]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_hpts.c
MFV: xz 5.4.2.
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_hpts.c
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32
33 /**
34  * Some notes about usage.
35  *
36  * The tcp_hpts system is designed to provide a high precision timer
37  * system for tcp. Its main purpose is to provide a mechanism for
38  * pacing packets out onto the wire. It can be used in two ways
39  * by a given TCP stack (and those two methods can be used simultaneously).
40  *
41  * First, and probably the main thing its used by Rack and BBR, it can
42  * be used to call tcp_output() of a transport stack at some time in the future.
43  * The normal way this is done is that tcp_output() of the stack schedules
44  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
45  * slot is the time from now that the stack wants to be called but it
46  * must be converted to tcp_hpts's notion of slot. This is done with
47  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
48  * call from the tcp_output() routine might look like:
49  *
50  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
51  *
52  * The above would schedule tcp_ouput() to be called in 550 useconds.
53  * Note that if using this mechanism the stack will want to add near
54  * its top a check to prevent unwanted calls (from user land or the
55  * arrival of incoming ack's). So it would add something like:
56  *
57  * if (tcp_in_hpts(inp))
58  *    return;
59  *
60  * to prevent output processing until the time alotted has gone by.
61  * Of course this is a bare bones example and the stack will probably
62  * have more consideration then just the above.
63  *
64  * In order to run input queued segments from the HPTS context the
65  * tcp stack must define an input function for
66  * tfb_do_queued_segments(). This function understands
67  * how to dequeue a array of packets that were input and
68  * knows how to call the correct processing routine.
69  *
70  * Locking in this is important as well so most likely the
71  * stack will need to define the tfb_do_segment_nounlock()
72  * splitting tfb_do_segment() into two parts. The main processing
73  * part that does not unlock the INP and returns a value of 1 or 0.
74  * It returns 0 if all is well and the lock was not released. It
75  * returns 1 if we had to destroy the TCB (a reset received etc).
76  * The remains of tfb_do_segment() then become just a simple call
77  * to the tfb_do_segment_nounlock() function and check the return
78  * code and possibly unlock.
79  *
80  * The stack must also set the flag on the INP that it supports this
81  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
82  * this flag as well and will queue packets when it is set.
83  * There are other flags as well INP_MBUF_QUEUE_READY and
84  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
85  * that we are in the pacer for output so there is no
86  * need to wake up the hpts system to get immediate
87  * input. The second tells the LRO code that its okay
88  * if a SACK arrives you can still defer input and let
89  * the current hpts timer run (this is usually set when
90  * a rack timer is up so we know SACK's are happening
91  * on the connection already and don't want to wakeup yet).
92  *
93  * There is a common functions within the rack_bbr_common code
94  * version i.e. ctf_do_queued_segments(). This function
95  * knows how to take the input queue of packets from
96  * tp->t_in_pkts and process them digging out
97  * all the arguments, calling any bpf tap and
98  * calling into tfb_do_segment_nounlock(). The common
99  * function (ctf_do_queued_segments())  requires that
100  * you have defined the tfb_do_segment_nounlock() as
101  * described above.
102  */
103
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/interrupt.h>
107 #include <sys/module.h>
108 #include <sys/kernel.h>
109 #include <sys/hhook.h>
110 #include <sys/malloc.h>
111 #include <sys/mbuf.h>
112 #include <sys/proc.h>           /* for proc0 declaration */
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/sysctl.h>
116 #include <sys/systm.h>
117 #include <sys/refcount.h>
118 #include <sys/sched.h>
119 #include <sys/queue.h>
120 #include <sys/smp.h>
121 #include <sys/counter.h>
122 #include <sys/time.h>
123 #include <sys/kthread.h>
124 #include <sys/kern_prefetch.h>
125
126 #include <vm/uma.h>
127 #include <vm/vm.h>
128
129 #include <net/route.h>
130 #include <net/vnet.h>
131
132 #ifdef RSS
133 #include <net/netisr.h>
134 #include <net/rss_config.h>
135 #endif
136
137 #define TCPSTATES               /* for logging */
138
139 #include <netinet/in.h>
140 #include <netinet/in_kdtrace.h>
141 #include <netinet/in_pcb.h>
142 #include <netinet/ip.h>
143 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
144 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
145 #include <netinet/ip_var.h>
146 #include <netinet/ip6.h>
147 #include <netinet6/in6_pcb.h>
148 #include <netinet6/ip6_var.h>
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155 #include <netinet/cc/cc.h>
156 #include <netinet/tcp_hpts.h>
157 #include <netinet/tcp_log_buf.h>
158
159 #ifdef tcp_offload
160 #include <netinet/tcp_offload.h>
161 #endif
162
163 /*
164  * The hpts uses a 102400 wheel. The wheel
165  * defines the time in 10 usec increments (102400 x 10).
166  * This gives a range of 10usec - 1024ms to place
167  * an entry within. If the user requests more than
168  * 1.024 second, a remaineder is attached and the hpts
169  * when seeing the remainder will re-insert the
170  * inpcb forward in time from where it is until
171  * the remainder is zero.
172  */
173
174 #define NUM_OF_HPTSI_SLOTS 102400
175
176 /* Each hpts has its own p_mtx which is used for locking */
177 #define HPTS_MTX_ASSERT(hpts)   mtx_assert(&(hpts)->p_mtx, MA_OWNED)
178 #define HPTS_LOCK(hpts)         mtx_lock(&(hpts)->p_mtx)
179 #define HPTS_UNLOCK(hpts)       mtx_unlock(&(hpts)->p_mtx)
180 struct tcp_hpts_entry {
181         /* Cache line 0x00 */
182         struct mtx p_mtx;       /* Mutex for hpts */
183         struct timeval p_mysleep;       /* Our min sleep time */
184         uint64_t syscall_cnt;
185         uint64_t sleeping;      /* What the actual sleep was (if sleeping) */
186         uint16_t p_hpts_active; /* Flag that says hpts is awake  */
187         uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
188         uint32_t p_curtick;     /* Tick in 10 us the hpts is going to */
189         uint32_t p_runningslot; /* Current tick we are at if we are running */
190         uint32_t p_prev_slot;   /* Previous slot we were on */
191         uint32_t p_cur_slot;    /* Current slot in wheel hpts is draining */
192         uint32_t p_nxt_slot;    /* The next slot outside the current range of
193                                  * slots that the hpts is running on. */
194         int32_t p_on_queue_cnt; /* Count on queue in this hpts */
195         uint32_t p_lasttick;    /* Last tick before the current one */
196         uint8_t p_direct_wake :1, /* boolean */
197                 p_on_min_sleep:1, /* boolean */
198                 p_hpts_wake_scheduled:1, /* boolean */
199                 p_avail:5;
200         uint8_t p_fill[3];        /* Fill to 32 bits */
201         /* Cache line 0x40 */
202         struct hptsh {
203                 TAILQ_HEAD(, inpcb)     head;
204                 uint32_t                count;
205                 uint32_t                gencnt;
206         } *p_hptss;                     /* Hptsi wheel */
207         uint32_t p_hpts_sleep_time;     /* Current sleep interval having a max
208                                          * of 255ms */
209         uint32_t overidden_sleep;       /* what was overrided by min-sleep for logging */
210         uint32_t saved_lasttick;        /* for logging */
211         uint32_t saved_curtick;         /* for logging */
212         uint32_t saved_curslot;         /* for logging */
213         uint32_t saved_prev_slot;       /* for logging */
214         uint32_t p_delayed_by;  /* How much were we delayed by */
215         /* Cache line 0x80 */
216         struct sysctl_ctx_list hpts_ctx;
217         struct sysctl_oid *hpts_root;
218         struct intr_event *ie;
219         void *ie_cookie;
220         uint16_t p_num;         /* The hpts number one per cpu */
221         uint16_t p_cpu;         /* The hpts CPU */
222         /* There is extra space in here */
223         /* Cache line 0x100 */
224         struct callout co __aligned(CACHE_LINE_SIZE);
225 }               __aligned(CACHE_LINE_SIZE);
226
227 static struct tcp_hptsi {
228         struct cpu_group **grps;
229         struct tcp_hpts_entry **rp_ent; /* Array of hptss */
230         uint32_t *cts_last_ran;
231         uint32_t grp_cnt;
232         uint32_t rp_num_hptss;  /* Number of hpts threads */
233 } tcp_pace;
234
235 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
236 #ifdef RSS
237 static int tcp_bind_threads = 1;
238 #else
239 static int tcp_bind_threads = 2;
240 #endif
241 static int tcp_use_irq_cpu = 0;
242 static uint32_t *cts_last_ran;
243 static int hpts_does_tp_logging = 0;
244
245 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
246 static void tcp_hpts_thread(void *ctx);
247 static void tcp_init_hptsi(void *st);
248
249 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
250 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
251 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
252 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
253
254
255 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
256     "TCP Hpts controls");
257 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
258     "TCP Hpts statistics");
259
260 #define timersub(tvp, uvp, vvp)                                         \
261         do {                                                            \
262                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
263                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
264                 if ((vvp)->tv_usec < 0) {                               \
265                         (vvp)->tv_sec--;                                \
266                         (vvp)->tv_usec += 1000000;                      \
267                 }                                                       \
268         } while (0)
269
270 static int32_t tcp_hpts_precision = 120;
271
272 static struct hpts_domain_info {
273         int count;
274         int cpu[MAXCPU];
275 } hpts_domains[MAXMEMDOM];
276
277 enum {
278         IHPTS_NONE = 0,
279         IHPTS_ONQUEUE,
280         IHPTS_MOVING,
281 };
282
283 counter_u64_t hpts_hopelessly_behind;
284
285 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
286     &hpts_hopelessly_behind,
287     "Number of times hpts could not catch up and was behind hopelessly");
288
289 counter_u64_t hpts_loops;
290
291 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
292     &hpts_loops, "Number of times hpts had to loop to catch up");
293
294 counter_u64_t back_tosleep;
295
296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
297     &back_tosleep, "Number of times hpts found no tcbs");
298
299 counter_u64_t combined_wheel_wrap;
300
301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
302     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
303
304 counter_u64_t wheel_wrap;
305
306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
307     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
308
309 counter_u64_t hpts_direct_call;
310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
311     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
312
313 counter_u64_t hpts_wake_timeout;
314
315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
316     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
317
318 counter_u64_t hpts_direct_awakening;
319
320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
321     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
322
323 counter_u64_t hpts_back_tosleep;
324
325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
326     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
327
328 counter_u64_t cpu_uses_flowid;
329 counter_u64_t cpu_uses_random;
330
331 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
332     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
333 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
334     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
335
336 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
337 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
339     &tcp_bind_threads, 2,
340     "Thread Binding tunable");
341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
342     &tcp_use_irq_cpu, 0,
343     "Use of irq CPU  tunable");
344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
345     &tcp_hpts_precision, 120,
346     "Value for PRE() precision of callout");
347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
348     &conn_cnt_thresh, 0,
349     "How many connections (below) make us use the callout based mechanism");
350 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
351     &hpts_does_tp_logging, 0,
352     "Do we add to any tp that has logging on pacer logs");
353 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
354     &dynamic_min_sleep, 250,
355     "What is the dynamic minsleep value?");
356 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
357     &dynamic_max_sleep, 5000,
358     "What is the dynamic maxsleep value?");
359
360 static int32_t max_pacer_loops = 10;
361 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
362     &max_pacer_loops, 10,
363     "What is the maximum number of times the pacer will loop trying to catch up");
364
365 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
366
367 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
368
369 static int
370 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
371 {
372         int error;
373         uint32_t new;
374
375         new = hpts_sleep_max;
376         error = sysctl_handle_int(oidp, &new, 0, req);
377         if (error == 0 && req->newptr) {
378                 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
379                      (new > HPTS_MAX_SLEEP_ALLOWED))
380                         error = EINVAL;
381                 else
382                         hpts_sleep_max = new;
383         }
384         return (error);
385 }
386
387 static int
388 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
389 {
390         int error;
391         uint32_t new;
392
393         new = tcp_min_hptsi_time;
394         error = sysctl_handle_int(oidp, &new, 0, req);
395         if (error == 0 && req->newptr) {
396                 if (new < LOWEST_SLEEP_ALLOWED)
397                         error = EINVAL;
398                 else
399                         tcp_min_hptsi_time = new;
400         }
401         return (error);
402 }
403
404 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
405     CTLTYPE_UINT | CTLFLAG_RW,
406     &hpts_sleep_max, 0,
407     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
408     "Maximum time hpts will sleep in slots");
409
410 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
411     CTLTYPE_UINT | CTLFLAG_RW,
412     &tcp_min_hptsi_time, 0,
413     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
414     "The minimum time the hpts must sleep before processing more slots");
415
416 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
417 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
418 static int tcp_hpts_no_wake_over_thresh = 1;
419
420 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
421     &ticks_indicate_more_sleep, 0,
422     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
423 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
424     &ticks_indicate_less_sleep, 0,
425     "If we process this many or more on a timeout, we need less sleep on the next callout");
426 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
427     &tcp_hpts_no_wake_over_thresh, 0,
428     "When we are over the threshold on the pacer do we prohibit wakeups?");
429
430 static void
431 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
432              int slots_to_run, int idx, int from_callout)
433 {
434         union tcp_log_stackspecific log;
435         /*
436          * Unused logs are
437          * 64 bit - delRate, rttProp, bw_inuse
438          * 16 bit - cwnd_gain
439          *  8 bit - bbr_state, bbr_substate, inhpts;
440          */
441         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
442         log.u_bbr.flex1 = hpts->p_nxt_slot;
443         log.u_bbr.flex2 = hpts->p_cur_slot;
444         log.u_bbr.flex3 = hpts->p_prev_slot;
445         log.u_bbr.flex4 = idx;
446         log.u_bbr.flex5 = hpts->p_curtick;
447         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
448         log.u_bbr.flex7 = hpts->p_cpu;
449         log.u_bbr.flex8 = (uint8_t)from_callout;
450         log.u_bbr.inflight = slots_to_run;
451         log.u_bbr.applimited = hpts->overidden_sleep;
452         log.u_bbr.delivered = hpts->saved_curtick;
453         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
454         log.u_bbr.epoch = hpts->saved_curslot;
455         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
456         log.u_bbr.pkts_out = hpts->p_delayed_by;
457         log.u_bbr.lost = hpts->p_hpts_sleep_time;
458         log.u_bbr.pacing_gain = hpts->p_cpu;
459         log.u_bbr.pkt_epoch = hpts->p_runningslot;
460         log.u_bbr.use_lt_bw = 1;
461         TCP_LOG_EVENTP(tp, NULL,
462                        &tptosocket(tp)->so_rcv,
463                        &tptosocket(tp)->so_snd,
464                        BBR_LOG_HPTSDIAG, 0,
465                        0, &log, false, tv);
466 }
467
468 static void
469 tcp_wakehpts(struct tcp_hpts_entry *hpts)
470 {
471         HPTS_MTX_ASSERT(hpts);
472
473         if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
474                 hpts->p_direct_wake = 0;
475                 return;
476         }
477         if (hpts->p_hpts_wake_scheduled == 0) {
478                 hpts->p_hpts_wake_scheduled = 1;
479                 swi_sched(hpts->ie_cookie, 0);
480         }
481 }
482
483 static void
484 hpts_timeout_swi(void *arg)
485 {
486         struct tcp_hpts_entry *hpts;
487
488         hpts = (struct tcp_hpts_entry *)arg;
489         swi_sched(hpts->ie_cookie, 0);
490 }
491
492 static void
493 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
494 {
495         struct hptsh *hptsh;
496
497         INP_WLOCK_ASSERT(inp);
498         HPTS_MTX_ASSERT(hpts);
499         MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
500         MPASS(!(inp->inp_flags & INP_DROPPED));
501
502         hptsh = &hpts->p_hptss[inp->inp_hptsslot];
503
504         if (inp->inp_in_hpts == IHPTS_NONE) {
505                 inp->inp_in_hpts = IHPTS_ONQUEUE;
506                 in_pcbref(inp);
507         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
508                 inp->inp_in_hpts = IHPTS_ONQUEUE;
509         } else
510                 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
511         inp->inp_hpts_gencnt = hptsh->gencnt;
512
513         TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
514         hptsh->count++;
515         hpts->p_on_queue_cnt++;
516 }
517
518 static struct tcp_hpts_entry *
519 tcp_hpts_lock(struct inpcb *inp)
520 {
521         struct tcp_hpts_entry *hpts;
522
523         INP_LOCK_ASSERT(inp);
524
525         hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
526         HPTS_LOCK(hpts);
527
528         return (hpts);
529 }
530
531 static void
532 inp_hpts_release(struct inpcb *inp)
533 {
534         bool released __diagused;
535
536         inp->inp_in_hpts = IHPTS_NONE;
537         released = in_pcbrele_wlocked(inp);
538         MPASS(released == false);
539 }
540
541 /*
542  * Called normally with the INP_LOCKED but it
543  * does not matter, the hpts lock is the key
544  * but the lock order allows us to hold the
545  * INP lock and then get the hpts lock.
546  */
547 void
548 tcp_hpts_remove(struct inpcb *inp)
549 {
550         struct tcp_hpts_entry *hpts;
551         struct hptsh *hptsh;
552
553         INP_WLOCK_ASSERT(inp);
554
555         hpts = tcp_hpts_lock(inp);
556         if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
557                 hptsh = &hpts->p_hptss[inp->inp_hptsslot];
558                 inp->inp_hpts_request = 0;
559                 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
560                         TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
561                         MPASS(hptsh->count > 0);
562                         hptsh->count--;
563                         MPASS(hpts->p_on_queue_cnt > 0);
564                         hpts->p_on_queue_cnt--;
565                         inp_hpts_release(inp);
566                 } else {
567                         /*
568                          * tcp_hptsi() now owns the TAILQ head of this inp.
569                          * Can't TAILQ_REMOVE, just mark it.
570                          */
571 #ifdef INVARIANTS
572                         struct inpcb *tmp;
573
574                         TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
575                                 MPASS(tmp != inp);
576 #endif
577                         inp->inp_in_hpts = IHPTS_MOVING;
578                         inp->inp_hptsslot = -1;
579                 }
580         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
581                 /*
582                  * Handle a special race condition:
583                  * tcp_hptsi() moves inpcb to detached tailq
584                  * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
585                  * tcp_hpts_insert() sets slot to a meaningful value
586                  * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
587                  * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
588                  */
589                 inp->inp_hptsslot = -1;
590         }
591         HPTS_UNLOCK(hpts);
592 }
593
594 bool
595 tcp_in_hpts(struct inpcb *inp)
596 {
597
598         return (inp->inp_in_hpts == IHPTS_ONQUEUE);
599 }
600
601 static inline int
602 hpts_slot(uint32_t wheel_slot, uint32_t plus)
603 {
604         /*
605          * Given a slot on the wheel, what slot
606          * is that plus ticks out?
607          */
608         KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
609         return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
610 }
611
612 static inline int
613 tick_to_wheel(uint32_t cts_in_wticks)
614 {
615         /*
616          * Given a timestamp in ticks (so by
617          * default to get it to a real time one
618          * would multiply by 10.. i.e the number
619          * of ticks in a slot) map it to our limited
620          * space wheel.
621          */
622         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
623 }
624
625 static inline int
626 hpts_slots_diff(int prev_slot, int slot_now)
627 {
628         /*
629          * Given two slots that are someplace
630          * on our wheel. How far are they apart?
631          */
632         if (slot_now > prev_slot)
633                 return (slot_now - prev_slot);
634         else if (slot_now == prev_slot)
635                 /*
636                  * Special case, same means we can go all of our
637                  * wheel less one slot.
638                  */
639                 return (NUM_OF_HPTSI_SLOTS - 1);
640         else
641                 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
642 }
643
644 /*
645  * Given a slot on the wheel that is the current time
646  * mapped to the wheel (wheel_slot), what is the maximum
647  * distance forward that can be obtained without
648  * wrapping past either prev_slot or running_slot
649  * depending on the htps state? Also if passed
650  * a uint32_t *, fill it with the slot location.
651  *
652  * Note if you do not give this function the current
653  * time (that you think it is) mapped to the wheel slot
654  * then the results will not be what you expect and
655  * could lead to invalid inserts.
656  */
657 static inline int32_t
658 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
659 {
660         uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
661
662         if ((hpts->p_hpts_active == 1) &&
663             (hpts->p_wheel_complete == 0)) {
664                 end_slot = hpts->p_runningslot;
665                 /* Back up one tick */
666                 if (end_slot == 0)
667                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
668                 else
669                         end_slot--;
670                 if (target_slot)
671                         *target_slot = end_slot;
672         } else {
673                 /*
674                  * For the case where we are
675                  * not active, or we have
676                  * completed the pass over
677                  * the wheel, we can use the
678                  * prev tick and subtract one from it. This puts us
679                  * as far out as possible on the wheel.
680                  */
681                 end_slot = hpts->p_prev_slot;
682                 if (end_slot == 0)
683                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
684                 else
685                         end_slot--;
686                 if (target_slot)
687                         *target_slot = end_slot;
688                 /*
689                  * Now we have close to the full wheel left minus the
690                  * time it has been since the pacer went to sleep. Note
691                  * that wheel_tick, passed in, should be the current time
692                  * from the perspective of the caller, mapped to the wheel.
693                  */
694                 if (hpts->p_prev_slot != wheel_slot)
695                         dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
696                 else
697                         dis_to_travel = 1;
698                 /*
699                  * dis_to_travel in this case is the space from when the
700                  * pacer stopped (p_prev_slot) and where our wheel_slot
701                  * is now. To know how many slots we can put it in we
702                  * subtract from the wheel size. We would not want
703                  * to place something after p_prev_slot or it will
704                  * get ran too soon.
705                  */
706                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
707         }
708         /*
709          * So how many slots are open between p_runningslot -> p_cur_slot
710          * that is what is currently un-available for insertion. Special
711          * case when we are at the last slot, this gets 1, so that
712          * the answer to how many slots are available is all but 1.
713          */
714         if (hpts->p_runningslot == hpts->p_cur_slot)
715                 dis_to_travel = 1;
716         else
717                 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
718         /*
719          * How long has the pacer been running?
720          */
721         if (hpts->p_cur_slot != wheel_slot) {
722                 /* The pacer is a bit late */
723                 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
724         } else {
725                 /* The pacer is right on time, now == pacers start time */
726                 pacer_to_now = 0;
727         }
728         /*
729          * To get the number left we can insert into we simply
730          * subtract the distance the pacer has to run from how
731          * many slots there are.
732          */
733         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
734         /*
735          * Now how many of those we will eat due to the pacer's
736          * time (p_cur_slot) of start being behind the
737          * real time (wheel_slot)?
738          */
739         if (avail_on_wheel <= pacer_to_now) {
740                 /*
741                  * Wheel wrap, we can't fit on the wheel, that
742                  * is unusual the system must be way overloaded!
743                  * Insert into the assured slot, and return special
744                  * "0".
745                  */
746                 counter_u64_add(combined_wheel_wrap, 1);
747                 *target_slot = hpts->p_nxt_slot;
748                 return (0);
749         } else {
750                 /*
751                  * We know how many slots are open
752                  * on the wheel (the reverse of what
753                  * is left to run. Take away the time
754                  * the pacer started to now (wheel_slot)
755                  * and that tells you how many slots are
756                  * open that can be inserted into that won't
757                  * be touched by the pacer until later.
758                  */
759                 return (avail_on_wheel - pacer_to_now);
760         }
761 }
762
763
764 #ifdef INVARIANTS
765 static void
766 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
767 {
768         /*
769          * Sanity checks for the pacer with invariants
770          * on insert.
771          */
772         KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
773                 ("hpts:%p inp:%p slot:%d > max",
774                  hpts, inp, inp_hptsslot));
775         if ((hpts->p_hpts_active) &&
776             (hpts->p_wheel_complete == 0)) {
777                 /*
778                  * If the pacer is processing a arc
779                  * of the wheel, we need to make
780                  * sure we are not inserting within
781                  * that arc.
782                  */
783                 int distance, yet_to_run;
784
785                 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
786                 if (hpts->p_runningslot != hpts->p_cur_slot)
787                         yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
788                 else
789                         yet_to_run = 0; /* processing last slot */
790                 KASSERT(yet_to_run <= distance,
791                         ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
792                          hpts, inp, inp_hptsslot,
793                          distance, yet_to_run,
794                          hpts->p_runningslot, hpts->p_cur_slot));
795         }
796 }
797 #endif
798
799 uint32_t
800 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
801 {
802         struct tcp_hpts_entry *hpts;
803         struct timeval tv;
804         uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
805         int32_t wheel_slot, maxslots;
806         bool need_wakeup = false;
807
808         INP_WLOCK_ASSERT(inp);
809         MPASS(!tcp_in_hpts(inp));
810         MPASS(!(inp->inp_flags & INP_DROPPED));
811
812         /*
813          * We now return the next-slot the hpts will be on, beyond its
814          * current run (if up) or where it was when it stopped if it is
815          * sleeping.
816          */
817         hpts = tcp_hpts_lock(inp);
818         microuptime(&tv);
819         if (diag) {
820                 memset(diag, 0, sizeof(struct hpts_diag));
821                 diag->p_hpts_active = hpts->p_hpts_active;
822                 diag->p_prev_slot = hpts->p_prev_slot;
823                 diag->p_runningslot = hpts->p_runningslot;
824                 diag->p_nxt_slot = hpts->p_nxt_slot;
825                 diag->p_cur_slot = hpts->p_cur_slot;
826                 diag->p_curtick = hpts->p_curtick;
827                 diag->p_lasttick = hpts->p_lasttick;
828                 diag->slot_req = slot;
829                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
830                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
831         }
832         if (slot == 0) {
833                 /* Ok we need to set it on the hpts in the current slot */
834                 inp->inp_hpts_request = 0;
835                 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
836                         /*
837                          * A sleeping hpts we want in next slot to run
838                          * note that in this state p_prev_slot == p_cur_slot
839                          */
840                         inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
841                         if ((hpts->p_on_min_sleep == 0) &&
842                             (hpts->p_hpts_active == 0))
843                                 need_wakeup = true;
844                 } else
845                         inp->inp_hptsslot = hpts->p_runningslot;
846                 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
847                         inp_hpts_insert(inp, hpts);
848                 if (need_wakeup) {
849                         /*
850                          * Activate the hpts if it is sleeping and its
851                          * timeout is not 1.
852                          */
853                         hpts->p_direct_wake = 1;
854                         tcp_wakehpts(hpts);
855                 }
856                 slot_on = hpts->p_nxt_slot;
857                 HPTS_UNLOCK(hpts);
858
859                 return (slot_on);
860         }
861         /* Get the current time relative to the wheel */
862         wheel_cts = tcp_tv_to_hptstick(&tv);
863         /* Map it onto the wheel */
864         wheel_slot = tick_to_wheel(wheel_cts);
865         /* Now what's the max we can place it at? */
866         maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
867         if (diag) {
868                 diag->wheel_slot = wheel_slot;
869                 diag->maxslots = maxslots;
870                 diag->wheel_cts = wheel_cts;
871         }
872         if (maxslots == 0) {
873                 /* The pacer is in a wheel wrap behind, yikes! */
874                 if (slot > 1) {
875                         /*
876                          * Reduce by 1 to prevent a forever loop in
877                          * case something else is wrong. Note this
878                          * probably does not hurt because the pacer
879                          * if its true is so far behind we will be
880                          * > 1second late calling anyway.
881                          */
882                         slot--;
883                 }
884                 inp->inp_hptsslot = last_slot;
885                 inp->inp_hpts_request = slot;
886         } else  if (maxslots >= slot) {
887                 /* It all fits on the wheel */
888                 inp->inp_hpts_request = 0;
889                 inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
890         } else {
891                 /* It does not fit */
892                 inp->inp_hpts_request = slot - maxslots;
893                 inp->inp_hptsslot = last_slot;
894         }
895         if (diag) {
896                 diag->slot_remaining = inp->inp_hpts_request;
897                 diag->inp_hptsslot = inp->inp_hptsslot;
898         }
899 #ifdef INVARIANTS
900         check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
901 #endif
902         if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
903                 inp_hpts_insert(inp, hpts);
904         if ((hpts->p_hpts_active == 0) &&
905             (inp->inp_hpts_request == 0) &&
906             (hpts->p_on_min_sleep == 0)) {
907                 /*
908                  * The hpts is sleeping and NOT on a minimum
909                  * sleep time, we need to figure out where
910                  * it will wake up at and if we need to reschedule
911                  * its time-out.
912                  */
913                 uint32_t have_slept, yet_to_sleep;
914
915                 /* Now do we need to restart the hpts's timer? */
916                 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
917                 if (have_slept < hpts->p_hpts_sleep_time)
918                         yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
919                 else {
920                         /* We are over-due */
921                         yet_to_sleep = 0;
922                         need_wakeup = 1;
923                 }
924                 if (diag) {
925                         diag->have_slept = have_slept;
926                         diag->yet_to_sleep = yet_to_sleep;
927                 }
928                 if (yet_to_sleep &&
929                     (yet_to_sleep > slot)) {
930                         /*
931                          * We need to reschedule the hpts's time-out.
932                          */
933                         hpts->p_hpts_sleep_time = slot;
934                         need_new_to = slot * HPTS_TICKS_PER_SLOT;
935                 }
936         }
937         /*
938          * Now how far is the hpts sleeping to? if active is 1, its
939          * up and ticking we do nothing, otherwise we may need to
940          * reschedule its callout if need_new_to is set from above.
941          */
942         if (need_wakeup) {
943                 hpts->p_direct_wake = 1;
944                 tcp_wakehpts(hpts);
945                 if (diag) {
946                         diag->need_new_to = 0;
947                         diag->co_ret = 0xffff0000;
948                 }
949         } else if (need_new_to) {
950                 int32_t co_ret;
951                 struct timeval tv;
952                 sbintime_t sb;
953
954                 tv.tv_sec = 0;
955                 tv.tv_usec = 0;
956                 while (need_new_to > HPTS_USEC_IN_SEC) {
957                         tv.tv_sec++;
958                         need_new_to -= HPTS_USEC_IN_SEC;
959                 }
960                 tv.tv_usec = need_new_to;
961                 sb = tvtosbt(tv);
962                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
963                                               hpts_timeout_swi, hpts, hpts->p_cpu,
964                                               (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
965                 if (diag) {
966                         diag->need_new_to = need_new_to;
967                         diag->co_ret = co_ret;
968                 }
969         }
970         slot_on = hpts->p_nxt_slot;
971         HPTS_UNLOCK(hpts);
972
973         return (slot_on);
974 }
975
976 uint16_t
977 hpts_random_cpu(struct inpcb *inp){
978         /*
979          * No flow type set distribute the load randomly.
980          */
981         uint16_t cpuid;
982         uint32_t ran;
983
984         /*
985          * Shortcut if it is already set. XXXGL: does it happen?
986          */
987         if (inp->inp_hpts_cpu_set) {
988                 return (inp->inp_hpts_cpu);
989         }
990         /* Nothing set use a random number */
991         ran = arc4random();
992         cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
993         return (cpuid);
994 }
995
996 static uint16_t
997 hpts_cpuid(struct inpcb *inp, int *failed)
998 {
999         u_int cpuid;
1000 #ifdef NUMA
1001         struct hpts_domain_info *di;
1002 #endif
1003
1004         *failed = 0;
1005         if (inp->inp_hpts_cpu_set) {
1006                 return (inp->inp_hpts_cpu);
1007         }
1008         /*
1009          * If we are using the irq cpu set by LRO or
1010          * the driver then it overrides all other domains.
1011          */
1012         if (tcp_use_irq_cpu) {
1013                 if (inp->inp_irq_cpu_set == 0) {
1014                         *failed = 1;
1015                         return(0);
1016                 }
1017                 return(inp->inp_irq_cpu);
1018         }
1019         /* If one is set the other must be the same */
1020 #ifdef RSS
1021         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1022         if (cpuid == NETISR_CPUID_NONE)
1023                 return (hpts_random_cpu(inp));
1024         else
1025                 return (cpuid);
1026 #endif
1027         /*
1028          * We don't have a flowid -> cpuid mapping, so cheat and just map
1029          * unknown cpuids to curcpu.  Not the best, but apparently better
1030          * than defaulting to swi 0.
1031          */
1032         if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1033                 counter_u64_add(cpu_uses_random, 1);
1034                 return (hpts_random_cpu(inp));
1035         }
1036         /*
1037          * Hash to a thread based on the flowid.  If we are using numa,
1038          * then restrict the hash to the numa domain where the inp lives.
1039          */
1040
1041 #ifdef NUMA
1042         if ((vm_ndomains == 1) ||
1043             (inp->inp_numa_domain == M_NODOM)) {
1044 #endif
1045                 cpuid = inp->inp_flowid % mp_ncpus;
1046 #ifdef NUMA
1047         } else {
1048                 /* Hash into the cpu's that use that domain */
1049                 di = &hpts_domains[inp->inp_numa_domain];
1050                 cpuid = di->cpu[inp->inp_flowid % di->count];
1051         }
1052 #endif
1053         counter_u64_add(cpu_uses_flowid, 1);
1054         return (cpuid);
1055 }
1056
1057 #ifdef not_longer_used_gleb
1058 static void
1059 tcp_drop_in_pkts(struct tcpcb *tp)
1060 {
1061         struct mbuf *m, *n;
1062
1063         m = tp->t_in_pkt;
1064         if (m)
1065                 n = m->m_nextpkt;
1066         else
1067                 n = NULL;
1068         tp->t_in_pkt = NULL;
1069         while (m) {
1070                 m_freem(m);
1071                 m = n;
1072                 if (m)
1073                         n = m->m_nextpkt;
1074         }
1075 }
1076 #endif
1077
1078 static void
1079 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1080 {
1081         uint32_t t = 0, i;
1082
1083         if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1084                 /*
1085                  * Find next slot that is occupied and use that to
1086                  * be the sleep time.
1087                  */
1088                 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1089                         if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1090                                 break;
1091                         }
1092                         t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1093                 }
1094                 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1095                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1096         } else {
1097                 /* No one on the wheel sleep for all but 400 slots or sleep max  */
1098                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1099         }
1100 }
1101
1102 static int32_t
1103 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1104 {
1105         struct tcpcb *tp;
1106         struct inpcb *inp;
1107         struct timeval tv;
1108         int32_t slots_to_run, i, error;
1109         int32_t loop_cnt = 0;
1110         int32_t did_prefetch = 0;
1111         int32_t prefetch_ninp = 0;
1112         int32_t prefetch_tp = 0;
1113         int32_t wrap_loop_cnt = 0;
1114         int32_t slot_pos_of_endpoint = 0;
1115         int32_t orig_exit_slot;
1116         int8_t completed_measure = 0, seen_endpoint = 0;
1117
1118         HPTS_MTX_ASSERT(hpts);
1119         NET_EPOCH_ASSERT();
1120         /* record previous info for any logging */
1121         hpts->saved_lasttick = hpts->p_lasttick;
1122         hpts->saved_curtick = hpts->p_curtick;
1123         hpts->saved_curslot = hpts->p_cur_slot;
1124         hpts->saved_prev_slot = hpts->p_prev_slot;
1125
1126         hpts->p_lasttick = hpts->p_curtick;
1127         hpts->p_curtick = tcp_gethptstick(&tv);
1128         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1129         orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1130         if ((hpts->p_on_queue_cnt == 0) ||
1131             (hpts->p_lasttick == hpts->p_curtick)) {
1132                 /*
1133                  * No time has yet passed,
1134                  * or nothing to do.
1135                  */
1136                 hpts->p_prev_slot = hpts->p_cur_slot;
1137                 hpts->p_lasttick = hpts->p_curtick;
1138                 goto no_run;
1139         }
1140 again:
1141         hpts->p_wheel_complete = 0;
1142         HPTS_MTX_ASSERT(hpts);
1143         slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1144         if (((hpts->p_curtick - hpts->p_lasttick) >
1145              ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1146             (hpts->p_on_queue_cnt != 0)) {
1147                 /*
1148                  * Wheel wrap is occuring, basically we
1149                  * are behind and the distance between
1150                  * run's has spread so much it has exceeded
1151                  * the time on the wheel (1.024 seconds). This
1152                  * is ugly and should NOT be happening. We
1153                  * need to run the entire wheel. We last processed
1154                  * p_prev_slot, so that needs to be the last slot
1155                  * we run. The next slot after that should be our
1156                  * reserved first slot for new, and then starts
1157                  * the running position. Now the problem is the
1158                  * reserved "not to yet" place does not exist
1159                  * and there may be inp's in there that need
1160                  * running. We can merge those into the
1161                  * first slot at the head.
1162                  */
1163                 wrap_loop_cnt++;
1164                 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1165                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1166                 /*
1167                  * Adjust p_cur_slot to be where we are starting from
1168                  * hopefully we will catch up (fat chance if something
1169                  * is broken this bad :( )
1170                  */
1171                 hpts->p_cur_slot = hpts->p_prev_slot;
1172                 /*
1173                  * The next slot has guys to run too, and that would
1174                  * be where we would normally start, lets move them into
1175                  * the next slot (p_prev_slot + 2) so that we will
1176                  * run them, the extra 10usecs of late (by being
1177                  * put behind) does not really matter in this situation.
1178                  */
1179                 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1180                     inp_hpts) {
1181                         MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
1182                         MPASS(inp->inp_hpts_gencnt ==
1183                             hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1184                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1185
1186                         /*
1187                          * Update gencnt and nextslot accordingly to match
1188                          * the new location. This is safe since it takes both
1189                          * the INP lock and the pacer mutex to change the
1190                          * inp_hptsslot and inp_hpts_gencnt.
1191                          */
1192                         inp->inp_hpts_gencnt =
1193                             hpts->p_hptss[hpts->p_runningslot].gencnt;
1194                         inp->inp_hptsslot = hpts->p_runningslot;
1195                 }
1196                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1197                     &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
1198                 hpts->p_hptss[hpts->p_runningslot].count +=
1199                     hpts->p_hptss[hpts->p_nxt_slot].count;
1200                 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1201                 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1202                 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1203                 counter_u64_add(wheel_wrap, 1);
1204         } else {
1205                 /*
1206                  * Nxt slot is always one after p_runningslot though
1207                  * its not used usually unless we are doing wheel wrap.
1208                  */
1209                 hpts->p_nxt_slot = hpts->p_prev_slot;
1210                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1211         }
1212         if (hpts->p_on_queue_cnt == 0) {
1213                 goto no_one;
1214         }
1215         for (i = 0; i < slots_to_run; i++) {
1216                 struct inpcb *inp, *ninp;
1217                 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
1218                 struct hptsh *hptsh;
1219                 uint32_t runningslot;
1220
1221                 /*
1222                  * Calculate our delay, if there are no extra ticks there
1223                  * was not any (i.e. if slots_to_run == 1, no delay).
1224                  */
1225                 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1226                     HPTS_TICKS_PER_SLOT;
1227
1228                 runningslot = hpts->p_runningslot;
1229                 hptsh = &hpts->p_hptss[runningslot];
1230                 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
1231                 hpts->p_on_queue_cnt -= hptsh->count;
1232                 hptsh->count = 0;
1233                 hptsh->gencnt++;
1234
1235                 HPTS_UNLOCK(hpts);
1236
1237                 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
1238                         bool set_cpu;
1239
1240                         if (ninp != NULL) {
1241                                 /* We prefetch the next inp if possible */
1242                                 kern_prefetch(ninp, &prefetch_ninp);
1243                                 prefetch_ninp = 1;
1244                         }
1245
1246                         /* For debugging */
1247                         if (seen_endpoint == 0) {
1248                                 seen_endpoint = 1;
1249                                 orig_exit_slot = slot_pos_of_endpoint =
1250                                     runningslot;
1251                         } else if (completed_measure == 0) {
1252                                 /* Record the new position */
1253                                 orig_exit_slot = runningslot;
1254                         }
1255
1256                         INP_WLOCK(inp);
1257                         if (inp->inp_hpts_cpu_set == 0) {
1258                                 set_cpu = true;
1259                         } else {
1260                                 set_cpu = false;
1261                         }
1262
1263                         if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
1264                                 if (inp->inp_hptsslot == -1) {
1265                                         inp->inp_in_hpts = IHPTS_NONE;
1266                                         if (in_pcbrele_wlocked(inp) == false)
1267                                                 INP_WUNLOCK(inp);
1268                                 } else {
1269                                         HPTS_LOCK(hpts);
1270                                         inp_hpts_insert(inp, hpts);
1271                                         HPTS_UNLOCK(hpts);
1272                                         INP_WUNLOCK(inp);
1273                                 }
1274                                 continue;
1275                         }
1276
1277                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1278                         MPASS(!(inp->inp_flags & INP_DROPPED));
1279                         KASSERT(runningslot == inp->inp_hptsslot,
1280                                 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1281                                  hpts, inp, runningslot, inp->inp_hptsslot));
1282
1283                         if (inp->inp_hpts_request) {
1284                                 /*
1285                                  * This guy is deferred out further in time
1286                                  * then our wheel had available on it.
1287                                  * Push him back on the wheel or run it
1288                                  * depending.
1289                                  */
1290                                 uint32_t maxslots, last_slot, remaining_slots;
1291
1292                                 remaining_slots = slots_to_run - (i + 1);
1293                                 if (inp->inp_hpts_request > remaining_slots) {
1294                                         HPTS_LOCK(hpts);
1295                                         /*
1296                                          * How far out can we go?
1297                                          */
1298                                         maxslots = max_slots_available(hpts,
1299                                             hpts->p_cur_slot, &last_slot);
1300                                         if (maxslots >= inp->inp_hpts_request) {
1301                                                 /* We can place it finally to
1302                                                  * be processed.  */
1303                                                 inp->inp_hptsslot = hpts_slot(
1304                                                     hpts->p_runningslot,
1305                                                     inp->inp_hpts_request);
1306                                                 inp->inp_hpts_request = 0;
1307                                         } else {
1308                                                 /* Work off some more time */
1309                                                 inp->inp_hptsslot = last_slot;
1310                                                 inp->inp_hpts_request -=
1311                                                     maxslots;
1312                                         }
1313                                         inp_hpts_insert(inp, hpts);
1314                                         HPTS_UNLOCK(hpts);
1315                                         INP_WUNLOCK(inp);
1316                                         continue;
1317                                 }
1318                                 inp->inp_hpts_request = 0;
1319                                 /* Fall through we will so do it now */
1320                         }
1321
1322                         inp_hpts_release(inp);
1323                         tp = intotcpcb(inp);
1324                         MPASS(tp);
1325                         if (set_cpu) {
1326                                 /*
1327                                  * Setup so the next time we will move to
1328                                  * the right CPU. This should be a rare
1329                                  * event. It will sometimes happens when we
1330                                  * are the client side (usually not the
1331                                  * server). Somehow tcp_output() gets called
1332                                  * before the tcp_do_segment() sets the
1333                                  * intial state. This means the r_cpu and
1334                                  * r_hpts_cpu is 0. We get on the hpts, and
1335                                  * then tcp_input() gets called setting up
1336                                  * the r_cpu to the correct value. The hpts
1337                                  * goes off and sees the mis-match. We
1338                                  * simply correct it here and the CPU will
1339                                  * switch to the new hpts nextime the tcb
1340                                  * gets added to the hpts (not this one)
1341                                  * :-)
1342                                  */
1343                                 tcp_set_hpts(inp);
1344                         }
1345                         CURVNET_SET(inp->inp_vnet);
1346                         /* Lets do any logging that we might want to */
1347                         if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
1348                                 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1349                         }
1350
1351                         if (tp->t_fb_ptr != NULL) {
1352                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1353                                 did_prefetch = 1;
1354                         }
1355                         if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1356                                 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1357                                 if (error) {
1358                                         /* The input killed the connection */
1359                                         goto skip_pacing;
1360                                 }
1361                         }
1362                         inp->inp_hpts_calls = 1;
1363                         error = tcp_output(tp);
1364                         if (error < 0)
1365                                 goto skip_pacing;
1366                         inp->inp_hpts_calls = 0;
1367                         if (ninp) {
1368                                 /*
1369                                  * If we have a nxt inp, see if we can
1370                                  * prefetch it. Note this may seem
1371                                  * "risky" since we have no locks (other
1372                                  * than the previous inp) and there no
1373                                  * assurance that ninp was not pulled while
1374                                  * we were processing inp and freed. If this
1375                                  * occurred it could mean that either:
1376                                  *
1377                                  * a) Its NULL (which is fine we won't go
1378                                  * here) <or> b) Its valid (which is cool we
1379                                  * will prefetch it) <or> c) The inp got
1380                                  * freed back to the slab which was
1381                                  * reallocated. Then the piece of memory was
1382                                  * re-used and something else (not an
1383                                  * address) is in inp_ppcb. If that occurs
1384                                  * we don't crash, but take a TLB shootdown
1385                                  * performance hit (same as if it was NULL
1386                                  * and we tried to pre-fetch it).
1387                                  *
1388                                  * Considering that the likelyhood of <c> is
1389                                  * quite rare we will take a risk on doing
1390                                  * this. If performance drops after testing
1391                                  * we can always take this out. NB: the
1392                                  * kern_prefetch on amd64 actually has
1393                                  * protection against a bad address now via
1394                                  * the DMAP_() tests. This will prevent the
1395                                  * TLB hit, and instead if <c> occurs just
1396                                  * cause us to load cache with a useless
1397                                  * address (to us).
1398                                  *
1399                                  * XXXGL: with tcpcb == inpcb, I'm unsure this
1400                                  * prefetch is still correct and useful.
1401                                  */
1402                                 kern_prefetch(ninp, &prefetch_tp);
1403                                 prefetch_tp = 1;
1404                         }
1405                         INP_WUNLOCK(inp);
1406                 skip_pacing:
1407                         CURVNET_RESTORE();
1408                 }
1409                 if (seen_endpoint) {
1410                         /*
1411                          * We now have a accurate distance between
1412                          * slot_pos_of_endpoint <-> orig_exit_slot
1413                          * to tell us how late we were, orig_exit_slot
1414                          * is where we calculated the end of our cycle to
1415                          * be when we first entered.
1416                          */
1417                         completed_measure = 1;
1418                 }
1419                 HPTS_LOCK(hpts);
1420                 hpts->p_runningslot++;
1421                 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1422                         hpts->p_runningslot = 0;
1423                 }
1424         }
1425 no_one:
1426         HPTS_MTX_ASSERT(hpts);
1427         hpts->p_delayed_by = 0;
1428         /*
1429          * Check to see if we took an excess amount of time and need to run
1430          * more ticks (if we did not hit eno-bufs).
1431          */
1432         hpts->p_prev_slot = hpts->p_cur_slot;
1433         hpts->p_lasttick = hpts->p_curtick;
1434         if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1435                 /*
1436                  * Something is serious slow we have
1437                  * looped through processing the wheel
1438                  * and by the time we cleared the
1439                  * needs to run max_pacer_loops time
1440                  * we still needed to run. That means
1441                  * the system is hopelessly behind and
1442                  * can never catch up :(
1443                  *
1444                  * We will just lie to this thread
1445                  * and let it thing p_curtick is
1446                  * correct. When it next awakens
1447                  * it will find itself further behind.
1448                  */
1449                 if (from_callout)
1450                         counter_u64_add(hpts_hopelessly_behind, 1);
1451                 goto no_run;
1452         }
1453         hpts->p_curtick = tcp_gethptstick(&tv);
1454         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1455         if (seen_endpoint == 0) {
1456                 /* We saw no endpoint but we may be looping */
1457                 orig_exit_slot = hpts->p_cur_slot;
1458         }
1459         if ((wrap_loop_cnt < 2) &&
1460             (hpts->p_lasttick != hpts->p_curtick)) {
1461                 counter_u64_add(hpts_loops, 1);
1462                 loop_cnt++;
1463                 goto again;
1464         }
1465 no_run:
1466         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1467         /*
1468          * Set flag to tell that we are done for
1469          * any slot input that happens during
1470          * input.
1471          */
1472         hpts->p_wheel_complete = 1;
1473         /*
1474          * Now did we spend too long running input and need to run more ticks?
1475          * Note that if wrap_loop_cnt < 2 then we should have the conditions
1476          * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1477          * is greater than 2, then the condtion most likely are *not* true.
1478          * Also if we are called not from the callout, we don't run the wheel
1479          * multiple times so the slots may not align either.
1480          */
1481         KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1482                  (wrap_loop_cnt >= 2) || (from_callout == 0)),
1483                 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1484                  hpts->p_prev_slot, hpts->p_cur_slot));
1485         KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1486                  || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1487                 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1488                  hpts->p_lasttick, hpts->p_curtick));
1489         if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1490                 hpts->p_curtick = tcp_gethptstick(&tv);
1491                 counter_u64_add(hpts_loops, 1);
1492                 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1493                 goto again;
1494         }
1495
1496         if (from_callout){
1497                 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1498         }
1499         if (seen_endpoint)
1500                 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1501         else
1502                 return (0);
1503 }
1504
1505 void
1506 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1507 {
1508         struct tcp_hpts_entry *hpts;
1509         int failed;
1510
1511         INP_WLOCK_ASSERT(inp);
1512         hpts = tcp_hpts_lock(inp);
1513         if ((inp->inp_in_hpts == 0) &&
1514             (inp->inp_hpts_cpu_set == 0)) {
1515                 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1516                 if (failed == 0)
1517                         inp->inp_hpts_cpu_set = 1;
1518         }
1519         mtx_unlock(&hpts->p_mtx);
1520 }
1521
1522 static void
1523 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1524 {
1525         int ticks_ran;
1526
1527         if (hpts->p_hpts_active) {
1528                 /* Already active */
1529                 return;
1530         }
1531         if (mtx_trylock(&hpts->p_mtx) == 0) {
1532                 /* Someone else got the lock */
1533                 return;
1534         }
1535         if (hpts->p_hpts_active)
1536                 goto out_with_mtx;
1537         hpts->syscall_cnt++;
1538         counter_u64_add(hpts_direct_call, 1);
1539         hpts->p_hpts_active = 1;
1540         ticks_ran = tcp_hptsi(hpts, 0);
1541         /* We may want to adjust the sleep values here */
1542         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1543                 if (ticks_ran > ticks_indicate_less_sleep) {
1544                         struct timeval tv;
1545                         sbintime_t sb;
1546
1547                         hpts->p_mysleep.tv_usec /= 2;
1548                         if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1549                                 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1550                         /* Reschedule with new to value */
1551                         tcp_hpts_set_max_sleep(hpts, 0);
1552                         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1553                         /* Validate its in the right ranges */
1554                         if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1555                                 hpts->overidden_sleep = tv.tv_usec;
1556                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1557                         } else if (tv.tv_usec > dynamic_max_sleep) {
1558                                 /* Lets not let sleep get above this value */
1559                                 hpts->overidden_sleep = tv.tv_usec;
1560                                 tv.tv_usec = dynamic_max_sleep;
1561                         }
1562                         /*
1563                          * In this mode the timer is a backstop to
1564                          * all the userret/lro_flushes so we use
1565                          * the dynamic value and set the on_min_sleep
1566                          * flag so we will not be awoken.
1567                          */
1568                         sb = tvtosbt(tv);
1569                         /* Store off to make visible the actual sleep time */
1570                         hpts->sleeping = tv.tv_usec;
1571                         callout_reset_sbt_on(&hpts->co, sb, 0,
1572                                              hpts_timeout_swi, hpts, hpts->p_cpu,
1573                                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1574                 } else if (ticks_ran < ticks_indicate_more_sleep) {
1575                         /* For the further sleep, don't reschedule  hpts */
1576                         hpts->p_mysleep.tv_usec *= 2;
1577                         if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1578                                 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1579                 }
1580                 hpts->p_on_min_sleep = 1;
1581         }
1582         hpts->p_hpts_active = 0;
1583 out_with_mtx:
1584         HPTS_MTX_ASSERT(hpts);
1585         mtx_unlock(&hpts->p_mtx);
1586 }
1587
1588 static struct tcp_hpts_entry *
1589 tcp_choose_hpts_to_run(void)
1590 {
1591         int i, oldest_idx, start, end;
1592         uint32_t cts, time_since_ran, calc;
1593
1594         cts = tcp_get_usecs(NULL);
1595         time_since_ran = 0;
1596         /* Default is all one group */
1597         start = 0;
1598         end = tcp_pace.rp_num_hptss;
1599         /*
1600          * If we have more than one L3 group figure out which one
1601          * this CPU is in.
1602          */
1603         if (tcp_pace.grp_cnt > 1) {
1604                 for (i = 0; i < tcp_pace.grp_cnt; i++) {
1605                         if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1606                                 start = tcp_pace.grps[i]->cg_first;
1607                                 end = (tcp_pace.grps[i]->cg_last + 1);
1608                                 break;
1609                         }
1610                 }
1611         }
1612         oldest_idx = -1;
1613         for (i = start; i < end; i++) {
1614                 if (TSTMP_GT(cts, cts_last_ran[i]))
1615                         calc = cts - cts_last_ran[i];
1616                 else
1617                         calc = 0;
1618                 if (calc > time_since_ran) {
1619                         oldest_idx = i;
1620                         time_since_ran = calc;
1621                 }
1622         }
1623         if (oldest_idx >= 0)
1624                 return(tcp_pace.rp_ent[oldest_idx]);
1625         else
1626                 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1627 }
1628
1629
1630 void
1631 tcp_run_hpts(void)
1632 {
1633         static struct tcp_hpts_entry *hpts;
1634         struct epoch_tracker et;
1635
1636         NET_EPOCH_ENTER(et);
1637         hpts = tcp_choose_hpts_to_run();
1638         __tcp_run_hpts(hpts);
1639         NET_EPOCH_EXIT(et);
1640 }
1641
1642
1643 static void
1644 tcp_hpts_thread(void *ctx)
1645 {
1646         struct tcp_hpts_entry *hpts;
1647         struct epoch_tracker et;
1648         struct timeval tv;
1649         sbintime_t sb;
1650         int ticks_ran;
1651
1652         hpts = (struct tcp_hpts_entry *)ctx;
1653         mtx_lock(&hpts->p_mtx);
1654         if (hpts->p_direct_wake) {
1655                 /* Signaled by input or output with low occupancy count. */
1656                 callout_stop(&hpts->co);
1657                 counter_u64_add(hpts_direct_awakening, 1);
1658         } else {
1659                 /* Timed out, the normal case. */
1660                 counter_u64_add(hpts_wake_timeout, 1);
1661                 if (callout_pending(&hpts->co) ||
1662                     !callout_active(&hpts->co)) {
1663                         mtx_unlock(&hpts->p_mtx);
1664                         return;
1665                 }
1666         }
1667         callout_deactivate(&hpts->co);
1668         hpts->p_hpts_wake_scheduled = 0;
1669         NET_EPOCH_ENTER(et);
1670         if (hpts->p_hpts_active) {
1671                 /*
1672                  * We are active already. This means that a syscall
1673                  * trap or LRO is running in behalf of hpts. In that case
1674                  * we need to double our timeout since there seems to be
1675                  * enough activity in the system that we don't need to
1676                  * run as often (if we were not directly woken).
1677                  */
1678                 if (hpts->p_direct_wake == 0) {
1679                         counter_u64_add(hpts_back_tosleep, 1);
1680                         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1681                                 hpts->p_mysleep.tv_usec *= 2;
1682                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1683                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1684                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1685                                 hpts->p_on_min_sleep = 1;
1686                         } else {
1687                                 /*
1688                                  * Here we have low count on the wheel, but
1689                                  * somehow we still collided with one of the
1690                                  * connections. Lets go back to sleep for a
1691                                  * min sleep time, but clear the flag so we
1692                                  * can be awoken by insert.
1693                                  */
1694                                 hpts->p_on_min_sleep = 0;
1695                                 tv.tv_usec = tcp_min_hptsi_time;
1696                         }
1697                 } else {
1698                         /*
1699                          * Directly woken most likely to reset the
1700                          * callout time.
1701                          */
1702                         tv.tv_sec = 0;
1703                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1704                 }
1705                 goto back_to_sleep;
1706         }
1707         hpts->sleeping = 0;
1708         hpts->p_hpts_active = 1;
1709         ticks_ran = tcp_hptsi(hpts, 1);
1710         tv.tv_sec = 0;
1711         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1712         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1713                 if(hpts->p_direct_wake == 0) {
1714                         /*
1715                          * Only adjust sleep time if we were
1716                          * called from the callout i.e. direct_wake == 0.
1717                          */
1718                         if (ticks_ran < ticks_indicate_more_sleep) {
1719                                 hpts->p_mysleep.tv_usec *= 2;
1720                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1721                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1722                         } else if (ticks_ran > ticks_indicate_less_sleep) {
1723                                 hpts->p_mysleep.tv_usec /= 2;
1724                                 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1725                                         hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1726                         }
1727                 }
1728                 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1729                         hpts->overidden_sleep = tv.tv_usec;
1730                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1731                 } else if (tv.tv_usec > dynamic_max_sleep) {
1732                         /* Lets not let sleep get above this value */
1733                         hpts->overidden_sleep = tv.tv_usec;
1734                         tv.tv_usec = dynamic_max_sleep;
1735                 }
1736                 /*
1737                  * In this mode the timer is a backstop to
1738                  * all the userret/lro_flushes so we use
1739                  * the dynamic value and set the on_min_sleep
1740                  * flag so we will not be awoken.
1741                  */
1742                 hpts->p_on_min_sleep = 1;
1743         } else if (hpts->p_on_queue_cnt == 0)  {
1744                 /*
1745                  * No one on the wheel, please wake us up
1746                  * if you insert on the wheel.
1747                  */
1748                 hpts->p_on_min_sleep = 0;
1749                 hpts->overidden_sleep = 0;
1750         } else {
1751                 /*
1752                  * We hit here when we have a low number of
1753                  * clients on the wheel (our else clause).
1754                  * We may need to go on min sleep, if we set
1755                  * the flag we will not be awoken if someone
1756                  * is inserted ahead of us. Clearing the flag
1757                  * means we can be awoken. This is "old mode"
1758                  * where the timer is what runs hpts mainly.
1759                  */
1760                 if (tv.tv_usec < tcp_min_hptsi_time) {
1761                         /*
1762                          * Yes on min sleep, which means
1763                          * we cannot be awoken.
1764                          */
1765                         hpts->overidden_sleep = tv.tv_usec;
1766                         tv.tv_usec = tcp_min_hptsi_time;
1767                         hpts->p_on_min_sleep = 1;
1768                 } else {
1769                         /* Clear the min sleep flag */
1770                         hpts->overidden_sleep = 0;
1771                         hpts->p_on_min_sleep = 0;
1772                 }
1773         }
1774         HPTS_MTX_ASSERT(hpts);
1775         hpts->p_hpts_active = 0;
1776 back_to_sleep:
1777         hpts->p_direct_wake = 0;
1778         sb = tvtosbt(tv);
1779         /* Store off to make visible the actual sleep time */
1780         hpts->sleeping = tv.tv_usec;
1781         callout_reset_sbt_on(&hpts->co, sb, 0,
1782                              hpts_timeout_swi, hpts, hpts->p_cpu,
1783                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1784         NET_EPOCH_EXIT(et);
1785         mtx_unlock(&hpts->p_mtx);
1786 }
1787
1788 #undef  timersub
1789
1790 static int32_t
1791 hpts_count_level(struct cpu_group *cg)
1792 {
1793         int32_t count_l3, i;
1794
1795         count_l3 = 0;
1796         if (cg->cg_level == CG_SHARE_L3)
1797                 count_l3++;
1798         /* Walk all the children looking for L3 */
1799         for (i = 0; i < cg->cg_children; i++) {
1800                 count_l3 += hpts_count_level(&cg->cg_child[i]);
1801         }
1802         return (count_l3);
1803 }
1804
1805 static void
1806 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1807 {
1808         int32_t idx, i;
1809
1810         idx = *at;
1811         if (cg->cg_level == CG_SHARE_L3) {
1812                 grps[idx] = cg;
1813                 idx++;
1814                 if (idx == max) {
1815                         *at = idx;
1816                         return;
1817                 }
1818         }
1819         *at = idx;
1820         /* Walk all the children looking for L3 */
1821         for (i = 0; i < cg->cg_children; i++) {
1822                 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1823         }
1824 }
1825
1826 static void
1827 tcp_init_hptsi(void *st)
1828 {
1829         struct cpu_group *cpu_top;
1830         int32_t error __diagused;
1831         int32_t i, j, bound = 0, created = 0;
1832         size_t sz, asz;
1833         struct timeval tv;
1834         sbintime_t sb;
1835         struct tcp_hpts_entry *hpts;
1836         struct pcpu *pc;
1837         char unit[16];
1838         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1839         int count, domain;
1840
1841 #ifdef SMP
1842         cpu_top = smp_topo();
1843 #else
1844         cpu_top = NULL;
1845 #endif
1846         tcp_pace.rp_num_hptss = ncpus;
1847         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1848         hpts_loops = counter_u64_alloc(M_WAITOK);
1849         back_tosleep = counter_u64_alloc(M_WAITOK);
1850         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1851         wheel_wrap = counter_u64_alloc(M_WAITOK);
1852         hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1853         hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1854         hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1855         hpts_direct_call = counter_u64_alloc(M_WAITOK);
1856         cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1857         cpu_uses_random = counter_u64_alloc(M_WAITOK);
1858
1859         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1860         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1861         sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1862         cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1863         tcp_pace.grp_cnt = 0;
1864         if (cpu_top == NULL) {
1865                 tcp_pace.grp_cnt = 1;
1866         } else {
1867                 /* Find out how many cache level 3 domains we have */
1868                 count = 0;
1869                 tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1870                 if (tcp_pace.grp_cnt == 0) {
1871                         tcp_pace.grp_cnt = 1;
1872                 }
1873                 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1874                 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1875                 /* Now populate the groups */
1876                 if (tcp_pace.grp_cnt == 1) {
1877                         /*
1878                          * All we need is the top level all cpu's are in
1879                          * the same cache so when we use grp[0]->cg_mask
1880                          * with the cg_first <-> cg_last it will include
1881                          * all cpu's in it. The level here is probably
1882                          * zero which is ok.
1883                          */
1884                         tcp_pace.grps[0] = cpu_top;
1885                 } else {
1886                         /*
1887                          * Here we must find all the level three cache domains
1888                          * and setup our pointers to them.
1889                          */
1890                         count = 0;
1891                         hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1892                 }
1893         }
1894         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1895         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1896                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1897                     M_TCPHPTS, M_WAITOK | M_ZERO);
1898                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1899                 hpts = tcp_pace.rp_ent[i];
1900                 /*
1901                  * Init all the hpts structures that are not specifically
1902                  * zero'd by the allocations. Also lets attach them to the
1903                  * appropriate sysctl block as well.
1904                  */
1905                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1906                     "hpts", MTX_DEF | MTX_DUPOK);
1907                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1908                         TAILQ_INIT(&hpts->p_hptss[j].head);
1909                         hpts->p_hptss[j].count = 0;
1910                         hpts->p_hptss[j].gencnt = 0;
1911                 }
1912                 sysctl_ctx_init(&hpts->hpts_ctx);
1913                 sprintf(unit, "%d", i);
1914                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1915                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1916                     OID_AUTO,
1917                     unit,
1918                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1919                     "");
1920                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1921                     SYSCTL_CHILDREN(hpts->hpts_root),
1922                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
1923                     &hpts->p_on_queue_cnt, 0,
1924                     "Count TCB's awaiting output processing");
1925                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1926                     SYSCTL_CHILDREN(hpts->hpts_root),
1927                     OID_AUTO, "active", CTLFLAG_RD,
1928                     &hpts->p_hpts_active, 0,
1929                     "Is the hpts active");
1930                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1931                     SYSCTL_CHILDREN(hpts->hpts_root),
1932                     OID_AUTO, "curslot", CTLFLAG_RD,
1933                     &hpts->p_cur_slot, 0,
1934                     "What the current running pacers goal");
1935                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1936                     SYSCTL_CHILDREN(hpts->hpts_root),
1937                     OID_AUTO, "runtick", CTLFLAG_RD,
1938                     &hpts->p_runningslot, 0,
1939                     "What the running pacers current slot is");
1940                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1941                     SYSCTL_CHILDREN(hpts->hpts_root),
1942                     OID_AUTO, "curtick", CTLFLAG_RD,
1943                     &hpts->p_curtick, 0,
1944                     "What the running pacers last tick mapped to the wheel was");
1945                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1946                     SYSCTL_CHILDREN(hpts->hpts_root),
1947                     OID_AUTO, "lastran", CTLFLAG_RD,
1948                     &cts_last_ran[i], 0,
1949                     "The last usec tick that this hpts ran");
1950                 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1951                     SYSCTL_CHILDREN(hpts->hpts_root),
1952                     OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1953                     &hpts->p_mysleep.tv_usec,
1954                     "What the running pacers is using for p_mysleep.tv_usec");
1955                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1956                     SYSCTL_CHILDREN(hpts->hpts_root),
1957                     OID_AUTO, "now_sleeping", CTLFLAG_RD,
1958                     &hpts->sleeping, 0,
1959                     "What the running pacers is actually sleeping for");
1960                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1961                     SYSCTL_CHILDREN(hpts->hpts_root),
1962                     OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1963                     &hpts->syscall_cnt, 0,
1964                     "How many times we had syscalls on this hpts");
1965
1966                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1967                 hpts->p_num = i;
1968                 hpts->p_curtick = tcp_gethptstick(&tv);
1969                 cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1970                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1971                 hpts->p_cpu = 0xffff;
1972                 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1973                 callout_init(&hpts->co, 1);
1974         }
1975         /* Don't try to bind to NUMA domains if we don't have any */
1976         if (vm_ndomains == 1 && tcp_bind_threads == 2)
1977                 tcp_bind_threads = 0;
1978
1979         /*
1980          * Now lets start ithreads to handle the hptss.
1981          */
1982         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1983                 hpts = tcp_pace.rp_ent[i];
1984                 hpts->p_cpu = i;
1985
1986                 error = swi_add(&hpts->ie, "hpts",
1987                     tcp_hpts_thread, (void *)hpts,
1988                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1989                 KASSERT(error == 0,
1990                         ("Can't add hpts:%p i:%d err:%d",
1991                          hpts, i, error));
1992                 created++;
1993                 hpts->p_mysleep.tv_sec = 0;
1994                 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1995                 if (tcp_bind_threads == 1) {
1996                         if (intr_event_bind(hpts->ie, i) == 0)
1997                                 bound++;
1998                 } else if (tcp_bind_threads == 2) {
1999                         /* Find the group for this CPU (i) and bind into it */
2000                         for (j = 0; j < tcp_pace.grp_cnt; j++) {
2001                                 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
2002                                         if (intr_event_bind_ithread_cpuset(hpts->ie,
2003                                                 &tcp_pace.grps[j]->cg_mask) == 0) {
2004                                                 bound++;
2005                                                 pc = pcpu_find(i);
2006                                                 domain = pc->pc_domain;
2007                                                 count = hpts_domains[domain].count;
2008                                                 hpts_domains[domain].cpu[count] = i;
2009                                                 hpts_domains[domain].count++;
2010                                                 break;
2011                                         }
2012                                 }
2013                         }
2014                 }
2015                 tv.tv_sec = 0;
2016                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
2017                 hpts->sleeping = tv.tv_usec;
2018                 sb = tvtosbt(tv);
2019                 callout_reset_sbt_on(&hpts->co, sb, 0,
2020                                      hpts_timeout_swi, hpts, hpts->p_cpu,
2021                                      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2022         }
2023         /*
2024          * If we somehow have an empty domain, fall back to choosing
2025          * among all htps threads.
2026          */
2027         for (i = 0; i < vm_ndomains; i++) {
2028                 if (hpts_domains[i].count == 0) {
2029                         tcp_bind_threads = 0;
2030                         break;
2031                 }
2032         }
2033         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2034             created, bound,
2035             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2036 #ifdef INVARIANTS
2037         printf("HPTS is in INVARIANT mode!!\n");
2038 #endif
2039 }
2040
2041 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2042 MODULE_VERSION(tcphpts, 1);