]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_hpts.c
Import the kyua test framework.
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_hpts.c
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33
34 /**
35  * Some notes about usage.
36  *
37  * The tcp_hpts system is designed to provide a high precision timer
38  * system for tcp. Its main purpose is to provide a mechanism for
39  * pacing packets out onto the wire. It can be used in two ways
40  * by a given TCP stack (and those two methods can be used simultaneously).
41  *
42  * First, and probably the main thing its used by Rack and BBR, it can
43  * be used to call tcp_output() of a transport stack at some time in the future.
44  * The normal way this is done is that tcp_output() of the stack schedules
45  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46  * slot is the time from now that the stack wants to be called but it
47  * must be converted to tcp_hpts's notion of slot. This is done with
48  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49  * call from the tcp_output() routine might look like:
50  *
51  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52  *
53  * The above would schedule tcp_ouput() to be called in 550 useconds.
54  * Note that if using this mechanism the stack will want to add near
55  * its top a check to prevent unwanted calls (from user land or the
56  * arrival of incoming ack's). So it would add something like:
57  *
58  * if (inp->inp_in_hpts)
59  *    return;
60  *
61  * to prevent output processing until the time alotted has gone by.
62  * Of course this is a bare bones example and the stack will probably
63  * have more consideration then just the above.
64  *
65  * Now the second function (actually two functions I guess :D)
66  * the tcp_hpts system provides is the  ability to either abort
67  * a connection (later) or process input on a connection.
68  * Why would you want to do this? To keep processor locality
69  * and or not have to worry about untangling any recursive
70  * locks. The input function now is hooked to the new LRO
71  * system as well.
72  *
73  * In order to use the input redirection function the
74  * tcp stack must define an input function for
75  * tfb_do_queued_segments(). This function understands
76  * how to dequeue a array of packets that were input and
77  * knows how to call the correct processing routine.
78  *
79  * Locking in this is important as well so most likely the
80  * stack will need to define the tfb_do_segment_nounlock()
81  * splitting tfb_do_segment() into two parts. The main processing
82  * part that does not unlock the INP and returns a value of 1 or 0.
83  * It returns 0 if all is well and the lock was not released. It
84  * returns 1 if we had to destroy the TCB (a reset received etc).
85  * The remains of tfb_do_segment() then become just a simple call
86  * to the tfb_do_segment_nounlock() function and check the return
87  * code and possibly unlock.
88  *
89  * The stack must also set the flag on the INP that it supports this
90  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
91  * this flag as well and will queue packets when it is set.
92  * There are other flags as well INP_MBUF_QUEUE_READY and
93  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
94  * that we are in the pacer for output so there is no
95  * need to wake up the hpts system to get immediate
96  * input. The second tells the LRO code that its okay
97  * if a SACK arrives you can still defer input and let
98  * the current hpts timer run (this is usually set when
99  * a rack timer is up so we know SACK's are happening
100  * on the connection already and don't want to wakeup yet).
101  *
102  * There is a common functions within the rack_bbr_common code
103  * version i.e. ctf_do_queued_segments(). This function
104  * knows how to take the input queue of packets from
105  * tp->t_in_pkts and process them digging out
106  * all the arguments, calling any bpf tap and
107  * calling into tfb_do_segment_nounlock(). The common
108  * function (ctf_do_queued_segments())  requires that
109  * you have defined the tfb_do_segment_nounlock() as
110  * described above.
111  *
112  * The second feature of the input side of hpts is the
113  * dropping of a connection. This is due to the way that
114  * locking may have occured on the INP_WLOCK. So if
115  * a stack wants to drop a connection it calls:
116  *
117  *     tcp_set_inp_to_drop(tp, ETIMEDOUT)
118  *
119  * To schedule the tcp_hpts system to call
120  *
121  *    tcp_drop(tp, drop_reason)
122  *
123  * at a future point. This is quite handy to prevent locking
124  * issues when dropping connections.
125  *
126  */
127
128 #include <sys/param.h>
129 #include <sys/bus.h>
130 #include <sys/interrupt.h>
131 #include <sys/module.h>
132 #include <sys/kernel.h>
133 #include <sys/hhook.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/proc.h>           /* for proc0 declaration */
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/sysctl.h>
140 #include <sys/systm.h>
141 #include <sys/refcount.h>
142 #include <sys/sched.h>
143 #include <sys/queue.h>
144 #include <sys/smp.h>
145 #include <sys/counter.h>
146 #include <sys/time.h>
147 #include <sys/kthread.h>
148 #include <sys/kern_prefetch.h>
149
150 #include <vm/uma.h>
151 #include <vm/vm.h>
152
153 #include <net/route.h>
154 #include <net/vnet.h>
155
156 #ifdef RSS
157 #include <net/netisr.h>
158 #include <net/rss_config.h>
159 #endif
160
161 #define TCPSTATES               /* for logging */
162
163 #include <netinet/in.h>
164 #include <netinet/in_kdtrace.h>
165 #include <netinet/in_pcb.h>
166 #include <netinet/ip.h>
167 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
168 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
169 #include <netinet/ip_var.h>
170 #include <netinet/ip6.h>
171 #include <netinet6/in6_pcb.h>
172 #include <netinet6/ip6_var.h>
173 #include <netinet/tcp.h>
174 #include <netinet/tcp_fsm.h>
175 #include <netinet/tcp_seq.h>
176 #include <netinet/tcp_timer.h>
177 #include <netinet/tcp_var.h>
178 #include <netinet/tcpip.h>
179 #include <netinet/cc/cc.h>
180 #include <netinet/tcp_hpts.h>
181 #include <netinet/tcp_log_buf.h>
182
183 #ifdef tcpdebug
184 #include <netinet/tcp_debug.h>
185 #endif                          /* tcpdebug */
186 #ifdef tcp_offload
187 #include <netinet/tcp_offload.h>
188 #endif
189
190
191 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
192 #ifdef RSS
193 static int tcp_bind_threads = 1;
194 #else
195 static int tcp_bind_threads = 2;
196 #endif
197 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
198
199 static struct tcp_hptsi tcp_pace;
200 static int hpts_does_tp_logging = 0;
201
202 static void tcp_wakehpts(struct tcp_hpts_entry *p);
203 static void tcp_wakeinput(struct tcp_hpts_entry *p);
204 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv);
205 static void tcp_hptsi(struct tcp_hpts_entry *hpts);
206 static void tcp_hpts_thread(void *ctx);
207 static void tcp_init_hptsi(void *st);
208
209 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
210 static int32_t tcp_hpts_callout_skip_swi = 0;
211
212 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
213     "TCP Hpts controls");
214
215 #define timersub(tvp, uvp, vvp)                                         \
216         do {                                                            \
217                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
218                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
219                 if ((vvp)->tv_usec < 0) {                               \
220                         (vvp)->tv_sec--;                                \
221                         (vvp)->tv_usec += 1000000;                      \
222                 }                                                       \
223         } while (0)
224
225 static int32_t tcp_hpts_precision = 120;
226
227 struct hpts_domain_info {
228         int count;
229         int cpu[MAXCPU];
230 };
231
232 struct hpts_domain_info hpts_domains[MAXMEMDOM];
233
234 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
235     &tcp_hpts_precision, 120,
236     "Value for PRE() precision of callout");
237
238 counter_u64_t hpts_hopelessly_behind;
239
240 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD,
241     &hpts_hopelessly_behind,
242     "Number of times hpts could not catch up and was behind hopelessly");
243
244 counter_u64_t hpts_loops;
245
246 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD,
247     &hpts_loops, "Number of times hpts had to loop to catch up");
248
249
250 counter_u64_t back_tosleep;
251
252 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
253     &back_tosleep, "Number of times hpts found no tcbs");
254
255 counter_u64_t combined_wheel_wrap;
256
257 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
258     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
259
260 counter_u64_t wheel_wrap;
261
262 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD,
263     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
264
265 static int32_t out_ts_percision = 0;
266
267 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW,
268     &out_ts_percision, 0,
269     "Do we use a percise timestamp for every output cts");
270 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
271     &hpts_does_tp_logging, 0,
272     "Do we add to any tp that has logging on pacer logs");
273
274 static int32_t max_pacer_loops = 10;
275 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
276     &max_pacer_loops, 10,
277     "What is the maximum number of times the pacer will loop trying to catch up");
278
279 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
280
281 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
282
283
284 static int
285 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
286 {
287         int error;
288         uint32_t new;
289
290         new = hpts_sleep_max;
291         error = sysctl_handle_int(oidp, &new, 0, req);
292         if (error == 0 && req->newptr) {
293                 if ((new < (NUM_OF_HPTSI_SLOTS / 4)) ||
294                     (new > HPTS_MAX_SLEEP_ALLOWED))
295                         error = EINVAL;
296                 else
297                         hpts_sleep_max = new;
298         }
299         return (error);
300 }
301
302 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
303     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
304     &hpts_sleep_max, 0,
305     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
306     "Maximum time hpts will sleep");
307
308 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW,
309     &tcp_min_hptsi_time, 0,
310     "The minimum time the hpts must sleep before processing more slots");
311
312 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW,
313     &tcp_hpts_callout_skip_swi, 0,
314     "Do we have the callout call directly to the hpts?");
315
316 static void
317 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
318              int ticks_to_run, int idx)
319 {
320         union tcp_log_stackspecific log;
321
322         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
323         log.u_bbr.flex1 = hpts->p_nxt_slot;
324         log.u_bbr.flex2 = hpts->p_cur_slot;
325         log.u_bbr.flex3 = hpts->p_prev_slot;
326         log.u_bbr.flex4 = idx;
327         log.u_bbr.flex5 = hpts->p_curtick;
328         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
329         log.u_bbr.use_lt_bw = 1;
330         log.u_bbr.inflight = ticks_to_run;
331         log.u_bbr.applimited = hpts->overidden_sleep;
332         log.u_bbr.delivered = hpts->saved_curtick;
333         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
334         log.u_bbr.epoch = hpts->saved_curslot;
335         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
336         log.u_bbr.pkts_out = hpts->p_delayed_by;
337         log.u_bbr.lost = hpts->p_hpts_sleep_time;
338         log.u_bbr.cur_del_rate = hpts->p_runningtick;
339         TCP_LOG_EVENTP(tp, NULL,
340                        &tp->t_inpcb->inp_socket->so_rcv,
341                        &tp->t_inpcb->inp_socket->so_snd,
342                        BBR_LOG_HPTSDIAG, 0,
343                        0, &log, false, tv);
344 }
345
346 static void
347 hpts_timeout_swi(void *arg)
348 {
349         struct tcp_hpts_entry *hpts;
350
351         hpts = (struct tcp_hpts_entry *)arg;
352         swi_sched(hpts->ie_cookie, 0);
353 }
354
355 static void
356 hpts_timeout_dir(void *arg)
357 {
358         tcp_hpts_thread(arg);
359 }
360
361 static inline void
362 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear)
363 {
364 #ifdef INVARIANTS
365         if (mtx_owned(&hpts->p_mtx) == 0) {
366                 /* We don't own the mutex? */
367                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
368         }
369         if (hpts->p_cpu != inp->inp_hpts_cpu) {
370                 /* It is not the right cpu/mutex? */
371                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
372         }
373         if (inp->inp_in_hpts == 0) {
374                 /* We are not on the hpts? */
375                 panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp);
376         }
377 #endif
378         TAILQ_REMOVE(head, inp, inp_hpts);
379         hpts->p_on_queue_cnt--;
380         if (hpts->p_on_queue_cnt < 0) {
381                 /* Count should not go negative .. */
382 #ifdef INVARIANTS
383                 panic("Hpts goes negative inp:%p hpts:%p",
384                     inp, hpts);
385 #endif
386                 hpts->p_on_queue_cnt = 0;
387         }
388         if (clear) {
389                 inp->inp_hpts_request = 0;
390                 inp->inp_in_hpts = 0;
391         }
392 }
393
394 static inline void
395 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref)
396 {
397 #ifdef INVARIANTS
398         if (mtx_owned(&hpts->p_mtx) == 0) {
399                 /* We don't own the mutex? */
400                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
401         }
402         if (hpts->p_cpu != inp->inp_hpts_cpu) {
403                 /* It is not the right cpu/mutex? */
404                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
405         }
406         if ((noref == 0) && (inp->inp_in_hpts == 1)) {
407                 /* We are already on the hpts? */
408                 panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp);
409         }
410 #endif
411         TAILQ_INSERT_TAIL(head, inp, inp_hpts);
412         inp->inp_in_hpts = 1;
413         hpts->p_on_queue_cnt++;
414         if (noref == 0) {
415                 in_pcbref(inp);
416         }
417 }
418
419 static inline void
420 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear)
421 {
422 #ifdef INVARIANTS
423         if (mtx_owned(&hpts->p_mtx) == 0) {
424                 /* We don't own the mutex? */
425                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
426         }
427         if (hpts->p_cpu != inp->inp_input_cpu) {
428                 /* It is not the right cpu/mutex? */
429                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
430         }
431         if (inp->inp_in_input == 0) {
432                 /* We are not on the input hpts? */
433                 panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp);
434         }
435 #endif
436         TAILQ_REMOVE(&hpts->p_input, inp, inp_input);
437         hpts->p_on_inqueue_cnt--;
438         if (hpts->p_on_inqueue_cnt < 0) {
439 #ifdef INVARIANTS
440                 panic("Hpts in goes negative inp:%p hpts:%p",
441                     inp, hpts);
442 #endif
443                 hpts->p_on_inqueue_cnt = 0;
444         }
445 #ifdef INVARIANTS
446         if (TAILQ_EMPTY(&hpts->p_input) &&
447             (hpts->p_on_inqueue_cnt != 0)) {
448                 /* We should not be empty with a queue count */
449                 panic("%s hpts:%p in_hpts input empty but cnt:%d",
450                     __FUNCTION__, hpts, hpts->p_on_inqueue_cnt);
451         }
452 #endif
453         if (clear)
454                 inp->inp_in_input = 0;
455 }
456
457 static inline void
458 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line)
459 {
460 #ifdef INVARIANTS
461         if (mtx_owned(&hpts->p_mtx) == 0) {
462                 /* We don't own the mutex? */
463                 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
464         }
465         if (hpts->p_cpu != inp->inp_input_cpu) {
466                 /* It is not the right cpu/mutex? */
467                 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
468         }
469         if (inp->inp_in_input == 1) {
470                 /* We are already on the input hpts? */
471                 panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp);
472         }
473 #endif
474         TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input);
475         inp->inp_in_input = 1;
476         hpts->p_on_inqueue_cnt++;
477         in_pcbref(inp);
478 }
479
480 static void
481 tcp_wakehpts(struct tcp_hpts_entry *hpts)
482 {
483         HPTS_MTX_ASSERT(hpts);
484         if (hpts->p_hpts_wake_scheduled == 0) {
485                 hpts->p_hpts_wake_scheduled = 1;
486                 swi_sched(hpts->ie_cookie, 0);
487         }
488 }
489
490 static void
491 tcp_wakeinput(struct tcp_hpts_entry *hpts)
492 {
493         HPTS_MTX_ASSERT(hpts);
494         if (hpts->p_hpts_wake_scheduled == 0) {
495                 hpts->p_hpts_wake_scheduled = 1;
496                 swi_sched(hpts->ie_cookie, 0);
497         }
498 }
499
500 struct tcp_hpts_entry *
501 tcp_cur_hpts(struct inpcb *inp)
502 {
503         int32_t hpts_num;
504         struct tcp_hpts_entry *hpts;
505
506         hpts_num = inp->inp_hpts_cpu;
507         hpts = tcp_pace.rp_ent[hpts_num];
508         return (hpts);
509 }
510
511 struct tcp_hpts_entry *
512 tcp_hpts_lock(struct inpcb *inp)
513 {
514         struct tcp_hpts_entry *hpts;
515         int32_t hpts_num;
516
517 again:
518         hpts_num = inp->inp_hpts_cpu;
519         hpts = tcp_pace.rp_ent[hpts_num];
520 #ifdef INVARIANTS
521         if (mtx_owned(&hpts->p_mtx)) {
522                 panic("Hpts:%p owns mtx prior-to lock line:%d",
523                     hpts, __LINE__);
524         }
525 #endif
526         mtx_lock(&hpts->p_mtx);
527         if (hpts_num != inp->inp_hpts_cpu) {
528                 mtx_unlock(&hpts->p_mtx);
529                 goto again;
530         }
531         return (hpts);
532 }
533
534 struct tcp_hpts_entry *
535 tcp_input_lock(struct inpcb *inp)
536 {
537         struct tcp_hpts_entry *hpts;
538         int32_t hpts_num;
539
540 again:
541         hpts_num = inp->inp_input_cpu;
542         hpts = tcp_pace.rp_ent[hpts_num];
543 #ifdef INVARIANTS
544         if (mtx_owned(&hpts->p_mtx)) {
545                 panic("Hpts:%p owns mtx prior-to lock line:%d",
546                     hpts, __LINE__);
547         }
548 #endif
549         mtx_lock(&hpts->p_mtx);
550         if (hpts_num != inp->inp_input_cpu) {
551                 mtx_unlock(&hpts->p_mtx);
552                 goto again;
553         }
554         return (hpts);
555 }
556
557 static void
558 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line)
559 {
560         int32_t add_freed;
561
562         if (inp->inp_flags2 & INP_FREED) {
563                 /*
564                  * Need to play a special trick so that in_pcbrele_wlocked
565                  * does not return 1 when it really should have returned 0.
566                  */
567                 add_freed = 1;
568                 inp->inp_flags2 &= ~INP_FREED;
569         } else {
570                 add_freed = 0;
571         }
572 #ifndef INP_REF_DEBUG
573         if (in_pcbrele_wlocked(inp)) {
574                 /*
575                  * This should not happen. We have the inpcb referred to by
576                  * the main socket (why we are called) and the hpts. It
577                  * should always return 0.
578                  */
579                 panic("inpcb:%p release ret 1",
580                     inp);
581         }
582 #else
583         if (__in_pcbrele_wlocked(inp, line)) {
584                 /*
585                  * This should not happen. We have the inpcb referred to by
586                  * the main socket (why we are called) and the hpts. It
587                  * should always return 0.
588                  */
589                 panic("inpcb:%p release ret 1",
590                     inp);
591         }
592 #endif
593         if (add_freed) {
594                 inp->inp_flags2 |= INP_FREED;
595         }
596 }
597
598 static void
599 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
600 {
601         if (inp->inp_in_hpts) {
602                 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1);
603                 tcp_remove_hpts_ref(inp, hpts, line);
604         }
605 }
606
607 static void
608 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
609 {
610         HPTS_MTX_ASSERT(hpts);
611         if (inp->inp_in_input) {
612                 hpts_sane_input_remove(hpts, inp, 1);
613                 tcp_remove_hpts_ref(inp, hpts, line);
614         }
615 }
616
617 /*
618  * Called normally with the INP_LOCKED but it
619  * does not matter, the hpts lock is the key
620  * but the lock order allows us to hold the
621  * INP lock and then get the hpts lock.
622  *
623  * Valid values in the flags are
624  * HPTS_REMOVE_OUTPUT - remove from the output of the hpts.
625  * HPTS_REMOVE_INPUT - remove from the input of the hpts.
626  * Note that you can use one or both values together
627  * and get two actions.
628  */
629 void
630 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line)
631 {
632         struct tcp_hpts_entry *hpts;
633
634         INP_WLOCK_ASSERT(inp);
635         if (flags & HPTS_REMOVE_OUTPUT) {
636                 hpts = tcp_hpts_lock(inp);
637                 tcp_hpts_remove_locked_output(hpts, inp, flags, line);
638                 mtx_unlock(&hpts->p_mtx);
639         }
640         if (flags & HPTS_REMOVE_INPUT) {
641                 hpts = tcp_input_lock(inp);
642                 tcp_hpts_remove_locked_input(hpts, inp, flags, line);
643                 mtx_unlock(&hpts->p_mtx);
644         }
645 }
646
647 static inline int
648 hpts_tick(uint32_t wheel_tick, uint32_t plus)
649 {
650         /*
651          * Given a slot on the wheel, what slot
652          * is that plus ticks out?
653          */
654         KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick));
655         return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS);
656 }
657
658 static inline int
659 tick_to_wheel(uint32_t cts_in_wticks)
660 {
661         /*
662          * Given a timestamp in wheel ticks (10usec inc's)
663          * map it to our limited space wheel.
664          */
665         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
666 }
667
668 static inline int
669 hpts_ticks_diff(int prev_tick, int tick_now)
670 {
671         /*
672          * Given two ticks that are someplace
673          * on our wheel. How far are they apart?
674          */
675         if (tick_now > prev_tick)
676                 return (tick_now - prev_tick);
677         else if (tick_now == prev_tick)
678                 /*
679                  * Special case, same means we can go all of our
680                  * wheel less one slot.
681                  */
682                 return (NUM_OF_HPTSI_SLOTS - 1);
683         else
684                 return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now);
685 }
686
687 /*
688  * Given a tick on the wheel that is the current time
689  * mapped to the wheel (wheel_tick), what is the maximum
690  * distance forward that can be obtained without
691  * wrapping past either prev_tick or running_tick
692  * depending on the htps state? Also if passed
693  * a uint32_t *, fill it with the tick location.
694  *
695  * Note if you do not give this function the current
696  * time (that you think it is) mapped to the wheel
697  * then the results will not be what you expect and
698  * could lead to invalid inserts.
699  */
700 static inline int32_t
701 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick)
702 {
703         uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel;
704
705         if ((hpts->p_hpts_active == 1) &&
706             (hpts->p_wheel_complete == 0)) {
707                 end_tick = hpts->p_runningtick;
708                 /* Back up one tick */
709                 if (end_tick == 0)
710                         end_tick = NUM_OF_HPTSI_SLOTS - 1;
711                 else
712                         end_tick--;
713                 if (target_tick)
714                         *target_tick = end_tick;
715         } else {
716                 /*
717                  * For the case where we are
718                  * not active, or we have
719                  * completed the pass over
720                  * the wheel, we can use the
721                  * prev tick and subtract one from it. This puts us
722                  * as far out as possible on the wheel.
723                  */
724                 end_tick = hpts->p_prev_slot;
725                 if (end_tick == 0)
726                         end_tick = NUM_OF_HPTSI_SLOTS - 1;
727                 else
728                         end_tick--;
729                 if (target_tick)
730                         *target_tick = end_tick;
731                 /*
732                  * Now we have close to the full wheel left minus the
733                  * time it has been since the pacer went to sleep. Note
734                  * that wheel_tick, passed in, should be the current time
735                  * from the perspective of the caller, mapped to the wheel.
736                  */
737                 if (hpts->p_prev_slot != wheel_tick)
738                         dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
739                 else
740                         dis_to_travel = 1;
741                 /*
742                  * dis_to_travel in this case is the space from when the
743                  * pacer stopped (p_prev_slot) and where our wheel_tick
744                  * is now. To know how many slots we can put it in we
745                  * subtract from the wheel size. We would not want
746                  * to place something after p_prev_slot or it will
747                  * get ran too soon.
748                  */
749                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
750         }
751         /*
752          * So how many slots are open between p_runningtick -> p_cur_slot
753          * that is what is currently un-available for insertion. Special
754          * case when we are at the last slot, this gets 1, so that
755          * the answer to how many slots are available is all but 1.
756          */
757         if (hpts->p_runningtick == hpts->p_cur_slot)
758                 dis_to_travel = 1;
759         else
760                 dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
761         /*
762          * How long has the pacer been running?
763          */
764         if (hpts->p_cur_slot != wheel_tick) {
765                 /* The pacer is a bit late */
766                 pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick);
767         } else {
768                 /* The pacer is right on time, now == pacers start time */
769                 pacer_to_now = 0;
770         }
771         /*
772          * To get the number left we can insert into we simply
773          * subract the distance the pacer has to run from how
774          * many slots there are.
775          */
776         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
777         /*
778          * Now how many of those we will eat due to the pacer's
779          * time (p_cur_slot) of start being behind the
780          * real time (wheel_tick)?
781          */
782         if (avail_on_wheel <= pacer_to_now) {
783                 /*
784                  * Wheel wrap, we can't fit on the wheel, that
785                  * is unusual the system must be way overloaded!
786                  * Insert into the assured tick, and return special
787                  * "0".
788                  */
789                 counter_u64_add(combined_wheel_wrap, 1);
790                 *target_tick = hpts->p_nxt_slot;
791                 return (0);
792         } else {
793                 /*
794                  * We know how many slots are open
795                  * on the wheel (the reverse of what
796                  * is left to run. Take away the time
797                  * the pacer started to now (wheel_tick)
798                  * and that tells you how many slots are
799                  * open that can be inserted into that won't
800                  * be touched by the pacer until later.
801                  */
802                 return (avail_on_wheel - pacer_to_now);
803         }
804 }
805
806 static int
807 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref)
808 {
809         uint32_t need_wake = 0;
810
811         HPTS_MTX_ASSERT(hpts);
812         if (inp->inp_in_hpts == 0) {
813                 /* Ok we need to set it on the hpts in the current slot */
814                 inp->inp_hpts_request = 0;
815                 if ((hpts->p_hpts_active == 0) ||
816                     (hpts->p_wheel_complete)) {
817                         /*
818                          * A sleeping hpts we want in next slot to run
819                          * note that in this state p_prev_slot == p_cur_slot
820                          */
821                         inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1);
822                         if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0))
823                                 need_wake = 1;
824                 } else if ((void *)inp == hpts->p_inp) {
825                         /*
826                          * The hpts system is running and the caller
827                          * was awoken by the hpts system.
828                          * We can't allow you to go into the same slot we
829                          * are in (we don't want a loop :-D).
830                          */
831                         inp->inp_hptsslot = hpts->p_nxt_slot;
832                 } else
833                         inp->inp_hptsslot = hpts->p_runningtick;
834                 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
835                 if (need_wake) {
836                         /*
837                          * Activate the hpts if it is sleeping and its
838                          * timeout is not 1.
839                          */
840                         hpts->p_direct_wake = 1;
841                         tcp_wakehpts(hpts);
842                 }
843         }
844         return (need_wake);
845 }
846
847 int
848 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line)
849 {
850         int32_t ret;
851         struct tcp_hpts_entry *hpts;
852
853         INP_WLOCK_ASSERT(inp);
854         hpts = tcp_hpts_lock(inp);
855         ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
856         mtx_unlock(&hpts->p_mtx);
857         return (ret);
858 }
859
860 #ifdef INVARIANTS
861 static void
862 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
863 {
864         /*
865          * Sanity checks for the pacer with invariants
866          * on insert.
867          */
868         if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS)
869                 panic("hpts:%p inp:%p slot:%d > max",
870                       hpts, inp, inp_hptsslot);
871         if ((hpts->p_hpts_active) &&
872             (hpts->p_wheel_complete == 0)) {
873                 /*
874                  * If the pacer is processing a arc
875                  * of the wheel, we need to make
876                  * sure we are not inserting within
877                  * that arc.
878                  */
879                 int distance, yet_to_run;
880
881                 distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot);
882                 if (hpts->p_runningtick != hpts->p_cur_slot)
883                         yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
884                 else
885                         yet_to_run = 0; /* processing last slot */
886                 if (yet_to_run > distance) {
887                         panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
888                               hpts, inp, inp_hptsslot,
889                               distance, yet_to_run,
890                               hpts->p_runningtick, hpts->p_cur_slot);
891                 }
892         }
893 }
894 #endif
895
896 static void
897 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line,
898                        struct hpts_diag *diag, struct timeval *tv)
899 {
900         uint32_t need_new_to = 0;
901         uint32_t wheel_cts, last_tick;
902         int32_t wheel_tick, maxticks;
903         int8_t need_wakeup = 0;
904
905         HPTS_MTX_ASSERT(hpts);
906         if (diag) {
907                 memset(diag, 0, sizeof(struct hpts_diag));
908                 diag->p_hpts_active = hpts->p_hpts_active;
909                 diag->p_prev_slot = hpts->p_prev_slot;
910                 diag->p_runningtick = hpts->p_runningtick;
911                 diag->p_nxt_slot = hpts->p_nxt_slot;
912                 diag->p_cur_slot = hpts->p_cur_slot;
913                 diag->p_curtick = hpts->p_curtick;
914                 diag->p_lasttick = hpts->p_lasttick;
915                 diag->slot_req = slot;
916                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
917                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
918         }
919         if (inp->inp_in_hpts == 0) {
920                 if (slot == 0) {
921                         /* Immediate */
922                         tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
923                         return;
924                 }
925                 /* Get the current time relative to the wheel */
926                 wheel_cts = tcp_tv_to_hptstick(tv);
927                 /* Map it onto the wheel */
928                 wheel_tick = tick_to_wheel(wheel_cts);
929                 /* Now what's the max we can place it at? */
930                 maxticks = max_ticks_available(hpts, wheel_tick, &last_tick);
931                 if (diag) {
932                         diag->wheel_tick = wheel_tick;
933                         diag->maxticks = maxticks;
934                         diag->wheel_cts = wheel_cts;
935                 }
936                 if (maxticks == 0) {
937                         /* The pacer is in a wheel wrap behind, yikes! */
938                         if (slot > 1) {
939                                 /*
940                                  * Reduce by 1 to prevent a forever loop in
941                                  * case something else is wrong. Note this
942                                  * probably does not hurt because the pacer
943                                  * if its true is so far behind we will be
944                                  * > 1second late calling anyway.
945                                  */
946                                 slot--;
947                         }
948                         inp->inp_hptsslot = last_tick;
949                         inp->inp_hpts_request = slot;
950                 } else  if (maxticks >= slot) {
951                         /* It all fits on the wheel */
952                         inp->inp_hpts_request = 0;
953                         inp->inp_hptsslot = hpts_tick(wheel_tick, slot);
954                 } else {
955                         /* It does not fit */
956                         inp->inp_hpts_request = slot - maxticks;
957                         inp->inp_hptsslot = last_tick;
958                 }
959                 if (diag) {
960                         diag->slot_remaining = inp->inp_hpts_request;
961                         diag->inp_hptsslot = inp->inp_hptsslot;
962                 }
963 #ifdef INVARIANTS
964                 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
965 #endif
966                 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0);
967                 if ((hpts->p_hpts_active == 0) &&
968                     (inp->inp_hpts_request == 0) &&
969                     (hpts->p_on_min_sleep == 0)) {
970                         /*
971                          * The hpts is sleeping and not on a minimum
972                          * sleep time, we need to figure out where
973                          * it will wake up at and if we need to reschedule
974                          * its time-out.
975                          */
976                         uint32_t have_slept, yet_to_sleep;
977
978                         /* Now do we need to restart the hpts's timer? */
979                         have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
980                         if (have_slept < hpts->p_hpts_sleep_time)
981                                 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
982                         else {
983                                 /* We are over-due */
984                                 yet_to_sleep = 0;
985                                 need_wakeup = 1;
986                         }
987                         if (diag) {
988                                 diag->have_slept = have_slept;
989                                 diag->yet_to_sleep = yet_to_sleep;
990                         }
991                         if (yet_to_sleep &&
992                             (yet_to_sleep > slot)) {
993                                 /*
994                                  * We need to reschedule the hpts's time-out.
995                                  */
996                                 hpts->p_hpts_sleep_time = slot;
997                                 need_new_to = slot * HPTS_TICKS_PER_USEC;
998                         }
999                 }
1000                 /*
1001                  * Now how far is the hpts sleeping to? if active is 1, its
1002                  * up and ticking we do nothing, otherwise we may need to
1003                  * reschedule its callout if need_new_to is set from above.
1004                  */
1005                 if (need_wakeup) {
1006                         hpts->p_direct_wake = 1;
1007                         tcp_wakehpts(hpts);
1008                         if (diag) {
1009                                 diag->need_new_to = 0;
1010                                 diag->co_ret = 0xffff0000;
1011                         }
1012                 } else if (need_new_to) {
1013                         int32_t co_ret;
1014                         struct timeval tv;
1015                         sbintime_t sb;
1016
1017                         tv.tv_sec = 0;
1018                         tv.tv_usec = 0;
1019                         while (need_new_to > HPTS_USEC_IN_SEC) {
1020                                 tv.tv_sec++;
1021                                 need_new_to -= HPTS_USEC_IN_SEC;
1022                         }
1023                         tv.tv_usec = need_new_to;
1024                         sb = tvtosbt(tv);
1025                         if (tcp_hpts_callout_skip_swi == 0) {
1026                                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1027                                     hpts_timeout_swi, hpts, hpts->p_cpu,
1028                                     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1029                         } else {
1030                                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1031                                     hpts_timeout_dir, hpts,
1032                                     hpts->p_cpu,
1033                                     C_PREL(tcp_hpts_precision));
1034                         }
1035                         if (diag) {
1036                                 diag->need_new_to = need_new_to;
1037                                 diag->co_ret = co_ret;
1038                         }
1039                 }
1040         } else {
1041 #ifdef INVARIANTS
1042                 panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp);
1043 #endif
1044         }
1045 }
1046
1047 uint32_t
1048 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
1049 {
1050         struct tcp_hpts_entry *hpts;
1051         uint32_t slot_on;
1052         struct timeval tv;
1053
1054         /*
1055          * We now return the next-slot the hpts will be on, beyond its
1056          * current run (if up) or where it was when it stopped if it is
1057          * sleeping.
1058          */
1059         INP_WLOCK_ASSERT(inp);
1060         hpts = tcp_hpts_lock(inp);
1061         microuptime(&tv);
1062         tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv);
1063         slot_on = hpts->p_nxt_slot;
1064         mtx_unlock(&hpts->p_mtx);
1065         return (slot_on);
1066 }
1067
1068 uint32_t
1069 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){
1070         return (tcp_hpts_insert_diag(inp, slot, line, NULL));
1071 }
1072 int
1073 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line)
1074 {
1075         int32_t retval = 0;
1076
1077         HPTS_MTX_ASSERT(hpts);
1078         if (inp->inp_in_input == 0) {
1079                 /* Ok we need to set it on the hpts in the current slot */
1080                 hpts_sane_input_insert(hpts, inp, line);
1081                 retval = 1;
1082                 if (hpts->p_hpts_active == 0) {
1083                         /*
1084                          * Activate the hpts if it is sleeping.
1085                          */
1086                         retval = 2;
1087                         hpts->p_direct_wake = 1;
1088                         tcp_wakeinput(hpts);
1089                 }
1090         } else if (hpts->p_hpts_active == 0) {
1091                 retval = 4;
1092                 hpts->p_direct_wake = 1;
1093                 tcp_wakeinput(hpts);
1094         }
1095         return (retval);
1096 }
1097
1098 int32_t
1099 __tcp_queue_to_input(struct inpcb *inp, int line)
1100 {
1101         struct tcp_hpts_entry *hpts;
1102         int32_t ret;
1103
1104         hpts = tcp_input_lock(inp);
1105         ret = __tcp_queue_to_input_locked(inp, hpts, line);
1106         mtx_unlock(&hpts->p_mtx);
1107         return (ret);
1108 }
1109
1110 void
1111 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line)
1112 {
1113         struct tcp_hpts_entry *hpts;
1114         struct tcpcb *tp;
1115
1116         tp = intotcpcb(inp);
1117         hpts = tcp_input_lock(tp->t_inpcb);
1118         if (inp->inp_in_input == 0) {
1119                 /* Ok we need to set it on the hpts in the current slot */
1120                 hpts_sane_input_insert(hpts, inp, line);
1121                 if (hpts->p_hpts_active == 0) {
1122                         /*
1123                          * Activate the hpts if it is sleeping.
1124                          */
1125                         hpts->p_direct_wake = 1;
1126                         tcp_wakeinput(hpts);
1127                 }
1128         } else if (hpts->p_hpts_active == 0) {
1129                 hpts->p_direct_wake = 1;
1130                 tcp_wakeinput(hpts);
1131         }
1132         inp->inp_hpts_drop_reas = reason;
1133         mtx_unlock(&hpts->p_mtx);
1134 }
1135
1136 static uint16_t
1137 hpts_random_cpu(struct inpcb *inp){
1138         /*
1139          * No flow type set distribute the load randomly.
1140          */
1141         uint16_t cpuid;
1142         uint32_t ran;
1143
1144         /*
1145          * If one has been set use it i.e. we want both in and out on the
1146          * same hpts.
1147          */
1148         if (inp->inp_input_cpu_set) {
1149                 return (inp->inp_input_cpu);
1150         } else if (inp->inp_hpts_cpu_set) {
1151                 return (inp->inp_hpts_cpu);
1152         }
1153         /* Nothing set use a random number */
1154         ran = arc4random();
1155         cpuid = (ran & 0xffff) % mp_ncpus;
1156         return (cpuid);
1157 }
1158
1159 static uint16_t
1160 hpts_cpuid(struct inpcb *inp)
1161 {
1162         u_int cpuid;
1163 #if !defined(RSS) && defined(NUMA)
1164         struct hpts_domain_info *di;
1165 #endif
1166
1167         /*
1168          * If one has been set use it i.e. we want both in and out on the
1169          * same hpts.
1170          */
1171         if (inp->inp_input_cpu_set) {
1172                 return (inp->inp_input_cpu);
1173         } else if (inp->inp_hpts_cpu_set) {
1174                 return (inp->inp_hpts_cpu);
1175         }
1176         /* If one is set the other must be the same */
1177 #ifdef RSS
1178         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1179         if (cpuid == NETISR_CPUID_NONE)
1180                 return (hpts_random_cpu(inp));
1181         else
1182                 return (cpuid);
1183 #else
1184         /*
1185          * We don't have a flowid -> cpuid mapping, so cheat and just map
1186          * unknown cpuids to curcpu.  Not the best, but apparently better
1187          * than defaulting to swi 0.
1188          */
1189
1190         if (inp->inp_flowtype == M_HASHTYPE_NONE)
1191                 return (hpts_random_cpu(inp));
1192         /*
1193          * Hash to a thread based on the flowid.  If we are using numa,
1194          * then restrict the hash to the numa domain where the inp lives.
1195          */
1196 #ifdef NUMA
1197         if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1198                 di = &hpts_domains[inp->inp_numa_domain];
1199                 cpuid = di->cpu[inp->inp_flowid % di->count];
1200         } else
1201 #endif
1202                 cpuid = inp->inp_flowid % mp_ncpus;
1203
1204         return (cpuid);
1205 #endif
1206 }
1207
1208 static void
1209 tcp_drop_in_pkts(struct tcpcb *tp)
1210 {
1211         struct mbuf *m, *n;
1212
1213         m = tp->t_in_pkt;
1214         if (m)
1215                 n = m->m_nextpkt;
1216         else
1217                 n = NULL;
1218         tp->t_in_pkt = NULL;
1219         while (m) {
1220                 m_freem(m);
1221                 m = n;
1222                 if (m)
1223                         n = m->m_nextpkt;
1224         }
1225 }
1226
1227 /*
1228  * Do NOT try to optimize the processing of inp's
1229  * by first pulling off all the inp's into a temporary
1230  * list (e.g. TAILQ_CONCAT). If you do that the subtle
1231  * interactions of switching CPU's will kill because of
1232  * problems in the linked list manipulation. Basically
1233  * you would switch cpu's with the hpts mutex locked
1234  * but then while you were processing one of the inp's
1235  * some other one that you switch will get a new
1236  * packet on the different CPU. It will insert it
1237  * on the new hpts's input list. Creating a temporary
1238  * link in the inp will not fix it either, since
1239  * the other hpts will be doing the same thing and
1240  * you will both end up using the temporary link.
1241  *
1242  * You will die in an ASSERT for tailq corruption if you
1243  * run INVARIANTS or you will die horribly without
1244  * INVARIANTS in some unknown way with a corrupt linked
1245  * list.
1246  */
1247 static void
1248 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv)
1249 {
1250         struct tcpcb *tp;
1251         struct inpcb *inp;
1252         uint16_t drop_reason;
1253         int16_t set_cpu;
1254         uint32_t did_prefetch = 0;
1255         int dropped;
1256
1257         HPTS_MTX_ASSERT(hpts);
1258         NET_EPOCH_ASSERT();
1259
1260         while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) {
1261                 HPTS_MTX_ASSERT(hpts);
1262                 hpts_sane_input_remove(hpts, inp, 0);
1263                 if (inp->inp_input_cpu_set == 0) {
1264                         set_cpu = 1;
1265                 } else {
1266                         set_cpu = 0;
1267                 }
1268                 hpts->p_inp = inp;
1269                 drop_reason = inp->inp_hpts_drop_reas;
1270                 inp->inp_in_input = 0;
1271                 mtx_unlock(&hpts->p_mtx);
1272                 INP_WLOCK(inp);
1273 #ifdef VIMAGE
1274                 CURVNET_SET(inp->inp_vnet);
1275 #endif
1276                 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1277                     (inp->inp_flags2 & INP_FREED)) {
1278 out:
1279                         hpts->p_inp = NULL;
1280                         if (in_pcbrele_wlocked(inp) == 0) {
1281                                 INP_WUNLOCK(inp);
1282                         }
1283 #ifdef VIMAGE
1284                         CURVNET_RESTORE();
1285 #endif
1286                         mtx_lock(&hpts->p_mtx);
1287                         continue;
1288                 }
1289                 tp = intotcpcb(inp);
1290                 if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1291                         goto out;
1292                 }
1293                 if (drop_reason) {
1294                         /* This tcb is being destroyed for drop_reason */
1295                         tcp_drop_in_pkts(tp);
1296                         tp = tcp_drop(tp, drop_reason);
1297                         if (tp == NULL) {
1298                                 INP_WLOCK(inp);
1299                         }
1300                         if (in_pcbrele_wlocked(inp) == 0)
1301                                 INP_WUNLOCK(inp);
1302 #ifdef VIMAGE
1303                         CURVNET_RESTORE();
1304 #endif
1305                         mtx_lock(&hpts->p_mtx);
1306                         continue;
1307                 }
1308                 if (set_cpu) {
1309                         /*
1310                          * Setup so the next time we will move to the right
1311                          * CPU. This should be a rare event. It will
1312                          * sometimes happens when we are the client side
1313                          * (usually not the server). Somehow tcp_output()
1314                          * gets called before the tcp_do_segment() sets the
1315                          * intial state. This means the r_cpu and r_hpts_cpu
1316                          * is 0. We get on the hpts, and then tcp_input()
1317                          * gets called setting up the r_cpu to the correct
1318                          * value. The hpts goes off and sees the mis-match.
1319                          * We simply correct it here and the CPU will switch
1320                          * to the new hpts nextime the tcb gets added to the
1321                          * the hpts (not this time) :-)
1322                          */
1323                         tcp_set_hpts(inp);
1324                 }
1325                 if (tp->t_fb_ptr != NULL) {
1326                         kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1327                         did_prefetch = 1;
1328                 }
1329                 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1330                         if (inp->inp_in_input)
1331                                 tcp_hpts_remove(inp, HPTS_REMOVE_INPUT);
1332                         dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1333                         if (dropped) {
1334                                 /* Re-acquire the wlock so we can release the reference */
1335                                 INP_WLOCK(inp);
1336                         }
1337                 } else if (tp->t_in_pkt) {
1338                         /*
1339                          * We reach here only if we had a
1340                          * stack that supported INP_SUPPORTS_MBUFQ
1341                          * and then somehow switched to a stack that
1342                          * does not. The packets are basically stranded
1343                          * and would hang with the connection until
1344                          * cleanup without this code. Its not the
1345                          * best way but I know of no other way to
1346                          * handle it since the stack needs functions
1347                          * it does not have to handle queued packets.
1348                          */
1349                         tcp_drop_in_pkts(tp);
1350                 }
1351                 if (in_pcbrele_wlocked(inp) == 0)
1352                         INP_WUNLOCK(inp);
1353                 INP_UNLOCK_ASSERT(inp);
1354 #ifdef VIMAGE
1355                 CURVNET_RESTORE();
1356 #endif
1357                 mtx_lock(&hpts->p_mtx);
1358                 hpts->p_inp = NULL;
1359         }
1360 }
1361
1362 static void
1363 tcp_hptsi(struct tcp_hpts_entry *hpts)
1364 {
1365         struct tcpcb *tp;
1366         struct inpcb *inp = NULL, *ninp;
1367         struct timeval tv;
1368         int32_t ticks_to_run, i, error;
1369         int32_t paced_cnt = 0;
1370         int32_t loop_cnt = 0;
1371         int32_t did_prefetch = 0;
1372         int32_t prefetch_ninp = 0;
1373         int32_t prefetch_tp = 0;
1374         int32_t wrap_loop_cnt = 0;
1375         int16_t set_cpu;
1376
1377         HPTS_MTX_ASSERT(hpts);
1378         NET_EPOCH_ASSERT();
1379
1380         /* record previous info for any logging */
1381         hpts->saved_lasttick = hpts->p_lasttick;
1382         hpts->saved_curtick = hpts->p_curtick;
1383         hpts->saved_curslot = hpts->p_cur_slot;
1384         hpts->saved_prev_slot = hpts->p_prev_slot;
1385
1386         hpts->p_lasttick = hpts->p_curtick;
1387         hpts->p_curtick = tcp_gethptstick(&tv);
1388         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1389         if ((hpts->p_on_queue_cnt == 0) ||
1390             (hpts->p_lasttick == hpts->p_curtick)) {
1391                 /*
1392                  * No time has yet passed,
1393                  * or nothing to do.
1394                  */
1395                 hpts->p_prev_slot = hpts->p_cur_slot;
1396                 hpts->p_lasttick = hpts->p_curtick;
1397                 goto no_run;
1398         }
1399 again:
1400         hpts->p_wheel_complete = 0;
1401         HPTS_MTX_ASSERT(hpts);
1402         ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1403         if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) &&
1404             (hpts->p_on_queue_cnt != 0)) {
1405                 /*
1406                  * Wheel wrap is occuring, basically we
1407                  * are behind and the distance between
1408                  * run's has spread so much it has exceeded
1409                  * the time on the wheel (1.024 seconds). This
1410                  * is ugly and should NOT be happening. We
1411                  * need to run the entire wheel. We last processed
1412                  * p_prev_slot, so that needs to be the last slot
1413                  * we run. The next slot after that should be our
1414                  * reserved first slot for new, and then starts
1415                  * the running postion. Now the problem is the
1416                  * reserved "not to yet" place does not exist
1417                  * and there may be inp's in there that need
1418                  * running. We can merge those into the
1419                  * first slot at the head.
1420                  */
1421                 wrap_loop_cnt++;
1422                 hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1);
1423                 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2);
1424                 /*
1425                  * Adjust p_cur_slot to be where we are starting from
1426                  * hopefully we will catch up (fat chance if something
1427                  * is broken this bad :( )
1428                  */
1429                 hpts->p_cur_slot = hpts->p_prev_slot;
1430                 /*
1431                  * The next slot has guys to run too, and that would
1432                  * be where we would normally start, lets move them into
1433                  * the next slot (p_prev_slot + 2) so that we will
1434                  * run them, the extra 10usecs of late (by being
1435                  * put behind) does not really matter in this situation.
1436                  */
1437 #ifdef INVARIANTS
1438                 /*
1439                  * To prevent a panic we need to update the inpslot to the
1440                  * new location. This is safe since it takes both the
1441                  * INP lock and the pacer mutex to change the inp_hptsslot.
1442                  */
1443                 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) {
1444                         inp->inp_hptsslot = hpts->p_runningtick;
1445                 }
1446 #endif
1447                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick],
1448                              &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts);
1449                 ticks_to_run = NUM_OF_HPTSI_SLOTS - 1;
1450                 counter_u64_add(wheel_wrap, 1);
1451         } else {
1452                 /*
1453                  * Nxt slot is always one after p_runningtick though
1454                  * its not used usually unless we are doing wheel wrap.
1455                  */
1456                 hpts->p_nxt_slot = hpts->p_prev_slot;
1457                 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1);
1458         }
1459 #ifdef INVARIANTS
1460         if (TAILQ_EMPTY(&hpts->p_input) &&
1461             (hpts->p_on_inqueue_cnt != 0)) {
1462                 panic("tp:%p in_hpts input empty but cnt:%d",
1463                       hpts, hpts->p_on_inqueue_cnt);
1464         }
1465 #endif
1466         HPTS_MTX_ASSERT(hpts);
1467         if (hpts->p_on_queue_cnt == 0) {
1468                 goto no_one;
1469         }
1470         HPTS_MTX_ASSERT(hpts);
1471         for (i = 0; i < ticks_to_run; i++) {
1472                 /*
1473                  * Calculate our delay, if there are no extra ticks there
1474                  * was not any (i.e. if ticks_to_run == 1, no delay).
1475                  */
1476                 hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC;
1477                 HPTS_MTX_ASSERT(hpts);
1478                 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1479                         /* For debugging */
1480                         hpts->p_inp = inp;
1481                         paced_cnt++;
1482 #ifdef INVARIANTS
1483                         if (hpts->p_runningtick != inp->inp_hptsslot) {
1484                                 panic("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1485                                       hpts, inp, hpts->p_runningtick, inp->inp_hptsslot);
1486                         }
1487 #endif
1488                         /* Now pull it */
1489                         if (inp->inp_hpts_cpu_set == 0) {
1490                                 set_cpu = 1;
1491                         } else {
1492                                 set_cpu = 0;
1493                         }
1494                         hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0);
1495                         if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1496                                 /* We prefetch the next inp if possible */
1497                                 kern_prefetch(ninp, &prefetch_ninp);
1498                                 prefetch_ninp = 1;
1499                         }
1500                         if (inp->inp_hpts_request) {
1501                                 /*
1502                                  * This guy is deferred out further in time
1503                                  * then our wheel had available on it.
1504                                  * Push him back on the wheel or run it
1505                                  * depending.
1506                                  */
1507                                 uint32_t maxticks, last_tick, remaining_slots;
1508
1509                                 remaining_slots = ticks_to_run - (i + 1);
1510                                 if (inp->inp_hpts_request > remaining_slots) {
1511                                         /*
1512                                          * How far out can we go?
1513                                          */
1514                                         maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick);
1515                                         if (maxticks >= inp->inp_hpts_request) {
1516                                                 /* we can place it finally to be processed  */
1517                                                 inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request);
1518                                                 inp->inp_hpts_request = 0;
1519                                         } else {
1520                                                 /* Work off some more time */
1521                                                 inp->inp_hptsslot = last_tick;
1522                                                 inp->inp_hpts_request-= maxticks;
1523                                         }
1524                                         hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1);
1525                                         hpts->p_inp = NULL;
1526                                         continue;
1527                                 }
1528                                 inp->inp_hpts_request = 0;
1529                                 /* Fall through we will so do it now */
1530                         }
1531                         /*
1532                          * We clear the hpts flag here after dealing with
1533                          * remaining slots. This way anyone looking with the
1534                          * TCB lock will see its on the hpts until just
1535                          * before we unlock.
1536                          */
1537                         inp->inp_in_hpts = 0;
1538                         mtx_unlock(&hpts->p_mtx);
1539                         INP_WLOCK(inp);
1540                         if (in_pcbrele_wlocked(inp)) {
1541                                 mtx_lock(&hpts->p_mtx);
1542                                 hpts->p_inp = NULL;
1543                                 continue;
1544                         }
1545                         if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1546                             (inp->inp_flags2 & INP_FREED)) {
1547                         out_now:
1548 #ifdef INVARIANTS
1549                                 if (mtx_owned(&hpts->p_mtx)) {
1550                                         panic("Hpts:%p owns mtx prior-to lock line:%d",
1551                                               hpts, __LINE__);
1552                                 }
1553 #endif
1554                                 INP_WUNLOCK(inp);
1555                                 mtx_lock(&hpts->p_mtx);
1556                                 hpts->p_inp = NULL;
1557                                 continue;
1558                         }
1559                         tp = intotcpcb(inp);
1560                         if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1561                                 goto out_now;
1562                         }
1563                         if (set_cpu) {
1564                                 /*
1565                                  * Setup so the next time we will move to
1566                                  * the right CPU. This should be a rare
1567                                  * event. It will sometimes happens when we
1568                                  * are the client side (usually not the
1569                                  * server). Somehow tcp_output() gets called
1570                                  * before the tcp_do_segment() sets the
1571                                  * intial state. This means the r_cpu and
1572                                  * r_hpts_cpu is 0. We get on the hpts, and
1573                                  * then tcp_input() gets called setting up
1574                                  * the r_cpu to the correct value. The hpts
1575                                  * goes off and sees the mis-match. We
1576                                  * simply correct it here and the CPU will
1577                                  * switch to the new hpts nextime the tcb
1578                                  * gets added to the the hpts (not this one)
1579                                  * :-)
1580                                  */
1581                                 tcp_set_hpts(inp);
1582                         }
1583 #ifdef VIMAGE
1584                         CURVNET_SET(inp->inp_vnet);
1585 #endif
1586                         /* Lets do any logging that we might want to */
1587                         if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1588                                 tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i);
1589                         }
1590                         /*
1591                          * There is a hole here, we get the refcnt on the
1592                          * inp so it will still be preserved but to make
1593                          * sure we can get the INP we need to hold the p_mtx
1594                          * above while we pull out the tp/inp,  as long as
1595                          * fini gets the lock first we are assured of having
1596                          * a sane INP we can lock and test.
1597                          */
1598 #ifdef INVARIANTS
1599                         if (mtx_owned(&hpts->p_mtx)) {
1600                                 panic("Hpts:%p owns mtx before tcp-output:%d",
1601                                       hpts, __LINE__);
1602                         }
1603 #endif
1604                         if (tp->t_fb_ptr != NULL) {
1605                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1606                                 did_prefetch = 1;
1607                         }
1608                         if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1609                                 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1610                                 if (error) {
1611                                         /* The input killed the connection */
1612                                         goto skip_pacing;
1613                                 }
1614                         }
1615                         inp->inp_hpts_calls = 1;
1616                         error = tp->t_fb->tfb_tcp_output(tp);
1617                         inp->inp_hpts_calls = 0;
1618                         if (ninp && ninp->inp_ppcb) {
1619                                 /*
1620                                  * If we have a nxt inp, see if we can
1621                                  * prefetch its ppcb. Note this may seem
1622                                  * "risky" since we have no locks (other
1623                                  * than the previous inp) and there no
1624                                  * assurance that ninp was not pulled while
1625                                  * we were processing inp and freed. If this
1626                                  * occured it could mean that either:
1627                                  *
1628                                  * a) Its NULL (which is fine we won't go
1629                                  * here) <or> b) Its valid (which is cool we
1630                                  * will prefetch it) <or> c) The inp got
1631                                  * freed back to the slab which was
1632                                  * reallocated. Then the piece of memory was
1633                                  * re-used and something else (not an
1634                                  * address) is in inp_ppcb. If that occurs
1635                                  * we don't crash, but take a TLB shootdown
1636                                  * performance hit (same as if it was NULL
1637                                  * and we tried to pre-fetch it).
1638                                  *
1639                                  * Considering that the likelyhood of <c> is
1640                                  * quite rare we will take a risk on doing
1641                                  * this. If performance drops after testing
1642                                  * we can always take this out. NB: the
1643                                  * kern_prefetch on amd64 actually has
1644                                  * protection against a bad address now via
1645                                  * the DMAP_() tests. This will prevent the
1646                                  * TLB hit, and instead if <c> occurs just
1647                                  * cause us to load cache with a useless
1648                                  * address (to us).
1649                                  */
1650                                 kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1651                                 prefetch_tp = 1;
1652                         }
1653                         INP_WUNLOCK(inp);
1654                 skip_pacing:
1655 #ifdef VIMAGE
1656                         CURVNET_RESTORE();
1657 #endif
1658                         INP_UNLOCK_ASSERT(inp);
1659 #ifdef INVARIANTS
1660                         if (mtx_owned(&hpts->p_mtx)) {
1661                                 panic("Hpts:%p owns mtx prior-to lock line:%d",
1662                                       hpts, __LINE__);
1663                         }
1664 #endif
1665                         mtx_lock(&hpts->p_mtx);
1666                         hpts->p_inp = NULL;
1667                 }
1668                 HPTS_MTX_ASSERT(hpts);
1669                 hpts->p_inp = NULL;
1670                 hpts->p_runningtick++;
1671                 if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) {
1672                         hpts->p_runningtick = 0;
1673                 }
1674         }
1675 no_one:
1676         HPTS_MTX_ASSERT(hpts);
1677         hpts->p_delayed_by = 0;
1678         /*
1679          * Check to see if we took an excess amount of time and need to run
1680          * more ticks (if we did not hit eno-bufs).
1681          */
1682 #ifdef INVARIANTS
1683         if (TAILQ_EMPTY(&hpts->p_input) &&
1684             (hpts->p_on_inqueue_cnt != 0)) {
1685                 panic("tp:%p in_hpts input empty but cnt:%d",
1686                       hpts, hpts->p_on_inqueue_cnt);
1687         }
1688 #endif
1689         hpts->p_prev_slot = hpts->p_cur_slot;
1690         hpts->p_lasttick = hpts->p_curtick;
1691         if (loop_cnt > max_pacer_loops) {
1692                 /*
1693                  * Something is serious slow we have
1694                  * looped through processing the wheel
1695                  * and by the time we cleared the
1696                  * needs to run max_pacer_loops time
1697                  * we still needed to run. That means
1698                  * the system is hopelessly behind and
1699                  * can never catch up :(
1700                  *
1701                  * We will just lie to this thread
1702                  * and let it thing p_curtick is
1703                  * correct. When it next awakens
1704                  * it will find itself further behind.
1705                  */
1706                 counter_u64_add(hpts_hopelessly_behind, 1);
1707                 goto no_run;
1708         }
1709         hpts->p_curtick = tcp_gethptstick(&tv);
1710         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1711         if ((wrap_loop_cnt < 2) &&
1712             (hpts->p_lasttick != hpts->p_curtick)) {
1713                 counter_u64_add(hpts_loops, 1);
1714                 loop_cnt++;
1715                 goto again;
1716         }
1717 no_run:
1718         /*
1719          * Set flag to tell that we are done for
1720          * any slot input that happens during
1721          * input.
1722          */
1723         hpts->p_wheel_complete = 1;
1724         /*
1725          * Run any input that may be there not covered
1726          * in running data.
1727          */
1728         if (!TAILQ_EMPTY(&hpts->p_input)) {
1729                 tcp_input_data(hpts, &tv);
1730                 /*
1731                  * Now did we spend too long running
1732                  * input and need to run more ticks?
1733                  */
1734                 KASSERT(hpts->p_prev_slot == hpts->p_cur_slot,
1735                         ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1736                          hpts->p_prev_slot, hpts->p_cur_slot));
1737                 KASSERT(hpts->p_lasttick == hpts->p_curtick,
1738                         ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1739                          hpts->p_lasttick, hpts->p_curtick));
1740                 hpts->p_curtick = tcp_gethptstick(&tv);
1741                 if (hpts->p_lasttick != hpts->p_curtick) {
1742                         counter_u64_add(hpts_loops, 1);
1743                         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1744                         goto again;
1745                 }
1746         }
1747         {
1748                 uint32_t t = 0, i, fnd = 0;
1749
1750                 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1751                         /*
1752                          * Find next slot that is occupied and use that to
1753                          * be the sleep time.
1754                          */
1755                         for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1756                                 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) {
1757                                         fnd = 1;
1758                                         break;
1759                                 }
1760                                 t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1761                         }
1762                         if (fnd) {
1763                                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1764                         } else {
1765 #ifdef INVARIANTS
1766                                 panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt);
1767 #endif
1768                                 counter_u64_add(back_tosleep, 1);
1769                                 hpts->p_on_queue_cnt = 0;
1770                                 goto non_found;
1771                         }
1772                 } else if (wrap_loop_cnt >= 2) {
1773                         /* Special case handling */
1774                         hpts->p_hpts_sleep_time = tcp_min_hptsi_time;
1775                 } else {
1776                         /* No one on the wheel sleep for all but 400 slots or sleep max  */
1777                 non_found:
1778                         hpts->p_hpts_sleep_time = hpts_sleep_max;
1779                 }
1780         }
1781 }
1782
1783 void
1784 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1785 {
1786         struct tcp_hpts_entry *hpts;
1787
1788         INP_WLOCK_ASSERT(inp);
1789         hpts = tcp_hpts_lock(inp);
1790         if ((inp->inp_in_hpts == 0) &&
1791             (inp->inp_hpts_cpu_set == 0)) {
1792                 inp->inp_hpts_cpu = hpts_cpuid(inp);
1793                 inp->inp_hpts_cpu_set = 1;
1794         }
1795         mtx_unlock(&hpts->p_mtx);
1796         hpts = tcp_input_lock(inp);
1797         if ((inp->inp_input_cpu_set == 0) &&
1798             (inp->inp_in_input == 0)) {
1799                 inp->inp_input_cpu = hpts_cpuid(inp);
1800                 inp->inp_input_cpu_set = 1;
1801         }
1802         mtx_unlock(&hpts->p_mtx);
1803 }
1804
1805 uint16_t
1806 tcp_hpts_delayedby(struct inpcb *inp){
1807         return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by);
1808 }
1809
1810 static void
1811 tcp_hpts_thread(void *ctx)
1812 {
1813         struct tcp_hpts_entry *hpts;
1814         struct epoch_tracker et;
1815         struct timeval tv;
1816         sbintime_t sb;
1817
1818         hpts = (struct tcp_hpts_entry *)ctx;
1819         mtx_lock(&hpts->p_mtx);
1820         if (hpts->p_direct_wake) {
1821                 /* Signaled by input */
1822                 callout_stop(&hpts->co);
1823         } else {
1824                 /* Timed out */
1825                 if (callout_pending(&hpts->co) ||
1826                     !callout_active(&hpts->co)) {
1827                         mtx_unlock(&hpts->p_mtx);
1828                         return;
1829                 }
1830                 callout_deactivate(&hpts->co);
1831         }
1832         hpts->p_hpts_wake_scheduled = 0;
1833         hpts->p_hpts_active = 1;
1834         NET_EPOCH_ENTER(et);
1835         tcp_hptsi(hpts);
1836         NET_EPOCH_EXIT(et);
1837         HPTS_MTX_ASSERT(hpts);
1838         tv.tv_sec = 0;
1839         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1840         if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) {
1841                 hpts->overidden_sleep = tv.tv_usec;
1842                 tv.tv_usec = tcp_min_hptsi_time;
1843                 hpts->p_on_min_sleep = 1;
1844         } else {
1845                 /* Clear the min sleep flag */
1846                 hpts->overidden_sleep = 0;
1847                 hpts->p_on_min_sleep = 0;
1848         }
1849         hpts->p_hpts_active = 0;
1850         sb = tvtosbt(tv);
1851         if (tcp_hpts_callout_skip_swi == 0) {
1852                 callout_reset_sbt_on(&hpts->co, sb, 0,
1853                     hpts_timeout_swi, hpts, hpts->p_cpu,
1854                     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1855         } else {
1856                 callout_reset_sbt_on(&hpts->co, sb, 0,
1857                     hpts_timeout_dir, hpts,
1858                     hpts->p_cpu,
1859                     C_PREL(tcp_hpts_precision));
1860         }
1861         hpts->p_direct_wake = 0;
1862         mtx_unlock(&hpts->p_mtx);
1863 }
1864
1865 #undef  timersub
1866
1867 static void
1868 tcp_init_hptsi(void *st)
1869 {
1870         int32_t i, j, error, bound = 0, created = 0;
1871         size_t sz, asz;
1872         struct timeval tv;
1873         sbintime_t sb;
1874         struct tcp_hpts_entry *hpts;
1875         struct pcpu *pc;
1876         cpuset_t cs;
1877         char unit[16];
1878         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1879         int count, domain;
1880
1881         tcp_pace.rp_proc = NULL;
1882         tcp_pace.rp_num_hptss = ncpus;
1883         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1884         hpts_loops = counter_u64_alloc(M_WAITOK);
1885         back_tosleep = counter_u64_alloc(M_WAITOK);
1886         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1887         wheel_wrap = counter_u64_alloc(M_WAITOK);
1888         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1889         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1890         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1891         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1892                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1893                     M_TCPHPTS, M_WAITOK | M_ZERO);
1894                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
1895                     M_TCPHPTS, M_WAITOK);
1896                 hpts = tcp_pace.rp_ent[i];
1897                 /*
1898                  * Init all the hpts structures that are not specifically
1899                  * zero'd by the allocations. Also lets attach them to the
1900                  * appropriate sysctl block as well.
1901                  */
1902                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1903                     "hpts", MTX_DEF | MTX_DUPOK);
1904                 TAILQ_INIT(&hpts->p_input);
1905                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1906                         TAILQ_INIT(&hpts->p_hptss[j]);
1907                 }
1908                 sysctl_ctx_init(&hpts->hpts_ctx);
1909                 sprintf(unit, "%d", i);
1910                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1911                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1912                     OID_AUTO,
1913                     unit,
1914                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1915                     "");
1916                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1917                     SYSCTL_CHILDREN(hpts->hpts_root),
1918                     OID_AUTO, "in_qcnt", CTLFLAG_RD,
1919                     &hpts->p_on_inqueue_cnt, 0,
1920                     "Count TCB's awaiting input processing");
1921                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1922                     SYSCTL_CHILDREN(hpts->hpts_root),
1923                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
1924                     &hpts->p_on_queue_cnt, 0,
1925                     "Count TCB's awaiting output processing");
1926                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1927                     SYSCTL_CHILDREN(hpts->hpts_root),
1928                     OID_AUTO, "active", CTLFLAG_RD,
1929                     &hpts->p_hpts_active, 0,
1930                     "Is the hpts active");
1931                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1932                     SYSCTL_CHILDREN(hpts->hpts_root),
1933                     OID_AUTO, "curslot", CTLFLAG_RD,
1934                     &hpts->p_cur_slot, 0,
1935                     "What the current running pacers goal");
1936                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1937                     SYSCTL_CHILDREN(hpts->hpts_root),
1938                     OID_AUTO, "runtick", CTLFLAG_RD,
1939                     &hpts->p_runningtick, 0,
1940                     "What the running pacers current slot is");
1941                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1942                     SYSCTL_CHILDREN(hpts->hpts_root),
1943                     OID_AUTO, "curtick", CTLFLAG_RD,
1944                     &hpts->p_curtick, 0,
1945                     "What the running pacers last tick mapped to the wheel was");
1946                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1947                 hpts->p_num = i;
1948                 hpts->p_curtick = tcp_gethptstick(&tv);
1949                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1950                 hpts->p_cpu = 0xffff;
1951                 hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1);
1952                 callout_init(&hpts->co, 1);
1953         }
1954
1955         /* Don't try to bind to NUMA domains if we don't have any */
1956         if (vm_ndomains == 1 && tcp_bind_threads == 2)
1957                 tcp_bind_threads = 0;
1958
1959         /*
1960          * Now lets start ithreads to handle the hptss.
1961          */
1962         CPU_FOREACH(i) {
1963                 hpts = tcp_pace.rp_ent[i];
1964                 hpts->p_cpu = i;
1965                 error = swi_add(&hpts->ie, "hpts",
1966                     tcp_hpts_thread, (void *)hpts,
1967                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1968                 if (error) {
1969                         panic("Can't add hpts:%p i:%d err:%d",
1970                             hpts, i, error);
1971                 }
1972                 created++;
1973                 if (tcp_bind_threads == 1) {
1974                         if (intr_event_bind(hpts->ie, i) == 0)
1975                                 bound++;
1976                 } else if (tcp_bind_threads == 2) {
1977                         pc = pcpu_find(i);
1978                         domain = pc->pc_domain;
1979                         CPU_COPY(&cpuset_domain[domain], &cs);
1980                         if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
1981                             == 0) {
1982                                 bound++;
1983                                 count = hpts_domains[domain].count;
1984                                 hpts_domains[domain].cpu[count] = i;
1985                                 hpts_domains[domain].count++;
1986                         }
1987                 }
1988                 tv.tv_sec = 0;
1989                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1990                 sb = tvtosbt(tv);
1991                 if (tcp_hpts_callout_skip_swi == 0) {
1992                         callout_reset_sbt_on(&hpts->co, sb, 0,
1993                             hpts_timeout_swi, hpts, hpts->p_cpu,
1994                             (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1995                 } else {
1996                         callout_reset_sbt_on(&hpts->co, sb, 0,
1997                             hpts_timeout_dir, hpts,
1998                             hpts->p_cpu,
1999                             C_PREL(tcp_hpts_precision));
2000                 }
2001         }
2002         /*
2003          * If we somehow have an empty domain, fall back to choosing
2004          * among all htps threads.
2005          */
2006         for (i = 0; i < vm_ndomains; i++) {
2007                 if (hpts_domains[i].count == 0) {
2008                         tcp_bind_threads = 0;
2009                         break;
2010                 }
2011         }
2012
2013         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2014             created, bound,
2015             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2016 }
2017
2018 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2019 MODULE_VERSION(tcphpts, 1);