]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_hpts.c
Merge bmake-20230510
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_hpts.c
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32
33 /**
34  * Some notes about usage.
35  *
36  * The tcp_hpts system is designed to provide a high precision timer
37  * system for tcp. Its main purpose is to provide a mechanism for
38  * pacing packets out onto the wire. It can be used in two ways
39  * by a given TCP stack (and those two methods can be used simultaneously).
40  *
41  * First, and probably the main thing its used by Rack and BBR, it can
42  * be used to call tcp_output() of a transport stack at some time in the future.
43  * The normal way this is done is that tcp_output() of the stack schedules
44  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
45  * slot is the time from now that the stack wants to be called but it
46  * must be converted to tcp_hpts's notion of slot. This is done with
47  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
48  * call from the tcp_output() routine might look like:
49  *
50  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
51  *
52  * The above would schedule tcp_ouput() to be called in 550 useconds.
53  * Note that if using this mechanism the stack will want to add near
54  * its top a check to prevent unwanted calls (from user land or the
55  * arrival of incoming ack's). So it would add something like:
56  *
57  * if (tcp_in_hpts(inp))
58  *    return;
59  *
60  * to prevent output processing until the time alotted has gone by.
61  * Of course this is a bare bones example and the stack will probably
62  * have more consideration then just the above.
63  *
64  * In order to run input queued segments from the HPTS context the
65  * tcp stack must define an input function for
66  * tfb_do_queued_segments(). This function understands
67  * how to dequeue a array of packets that were input and
68  * knows how to call the correct processing routine.
69  *
70  * Locking in this is important as well so most likely the
71  * stack will need to define the tfb_do_segment_nounlock()
72  * splitting tfb_do_segment() into two parts. The main processing
73  * part that does not unlock the INP and returns a value of 1 or 0.
74  * It returns 0 if all is well and the lock was not released. It
75  * returns 1 if we had to destroy the TCB (a reset received etc).
76  * The remains of tfb_do_segment() then become just a simple call
77  * to the tfb_do_segment_nounlock() function and check the return
78  * code and possibly unlock.
79  *
80  * The stack must also set the flag on the INP that it supports this
81  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
82  * this flag as well and will queue packets when it is set.
83  * There are other flags as well INP_MBUF_QUEUE_READY and
84  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
85  * that we are in the pacer for output so there is no
86  * need to wake up the hpts system to get immediate
87  * input. The second tells the LRO code that its okay
88  * if a SACK arrives you can still defer input and let
89  * the current hpts timer run (this is usually set when
90  * a rack timer is up so we know SACK's are happening
91  * on the connection already and don't want to wakeup yet).
92  *
93  * There is a common functions within the rack_bbr_common code
94  * version i.e. ctf_do_queued_segments(). This function
95  * knows how to take the input queue of packets from tp->t_inqueue
96  * and process them digging out all the arguments, calling any bpf tap and
97  * calling into tfb_do_segment_nounlock(). The common
98  * function (ctf_do_queued_segments())  requires that
99  * you have defined the tfb_do_segment_nounlock() as
100  * described above.
101  */
102
103 #include <sys/param.h>
104 #include <sys/bus.h>
105 #include <sys/interrupt.h>
106 #include <sys/module.h>
107 #include <sys/kernel.h>
108 #include <sys/hhook.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/proc.h>           /* for proc0 declaration */
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #include <sys/sysctl.h>
115 #include <sys/systm.h>
116 #include <sys/refcount.h>
117 #include <sys/sched.h>
118 #include <sys/queue.h>
119 #include <sys/smp.h>
120 #include <sys/counter.h>
121 #include <sys/time.h>
122 #include <sys/kthread.h>
123 #include <sys/kern_prefetch.h>
124
125 #include <vm/uma.h>
126 #include <vm/vm.h>
127
128 #include <net/route.h>
129 #include <net/vnet.h>
130
131 #ifdef RSS
132 #include <net/netisr.h>
133 #include <net/rss_config.h>
134 #endif
135
136 #define TCPSTATES               /* for logging */
137
138 #include <netinet/in.h>
139 #include <netinet/in_kdtrace.h>
140 #include <netinet/in_pcb.h>
141 #include <netinet/ip.h>
142 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
143 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
144 #include <netinet/ip_var.h>
145 #include <netinet/ip6.h>
146 #include <netinet6/in6_pcb.h>
147 #include <netinet6/ip6_var.h>
148 #include <netinet/tcp.h>
149 #include <netinet/tcp_fsm.h>
150 #include <netinet/tcp_seq.h>
151 #include <netinet/tcp_timer.h>
152 #include <netinet/tcp_var.h>
153 #include <netinet/tcpip.h>
154 #include <netinet/cc/cc.h>
155 #include <netinet/tcp_hpts.h>
156 #include <netinet/tcp_log_buf.h>
157
158 #ifdef tcp_offload
159 #include <netinet/tcp_offload.h>
160 #endif
161
162 /*
163  * The hpts uses a 102400 wheel. The wheel
164  * defines the time in 10 usec increments (102400 x 10).
165  * This gives a range of 10usec - 1024ms to place
166  * an entry within. If the user requests more than
167  * 1.024 second, a remaineder is attached and the hpts
168  * when seeing the remainder will re-insert the
169  * inpcb forward in time from where it is until
170  * the remainder is zero.
171  */
172
173 #define NUM_OF_HPTSI_SLOTS 102400
174
175 /* Each hpts has its own p_mtx which is used for locking */
176 #define HPTS_MTX_ASSERT(hpts)   mtx_assert(&(hpts)->p_mtx, MA_OWNED)
177 #define HPTS_LOCK(hpts)         mtx_lock(&(hpts)->p_mtx)
178 #define HPTS_UNLOCK(hpts)       mtx_unlock(&(hpts)->p_mtx)
179 struct tcp_hpts_entry {
180         /* Cache line 0x00 */
181         struct mtx p_mtx;       /* Mutex for hpts */
182         struct timeval p_mysleep;       /* Our min sleep time */
183         uint64_t syscall_cnt;
184         uint64_t sleeping;      /* What the actual sleep was (if sleeping) */
185         uint16_t p_hpts_active; /* Flag that says hpts is awake  */
186         uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
187         uint32_t p_curtick;     /* Tick in 10 us the hpts is going to */
188         uint32_t p_runningslot; /* Current tick we are at if we are running */
189         uint32_t p_prev_slot;   /* Previous slot we were on */
190         uint32_t p_cur_slot;    /* Current slot in wheel hpts is draining */
191         uint32_t p_nxt_slot;    /* The next slot outside the current range of
192                                  * slots that the hpts is running on. */
193         int32_t p_on_queue_cnt; /* Count on queue in this hpts */
194         uint32_t p_lasttick;    /* Last tick before the current one */
195         uint8_t p_direct_wake :1, /* boolean */
196                 p_on_min_sleep:1, /* boolean */
197                 p_hpts_wake_scheduled:1, /* boolean */
198                 p_avail:5;
199         uint8_t p_fill[3];        /* Fill to 32 bits */
200         /* Cache line 0x40 */
201         struct hptsh {
202                 TAILQ_HEAD(, tcpcb)     head;
203                 uint32_t                count;
204                 uint32_t                gencnt;
205         } *p_hptss;                     /* Hptsi wheel */
206         uint32_t p_hpts_sleep_time;     /* Current sleep interval having a max
207                                          * of 255ms */
208         uint32_t overidden_sleep;       /* what was overrided by min-sleep for logging */
209         uint32_t saved_lasttick;        /* for logging */
210         uint32_t saved_curtick;         /* for logging */
211         uint32_t saved_curslot;         /* for logging */
212         uint32_t saved_prev_slot;       /* for logging */
213         uint32_t p_delayed_by;  /* How much were we delayed by */
214         /* Cache line 0x80 */
215         struct sysctl_ctx_list hpts_ctx;
216         struct sysctl_oid *hpts_root;
217         struct intr_event *ie;
218         void *ie_cookie;
219         uint16_t p_num;         /* The hpts number one per cpu */
220         uint16_t p_cpu;         /* The hpts CPU */
221         /* There is extra space in here */
222         /* Cache line 0x100 */
223         struct callout co __aligned(CACHE_LINE_SIZE);
224 }               __aligned(CACHE_LINE_SIZE);
225
226 static struct tcp_hptsi {
227         struct cpu_group **grps;
228         struct tcp_hpts_entry **rp_ent; /* Array of hptss */
229         uint32_t *cts_last_ran;
230         uint32_t grp_cnt;
231         uint32_t rp_num_hptss;  /* Number of hpts threads */
232 } tcp_pace;
233
234 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
235 #ifdef RSS
236 static int tcp_bind_threads = 1;
237 #else
238 static int tcp_bind_threads = 2;
239 #endif
240 static int tcp_use_irq_cpu = 0;
241 static uint32_t *cts_last_ran;
242 static int hpts_does_tp_logging = 0;
243
244 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
245 static void tcp_hpts_thread(void *ctx);
246 static void tcp_init_hptsi(void *st);
247
248 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
249 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
250 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
251 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
252
253
254 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
255     "TCP Hpts controls");
256 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
257     "TCP Hpts statistics");
258
259 #define timersub(tvp, uvp, vvp)                                         \
260         do {                                                            \
261                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
262                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
263                 if ((vvp)->tv_usec < 0) {                               \
264                         (vvp)->tv_sec--;                                \
265                         (vvp)->tv_usec += 1000000;                      \
266                 }                                                       \
267         } while (0)
268
269 static int32_t tcp_hpts_precision = 120;
270
271 static struct hpts_domain_info {
272         int count;
273         int cpu[MAXCPU];
274 } hpts_domains[MAXMEMDOM];
275
276 counter_u64_t hpts_hopelessly_behind;
277
278 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
279     &hpts_hopelessly_behind,
280     "Number of times hpts could not catch up and was behind hopelessly");
281
282 counter_u64_t hpts_loops;
283
284 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
285     &hpts_loops, "Number of times hpts had to loop to catch up");
286
287 counter_u64_t back_tosleep;
288
289 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
290     &back_tosleep, "Number of times hpts found no tcbs");
291
292 counter_u64_t combined_wheel_wrap;
293
294 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
295     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
296
297 counter_u64_t wheel_wrap;
298
299 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
300     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
301
302 counter_u64_t hpts_direct_call;
303 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
304     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
305
306 counter_u64_t hpts_wake_timeout;
307
308 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
309     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
310
311 counter_u64_t hpts_direct_awakening;
312
313 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
314     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
315
316 counter_u64_t hpts_back_tosleep;
317
318 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
319     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
320
321 counter_u64_t cpu_uses_flowid;
322 counter_u64_t cpu_uses_random;
323
324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
325     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
326 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
327     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
328
329 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
330 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
331 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
332     &tcp_bind_threads, 2,
333     "Thread Binding tunable");
334 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
335     &tcp_use_irq_cpu, 0,
336     "Use of irq CPU  tunable");
337 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
338     &tcp_hpts_precision, 120,
339     "Value for PRE() precision of callout");
340 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
341     &conn_cnt_thresh, 0,
342     "How many connections (below) make us use the callout based mechanism");
343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
344     &hpts_does_tp_logging, 0,
345     "Do we add to any tp that has logging on pacer logs");
346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
347     &dynamic_min_sleep, 250,
348     "What is the dynamic minsleep value?");
349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
350     &dynamic_max_sleep, 5000,
351     "What is the dynamic maxsleep value?");
352
353 static int32_t max_pacer_loops = 10;
354 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
355     &max_pacer_loops, 10,
356     "What is the maximum number of times the pacer will loop trying to catch up");
357
358 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
359
360 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
361
362 static int
363 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
364 {
365         int error;
366         uint32_t new;
367
368         new = hpts_sleep_max;
369         error = sysctl_handle_int(oidp, &new, 0, req);
370         if (error == 0 && req->newptr) {
371                 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
372                      (new > HPTS_MAX_SLEEP_ALLOWED))
373                         error = EINVAL;
374                 else
375                         hpts_sleep_max = new;
376         }
377         return (error);
378 }
379
380 static int
381 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
382 {
383         int error;
384         uint32_t new;
385
386         new = tcp_min_hptsi_time;
387         error = sysctl_handle_int(oidp, &new, 0, req);
388         if (error == 0 && req->newptr) {
389                 if (new < LOWEST_SLEEP_ALLOWED)
390                         error = EINVAL;
391                 else
392                         tcp_min_hptsi_time = new;
393         }
394         return (error);
395 }
396
397 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
398     CTLTYPE_UINT | CTLFLAG_RW,
399     &hpts_sleep_max, 0,
400     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
401     "Maximum time hpts will sleep in slots");
402
403 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
404     CTLTYPE_UINT | CTLFLAG_RW,
405     &tcp_min_hptsi_time, 0,
406     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
407     "The minimum time the hpts must sleep before processing more slots");
408
409 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
410 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
411 static int tcp_hpts_no_wake_over_thresh = 1;
412
413 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
414     &ticks_indicate_more_sleep, 0,
415     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
416 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
417     &ticks_indicate_less_sleep, 0,
418     "If we process this many or more on a timeout, we need less sleep on the next callout");
419 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
420     &tcp_hpts_no_wake_over_thresh, 0,
421     "When we are over the threshold on the pacer do we prohibit wakeups?");
422
423 static uint16_t
424 hpts_random_cpu(void)
425 {
426         uint16_t cpuid;
427         uint32_t ran;
428
429         ran = arc4random();
430         cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
431         return (cpuid);
432 }
433
434 static void
435 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
436              int slots_to_run, int idx, int from_callout)
437 {
438         union tcp_log_stackspecific log;
439         /*
440          * Unused logs are
441          * 64 bit - delRate, rttProp, bw_inuse
442          * 16 bit - cwnd_gain
443          *  8 bit - bbr_state, bbr_substate, inhpts;
444          */
445         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
446         log.u_bbr.flex1 = hpts->p_nxt_slot;
447         log.u_bbr.flex2 = hpts->p_cur_slot;
448         log.u_bbr.flex3 = hpts->p_prev_slot;
449         log.u_bbr.flex4 = idx;
450         log.u_bbr.flex5 = hpts->p_curtick;
451         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
452         log.u_bbr.flex7 = hpts->p_cpu;
453         log.u_bbr.flex8 = (uint8_t)from_callout;
454         log.u_bbr.inflight = slots_to_run;
455         log.u_bbr.applimited = hpts->overidden_sleep;
456         log.u_bbr.delivered = hpts->saved_curtick;
457         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
458         log.u_bbr.epoch = hpts->saved_curslot;
459         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
460         log.u_bbr.pkts_out = hpts->p_delayed_by;
461         log.u_bbr.lost = hpts->p_hpts_sleep_time;
462         log.u_bbr.pacing_gain = hpts->p_cpu;
463         log.u_bbr.pkt_epoch = hpts->p_runningslot;
464         log.u_bbr.use_lt_bw = 1;
465         TCP_LOG_EVENTP(tp, NULL,
466                        &tptosocket(tp)->so_rcv,
467                        &tptosocket(tp)->so_snd,
468                        BBR_LOG_HPTSDIAG, 0,
469                        0, &log, false, tv);
470 }
471
472 static void
473 tcp_wakehpts(struct tcp_hpts_entry *hpts)
474 {
475         HPTS_MTX_ASSERT(hpts);
476
477         if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
478                 hpts->p_direct_wake = 0;
479                 return;
480         }
481         if (hpts->p_hpts_wake_scheduled == 0) {
482                 hpts->p_hpts_wake_scheduled = 1;
483                 swi_sched(hpts->ie_cookie, 0);
484         }
485 }
486
487 static void
488 hpts_timeout_swi(void *arg)
489 {
490         struct tcp_hpts_entry *hpts;
491
492         hpts = (struct tcp_hpts_entry *)arg;
493         swi_sched(hpts->ie_cookie, 0);
494 }
495
496 static void
497 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts)
498 {
499         struct inpcb *inp = tptoinpcb(tp);
500         struct hptsh *hptsh;
501
502         INP_WLOCK_ASSERT(inp);
503         HPTS_MTX_ASSERT(hpts);
504         MPASS(hpts->p_cpu == tp->t_hpts_cpu);
505         MPASS(!(inp->inp_flags & INP_DROPPED));
506
507         hptsh = &hpts->p_hptss[tp->t_hpts_slot];
508
509         if (tp->t_in_hpts == IHPTS_NONE) {
510                 tp->t_in_hpts = IHPTS_ONQUEUE;
511                 in_pcbref(inp);
512         } else if (tp->t_in_hpts == IHPTS_MOVING) {
513                 tp->t_in_hpts = IHPTS_ONQUEUE;
514         } else
515                 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
516         tp->t_hpts_gencnt = hptsh->gencnt;
517
518         TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts);
519         hptsh->count++;
520         hpts->p_on_queue_cnt++;
521 }
522
523 static struct tcp_hpts_entry *
524 tcp_hpts_lock(struct tcpcb *tp)
525 {
526         struct tcp_hpts_entry *hpts;
527
528         INP_LOCK_ASSERT(tptoinpcb(tp));
529
530         hpts = tcp_pace.rp_ent[tp->t_hpts_cpu];
531         HPTS_LOCK(hpts);
532
533         return (hpts);
534 }
535
536 static void
537 tcp_hpts_release(struct tcpcb *tp)
538 {
539         bool released __diagused;
540
541         tp->t_in_hpts = IHPTS_NONE;
542         released = in_pcbrele_wlocked(tptoinpcb(tp));
543         MPASS(released == false);
544 }
545
546 /*
547  * Initialize newborn tcpcb to get ready for use with HPTS.
548  */
549 void
550 tcp_hpts_init(struct tcpcb *tp)
551 {
552
553         tp->t_hpts_cpu = hpts_random_cpu();
554         tp->t_lro_cpu = HPTS_CPU_NONE;
555         MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET));
556 }
557
558 /*
559  * Called normally with the INP_LOCKED but it
560  * does not matter, the hpts lock is the key
561  * but the lock order allows us to hold the
562  * INP lock and then get the hpts lock.
563  */
564 void
565 tcp_hpts_remove(struct tcpcb *tp)
566 {
567         struct tcp_hpts_entry *hpts;
568         struct hptsh *hptsh;
569
570         INP_WLOCK_ASSERT(tptoinpcb(tp));
571
572         hpts = tcp_hpts_lock(tp);
573         if (tp->t_in_hpts == IHPTS_ONQUEUE) {
574                 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
575                 tp->t_hpts_request = 0;
576                 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) {
577                         TAILQ_REMOVE(&hptsh->head, tp, t_hpts);
578                         MPASS(hptsh->count > 0);
579                         hptsh->count--;
580                         MPASS(hpts->p_on_queue_cnt > 0);
581                         hpts->p_on_queue_cnt--;
582                         tcp_hpts_release(tp);
583                 } else {
584                         /*
585                          * tcp_hptsi() now owns the TAILQ head of this inp.
586                          * Can't TAILQ_REMOVE, just mark it.
587                          */
588 #ifdef INVARIANTS
589                         struct tcpcb *tmp;
590
591                         TAILQ_FOREACH(tmp, &hptsh->head, t_hpts)
592                                 MPASS(tmp != tp);
593 #endif
594                         tp->t_in_hpts = IHPTS_MOVING;
595                         tp->t_hpts_slot = -1;
596                 }
597         } else if (tp->t_in_hpts == IHPTS_MOVING) {
598                 /*
599                  * Handle a special race condition:
600                  * tcp_hptsi() moves inpcb to detached tailq
601                  * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
602                  * tcp_hpts_insert() sets slot to a meaningful value
603                  * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
604                  * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
605                  */
606                 tp->t_hpts_slot = -1;
607         }
608         HPTS_UNLOCK(hpts);
609 }
610
611 static inline int
612 hpts_slot(uint32_t wheel_slot, uint32_t plus)
613 {
614         /*
615          * Given a slot on the wheel, what slot
616          * is that plus ticks out?
617          */
618         KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
619         return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
620 }
621
622 static inline int
623 tick_to_wheel(uint32_t cts_in_wticks)
624 {
625         /*
626          * Given a timestamp in ticks (so by
627          * default to get it to a real time one
628          * would multiply by 10.. i.e the number
629          * of ticks in a slot) map it to our limited
630          * space wheel.
631          */
632         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
633 }
634
635 static inline int
636 hpts_slots_diff(int prev_slot, int slot_now)
637 {
638         /*
639          * Given two slots that are someplace
640          * on our wheel. How far are they apart?
641          */
642         if (slot_now > prev_slot)
643                 return (slot_now - prev_slot);
644         else if (slot_now == prev_slot)
645                 /*
646                  * Special case, same means we can go all of our
647                  * wheel less one slot.
648                  */
649                 return (NUM_OF_HPTSI_SLOTS - 1);
650         else
651                 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
652 }
653
654 /*
655  * Given a slot on the wheel that is the current time
656  * mapped to the wheel (wheel_slot), what is the maximum
657  * distance forward that can be obtained without
658  * wrapping past either prev_slot or running_slot
659  * depending on the htps state? Also if passed
660  * a uint32_t *, fill it with the slot location.
661  *
662  * Note if you do not give this function the current
663  * time (that you think it is) mapped to the wheel slot
664  * then the results will not be what you expect and
665  * could lead to invalid inserts.
666  */
667 static inline int32_t
668 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
669 {
670         uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
671
672         if ((hpts->p_hpts_active == 1) &&
673             (hpts->p_wheel_complete == 0)) {
674                 end_slot = hpts->p_runningslot;
675                 /* Back up one tick */
676                 if (end_slot == 0)
677                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
678                 else
679                         end_slot--;
680                 if (target_slot)
681                         *target_slot = end_slot;
682         } else {
683                 /*
684                  * For the case where we are
685                  * not active, or we have
686                  * completed the pass over
687                  * the wheel, we can use the
688                  * prev tick and subtract one from it. This puts us
689                  * as far out as possible on the wheel.
690                  */
691                 end_slot = hpts->p_prev_slot;
692                 if (end_slot == 0)
693                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
694                 else
695                         end_slot--;
696                 if (target_slot)
697                         *target_slot = end_slot;
698                 /*
699                  * Now we have close to the full wheel left minus the
700                  * time it has been since the pacer went to sleep. Note
701                  * that wheel_tick, passed in, should be the current time
702                  * from the perspective of the caller, mapped to the wheel.
703                  */
704                 if (hpts->p_prev_slot != wheel_slot)
705                         dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
706                 else
707                         dis_to_travel = 1;
708                 /*
709                  * dis_to_travel in this case is the space from when the
710                  * pacer stopped (p_prev_slot) and where our wheel_slot
711                  * is now. To know how many slots we can put it in we
712                  * subtract from the wheel size. We would not want
713                  * to place something after p_prev_slot or it will
714                  * get ran too soon.
715                  */
716                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
717         }
718         /*
719          * So how many slots are open between p_runningslot -> p_cur_slot
720          * that is what is currently un-available for insertion. Special
721          * case when we are at the last slot, this gets 1, so that
722          * the answer to how many slots are available is all but 1.
723          */
724         if (hpts->p_runningslot == hpts->p_cur_slot)
725                 dis_to_travel = 1;
726         else
727                 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
728         /*
729          * How long has the pacer been running?
730          */
731         if (hpts->p_cur_slot != wheel_slot) {
732                 /* The pacer is a bit late */
733                 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
734         } else {
735                 /* The pacer is right on time, now == pacers start time */
736                 pacer_to_now = 0;
737         }
738         /*
739          * To get the number left we can insert into we simply
740          * subtract the distance the pacer has to run from how
741          * many slots there are.
742          */
743         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
744         /*
745          * Now how many of those we will eat due to the pacer's
746          * time (p_cur_slot) of start being behind the
747          * real time (wheel_slot)?
748          */
749         if (avail_on_wheel <= pacer_to_now) {
750                 /*
751                  * Wheel wrap, we can't fit on the wheel, that
752                  * is unusual the system must be way overloaded!
753                  * Insert into the assured slot, and return special
754                  * "0".
755                  */
756                 counter_u64_add(combined_wheel_wrap, 1);
757                 *target_slot = hpts->p_nxt_slot;
758                 return (0);
759         } else {
760                 /*
761                  * We know how many slots are open
762                  * on the wheel (the reverse of what
763                  * is left to run. Take away the time
764                  * the pacer started to now (wheel_slot)
765                  * and that tells you how many slots are
766                  * open that can be inserted into that won't
767                  * be touched by the pacer until later.
768                  */
769                 return (avail_on_wheel - pacer_to_now);
770         }
771 }
772
773
774 #ifdef INVARIANTS
775 static void
776 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp,
777     uint32_t hptsslot, int line)
778 {
779         /*
780          * Sanity checks for the pacer with invariants
781          * on insert.
782          */
783         KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS,
784                 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot));
785         if ((hpts->p_hpts_active) &&
786             (hpts->p_wheel_complete == 0)) {
787                 /*
788                  * If the pacer is processing a arc
789                  * of the wheel, we need to make
790                  * sure we are not inserting within
791                  * that arc.
792                  */
793                 int distance, yet_to_run;
794
795                 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot);
796                 if (hpts->p_runningslot != hpts->p_cur_slot)
797                         yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
798                 else
799                         yet_to_run = 0; /* processing last slot */
800                 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d "
801                     "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp,
802                     hptsslot, distance, yet_to_run, hpts->p_runningslot,
803                     hpts->p_cur_slot));
804         }
805 }
806 #endif
807
808 uint32_t
809 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag)
810 {
811         struct tcp_hpts_entry *hpts;
812         struct timeval tv;
813         uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
814         int32_t wheel_slot, maxslots;
815         bool need_wakeup = false;
816
817         INP_WLOCK_ASSERT(tptoinpcb(tp));
818         MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED));
819         MPASS(!tcp_in_hpts(tp));
820
821         /*
822          * We now return the next-slot the hpts will be on, beyond its
823          * current run (if up) or where it was when it stopped if it is
824          * sleeping.
825          */
826         hpts = tcp_hpts_lock(tp);
827         microuptime(&tv);
828         if (diag) {
829                 memset(diag, 0, sizeof(struct hpts_diag));
830                 diag->p_hpts_active = hpts->p_hpts_active;
831                 diag->p_prev_slot = hpts->p_prev_slot;
832                 diag->p_runningslot = hpts->p_runningslot;
833                 diag->p_nxt_slot = hpts->p_nxt_slot;
834                 diag->p_cur_slot = hpts->p_cur_slot;
835                 diag->p_curtick = hpts->p_curtick;
836                 diag->p_lasttick = hpts->p_lasttick;
837                 diag->slot_req = slot;
838                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
839                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
840         }
841         if (slot == 0) {
842                 /* Ok we need to set it on the hpts in the current slot */
843                 tp->t_hpts_request = 0;
844                 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
845                         /*
846                          * A sleeping hpts we want in next slot to run
847                          * note that in this state p_prev_slot == p_cur_slot
848                          */
849                         tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1);
850                         if ((hpts->p_on_min_sleep == 0) &&
851                             (hpts->p_hpts_active == 0))
852                                 need_wakeup = true;
853                 } else
854                         tp->t_hpts_slot = hpts->p_runningslot;
855                 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
856                         tcp_hpts_insert_internal(tp, hpts);
857                 if (need_wakeup) {
858                         /*
859                          * Activate the hpts if it is sleeping and its
860                          * timeout is not 1.
861                          */
862                         hpts->p_direct_wake = 1;
863                         tcp_wakehpts(hpts);
864                 }
865                 slot_on = hpts->p_nxt_slot;
866                 HPTS_UNLOCK(hpts);
867
868                 return (slot_on);
869         }
870         /* Get the current time relative to the wheel */
871         wheel_cts = tcp_tv_to_hptstick(&tv);
872         /* Map it onto the wheel */
873         wheel_slot = tick_to_wheel(wheel_cts);
874         /* Now what's the max we can place it at? */
875         maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
876         if (diag) {
877                 diag->wheel_slot = wheel_slot;
878                 diag->maxslots = maxslots;
879                 diag->wheel_cts = wheel_cts;
880         }
881         if (maxslots == 0) {
882                 /* The pacer is in a wheel wrap behind, yikes! */
883                 if (slot > 1) {
884                         /*
885                          * Reduce by 1 to prevent a forever loop in
886                          * case something else is wrong. Note this
887                          * probably does not hurt because the pacer
888                          * if its true is so far behind we will be
889                          * > 1second late calling anyway.
890                          */
891                         slot--;
892                 }
893                 tp->t_hpts_slot = last_slot;
894                 tp->t_hpts_request = slot;
895         } else  if (maxslots >= slot) {
896                 /* It all fits on the wheel */
897                 tp->t_hpts_request = 0;
898                 tp->t_hpts_slot = hpts_slot(wheel_slot, slot);
899         } else {
900                 /* It does not fit */
901                 tp->t_hpts_request = slot - maxslots;
902                 tp->t_hpts_slot = last_slot;
903         }
904         if (diag) {
905                 diag->slot_remaining = tp->t_hpts_request;
906                 diag->inp_hptsslot = tp->t_hpts_slot;
907         }
908 #ifdef INVARIANTS
909         check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line);
910 #endif
911         if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
912                 tcp_hpts_insert_internal(tp, hpts);
913         if ((hpts->p_hpts_active == 0) &&
914             (tp->t_hpts_request == 0) &&
915             (hpts->p_on_min_sleep == 0)) {
916                 /*
917                  * The hpts is sleeping and NOT on a minimum
918                  * sleep time, we need to figure out where
919                  * it will wake up at and if we need to reschedule
920                  * its time-out.
921                  */
922                 uint32_t have_slept, yet_to_sleep;
923
924                 /* Now do we need to restart the hpts's timer? */
925                 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
926                 if (have_slept < hpts->p_hpts_sleep_time)
927                         yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
928                 else {
929                         /* We are over-due */
930                         yet_to_sleep = 0;
931                         need_wakeup = 1;
932                 }
933                 if (diag) {
934                         diag->have_slept = have_slept;
935                         diag->yet_to_sleep = yet_to_sleep;
936                 }
937                 if (yet_to_sleep &&
938                     (yet_to_sleep > slot)) {
939                         /*
940                          * We need to reschedule the hpts's time-out.
941                          */
942                         hpts->p_hpts_sleep_time = slot;
943                         need_new_to = slot * HPTS_TICKS_PER_SLOT;
944                 }
945         }
946         /*
947          * Now how far is the hpts sleeping to? if active is 1, its
948          * up and ticking we do nothing, otherwise we may need to
949          * reschedule its callout if need_new_to is set from above.
950          */
951         if (need_wakeup) {
952                 hpts->p_direct_wake = 1;
953                 tcp_wakehpts(hpts);
954                 if (diag) {
955                         diag->need_new_to = 0;
956                         diag->co_ret = 0xffff0000;
957                 }
958         } else if (need_new_to) {
959                 int32_t co_ret;
960                 struct timeval tv;
961                 sbintime_t sb;
962
963                 tv.tv_sec = 0;
964                 tv.tv_usec = 0;
965                 while (need_new_to > HPTS_USEC_IN_SEC) {
966                         tv.tv_sec++;
967                         need_new_to -= HPTS_USEC_IN_SEC;
968                 }
969                 tv.tv_usec = need_new_to;
970                 sb = tvtosbt(tv);
971                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
972                                               hpts_timeout_swi, hpts, hpts->p_cpu,
973                                               (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
974                 if (diag) {
975                         diag->need_new_to = need_new_to;
976                         diag->co_ret = co_ret;
977                 }
978         }
979         slot_on = hpts->p_nxt_slot;
980         HPTS_UNLOCK(hpts);
981
982         return (slot_on);
983 }
984
985 static uint16_t
986 hpts_cpuid(struct tcpcb *tp, int *failed)
987 {
988         struct inpcb *inp = tptoinpcb(tp);
989         u_int cpuid;
990 #ifdef NUMA
991         struct hpts_domain_info *di;
992 #endif
993
994         *failed = 0;
995         if (tp->t_flags2 & TF2_HPTS_CPU_SET) {
996                 return (tp->t_hpts_cpu);
997         }
998         /*
999          * If we are using the irq cpu set by LRO or
1000          * the driver then it overrides all other domains.
1001          */
1002         if (tcp_use_irq_cpu) {
1003                 if (tp->t_lro_cpu == HPTS_CPU_NONE) {
1004                         *failed = 1;
1005                         return (0);
1006                 }
1007                 return (tp->t_lro_cpu);
1008         }
1009         /* If one is set the other must be the same */
1010 #ifdef RSS
1011         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1012         if (cpuid == NETISR_CPUID_NONE)
1013                 return (hpts_random_cpu());
1014         else
1015                 return (cpuid);
1016 #endif
1017         /*
1018          * We don't have a flowid -> cpuid mapping, so cheat and just map
1019          * unknown cpuids to curcpu.  Not the best, but apparently better
1020          * than defaulting to swi 0.
1021          */
1022         if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1023                 counter_u64_add(cpu_uses_random, 1);
1024                 return (hpts_random_cpu());
1025         }
1026         /*
1027          * Hash to a thread based on the flowid.  If we are using numa,
1028          * then restrict the hash to the numa domain where the inp lives.
1029          */
1030
1031 #ifdef NUMA
1032         if ((vm_ndomains == 1) ||
1033             (inp->inp_numa_domain == M_NODOM)) {
1034 #endif
1035                 cpuid = inp->inp_flowid % mp_ncpus;
1036 #ifdef NUMA
1037         } else {
1038                 /* Hash into the cpu's that use that domain */
1039                 di = &hpts_domains[inp->inp_numa_domain];
1040                 cpuid = di->cpu[inp->inp_flowid % di->count];
1041         }
1042 #endif
1043         counter_u64_add(cpu_uses_flowid, 1);
1044         return (cpuid);
1045 }
1046
1047 static void
1048 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1049 {
1050         uint32_t t = 0, i;
1051
1052         if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1053                 /*
1054                  * Find next slot that is occupied and use that to
1055                  * be the sleep time.
1056                  */
1057                 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1058                         if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1059                                 break;
1060                         }
1061                         t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1062                 }
1063                 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1064                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1065         } else {
1066                 /* No one on the wheel sleep for all but 400 slots or sleep max  */
1067                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1068         }
1069 }
1070
1071 static int32_t
1072 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1073 {
1074         struct tcpcb *tp;
1075         struct timeval tv;
1076         int32_t slots_to_run, i, error;
1077         int32_t loop_cnt = 0;
1078         int32_t did_prefetch = 0;
1079         int32_t prefetch_tp = 0;
1080         int32_t wrap_loop_cnt = 0;
1081         int32_t slot_pos_of_endpoint = 0;
1082         int32_t orig_exit_slot;
1083         int8_t completed_measure = 0, seen_endpoint = 0;
1084
1085         HPTS_MTX_ASSERT(hpts);
1086         NET_EPOCH_ASSERT();
1087         /* record previous info for any logging */
1088         hpts->saved_lasttick = hpts->p_lasttick;
1089         hpts->saved_curtick = hpts->p_curtick;
1090         hpts->saved_curslot = hpts->p_cur_slot;
1091         hpts->saved_prev_slot = hpts->p_prev_slot;
1092
1093         hpts->p_lasttick = hpts->p_curtick;
1094         hpts->p_curtick = tcp_gethptstick(&tv);
1095         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1096         orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1097         if ((hpts->p_on_queue_cnt == 0) ||
1098             (hpts->p_lasttick == hpts->p_curtick)) {
1099                 /*
1100                  * No time has yet passed,
1101                  * or nothing to do.
1102                  */
1103                 hpts->p_prev_slot = hpts->p_cur_slot;
1104                 hpts->p_lasttick = hpts->p_curtick;
1105                 goto no_run;
1106         }
1107 again:
1108         hpts->p_wheel_complete = 0;
1109         HPTS_MTX_ASSERT(hpts);
1110         slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1111         if (((hpts->p_curtick - hpts->p_lasttick) >
1112              ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1113             (hpts->p_on_queue_cnt != 0)) {
1114                 /*
1115                  * Wheel wrap is occuring, basically we
1116                  * are behind and the distance between
1117                  * run's has spread so much it has exceeded
1118                  * the time on the wheel (1.024 seconds). This
1119                  * is ugly and should NOT be happening. We
1120                  * need to run the entire wheel. We last processed
1121                  * p_prev_slot, so that needs to be the last slot
1122                  * we run. The next slot after that should be our
1123                  * reserved first slot for new, and then starts
1124                  * the running position. Now the problem is the
1125                  * reserved "not to yet" place does not exist
1126                  * and there may be inp's in there that need
1127                  * running. We can merge those into the
1128                  * first slot at the head.
1129                  */
1130                 wrap_loop_cnt++;
1131                 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1132                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1133                 /*
1134                  * Adjust p_cur_slot to be where we are starting from
1135                  * hopefully we will catch up (fat chance if something
1136                  * is broken this bad :( )
1137                  */
1138                 hpts->p_cur_slot = hpts->p_prev_slot;
1139                 /*
1140                  * The next slot has guys to run too, and that would
1141                  * be where we would normally start, lets move them into
1142                  * the next slot (p_prev_slot + 2) so that we will
1143                  * run them, the extra 10usecs of late (by being
1144                  * put behind) does not really matter in this situation.
1145                  */
1146                 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1147                     t_hpts) {
1148                         MPASS(tp->t_hpts_slot == hpts->p_nxt_slot);
1149                         MPASS(tp->t_hpts_gencnt ==
1150                             hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1151                         MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1152
1153                         /*
1154                          * Update gencnt and nextslot accordingly to match
1155                          * the new location. This is safe since it takes both
1156                          * the INP lock and the pacer mutex to change the
1157                          * t_hptsslot and t_hpts_gencnt.
1158                          */
1159                         tp->t_hpts_gencnt =
1160                             hpts->p_hptss[hpts->p_runningslot].gencnt;
1161                         tp->t_hpts_slot = hpts->p_runningslot;
1162                 }
1163                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1164                     &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts);
1165                 hpts->p_hptss[hpts->p_runningslot].count +=
1166                     hpts->p_hptss[hpts->p_nxt_slot].count;
1167                 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1168                 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1169                 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1170                 counter_u64_add(wheel_wrap, 1);
1171         } else {
1172                 /*
1173                  * Nxt slot is always one after p_runningslot though
1174                  * its not used usually unless we are doing wheel wrap.
1175                  */
1176                 hpts->p_nxt_slot = hpts->p_prev_slot;
1177                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1178         }
1179         if (hpts->p_on_queue_cnt == 0) {
1180                 goto no_one;
1181         }
1182         for (i = 0; i < slots_to_run; i++) {
1183                 struct tcpcb *tp, *ntp;
1184                 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head);
1185                 struct hptsh *hptsh;
1186                 uint32_t runningslot;
1187
1188                 /*
1189                  * Calculate our delay, if there are no extra ticks there
1190                  * was not any (i.e. if slots_to_run == 1, no delay).
1191                  */
1192                 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1193                     HPTS_TICKS_PER_SLOT;
1194
1195                 runningslot = hpts->p_runningslot;
1196                 hptsh = &hpts->p_hptss[runningslot];
1197                 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts);
1198                 hpts->p_on_queue_cnt -= hptsh->count;
1199                 hptsh->count = 0;
1200                 hptsh->gencnt++;
1201
1202                 HPTS_UNLOCK(hpts);
1203
1204                 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) {
1205                         struct inpcb *inp = tptoinpcb(tp);
1206                         bool set_cpu;
1207
1208                         if (ntp != NULL) {
1209                                 /*
1210                                  * If we have a next tcpcb, see if we can
1211                                  * prefetch it. Note this may seem
1212                                  * "risky" since we have no locks (other
1213                                  * than the previous inp) and there no
1214                                  * assurance that ntp was not pulled while
1215                                  * we were processing tp and freed. If this
1216                                  * occurred it could mean that either:
1217                                  *
1218                                  * a) Its NULL (which is fine we won't go
1219                                  * here) <or> b) Its valid (which is cool we
1220                                  * will prefetch it) <or> c) The inp got
1221                                  * freed back to the slab which was
1222                                  * reallocated. Then the piece of memory was
1223                                  * re-used and something else (not an
1224                                  * address) is in inp_ppcb. If that occurs
1225                                  * we don't crash, but take a TLB shootdown
1226                                  * performance hit (same as if it was NULL
1227                                  * and we tried to pre-fetch it).
1228                                  *
1229                                  * Considering that the likelyhood of <c> is
1230                                  * quite rare we will take a risk on doing
1231                                  * this. If performance drops after testing
1232                                  * we can always take this out. NB: the
1233                                  * kern_prefetch on amd64 actually has
1234                                  * protection against a bad address now via
1235                                  * the DMAP_() tests. This will prevent the
1236                                  * TLB hit, and instead if <c> occurs just
1237                                  * cause us to load cache with a useless
1238                                  * address (to us).
1239                                  *
1240                                  * XXXGL: this comment and the prefetch action
1241                                  * could be outdated after tp == inp change.
1242                                  */
1243                                 kern_prefetch(ntp, &prefetch_tp);
1244                                 prefetch_tp = 1;
1245                         }
1246
1247                         /* For debugging */
1248                         if (seen_endpoint == 0) {
1249                                 seen_endpoint = 1;
1250                                 orig_exit_slot = slot_pos_of_endpoint =
1251                                     runningslot;
1252                         } else if (completed_measure == 0) {
1253                                 /* Record the new position */
1254                                 orig_exit_slot = runningslot;
1255                         }
1256
1257                         INP_WLOCK(inp);
1258                         if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) {
1259                                 set_cpu = true;
1260                         } else {
1261                                 set_cpu = false;
1262                         }
1263
1264                         if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) {
1265                                 if (tp->t_hpts_slot == -1) {
1266                                         tp->t_in_hpts = IHPTS_NONE;
1267                                         if (in_pcbrele_wlocked(inp) == false)
1268                                                 INP_WUNLOCK(inp);
1269                                 } else {
1270                                         HPTS_LOCK(hpts);
1271                                         tcp_hpts_insert_internal(tp, hpts);
1272                                         HPTS_UNLOCK(hpts);
1273                                         INP_WUNLOCK(inp);
1274                                 }
1275                                 continue;
1276                         }
1277
1278                         MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1279                         MPASS(!(inp->inp_flags & INP_DROPPED));
1280                         KASSERT(runningslot == tp->t_hpts_slot,
1281                                 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1282                                  hpts, inp, runningslot, tp->t_hpts_slot));
1283
1284                         if (tp->t_hpts_request) {
1285                                 /*
1286                                  * This guy is deferred out further in time
1287                                  * then our wheel had available on it.
1288                                  * Push him back on the wheel or run it
1289                                  * depending.
1290                                  */
1291                                 uint32_t maxslots, last_slot, remaining_slots;
1292
1293                                 remaining_slots = slots_to_run - (i + 1);
1294                                 if (tp->t_hpts_request > remaining_slots) {
1295                                         HPTS_LOCK(hpts);
1296                                         /*
1297                                          * How far out can we go?
1298                                          */
1299                                         maxslots = max_slots_available(hpts,
1300                                             hpts->p_cur_slot, &last_slot);
1301                                         if (maxslots >= tp->t_hpts_request) {
1302                                                 /* We can place it finally to
1303                                                  * be processed.  */
1304                                                 tp->t_hpts_slot = hpts_slot(
1305                                                     hpts->p_runningslot,
1306                                                     tp->t_hpts_request);
1307                                                 tp->t_hpts_request = 0;
1308                                         } else {
1309                                                 /* Work off some more time */
1310                                                 tp->t_hpts_slot = last_slot;
1311                                                 tp->t_hpts_request -=
1312                                                     maxslots;
1313                                         }
1314                                         tcp_hpts_insert_internal(tp, hpts);
1315                                         HPTS_UNLOCK(hpts);
1316                                         INP_WUNLOCK(inp);
1317                                         continue;
1318                                 }
1319                                 tp->t_hpts_request = 0;
1320                                 /* Fall through we will so do it now */
1321                         }
1322
1323                         tcp_hpts_release(tp);
1324                         if (set_cpu) {
1325                                 /*
1326                                  * Setup so the next time we will move to
1327                                  * the right CPU. This should be a rare
1328                                  * event. It will sometimes happens when we
1329                                  * are the client side (usually not the
1330                                  * server). Somehow tcp_output() gets called
1331                                  * before the tcp_do_segment() sets the
1332                                  * intial state. This means the r_cpu and
1333                                  * r_hpts_cpu is 0. We get on the hpts, and
1334                                  * then tcp_input() gets called setting up
1335                                  * the r_cpu to the correct value. The hpts
1336                                  * goes off and sees the mis-match. We
1337                                  * simply correct it here and the CPU will
1338                                  * switch to the new hpts nextime the tcb
1339                                  * gets added to the hpts (not this one)
1340                                  * :-)
1341                                  */
1342                                 tcp_set_hpts(tp);
1343                         }
1344                         CURVNET_SET(inp->inp_vnet);
1345                         /* Lets do any logging that we might want to */
1346                         if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
1347                                 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1348                         }
1349
1350                         if (tp->t_fb_ptr != NULL) {
1351                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1352                                 did_prefetch = 1;
1353                         }
1354                         /*
1355                          * We set TF2_HPTS_CALLS before any possible output.
1356                          * The contract with the transport is that if it cares
1357                          * about hpts calling it should clear the flag. That
1358                          * way next time it is called it will know it is hpts.
1359                          *
1360                          * We also only call tfb_do_queued_segments() <or>
1361                          * tcp_output().  It is expected that if segments are
1362                          * queued and come in that the final input mbuf will
1363                          * cause a call to output if it is needed.
1364                          */
1365                         tp->t_flags2 |= TF2_HPTS_CALLS;
1366                         if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) &&
1367                             !STAILQ_EMPTY(&tp->t_inqueue)) {
1368                                 error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0);
1369                                 if (error) {
1370                                         /* The input killed the connection */
1371                                         goto skip_pacing;
1372                                 }
1373                         }
1374                         error = tcp_output(tp);
1375                         if (error < 0)
1376                                 goto skip_pacing;
1377                         INP_WUNLOCK(inp);
1378                 skip_pacing:
1379                         CURVNET_RESTORE();
1380                 }
1381                 if (seen_endpoint) {
1382                         /*
1383                          * We now have a accurate distance between
1384                          * slot_pos_of_endpoint <-> orig_exit_slot
1385                          * to tell us how late we were, orig_exit_slot
1386                          * is where we calculated the end of our cycle to
1387                          * be when we first entered.
1388                          */
1389                         completed_measure = 1;
1390                 }
1391                 HPTS_LOCK(hpts);
1392                 hpts->p_runningslot++;
1393                 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1394                         hpts->p_runningslot = 0;
1395                 }
1396         }
1397 no_one:
1398         HPTS_MTX_ASSERT(hpts);
1399         hpts->p_delayed_by = 0;
1400         /*
1401          * Check to see if we took an excess amount of time and need to run
1402          * more ticks (if we did not hit eno-bufs).
1403          */
1404         hpts->p_prev_slot = hpts->p_cur_slot;
1405         hpts->p_lasttick = hpts->p_curtick;
1406         if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1407                 /*
1408                  * Something is serious slow we have
1409                  * looped through processing the wheel
1410                  * and by the time we cleared the
1411                  * needs to run max_pacer_loops time
1412                  * we still needed to run. That means
1413                  * the system is hopelessly behind and
1414                  * can never catch up :(
1415                  *
1416                  * We will just lie to this thread
1417                  * and let it thing p_curtick is
1418                  * correct. When it next awakens
1419                  * it will find itself further behind.
1420                  */
1421                 if (from_callout)
1422                         counter_u64_add(hpts_hopelessly_behind, 1);
1423                 goto no_run;
1424         }
1425         hpts->p_curtick = tcp_gethptstick(&tv);
1426         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1427         if (seen_endpoint == 0) {
1428                 /* We saw no endpoint but we may be looping */
1429                 orig_exit_slot = hpts->p_cur_slot;
1430         }
1431         if ((wrap_loop_cnt < 2) &&
1432             (hpts->p_lasttick != hpts->p_curtick)) {
1433                 counter_u64_add(hpts_loops, 1);
1434                 loop_cnt++;
1435                 goto again;
1436         }
1437 no_run:
1438         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1439         /*
1440          * Set flag to tell that we are done for
1441          * any slot input that happens during
1442          * input.
1443          */
1444         hpts->p_wheel_complete = 1;
1445         /*
1446          * Now did we spend too long running input and need to run more ticks?
1447          * Note that if wrap_loop_cnt < 2 then we should have the conditions
1448          * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1449          * is greater than 2, then the condtion most likely are *not* true.
1450          * Also if we are called not from the callout, we don't run the wheel
1451          * multiple times so the slots may not align either.
1452          */
1453         KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1454                  (wrap_loop_cnt >= 2) || (from_callout == 0)),
1455                 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1456                  hpts->p_prev_slot, hpts->p_cur_slot));
1457         KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1458                  || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1459                 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1460                  hpts->p_lasttick, hpts->p_curtick));
1461         if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1462                 hpts->p_curtick = tcp_gethptstick(&tv);
1463                 counter_u64_add(hpts_loops, 1);
1464                 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1465                 goto again;
1466         }
1467
1468         if (from_callout){
1469                 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1470         }
1471         if (seen_endpoint)
1472                 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1473         else
1474                 return (0);
1475 }
1476
1477 void
1478 __tcp_set_hpts(struct tcpcb *tp, int32_t line)
1479 {
1480         struct tcp_hpts_entry *hpts;
1481         int failed;
1482
1483         INP_WLOCK_ASSERT(tptoinpcb(tp));
1484
1485         hpts = tcp_hpts_lock(tp);
1486         if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) {
1487                 tp->t_hpts_cpu = hpts_cpuid(tp, &failed);
1488                 if (failed == 0)
1489                         tp->t_flags2 |= TF2_HPTS_CPU_SET;
1490         }
1491         mtx_unlock(&hpts->p_mtx);
1492 }
1493
1494 static void
1495 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1496 {
1497         int ticks_ran;
1498
1499         if (hpts->p_hpts_active) {
1500                 /* Already active */
1501                 return;
1502         }
1503         if (mtx_trylock(&hpts->p_mtx) == 0) {
1504                 /* Someone else got the lock */
1505                 return;
1506         }
1507         if (hpts->p_hpts_active)
1508                 goto out_with_mtx;
1509         hpts->syscall_cnt++;
1510         counter_u64_add(hpts_direct_call, 1);
1511         hpts->p_hpts_active = 1;
1512         ticks_ran = tcp_hptsi(hpts, 0);
1513         /* We may want to adjust the sleep values here */
1514         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1515                 if (ticks_ran > ticks_indicate_less_sleep) {
1516                         struct timeval tv;
1517                         sbintime_t sb;
1518
1519                         hpts->p_mysleep.tv_usec /= 2;
1520                         if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1521                                 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1522                         /* Reschedule with new to value */
1523                         tcp_hpts_set_max_sleep(hpts, 0);
1524                         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1525                         /* Validate its in the right ranges */
1526                         if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1527                                 hpts->overidden_sleep = tv.tv_usec;
1528                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1529                         } else if (tv.tv_usec > dynamic_max_sleep) {
1530                                 /* Lets not let sleep get above this value */
1531                                 hpts->overidden_sleep = tv.tv_usec;
1532                                 tv.tv_usec = dynamic_max_sleep;
1533                         }
1534                         /*
1535                          * In this mode the timer is a backstop to
1536                          * all the userret/lro_flushes so we use
1537                          * the dynamic value and set the on_min_sleep
1538                          * flag so we will not be awoken.
1539                          */
1540                         sb = tvtosbt(tv);
1541                         /* Store off to make visible the actual sleep time */
1542                         hpts->sleeping = tv.tv_usec;
1543                         callout_reset_sbt_on(&hpts->co, sb, 0,
1544                                              hpts_timeout_swi, hpts, hpts->p_cpu,
1545                                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1546                 } else if (ticks_ran < ticks_indicate_more_sleep) {
1547                         /* For the further sleep, don't reschedule  hpts */
1548                         hpts->p_mysleep.tv_usec *= 2;
1549                         if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1550                                 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1551                 }
1552                 hpts->p_on_min_sleep = 1;
1553         }
1554         hpts->p_hpts_active = 0;
1555 out_with_mtx:
1556         HPTS_MTX_ASSERT(hpts);
1557         mtx_unlock(&hpts->p_mtx);
1558 }
1559
1560 static struct tcp_hpts_entry *
1561 tcp_choose_hpts_to_run(void)
1562 {
1563         int i, oldest_idx, start, end;
1564         uint32_t cts, time_since_ran, calc;
1565
1566         cts = tcp_get_usecs(NULL);
1567         time_since_ran = 0;
1568         /* Default is all one group */
1569         start = 0;
1570         end = tcp_pace.rp_num_hptss;
1571         /*
1572          * If we have more than one L3 group figure out which one
1573          * this CPU is in.
1574          */
1575         if (tcp_pace.grp_cnt > 1) {
1576                 for (i = 0; i < tcp_pace.grp_cnt; i++) {
1577                         if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1578                                 start = tcp_pace.grps[i]->cg_first;
1579                                 end = (tcp_pace.grps[i]->cg_last + 1);
1580                                 break;
1581                         }
1582                 }
1583         }
1584         oldest_idx = -1;
1585         for (i = start; i < end; i++) {
1586                 if (TSTMP_GT(cts, cts_last_ran[i]))
1587                         calc = cts - cts_last_ran[i];
1588                 else
1589                         calc = 0;
1590                 if (calc > time_since_ran) {
1591                         oldest_idx = i;
1592                         time_since_ran = calc;
1593                 }
1594         }
1595         if (oldest_idx >= 0)
1596                 return(tcp_pace.rp_ent[oldest_idx]);
1597         else
1598                 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1599 }
1600
1601
1602 void
1603 tcp_run_hpts(void)
1604 {
1605         static struct tcp_hpts_entry *hpts;
1606         struct epoch_tracker et;
1607
1608         NET_EPOCH_ENTER(et);
1609         hpts = tcp_choose_hpts_to_run();
1610         __tcp_run_hpts(hpts);
1611         NET_EPOCH_EXIT(et);
1612 }
1613
1614
1615 static void
1616 tcp_hpts_thread(void *ctx)
1617 {
1618         struct tcp_hpts_entry *hpts;
1619         struct epoch_tracker et;
1620         struct timeval tv;
1621         sbintime_t sb;
1622         int ticks_ran;
1623
1624         hpts = (struct tcp_hpts_entry *)ctx;
1625         mtx_lock(&hpts->p_mtx);
1626         if (hpts->p_direct_wake) {
1627                 /* Signaled by input or output with low occupancy count. */
1628                 callout_stop(&hpts->co);
1629                 counter_u64_add(hpts_direct_awakening, 1);
1630         } else {
1631                 /* Timed out, the normal case. */
1632                 counter_u64_add(hpts_wake_timeout, 1);
1633                 if (callout_pending(&hpts->co) ||
1634                     !callout_active(&hpts->co)) {
1635                         mtx_unlock(&hpts->p_mtx);
1636                         return;
1637                 }
1638         }
1639         callout_deactivate(&hpts->co);
1640         hpts->p_hpts_wake_scheduled = 0;
1641         NET_EPOCH_ENTER(et);
1642         if (hpts->p_hpts_active) {
1643                 /*
1644                  * We are active already. This means that a syscall
1645                  * trap or LRO is running in behalf of hpts. In that case
1646                  * we need to double our timeout since there seems to be
1647                  * enough activity in the system that we don't need to
1648                  * run as often (if we were not directly woken).
1649                  */
1650                 if (hpts->p_direct_wake == 0) {
1651                         counter_u64_add(hpts_back_tosleep, 1);
1652                         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1653                                 hpts->p_mysleep.tv_usec *= 2;
1654                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1655                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1656                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1657                                 hpts->p_on_min_sleep = 1;
1658                         } else {
1659                                 /*
1660                                  * Here we have low count on the wheel, but
1661                                  * somehow we still collided with one of the
1662                                  * connections. Lets go back to sleep for a
1663                                  * min sleep time, but clear the flag so we
1664                                  * can be awoken by insert.
1665                                  */
1666                                 hpts->p_on_min_sleep = 0;
1667                                 tv.tv_usec = tcp_min_hptsi_time;
1668                         }
1669                 } else {
1670                         /*
1671                          * Directly woken most likely to reset the
1672                          * callout time.
1673                          */
1674                         tv.tv_sec = 0;
1675                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1676                 }
1677                 goto back_to_sleep;
1678         }
1679         hpts->sleeping = 0;
1680         hpts->p_hpts_active = 1;
1681         ticks_ran = tcp_hptsi(hpts, 1);
1682         tv.tv_sec = 0;
1683         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1684         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1685                 if(hpts->p_direct_wake == 0) {
1686                         /*
1687                          * Only adjust sleep time if we were
1688                          * called from the callout i.e. direct_wake == 0.
1689                          */
1690                         if (ticks_ran < ticks_indicate_more_sleep) {
1691                                 hpts->p_mysleep.tv_usec *= 2;
1692                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1693                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1694                         } else if (ticks_ran > ticks_indicate_less_sleep) {
1695                                 hpts->p_mysleep.tv_usec /= 2;
1696                                 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1697                                         hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1698                         }
1699                 }
1700                 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1701                         hpts->overidden_sleep = tv.tv_usec;
1702                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1703                 } else if (tv.tv_usec > dynamic_max_sleep) {
1704                         /* Lets not let sleep get above this value */
1705                         hpts->overidden_sleep = tv.tv_usec;
1706                         tv.tv_usec = dynamic_max_sleep;
1707                 }
1708                 /*
1709                  * In this mode the timer is a backstop to
1710                  * all the userret/lro_flushes so we use
1711                  * the dynamic value and set the on_min_sleep
1712                  * flag so we will not be awoken.
1713                  */
1714                 hpts->p_on_min_sleep = 1;
1715         } else if (hpts->p_on_queue_cnt == 0)  {
1716                 /*
1717                  * No one on the wheel, please wake us up
1718                  * if you insert on the wheel.
1719                  */
1720                 hpts->p_on_min_sleep = 0;
1721                 hpts->overidden_sleep = 0;
1722         } else {
1723                 /*
1724                  * We hit here when we have a low number of
1725                  * clients on the wheel (our else clause).
1726                  * We may need to go on min sleep, if we set
1727                  * the flag we will not be awoken if someone
1728                  * is inserted ahead of us. Clearing the flag
1729                  * means we can be awoken. This is "old mode"
1730                  * where the timer is what runs hpts mainly.
1731                  */
1732                 if (tv.tv_usec < tcp_min_hptsi_time) {
1733                         /*
1734                          * Yes on min sleep, which means
1735                          * we cannot be awoken.
1736                          */
1737                         hpts->overidden_sleep = tv.tv_usec;
1738                         tv.tv_usec = tcp_min_hptsi_time;
1739                         hpts->p_on_min_sleep = 1;
1740                 } else {
1741                         /* Clear the min sleep flag */
1742                         hpts->overidden_sleep = 0;
1743                         hpts->p_on_min_sleep = 0;
1744                 }
1745         }
1746         HPTS_MTX_ASSERT(hpts);
1747         hpts->p_hpts_active = 0;
1748 back_to_sleep:
1749         hpts->p_direct_wake = 0;
1750         sb = tvtosbt(tv);
1751         /* Store off to make visible the actual sleep time */
1752         hpts->sleeping = tv.tv_usec;
1753         callout_reset_sbt_on(&hpts->co, sb, 0,
1754                              hpts_timeout_swi, hpts, hpts->p_cpu,
1755                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1756         NET_EPOCH_EXIT(et);
1757         mtx_unlock(&hpts->p_mtx);
1758 }
1759
1760 #undef  timersub
1761
1762 static int32_t
1763 hpts_count_level(struct cpu_group *cg)
1764 {
1765         int32_t count_l3, i;
1766
1767         count_l3 = 0;
1768         if (cg->cg_level == CG_SHARE_L3)
1769                 count_l3++;
1770         /* Walk all the children looking for L3 */
1771         for (i = 0; i < cg->cg_children; i++) {
1772                 count_l3 += hpts_count_level(&cg->cg_child[i]);
1773         }
1774         return (count_l3);
1775 }
1776
1777 static void
1778 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1779 {
1780         int32_t idx, i;
1781
1782         idx = *at;
1783         if (cg->cg_level == CG_SHARE_L3) {
1784                 grps[idx] = cg;
1785                 idx++;
1786                 if (idx == max) {
1787                         *at = idx;
1788                         return;
1789                 }
1790         }
1791         *at = idx;
1792         /* Walk all the children looking for L3 */
1793         for (i = 0; i < cg->cg_children; i++) {
1794                 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1795         }
1796 }
1797
1798 static void
1799 tcp_init_hptsi(void *st)
1800 {
1801         struct cpu_group *cpu_top;
1802         int32_t error __diagused;
1803         int32_t i, j, bound = 0, created = 0;
1804         size_t sz, asz;
1805         struct timeval tv;
1806         sbintime_t sb;
1807         struct tcp_hpts_entry *hpts;
1808         struct pcpu *pc;
1809         char unit[16];
1810         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1811         int count, domain;
1812
1813 #ifdef SMP
1814         cpu_top = smp_topo();
1815 #else
1816         cpu_top = NULL;
1817 #endif
1818         tcp_pace.rp_num_hptss = ncpus;
1819         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1820         hpts_loops = counter_u64_alloc(M_WAITOK);
1821         back_tosleep = counter_u64_alloc(M_WAITOK);
1822         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1823         wheel_wrap = counter_u64_alloc(M_WAITOK);
1824         hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1825         hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1826         hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1827         hpts_direct_call = counter_u64_alloc(M_WAITOK);
1828         cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1829         cpu_uses_random = counter_u64_alloc(M_WAITOK);
1830
1831         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1832         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1833         sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1834         cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1835         tcp_pace.grp_cnt = 0;
1836         if (cpu_top == NULL) {
1837                 tcp_pace.grp_cnt = 1;
1838         } else {
1839                 /* Find out how many cache level 3 domains we have */
1840                 count = 0;
1841                 tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1842                 if (tcp_pace.grp_cnt == 0) {
1843                         tcp_pace.grp_cnt = 1;
1844                 }
1845                 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1846                 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1847                 /* Now populate the groups */
1848                 if (tcp_pace.grp_cnt == 1) {
1849                         /*
1850                          * All we need is the top level all cpu's are in
1851                          * the same cache so when we use grp[0]->cg_mask
1852                          * with the cg_first <-> cg_last it will include
1853                          * all cpu's in it. The level here is probably
1854                          * zero which is ok.
1855                          */
1856                         tcp_pace.grps[0] = cpu_top;
1857                 } else {
1858                         /*
1859                          * Here we must find all the level three cache domains
1860                          * and setup our pointers to them.
1861                          */
1862                         count = 0;
1863                         hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1864                 }
1865         }
1866         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1867         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1868                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1869                     M_TCPHPTS, M_WAITOK | M_ZERO);
1870                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1871                 hpts = tcp_pace.rp_ent[i];
1872                 /*
1873                  * Init all the hpts structures that are not specifically
1874                  * zero'd by the allocations. Also lets attach them to the
1875                  * appropriate sysctl block as well.
1876                  */
1877                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1878                     "hpts", MTX_DEF | MTX_DUPOK);
1879                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1880                         TAILQ_INIT(&hpts->p_hptss[j].head);
1881                         hpts->p_hptss[j].count = 0;
1882                         hpts->p_hptss[j].gencnt = 0;
1883                 }
1884                 sysctl_ctx_init(&hpts->hpts_ctx);
1885                 sprintf(unit, "%d", i);
1886                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1887                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1888                     OID_AUTO,
1889                     unit,
1890                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1891                     "");
1892                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1893                     SYSCTL_CHILDREN(hpts->hpts_root),
1894                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
1895                     &hpts->p_on_queue_cnt, 0,
1896                     "Count TCB's awaiting output processing");
1897                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1898                     SYSCTL_CHILDREN(hpts->hpts_root),
1899                     OID_AUTO, "active", CTLFLAG_RD,
1900                     &hpts->p_hpts_active, 0,
1901                     "Is the hpts active");
1902                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1903                     SYSCTL_CHILDREN(hpts->hpts_root),
1904                     OID_AUTO, "curslot", CTLFLAG_RD,
1905                     &hpts->p_cur_slot, 0,
1906                     "What the current running pacers goal");
1907                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1908                     SYSCTL_CHILDREN(hpts->hpts_root),
1909                     OID_AUTO, "runtick", CTLFLAG_RD,
1910                     &hpts->p_runningslot, 0,
1911                     "What the running pacers current slot is");
1912                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1913                     SYSCTL_CHILDREN(hpts->hpts_root),
1914                     OID_AUTO, "curtick", CTLFLAG_RD,
1915                     &hpts->p_curtick, 0,
1916                     "What the running pacers last tick mapped to the wheel was");
1917                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1918                     SYSCTL_CHILDREN(hpts->hpts_root),
1919                     OID_AUTO, "lastran", CTLFLAG_RD,
1920                     &cts_last_ran[i], 0,
1921                     "The last usec tick that this hpts ran");
1922                 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1923                     SYSCTL_CHILDREN(hpts->hpts_root),
1924                     OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1925                     &hpts->p_mysleep.tv_usec,
1926                     "What the running pacers is using for p_mysleep.tv_usec");
1927                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1928                     SYSCTL_CHILDREN(hpts->hpts_root),
1929                     OID_AUTO, "now_sleeping", CTLFLAG_RD,
1930                     &hpts->sleeping, 0,
1931                     "What the running pacers is actually sleeping for");
1932                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1933                     SYSCTL_CHILDREN(hpts->hpts_root),
1934                     OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1935                     &hpts->syscall_cnt, 0,
1936                     "How many times we had syscalls on this hpts");
1937
1938                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1939                 hpts->p_num = i;
1940                 hpts->p_curtick = tcp_gethptstick(&tv);
1941                 cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1942                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1943                 hpts->p_cpu = 0xffff;
1944                 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1945                 callout_init(&hpts->co, 1);
1946         }
1947         /* Don't try to bind to NUMA domains if we don't have any */
1948         if (vm_ndomains == 1 && tcp_bind_threads == 2)
1949                 tcp_bind_threads = 0;
1950
1951         /*
1952          * Now lets start ithreads to handle the hptss.
1953          */
1954         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1955                 hpts = tcp_pace.rp_ent[i];
1956                 hpts->p_cpu = i;
1957
1958                 error = swi_add(&hpts->ie, "hpts",
1959                     tcp_hpts_thread, (void *)hpts,
1960                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1961                 KASSERT(error == 0,
1962                         ("Can't add hpts:%p i:%d err:%d",
1963                          hpts, i, error));
1964                 created++;
1965                 hpts->p_mysleep.tv_sec = 0;
1966                 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1967                 if (tcp_bind_threads == 1) {
1968                         if (intr_event_bind(hpts->ie, i) == 0)
1969                                 bound++;
1970                 } else if (tcp_bind_threads == 2) {
1971                         /* Find the group for this CPU (i) and bind into it */
1972                         for (j = 0; j < tcp_pace.grp_cnt; j++) {
1973                                 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
1974                                         if (intr_event_bind_ithread_cpuset(hpts->ie,
1975                                                 &tcp_pace.grps[j]->cg_mask) == 0) {
1976                                                 bound++;
1977                                                 pc = pcpu_find(i);
1978                                                 domain = pc->pc_domain;
1979                                                 count = hpts_domains[domain].count;
1980                                                 hpts_domains[domain].cpu[count] = i;
1981                                                 hpts_domains[domain].count++;
1982                                                 break;
1983                                         }
1984                                 }
1985                         }
1986                 }
1987                 tv.tv_sec = 0;
1988                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1989                 hpts->sleeping = tv.tv_usec;
1990                 sb = tvtosbt(tv);
1991                 callout_reset_sbt_on(&hpts->co, sb, 0,
1992                                      hpts_timeout_swi, hpts, hpts->p_cpu,
1993                                      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1994         }
1995         /*
1996          * If we somehow have an empty domain, fall back to choosing
1997          * among all htps threads.
1998          */
1999         for (i = 0; i < vm_ndomains; i++) {
2000                 if (hpts_domains[i].count == 0) {
2001                         tcp_bind_threads = 0;
2002                         break;
2003                 }
2004         }
2005         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2006             created, bound,
2007             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2008 #ifdef INVARIANTS
2009         printf("HPTS is in INVARIANT mode!!\n");
2010 #endif
2011 }
2012
2013 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2014 MODULE_VERSION(tcphpts, 1);