMPTY(&hpts->p_input) &&
1677             (hpts->p_on_inqueue_cnt != 0)) {
1678                 panic("tp:%p in_hpts input empty but cnt:%d",
1679                       hpts, hpts->p_on_inqueue_cnt);
1680         }
1681 #endif
1682         hpts->p_prev_slot = hpts->p_cur_slot;
1683         hpts->p_lasttick = hpts->p_curtick;
1684         if (loop_cnt > max_pacer_loops) {
1685                 /*
1686                  * Something is serious slow we have
1687                  * looped through processing the wheel
1688                  * and by the time we cleared the
1689                  * needs to run max_pacer_loops time
1690                  * we still needed to run. That means
1691                  * the system is hopelessly behind and
1692                  * can never catch up :(
1693                  *
1694                  * We will just lie to this thread
1695                  * and let it thing p_curtick is
1696                  * correct. When it next awakens
1697                  * it will find itself further behind.
1698                  */
1699                 counter_u64_add(hpts_hopelessly_behind, 1);
1700                 goto no_run;
1701         }
1702         hpts->p_curtick = tcp_gethptstick(&tv);
1703         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1704         if ((wrap_loop_cnt < 2) &&
1705             (hpts->p_lasttick != hpts->p_curtick)) {
1706                 counter_u64_add(hpts_loops, 1);
1707                 loop_cnt++;
1708                 goto again;
1709         }
1710 no_run:
1711         /*
1712          * Set flag to tell that we are done for
1713          * any slot input that happens during
1714          * input.
1715          */
1716         hpts->p_wheel_complete = 1;
1717         /*
1718          * Run any input that may be there not covered
1719          * in running data.
1720          */
1721         if (!TAILQ_EMPTY(&hpts->p_input)) {
1722                 tcp_input_data(hpts, &tv);
1723                 /*
1724                  * Now did we spend too long running
1725                  * input and need to run more ticks?
1726                  */
1727                 KASSERT(hpts->p_prev_slot == hpts->p_cur_slot,
1728                         ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1729                          hpts->p_prev_slot, hpts->p_cur_slot));
1730                 KASSERT(hpts->p_lasttick == hpts->p_curtick,
1731                         ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1732                          hpts->p_lasttick, hpts->p_curtick));
1733                 hpts->p_curtick = tcp_gethptstick(&tv);
1734                 if (hpts->p_lasttick != hpts->p_curtick) {
1735                         counter_u64_add(hpts_loops, 1);
1736                         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1737                         goto again;
1738                 }
1739         }
1740         {
1741                 uint32_t t = 0, i, fnd = 0;
1742
1743                 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1744                         /*
1745                          * Find next slot that is occupied and use that to
1746                          * be the sleep time.
1747                          */
1748                         for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1749                                 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) {
1750                                         fnd = 1;
1751                                         break;
1752                                 }
1753                                 t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1754                         }
1755                         if (fnd) {
1756                                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1757                         } else {
1758 #ifdef INVARIANTS
1759                                 panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt);
1760 #endif
1761                                 counter_u64_add(back_tosleep, 1);
1762                                 hpts->p_on_queue_cnt = 0;
1763                                 goto non_found;
1764                         }
1765                 } else if (wrap_loop_cnt >= 2) {
1766                         /* Special case handling */
1767                         hpts->p_hpts_sleep_time = tcp_min_hptsi_time;
1768                 } else {
1769                         /* No one on the wheel sleep for all but 400 slots or sleep max  */
1770                 non_found:
1771                         hpts->p_hpts_sleep_time = hpts_sleep_max;
1772                 }
1773         }
1774 }
1775
1776 void
1777 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1778 {
1779         struct tcp_hpts_entry *hpts;
1780
1781         INP_WLOCK_ASSERT(inp);
1782         hpts = tcp_hpts_lock(inp);
1783         if ((inp->inp_in_hpts == 0) &&
1784             (inp->inp_hpts_cpu_set == 0)) {
1785                 inp->inp_hpts_cpu = hpts_cpuid(inp);
1786                 inp->inp_hpts_cpu_set = 1;
1787         }
1788         mtx_unlock(&hpts->p_mtx);
1789         hpts = tcp_input_lock(inp);
1790         if ((inp->inp_input_cpu_set == 0) &&
1791             (inp->inp_in_input == 0)) {
1792                 inp->inp_input_cpu = hpts_cpuid(inp);
1793                 inp->inp_input_cpu_set = 1;
1794         }
1795         mtx_unlock(&hpts->p_mtx);
1796 }
1797
1798 uint16_t
1799 tcp_hpts_delayedby(struct inpcb *inp){
1800         return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by);
1801 }
1802
1803 static void
1804 tcp_hpts_thread(void *ctx)
1805 {
1806         struct tcp_hpts_entry *hpts;
1807         struct epoch_tracker et;
1808         struct timeval tv;
1809         sbintime_t sb;
1810
1811         hpts = (struct tcp_hpts_entry *)ctx;
1812         mtx_lock(&hpts->p_mtx);
1813         if (hpts->p_direct_wake) {
1814                 /* Signaled by input */
1815                 callout_stop(&hpts->co);
1816         } else {
1817                 /* Timed out */
1818                 if (callout_pending(&hpts->co) ||
1819                     !callout_active(&hpts->co)) {
1820                         mtx_unlock(&hpts->p_mtx);
1821                         return;
1822                 }
1823                 callout_deactivate(&hpts->co);
1824         }
1825         hpts->p_hpts_wake_scheduled = 0;
1826         hpts->p_hpts_active = 1;
1827         NET_EPOCH_ENTER(et);
1828         tcp_hptsi(hpts);
1829         NET_EPOCH_EXIT(et);
1830         HPTS_MTX_ASSERT(hpts);
1831         tv.tv_sec = 0;
1832         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1833         if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) {
1834                 hpts->overidden_sleep = tv.tv_usec;
1835                 tv.tv_usec = tcp_min_hptsi_time;
1836                 hpts->p_on_min_sleep = 1;
1837         } else {
1838                 /* Clear the min sleep flag */
1839                 hpts->overidden_sleep = 0;
1840                 hpts->p_on_min_sleep = 0;
1841         }
1842         hpts->p_hpts_active = 0;
1843         sb = tvtosbt(tv);
1844         if (tcp_hpts_callout_skip_swi == 0) {
1845                 callout_reset_sbt_on(&hpts->co, sb, 0,
1846                     hpts_timeout_swi, hpts, hpts->p_cpu,
1847                     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1848         } else {
1849                 callout_reset_sbt_on(&hpts->co, sb, 0,
1850                     hpts_timeout_dir, hpts,
1851                     hpts->p_cpu,
1852                     C_PREL(tcp_hpts_precision));
1853         }
1854         hpts->p_direct_wake = 0;
1855         mtx_unlock(&hpts->p_mtx);
1856 }
1857
1858 #undef  timersub
1859
1860 static void
1861 tcp_init_hptsi(void *st)
1862 {
1863         int32_t i, j, error, bound = 0, created = 0;
1864         size_t sz, asz;
1865         struct timeval tv;
1866         sbintime_t sb;
1867         struct tcp_hpts_entry *hpts;
1868         struct pcpu *pc;
1869         cpuset_t cs;
1870         char unit[16];
1871         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1872         int count, domain;
1873
1874         tcp_pace.rp_proc = NULL;
1875         tcp_pace.rp_num_hptss = ncpus;
1876         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1877         hpts_loops = counter_u64_alloc(M_WAITOK);
1878         back_tosleep = counter_u64_alloc(M_WAITOK);
1879         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1880         wheel_wrap = counter_u64_alloc(M_WAITOK);
1881         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1882         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1883         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1884         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1885                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1886                     M_TCPHPTS, M_WAITOK | M_ZERO);
1887                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
1888                     M_TCPHPTS, M_WAITOK);
1889                 hpts = tcp_pace.rp_ent[i];
1890                 /*
1891                  * Init all the hpts structures that are not specifically
1892                  * zero'd by the allocations. Also lets attach them to the
1893                  * appropriate sysctl block as well.
1894                  */
1895                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1896                     "hpts", MTX_DEF | MTX_DUPOK);
1897                 TAILQ_INIT(&hpts->p_input);
1898                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1899                         TAILQ_INIT(&hpts->p_hptss[j]);
1900                 }
1901                 sysctl_ctx_init(&hpts->hpts_ctx);
1902                 sprintf(unit, "%d", i);
1903                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1904                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1905                     OID_AUTO,
1906                     unit,
1907                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1908                     "");
1909                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1910                     SYSCTL_CHILDREN(hpts->hpts_root),
1911                     OID_AUTO, "in_qcnt", CTLFLAG_RD,
1912                     &hpts->p_on_inqueue_cnt, 0,
1913                     "Count TCB's awaiting input processing");
1914                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1915                     SYSCTL_CHILDREN(hpts->hpts_root),
1916                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
1917                     &hpts->p_on_queue_cnt, 0,
1918                     "Count TCB's awaiting output processing");
1919                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1920                     SYSCTL_CHILDREN(hpts->hpts_root),
1921                     OID_AUTO, "active", CTLFLAG_RD,
1922                     &hpts->p_hpts_active, 0,
1923                     "Is the hpts active");
1924                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1925                     SYSCTL_CHILDREN(hpts->hpts_root),
1926                     OID_AUTO, "curslot", CTLFLAG_RD,
1927                     &hpts->p_cur_slot, 0,
1928                     "What the current running pacers goal");
1929                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1930                     SYSCTL_CHILDREN(hpts->hpts_root),
1931                     OID_AUTO, "runtick", CTLFLAG_RD,
1932                     &hpts->p_runningtick, 0,
1933                     "What the running pacers current slot is");
1934                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1935                     SYSCTL_CHILDREN(hpts->hpts_root),
1936                     OID_AUTO, "curtick", CTLFLAG_RD,
1937                     &hpts->p_curtick, 0,
1938                     "What the running pacers last tick mapped to the wheel was");
1939                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1940                 hpts->p_num = i;
1941                 hpts->p_curtick = tcp_gethptstick(&tv);
1942                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1943                 hpts->p_cpu = 0xffff;
1944                 hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1);
1945                 callout_init(&hpts->co, 1);
1946         }
1947
1948         /* Don't try to bind to NUMA domains if we don't have any */
1949         if (vm_ndomains == 1 && tcp_bind_threads == 2)
1950                 tcp_bind_threads = 0;
1951
1952         /*
1953          * Now lets start ithreads to handle the hptss.
1954          */
1955         CPU_FOREACH(i) {
1956                 hpts = tcp_pace.rp_ent[i];
1957                 hpts->p_cpu = i;
1958                 error = swi_add(&hpts->ie, "hpts",
1959                     tcp_hpts_thread, (void *)hpts,
1960                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1961                 if (error) {
1962                         panic("Can't add hpts:%p i:%d err:%d",
1963                             hpts, i, error);
1964                 }
1965                 created++;
1966                 if (tcp_bind_threads == 1) {
1967                         if (intr_event_bind(hpts->ie, i) == 0)
1968                                 bound++;
1969                 } else if (tcp_bind_threads == 2) {
1970                         pc = pcpu_find(i);
1971                         domain = pc->pc_domain;
1972                         CPU_COPY(&cpuset_domain[domain], &cs);
1973                         if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
1974                             == 0) {
1975                                 bound++;
1976                                 count = hpts_domains[domain].count;
1977                                 hpts_domains[domain].cpu[count] = i;
1978                                 hpts_domains[domain].count++;
1979                         }
1980                 }
1981                 tv.tv_sec = 0;
1982                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1983                 sb = tvtosbt(tv);
1984                 if (tcp_hpts_callout_skip_swi == 0) {
1985                         callout_reset_sbt_on(&hpts->co, sb, 0,
1986                             hpts_timeout_swi, hpts, hpts->p_cpu,
1987                             (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1988                 } else {
1989                         callout_reset_sbt_on(&hpts->co, sb, 0,
1990                             hpts_timeout_dir, hpts,
1991                             hpts->p_cpu,
1992                             C_PREL(tcp_hpts_precision));
1993                 }
1994         }
1995         /*
1996          * If we somehow have an empty domain, fall back to choosing
1997          * among all htps threads.
1998          */
1999         for (i = 0; i < vm_ndomains; i++) {
2000                 if (hpts_domains[i].count == 0) {
2001                         tcp_bind_threads = 0;
2002                         break;
2003                 }
2004         }
2005
2006         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2007             created, bound,
2008             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2009 }
2010
2011 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2012 MODULE_VERSION(tcphpts, 1);