]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_hpts.c
zfs: merge openzfs/zfs@b9d98453f
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_hpts.c
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33
34 /**
35  * Some notes about usage.
36  *
37  * The tcp_hpts system is designed to provide a high precision timer
38  * system for tcp. Its main purpose is to provide a mechanism for
39  * pacing packets out onto the wire. It can be used in two ways
40  * by a given TCP stack (and those two methods can be used simultaneously).
41  *
42  * First, and probably the main thing its used by Rack and BBR, it can
43  * be used to call tcp_output() of a transport stack at some time in the future.
44  * The normal way this is done is that tcp_output() of the stack schedules
45  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46  * slot is the time from now that the stack wants to be called but it
47  * must be converted to tcp_hpts's notion of slot. This is done with
48  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49  * call from the tcp_output() routine might look like:
50  *
51  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52  *
53  * The above would schedule tcp_ouput() to be called in 550 useconds.
54  * Note that if using this mechanism the stack will want to add near
55  * its top a check to prevent unwanted calls (from user land or the
56  * arrival of incoming ack's). So it would add something like:
57  *
58  * if (tcp_in_hpts(inp))
59  *    return;
60  *
61  * to prevent output processing until the time alotted has gone by.
62  * Of course this is a bare bones example and the stack will probably
63  * have more consideration then just the above.
64  *
65  * In order to run input queued segments from the HPTS context the
66  * tcp stack must define an input function for
67  * tfb_do_queued_segments(). This function understands
68  * how to dequeue a array of packets that were input and
69  * knows how to call the correct processing routine.
70  *
71  * Locking in this is important as well so most likely the
72  * stack will need to define the tfb_do_segment_nounlock()
73  * splitting tfb_do_segment() into two parts. The main processing
74  * part that does not unlock the INP and returns a value of 1 or 0.
75  * It returns 0 if all is well and the lock was not released. It
76  * returns 1 if we had to destroy the TCB (a reset received etc).
77  * The remains of tfb_do_segment() then become just a simple call
78  * to the tfb_do_segment_nounlock() function and check the return
79  * code and possibly unlock.
80  *
81  * The stack must also set the flag on the INP that it supports this
82  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
83  * this flag as well and will queue packets when it is set.
84  * There are other flags as well INP_MBUF_QUEUE_READY and
85  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
86  * that we are in the pacer for output so there is no
87  * need to wake up the hpts system to get immediate
88  * input. The second tells the LRO code that its okay
89  * if a SACK arrives you can still defer input and let
90  * the current hpts timer run (this is usually set when
91  * a rack timer is up so we know SACK's are happening
92  * on the connection already and don't want to wakeup yet).
93  *
94  * There is a common functions within the rack_bbr_common code
95  * version i.e. ctf_do_queued_segments(). This function
96  * knows how to take the input queue of packets from
97  * tp->t_in_pkts and process them digging out
98  * all the arguments, calling any bpf tap and
99  * calling into tfb_do_segment_nounlock(). The common
100  * function (ctf_do_queued_segments())  requires that
101  * you have defined the tfb_do_segment_nounlock() as
102  * described above.
103  */
104
105 #include <sys/param.h>
106 #include <sys/bus.h>
107 #include <sys/interrupt.h>
108 #include <sys/module.h>
109 #include <sys/kernel.h>
110 #include <sys/hhook.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/proc.h>           /* for proc0 declaration */
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/sysctl.h>
117 #include <sys/systm.h>
118 #include <sys/refcount.h>
119 #include <sys/sched.h>
120 #include <sys/queue.h>
121 #include <sys/smp.h>
122 #include <sys/counter.h>
123 #include <sys/time.h>
124 #include <sys/kthread.h>
125 #include <sys/kern_prefetch.h>
126
127 #include <vm/uma.h>
128 #include <vm/vm.h>
129
130 #include <net/route.h>
131 #include <net/vnet.h>
132
133 #ifdef RSS
134 #include <net/netisr.h>
135 #include <net/rss_config.h>
136 #endif
137
138 #define TCPSTATES               /* for logging */
139
140 #include <netinet/in.h>
141 #include <netinet/in_kdtrace.h>
142 #include <netinet/in_pcb.h>
143 #include <netinet/ip.h>
144 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
145 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
146 #include <netinet/ip_var.h>
147 #include <netinet/ip6.h>
148 #include <netinet6/in6_pcb.h>
149 #include <netinet6/ip6_var.h>
150 #include <netinet/tcp.h>
151 #include <netinet/tcp_fsm.h>
152 #include <netinet/tcp_seq.h>
153 #include <netinet/tcp_timer.h>
154 #include <netinet/tcp_var.h>
155 #include <netinet/tcpip.h>
156 #include <netinet/cc/cc.h>
157 #include <netinet/tcp_hpts.h>
158 #include <netinet/tcp_log_buf.h>
159
160 #ifdef tcpdebug
161 #include <netinet/tcp_debug.h>
162 #endif                          /* tcpdebug */
163 #ifdef tcp_offload
164 #include <netinet/tcp_offload.h>
165 #endif
166
167 /*
168  * The hpts uses a 102400 wheel. The wheel
169  * defines the time in 10 usec increments (102400 x 10).
170  * This gives a range of 10usec - 1024ms to place
171  * an entry within. If the user requests more than
172  * 1.024 second, a remaineder is attached and the hpts
173  * when seeing the remainder will re-insert the
174  * inpcb forward in time from where it is until
175  * the remainder is zero.
176  */
177
178 #define NUM_OF_HPTSI_SLOTS 102400
179
180 /* Each hpts has its own p_mtx which is used for locking */
181 #define HPTS_MTX_ASSERT(hpts)   mtx_assert(&(hpts)->p_mtx, MA_OWNED)
182 #define HPTS_LOCK(hpts)         mtx_lock(&(hpts)->p_mtx)
183 #define HPTS_UNLOCK(hpts)       mtx_unlock(&(hpts)->p_mtx)
184 struct tcp_hpts_entry {
185         /* Cache line 0x00 */
186         struct mtx p_mtx;       /* Mutex for hpts */
187         struct timeval p_mysleep;       /* Our min sleep time */
188         uint64_t syscall_cnt;
189         uint64_t sleeping;      /* What the actual sleep was (if sleeping) */
190         uint16_t p_hpts_active; /* Flag that says hpts is awake  */
191         uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
192         uint32_t p_curtick;     /* Tick in 10 us the hpts is going to */
193         uint32_t p_runningslot; /* Current tick we are at if we are running */
194         uint32_t p_prev_slot;   /* Previous slot we were on */
195         uint32_t p_cur_slot;    /* Current slot in wheel hpts is draining */
196         uint32_t p_nxt_slot;    /* The next slot outside the current range of
197                                  * slots that the hpts is running on. */
198         int32_t p_on_queue_cnt; /* Count on queue in this hpts */
199         uint32_t p_lasttick;    /* Last tick before the current one */
200         uint8_t p_direct_wake :1, /* boolean */
201                 p_on_min_sleep:1, /* boolean */
202                 p_hpts_wake_scheduled:1, /* boolean */
203                 p_avail:5;
204         uint8_t p_fill[3];        /* Fill to 32 bits */
205         /* Cache line 0x40 */
206         struct hptsh {
207                 TAILQ_HEAD(, inpcb)     head;
208                 uint32_t                count;
209                 uint32_t                gencnt;
210         } *p_hptss;                     /* Hptsi wheel */
211         uint32_t p_hpts_sleep_time;     /* Current sleep interval having a max
212                                          * of 255ms */
213         uint32_t overidden_sleep;       /* what was overrided by min-sleep for logging */
214         uint32_t saved_lasttick;        /* for logging */
215         uint32_t saved_curtick;         /* for logging */
216         uint32_t saved_curslot;         /* for logging */
217         uint32_t saved_prev_slot;       /* for logging */
218         uint32_t p_delayed_by;  /* How much were we delayed by */
219         /* Cache line 0x80 */
220         struct sysctl_ctx_list hpts_ctx;
221         struct sysctl_oid *hpts_root;
222         struct intr_event *ie;
223         void *ie_cookie;
224         uint16_t p_num;         /* The hpts number one per cpu */
225         uint16_t p_cpu;         /* The hpts CPU */
226         /* There is extra space in here */
227         /* Cache line 0x100 */
228         struct callout co __aligned(CACHE_LINE_SIZE);
229 }               __aligned(CACHE_LINE_SIZE);
230
231 static struct tcp_hptsi {
232         struct cpu_group **grps;
233         struct tcp_hpts_entry **rp_ent; /* Array of hptss */
234         uint32_t *cts_last_ran;
235         uint32_t grp_cnt;
236         uint32_t rp_num_hptss;  /* Number of hpts threads */
237 } tcp_pace;
238
239 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
240 #ifdef RSS
241 static int tcp_bind_threads = 1;
242 #else
243 static int tcp_bind_threads = 2;
244 #endif
245 static int tcp_use_irq_cpu = 0;
246 static uint32_t *cts_last_ran;
247 static int hpts_does_tp_logging = 0;
248
249 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
250 static void tcp_hpts_thread(void *ctx);
251 static void tcp_init_hptsi(void *st);
252
253 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
254 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
255 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
256 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
257
258
259 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
260     "TCP Hpts controls");
261 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
262     "TCP Hpts statistics");
263
264 #define timersub(tvp, uvp, vvp)                                         \
265         do {                                                            \
266                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
267                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
268                 if ((vvp)->tv_usec < 0) {                               \
269                         (vvp)->tv_sec--;                                \
270                         (vvp)->tv_usec += 1000000;                      \
271                 }                                                       \
272         } while (0)
273
274 static int32_t tcp_hpts_precision = 120;
275
276 static struct hpts_domain_info {
277         int count;
278         int cpu[MAXCPU];
279 } hpts_domains[MAXMEMDOM];
280
281 enum {
282         IHPTS_NONE = 0,
283         IHPTS_ONQUEUE,
284         IHPTS_MOVING,
285 };
286
287 counter_u64_t hpts_hopelessly_behind;
288
289 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
290     &hpts_hopelessly_behind,
291     "Number of times hpts could not catch up and was behind hopelessly");
292
293 counter_u64_t hpts_loops;
294
295 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
296     &hpts_loops, "Number of times hpts had to loop to catch up");
297
298 counter_u64_t back_tosleep;
299
300 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
301     &back_tosleep, "Number of times hpts found no tcbs");
302
303 counter_u64_t combined_wheel_wrap;
304
305 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
306     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
307
308 counter_u64_t wheel_wrap;
309
310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
311     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
312
313 counter_u64_t hpts_direct_call;
314 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
315     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
316
317 counter_u64_t hpts_wake_timeout;
318
319 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
320     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
321
322 counter_u64_t hpts_direct_awakening;
323
324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
325     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
326
327 counter_u64_t hpts_back_tosleep;
328
329 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
330     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
331
332 counter_u64_t cpu_uses_flowid;
333 counter_u64_t cpu_uses_random;
334
335 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
336     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
337 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
338     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
339
340 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
341 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
342 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
343     &tcp_bind_threads, 2,
344     "Thread Binding tunable");
345 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
346     &tcp_use_irq_cpu, 0,
347     "Use of irq CPU  tunable");
348 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
349     &tcp_hpts_precision, 120,
350     "Value for PRE() precision of callout");
351 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
352     &conn_cnt_thresh, 0,
353     "How many connections (below) make us use the callout based mechanism");
354 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
355     &hpts_does_tp_logging, 0,
356     "Do we add to any tp that has logging on pacer logs");
357 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
358     &dynamic_min_sleep, 250,
359     "What is the dynamic minsleep value?");
360 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
361     &dynamic_max_sleep, 5000,
362     "What is the dynamic maxsleep value?");
363
364 static int32_t max_pacer_loops = 10;
365 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
366     &max_pacer_loops, 10,
367     "What is the maximum number of times the pacer will loop trying to catch up");
368
369 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
370
371 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
372
373 static int
374 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
375 {
376         int error;
377         uint32_t new;
378
379         new = hpts_sleep_max;
380         error = sysctl_handle_int(oidp, &new, 0, req);
381         if (error == 0 && req->newptr) {
382                 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
383                      (new > HPTS_MAX_SLEEP_ALLOWED))
384                         error = EINVAL;
385                 else
386                         hpts_sleep_max = new;
387         }
388         return (error);
389 }
390
391 static int
392 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
393 {
394         int error;
395         uint32_t new;
396
397         new = tcp_min_hptsi_time;
398         error = sysctl_handle_int(oidp, &new, 0, req);
399         if (error == 0 && req->newptr) {
400                 if (new < LOWEST_SLEEP_ALLOWED)
401                         error = EINVAL;
402                 else
403                         tcp_min_hptsi_time = new;
404         }
405         return (error);
406 }
407
408 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
409     CTLTYPE_UINT | CTLFLAG_RW,
410     &hpts_sleep_max, 0,
411     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
412     "Maximum time hpts will sleep in slots");
413
414 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
415     CTLTYPE_UINT | CTLFLAG_RW,
416     &tcp_min_hptsi_time, 0,
417     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
418     "The minimum time the hpts must sleep before processing more slots");
419
420 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
421 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
422 static int tcp_hpts_no_wake_over_thresh = 1;
423
424 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
425     &ticks_indicate_more_sleep, 0,
426     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
427 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
428     &ticks_indicate_less_sleep, 0,
429     "If we process this many or more on a timeout, we need less sleep on the next callout");
430 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
431     &tcp_hpts_no_wake_over_thresh, 0,
432     "When we are over the threshold on the pacer do we prohibit wakeups?");
433
434 static void
435 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
436              int slots_to_run, int idx, int from_callout)
437 {
438         union tcp_log_stackspecific log;
439         /*
440          * Unused logs are
441          * 64 bit - delRate, rttProp, bw_inuse
442          * 16 bit - cwnd_gain
443          *  8 bit - bbr_state, bbr_substate, inhpts;
444          */
445         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
446         log.u_bbr.flex1 = hpts->p_nxt_slot;
447         log.u_bbr.flex2 = hpts->p_cur_slot;
448         log.u_bbr.flex3 = hpts->p_prev_slot;
449         log.u_bbr.flex4 = idx;
450         log.u_bbr.flex5 = hpts->p_curtick;
451         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
452         log.u_bbr.flex7 = hpts->p_cpu;
453         log.u_bbr.flex8 = (uint8_t)from_callout;
454         log.u_bbr.inflight = slots_to_run;
455         log.u_bbr.applimited = hpts->overidden_sleep;
456         log.u_bbr.delivered = hpts->saved_curtick;
457         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
458         log.u_bbr.epoch = hpts->saved_curslot;
459         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
460         log.u_bbr.pkts_out = hpts->p_delayed_by;
461         log.u_bbr.lost = hpts->p_hpts_sleep_time;
462         log.u_bbr.pacing_gain = hpts->p_cpu;
463         log.u_bbr.pkt_epoch = hpts->p_runningslot;
464         log.u_bbr.use_lt_bw = 1;
465         TCP_LOG_EVENTP(tp, NULL,
466                        &tp->t_inpcb->inp_socket->so_rcv,
467                        &tp->t_inpcb->inp_socket->so_snd,
468                        BBR_LOG_HPTSDIAG, 0,
469                        0, &log, false, tv);
470 }
471
472 static void
473 tcp_wakehpts(struct tcp_hpts_entry *hpts)
474 {
475         HPTS_MTX_ASSERT(hpts);
476
477         if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
478                 hpts->p_direct_wake = 0;
479                 return;
480         }
481         if (hpts->p_hpts_wake_scheduled == 0) {
482                 hpts->p_hpts_wake_scheduled = 1;
483                 swi_sched(hpts->ie_cookie, 0);
484         }
485 }
486
487 static void
488 hpts_timeout_swi(void *arg)
489 {
490         struct tcp_hpts_entry *hpts;
491
492         hpts = (struct tcp_hpts_entry *)arg;
493         swi_sched(hpts->ie_cookie, 0);
494 }
495
496 static void
497 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
498 {
499         struct hptsh *hptsh;
500
501         INP_WLOCK_ASSERT(inp);
502         HPTS_MTX_ASSERT(hpts);
503         MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
504         MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
505
506         hptsh = &hpts->p_hptss[inp->inp_hptsslot];
507
508         if (inp->inp_in_hpts == IHPTS_NONE) {
509                 inp->inp_in_hpts = IHPTS_ONQUEUE;
510                 in_pcbref(inp);
511         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
512                 inp->inp_in_hpts = IHPTS_ONQUEUE;
513         } else
514                 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
515         inp->inp_hpts_gencnt = hptsh->gencnt;
516
517         TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
518         hptsh->count++;
519         hpts->p_on_queue_cnt++;
520 }
521
522 static struct tcp_hpts_entry *
523 tcp_hpts_lock(struct inpcb *inp)
524 {
525         struct tcp_hpts_entry *hpts;
526
527         INP_LOCK_ASSERT(inp);
528
529         hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
530         HPTS_LOCK(hpts);
531
532         return (hpts);
533 }
534
535 static void
536 inp_hpts_release(struct inpcb *inp)
537 {
538         bool released __diagused;
539
540         inp->inp_in_hpts = IHPTS_NONE;
541         released = in_pcbrele_wlocked(inp);
542         MPASS(released == false);
543 }
544
545 /*
546  * Called normally with the INP_LOCKED but it
547  * does not matter, the hpts lock is the key
548  * but the lock order allows us to hold the
549  * INP lock and then get the hpts lock.
550  */
551 void
552 tcp_hpts_remove(struct inpcb *inp)
553 {
554         struct tcp_hpts_entry *hpts;
555         struct hptsh *hptsh;
556
557         INP_WLOCK_ASSERT(inp);
558
559         hpts = tcp_hpts_lock(inp);
560         if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
561                 hptsh = &hpts->p_hptss[inp->inp_hptsslot];
562                 inp->inp_hpts_request = 0;
563                 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
564                         TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
565                         MPASS(hptsh->count > 0);
566                         hptsh->count--;
567                         MPASS(hpts->p_on_queue_cnt > 0);
568                         hpts->p_on_queue_cnt--;
569                         inp_hpts_release(inp);
570                 } else {
571                         /*
572                          * tcp_hptsi() now owns the TAILQ head of this inp.
573                          * Can't TAILQ_REMOVE, just mark it.
574                          */
575 #ifdef INVARIANTS
576                         struct inpcb *tmp;
577
578                         TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
579                                 MPASS(tmp != inp);
580 #endif
581                         inp->inp_in_hpts = IHPTS_MOVING;
582                         inp->inp_hptsslot = -1;
583                 }
584         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
585                 /*
586                  * Handle a special race condition:
587                  * tcp_hptsi() moves inpcb to detached tailq
588                  * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
589                  * tcp_hpts_insert() sets slot to a meaningful value
590                  * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
591                  * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
592                  */
593                 inp->inp_hptsslot = -1;
594         }
595         HPTS_UNLOCK(hpts);
596 }
597
598 bool
599 tcp_in_hpts(struct inpcb *inp)
600 {
601
602         return (inp->inp_in_hpts == IHPTS_ONQUEUE);
603 }
604
605 static inline int
606 hpts_slot(uint32_t wheel_slot, uint32_t plus)
607 {
608         /*
609          * Given a slot on the wheel, what slot
610          * is that plus ticks out?
611          */
612         KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
613         return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
614 }
615
616 static inline int
617 tick_to_wheel(uint32_t cts_in_wticks)
618 {
619         /*
620          * Given a timestamp in ticks (so by
621          * default to get it to a real time one
622          * would multiply by 10.. i.e the number
623          * of ticks in a slot) map it to our limited
624          * space wheel.
625          */
626         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
627 }
628
629 static inline int
630 hpts_slots_diff(int prev_slot, int slot_now)
631 {
632         /*
633          * Given two slots that are someplace
634          * on our wheel. How far are they apart?
635          */
636         if (slot_now > prev_slot)
637                 return (slot_now - prev_slot);
638         else if (slot_now == prev_slot)
639                 /*
640                  * Special case, same means we can go all of our
641                  * wheel less one slot.
642                  */
643                 return (NUM_OF_HPTSI_SLOTS - 1);
644         else
645                 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
646 }
647
648 /*
649  * Given a slot on the wheel that is the current time
650  * mapped to the wheel (wheel_slot), what is the maximum
651  * distance forward that can be obtained without
652  * wrapping past either prev_slot or running_slot
653  * depending on the htps state? Also if passed
654  * a uint32_t *, fill it with the slot location.
655  *
656  * Note if you do not give this function the current
657  * time (that you think it is) mapped to the wheel slot
658  * then the results will not be what you expect and
659  * could lead to invalid inserts.
660  */
661 static inline int32_t
662 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
663 {
664         uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
665
666         if ((hpts->p_hpts_active == 1) &&
667             (hpts->p_wheel_complete == 0)) {
668                 end_slot = hpts->p_runningslot;
669                 /* Back up one tick */
670                 if (end_slot == 0)
671                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
672                 else
673                         end_slot--;
674                 if (target_slot)
675                         *target_slot = end_slot;
676         } else {
677                 /*
678                  * For the case where we are
679                  * not active, or we have
680                  * completed the pass over
681                  * the wheel, we can use the
682                  * prev tick and subtract one from it. This puts us
683                  * as far out as possible on the wheel.
684                  */
685                 end_slot = hpts->p_prev_slot;
686                 if (end_slot == 0)
687                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
688                 else
689                         end_slot--;
690                 if (target_slot)
691                         *target_slot = end_slot;
692                 /*
693                  * Now we have close to the full wheel left minus the
694                  * time it has been since the pacer went to sleep. Note
695                  * that wheel_tick, passed in, should be the current time
696                  * from the perspective of the caller, mapped to the wheel.
697                  */
698                 if (hpts->p_prev_slot != wheel_slot)
699                         dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
700                 else
701                         dis_to_travel = 1;
702                 /*
703                  * dis_to_travel in this case is the space from when the
704                  * pacer stopped (p_prev_slot) and where our wheel_slot
705                  * is now. To know how many slots we can put it in we
706                  * subtract from the wheel size. We would not want
707                  * to place something after p_prev_slot or it will
708                  * get ran too soon.
709                  */
710                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
711         }
712         /*
713          * So how many slots are open between p_runningslot -> p_cur_slot
714          * that is what is currently un-available for insertion. Special
715          * case when we are at the last slot, this gets 1, so that
716          * the answer to how many slots are available is all but 1.
717          */
718         if (hpts->p_runningslot == hpts->p_cur_slot)
719                 dis_to_travel = 1;
720         else
721                 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
722         /*
723          * How long has the pacer been running?
724          */
725         if (hpts->p_cur_slot != wheel_slot) {
726                 /* The pacer is a bit late */
727                 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
728         } else {
729                 /* The pacer is right on time, now == pacers start time */
730                 pacer_to_now = 0;
731         }
732         /*
733          * To get the number left we can insert into we simply
734          * subract the distance the pacer has to run from how
735          * many slots there are.
736          */
737         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
738         /*
739          * Now how many of those we will eat due to the pacer's
740          * time (p_cur_slot) of start being behind the
741          * real time (wheel_slot)?
742          */
743         if (avail_on_wheel <= pacer_to_now) {
744                 /*
745                  * Wheel wrap, we can't fit on the wheel, that
746                  * is unusual the system must be way overloaded!
747                  * Insert into the assured slot, and return special
748                  * "0".
749                  */
750                 counter_u64_add(combined_wheel_wrap, 1);
751                 *target_slot = hpts->p_nxt_slot;
752                 return (0);
753         } else {
754                 /*
755                  * We know how many slots are open
756                  * on the wheel (the reverse of what
757                  * is left to run. Take away the time
758                  * the pacer started to now (wheel_slot)
759                  * and that tells you how many slots are
760                  * open that can be inserted into that won't
761                  * be touched by the pacer until later.
762                  */
763                 return (avail_on_wheel - pacer_to_now);
764         }
765 }
766
767
768 #ifdef INVARIANTS
769 static void
770 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
771 {
772         /*
773          * Sanity checks for the pacer with invariants
774          * on insert.
775          */
776         KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
777                 ("hpts:%p inp:%p slot:%d > max",
778                  hpts, inp, inp_hptsslot));
779         if ((hpts->p_hpts_active) &&
780             (hpts->p_wheel_complete == 0)) {
781                 /*
782                  * If the pacer is processing a arc
783                  * of the wheel, we need to make
784                  * sure we are not inserting within
785                  * that arc.
786                  */
787                 int distance, yet_to_run;
788
789                 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
790                 if (hpts->p_runningslot != hpts->p_cur_slot)
791                         yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
792                 else
793                         yet_to_run = 0; /* processing last slot */
794                 KASSERT(yet_to_run <= distance,
795                         ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
796                          hpts, inp, inp_hptsslot,
797                          distance, yet_to_run,
798                          hpts->p_runningslot, hpts->p_cur_slot));
799         }
800 }
801 #endif
802
803 uint32_t
804 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
805 {
806         struct tcp_hpts_entry *hpts;
807         struct timeval tv;
808         uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
809         int32_t wheel_slot, maxslots;
810         bool need_wakeup = false;
811
812         INP_WLOCK_ASSERT(inp);
813         MPASS(!tcp_in_hpts(inp));
814         MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
815
816         /*
817          * We now return the next-slot the hpts will be on, beyond its
818          * current run (if up) or where it was when it stopped if it is
819          * sleeping.
820          */
821         hpts = tcp_hpts_lock(inp);
822         microuptime(&tv);
823         if (diag) {
824                 memset(diag, 0, sizeof(struct hpts_diag));
825                 diag->p_hpts_active = hpts->p_hpts_active;
826                 diag->p_prev_slot = hpts->p_prev_slot;
827                 diag->p_runningslot = hpts->p_runningslot;
828                 diag->p_nxt_slot = hpts->p_nxt_slot;
829                 diag->p_cur_slot = hpts->p_cur_slot;
830                 diag->p_curtick = hpts->p_curtick;
831                 diag->p_lasttick = hpts->p_lasttick;
832                 diag->slot_req = slot;
833                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
834                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
835         }
836         if (slot == 0) {
837                 /* Ok we need to set it on the hpts in the current slot */
838                 inp->inp_hpts_request = 0;
839                 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
840                         /*
841                          * A sleeping hpts we want in next slot to run
842                          * note that in this state p_prev_slot == p_cur_slot
843                          */
844                         inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
845                         if ((hpts->p_on_min_sleep == 0) &&
846                             (hpts->p_hpts_active == 0))
847                                 need_wakeup = true;
848                 } else
849                         inp->inp_hptsslot = hpts->p_runningslot;
850                 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
851                         inp_hpts_insert(inp, hpts);
852                 if (need_wakeup) {
853                         /*
854                          * Activate the hpts if it is sleeping and its
855                          * timeout is not 1.
856                          */
857                         hpts->p_direct_wake = 1;
858                         tcp_wakehpts(hpts);
859                 }
860                 slot_on = hpts->p_nxt_slot;
861                 HPTS_UNLOCK(hpts);
862
863                 return (slot_on);
864         }
865         /* Get the current time relative to the wheel */
866         wheel_cts = tcp_tv_to_hptstick(&tv);
867         /* Map it onto the wheel */
868         wheel_slot = tick_to_wheel(wheel_cts);
869         /* Now what's the max we can place it at? */
870         maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
871         if (diag) {
872                 diag->wheel_slot = wheel_slot;
873                 diag->maxslots = maxslots;
874                 diag->wheel_cts = wheel_cts;
875         }
876         if (maxslots == 0) {
877                 /* The pacer is in a wheel wrap behind, yikes! */
878                 if (slot > 1) {
879                         /*
880                          * Reduce by 1 to prevent a forever loop in
881                          * case something else is wrong. Note this
882                          * probably does not hurt because the pacer
883                          * if its true is so far behind we will be
884                          * > 1second late calling anyway.
885                          */
886                         slot--;
887                 }
888                 inp->inp_hptsslot = last_slot;
889                 inp->inp_hpts_request = slot;
890         } else  if (maxslots >= slot) {
891                 /* It all fits on the wheel */
892                 inp->inp_hpts_request = 0;
893                 inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
894         } else {
895                 /* It does not fit */
896                 inp->inp_hpts_request = slot - maxslots;
897                 inp->inp_hptsslot = last_slot;
898         }
899         if (diag) {
900                 diag->slot_remaining = inp->inp_hpts_request;
901                 diag->inp_hptsslot = inp->inp_hptsslot;
902         }
903 #ifdef INVARIANTS
904         check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
905 #endif
906         if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
907                 inp_hpts_insert(inp, hpts);
908         if ((hpts->p_hpts_active == 0) &&
909             (inp->inp_hpts_request == 0) &&
910             (hpts->p_on_min_sleep == 0)) {
911                 /*
912                  * The hpts is sleeping and NOT on a minimum
913                  * sleep time, we need to figure out where
914                  * it will wake up at and if we need to reschedule
915                  * its time-out.
916                  */
917                 uint32_t have_slept, yet_to_sleep;
918
919                 /* Now do we need to restart the hpts's timer? */
920                 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
921                 if (have_slept < hpts->p_hpts_sleep_time)
922                         yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
923                 else {
924                         /* We are over-due */
925                         yet_to_sleep = 0;
926                         need_wakeup = 1;
927                 }
928                 if (diag) {
929                         diag->have_slept = have_slept;
930                         diag->yet_to_sleep = yet_to_sleep;
931                 }
932                 if (yet_to_sleep &&
933                     (yet_to_sleep > slot)) {
934                         /*
935                          * We need to reschedule the hpts's time-out.
936                          */
937                         hpts->p_hpts_sleep_time = slot;
938                         need_new_to = slot * HPTS_TICKS_PER_SLOT;
939                 }
940         }
941         /*
942          * Now how far is the hpts sleeping to? if active is 1, its
943          * up and ticking we do nothing, otherwise we may need to
944          * reschedule its callout if need_new_to is set from above.
945          */
946         if (need_wakeup) {
947                 hpts->p_direct_wake = 1;
948                 tcp_wakehpts(hpts);
949                 if (diag) {
950                         diag->need_new_to = 0;
951                         diag->co_ret = 0xffff0000;
952                 }
953         } else if (need_new_to) {
954                 int32_t co_ret;
955                 struct timeval tv;
956                 sbintime_t sb;
957
958                 tv.tv_sec = 0;
959                 tv.tv_usec = 0;
960                 while (need_new_to > HPTS_USEC_IN_SEC) {
961                         tv.tv_sec++;
962                         need_new_to -= HPTS_USEC_IN_SEC;
963                 }
964                 tv.tv_usec = need_new_to;
965                 sb = tvtosbt(tv);
966                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
967                                               hpts_timeout_swi, hpts, hpts->p_cpu,
968                                               (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
969                 if (diag) {
970                         diag->need_new_to = need_new_to;
971                         diag->co_ret = co_ret;
972                 }
973         }
974         slot_on = hpts->p_nxt_slot;
975         HPTS_UNLOCK(hpts);
976
977         return (slot_on);
978 }
979
980 uint16_t
981 hpts_random_cpu(struct inpcb *inp){
982         /*
983          * No flow type set distribute the load randomly.
984          */
985         uint16_t cpuid;
986         uint32_t ran;
987
988         /*
989          * Shortcut if it is already set. XXXGL: does it happen?
990          */
991         if (inp->inp_hpts_cpu_set) {
992                 return (inp->inp_hpts_cpu);
993         }
994         /* Nothing set use a random number */
995         ran = arc4random();
996         cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
997         return (cpuid);
998 }
999
1000 static uint16_t
1001 hpts_cpuid(struct inpcb *inp, int *failed)
1002 {
1003         u_int cpuid;
1004 #ifdef NUMA
1005         struct hpts_domain_info *di;
1006 #endif
1007
1008         *failed = 0;
1009         if (inp->inp_hpts_cpu_set) {
1010                 return (inp->inp_hpts_cpu);
1011         }
1012         /*
1013          * If we are using the irq cpu set by LRO or
1014          * the driver then it overrides all other domains.
1015          */
1016         if (tcp_use_irq_cpu) {
1017                 if (inp->inp_irq_cpu_set == 0) {
1018                         *failed = 1;
1019                         return(0);
1020                 }
1021                 return(inp->inp_irq_cpu);
1022         }
1023         /* If one is set the other must be the same */
1024 #ifdef RSS
1025         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1026         if (cpuid == NETISR_CPUID_NONE)
1027                 return (hpts_random_cpu(inp));
1028         else
1029                 return (cpuid);
1030 #endif
1031         /*
1032          * We don't have a flowid -> cpuid mapping, so cheat and just map
1033          * unknown cpuids to curcpu.  Not the best, but apparently better
1034          * than defaulting to swi 0.
1035          */
1036         if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1037                 counter_u64_add(cpu_uses_random, 1);
1038                 return (hpts_random_cpu(inp));
1039         }
1040         /*
1041          * Hash to a thread based on the flowid.  If we are using numa,
1042          * then restrict the hash to the numa domain where the inp lives.
1043          */
1044
1045 #ifdef NUMA
1046         if ((vm_ndomains == 1) ||
1047             (inp->inp_numa_domain == M_NODOM)) {
1048 #endif
1049                 cpuid = inp->inp_flowid % mp_ncpus;
1050 #ifdef NUMA
1051         } else {
1052                 /* Hash into the cpu's that use that domain */
1053                 di = &hpts_domains[inp->inp_numa_domain];
1054                 cpuid = di->cpu[inp->inp_flowid % di->count];
1055         }
1056 #endif
1057         counter_u64_add(cpu_uses_flowid, 1);
1058         return (cpuid);
1059 }
1060
1061 #ifdef not_longer_used_gleb
1062 static void
1063 tcp_drop_in_pkts(struct tcpcb *tp)
1064 {
1065         struct mbuf *m, *n;
1066
1067         m = tp->t_in_pkt;
1068         if (m)
1069                 n = m->m_nextpkt;
1070         else
1071                 n = NULL;
1072         tp->t_in_pkt = NULL;
1073         while (m) {
1074                 m_freem(m);
1075                 m = n;
1076                 if (m)
1077                         n = m->m_nextpkt;
1078         }
1079 }
1080 #endif
1081
1082 static void
1083 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1084 {
1085         uint32_t t = 0, i;
1086
1087         if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1088                 /*
1089                  * Find next slot that is occupied and use that to
1090                  * be the sleep time.
1091                  */
1092                 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1093                         if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1094                                 break;
1095                         }
1096                         t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1097                 }
1098                 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1099                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1100         } else {
1101                 /* No one on the wheel sleep for all but 400 slots or sleep max  */
1102                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1103         }
1104 }
1105
1106 static int32_t
1107 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1108 {
1109         struct tcpcb *tp;
1110         struct inpcb *inp;
1111         struct timeval tv;
1112         uint64_t total_slots_processed = 0;
1113         int32_t slots_to_run, i, error;
1114         int32_t paced_cnt = 0;
1115         int32_t loop_cnt = 0;
1116         int32_t did_prefetch = 0;
1117         int32_t prefetch_ninp = 0;
1118         int32_t prefetch_tp = 0;
1119         int32_t wrap_loop_cnt = 0;
1120         int32_t slot_pos_of_endpoint = 0;
1121         int32_t orig_exit_slot;
1122         int8_t completed_measure = 0, seen_endpoint = 0;
1123
1124         HPTS_MTX_ASSERT(hpts);
1125         NET_EPOCH_ASSERT();
1126         /* record previous info for any logging */
1127         hpts->saved_lasttick = hpts->p_lasttick;
1128         hpts->saved_curtick = hpts->p_curtick;
1129         hpts->saved_curslot = hpts->p_cur_slot;
1130         hpts->saved_prev_slot = hpts->p_prev_slot;
1131
1132         hpts->p_lasttick = hpts->p_curtick;
1133         hpts->p_curtick = tcp_gethptstick(&tv);
1134         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1135         orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1136         if ((hpts->p_on_queue_cnt == 0) ||
1137             (hpts->p_lasttick == hpts->p_curtick)) {
1138                 /*
1139                  * No time has yet passed,
1140                  * or nothing to do.
1141                  */
1142                 hpts->p_prev_slot = hpts->p_cur_slot;
1143                 hpts->p_lasttick = hpts->p_curtick;
1144                 goto no_run;
1145         }
1146 again:
1147         hpts->p_wheel_complete = 0;
1148         HPTS_MTX_ASSERT(hpts);
1149         slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1150         if (((hpts->p_curtick - hpts->p_lasttick) >
1151              ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1152             (hpts->p_on_queue_cnt != 0)) {
1153                 /*
1154                  * Wheel wrap is occuring, basically we
1155                  * are behind and the distance between
1156                  * run's has spread so much it has exceeded
1157                  * the time on the wheel (1.024 seconds). This
1158                  * is ugly and should NOT be happening. We
1159                  * need to run the entire wheel. We last processed
1160                  * p_prev_slot, so that needs to be the last slot
1161                  * we run. The next slot after that should be our
1162                  * reserved first slot for new, and then starts
1163                  * the running position. Now the problem is the
1164                  * reserved "not to yet" place does not exist
1165                  * and there may be inp's in there that need
1166                  * running. We can merge those into the
1167                  * first slot at the head.
1168                  */
1169                 wrap_loop_cnt++;
1170                 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1171                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1172                 /*
1173                  * Adjust p_cur_slot to be where we are starting from
1174                  * hopefully we will catch up (fat chance if something
1175                  * is broken this bad :( )
1176                  */
1177                 hpts->p_cur_slot = hpts->p_prev_slot;
1178                 /*
1179                  * The next slot has guys to run too, and that would
1180                  * be where we would normally start, lets move them into
1181                  * the next slot (p_prev_slot + 2) so that we will
1182                  * run them, the extra 10usecs of late (by being
1183                  * put behind) does not really matter in this situation.
1184                  */
1185                 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1186                     inp_hpts) {
1187                         MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
1188                         MPASS(inp->inp_hpts_gencnt ==
1189                             hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1190                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1191
1192                         /*
1193                          * Update gencnt and nextslot accordingly to match
1194                          * the new location. This is safe since it takes both
1195                          * the INP lock and the pacer mutex to change the
1196                          * inp_hptsslot and inp_hpts_gencnt.
1197                          */
1198                         inp->inp_hpts_gencnt =
1199                             hpts->p_hptss[hpts->p_runningslot].gencnt;
1200                         inp->inp_hptsslot = hpts->p_runningslot;
1201                 }
1202                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1203                     &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
1204                 hpts->p_hptss[hpts->p_runningslot].count +=
1205                     hpts->p_hptss[hpts->p_nxt_slot].count;
1206                 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1207                 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1208                 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1209                 counter_u64_add(wheel_wrap, 1);
1210         } else {
1211                 /*
1212                  * Nxt slot is always one after p_runningslot though
1213                  * its not used usually unless we are doing wheel wrap.
1214                  */
1215                 hpts->p_nxt_slot = hpts->p_prev_slot;
1216                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1217         }
1218         if (hpts->p_on_queue_cnt == 0) {
1219                 goto no_one;
1220         }
1221         for (i = 0; i < slots_to_run; i++) {
1222                 struct inpcb *inp, *ninp;
1223                 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
1224                 struct hptsh *hptsh;
1225                 uint32_t runningslot;
1226
1227                 /*
1228                  * Calculate our delay, if there are no extra ticks there
1229                  * was not any (i.e. if slots_to_run == 1, no delay).
1230                  */
1231                 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1232                     HPTS_TICKS_PER_SLOT;
1233
1234                 runningslot = hpts->p_runningslot;
1235                 hptsh = &hpts->p_hptss[runningslot];
1236                 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
1237                 hpts->p_on_queue_cnt -= hptsh->count;
1238                 hptsh->count = 0;
1239                 hptsh->gencnt++;
1240
1241                 HPTS_UNLOCK(hpts);
1242
1243                 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
1244                         bool set_cpu;
1245
1246                         if (ninp != NULL) {
1247                                 /* We prefetch the next inp if possible */
1248                                 kern_prefetch(ninp, &prefetch_ninp);
1249                                 prefetch_ninp = 1;
1250                         }
1251
1252                         /* For debugging */
1253                         if (seen_endpoint == 0) {
1254                                 seen_endpoint = 1;
1255                                 orig_exit_slot = slot_pos_of_endpoint =
1256                                     runningslot;
1257                         } else if (completed_measure == 0) {
1258                                 /* Record the new position */
1259                                 orig_exit_slot = runningslot;
1260                         }
1261                         total_slots_processed++;
1262                         paced_cnt++;
1263
1264                         INP_WLOCK(inp);
1265                         if (inp->inp_hpts_cpu_set == 0) {
1266                                 set_cpu = true;
1267                         } else {
1268                                 set_cpu = false;
1269                         }
1270
1271                         if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
1272                                 if (inp->inp_hptsslot == -1) {
1273                                         inp->inp_in_hpts = IHPTS_NONE;
1274                                         if (in_pcbrele_wlocked(inp) == false)
1275                                                 INP_WUNLOCK(inp);
1276                                 } else {
1277                                         HPTS_LOCK(hpts);
1278                                         inp_hpts_insert(inp, hpts);
1279                                         HPTS_UNLOCK(hpts);
1280                                         INP_WUNLOCK(inp);
1281                                 }
1282                                 continue;
1283                         }
1284
1285                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1286                         MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
1287                         KASSERT(runningslot == inp->inp_hptsslot,
1288                                 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1289                                  hpts, inp, runningslot, inp->inp_hptsslot));
1290
1291                         if (inp->inp_hpts_request) {
1292                                 /*
1293                                  * This guy is deferred out further in time
1294                                  * then our wheel had available on it.
1295                                  * Push him back on the wheel or run it
1296                                  * depending.
1297                                  */
1298                                 uint32_t maxslots, last_slot, remaining_slots;
1299
1300                                 remaining_slots = slots_to_run - (i + 1);
1301                                 if (inp->inp_hpts_request > remaining_slots) {
1302                                         HPTS_LOCK(hpts);
1303                                         /*
1304                                          * How far out can we go?
1305                                          */
1306                                         maxslots = max_slots_available(hpts,
1307                                             hpts->p_cur_slot, &last_slot);
1308                                         if (maxslots >= inp->inp_hpts_request) {
1309                                                 /* We can place it finally to
1310                                                  * be processed.  */
1311                                                 inp->inp_hptsslot = hpts_slot(
1312                                                     hpts->p_runningslot,
1313                                                     inp->inp_hpts_request);
1314                                                 inp->inp_hpts_request = 0;
1315                                         } else {
1316                                                 /* Work off some more time */
1317                                                 inp->inp_hptsslot = last_slot;
1318                                                 inp->inp_hpts_request -=
1319                                                     maxslots;
1320                                         }
1321                                         inp_hpts_insert(inp, hpts);
1322                                         HPTS_UNLOCK(hpts);
1323                                         INP_WUNLOCK(inp);
1324                                         continue;
1325                                 }
1326                                 inp->inp_hpts_request = 0;
1327                                 /* Fall through we will so do it now */
1328                         }
1329
1330                         inp_hpts_release(inp);
1331                         tp = intotcpcb(inp);
1332                         MPASS(tp);
1333                         if (set_cpu) {
1334                                 /*
1335                                  * Setup so the next time we will move to
1336                                  * the right CPU. This should be a rare
1337                                  * event. It will sometimes happens when we
1338                                  * are the client side (usually not the
1339                                  * server). Somehow tcp_output() gets called
1340                                  * before the tcp_do_segment() sets the
1341                                  * intial state. This means the r_cpu and
1342                                  * r_hpts_cpu is 0. We get on the hpts, and
1343                                  * then tcp_input() gets called setting up
1344                                  * the r_cpu to the correct value. The hpts
1345                                  * goes off and sees the mis-match. We
1346                                  * simply correct it here and the CPU will
1347                                  * switch to the new hpts nextime the tcb
1348                                  * gets added to the the hpts (not this one)
1349                                  * :-)
1350                                  */
1351                                 tcp_set_hpts(inp);
1352                         }
1353                         CURVNET_SET(inp->inp_vnet);
1354                         /* Lets do any logging that we might want to */
1355                         if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1356                                 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1357                         }
1358
1359                         if (tp->t_fb_ptr != NULL) {
1360                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1361                                 did_prefetch = 1;
1362                         }
1363                         if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1364                                 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1365                                 if (error) {
1366                                         /* The input killed the connection */
1367                                         goto skip_pacing;
1368                                 }
1369                         }
1370                         inp->inp_hpts_calls = 1;
1371                         error = tcp_output(tp);
1372                         if (error < 0)
1373                                 goto skip_pacing;
1374                         inp->inp_hpts_calls = 0;
1375                         if (ninp && ninp->inp_ppcb) {
1376                                 /*
1377                                  * If we have a nxt inp, see if we can
1378                                  * prefetch its ppcb. Note this may seem
1379                                  * "risky" since we have no locks (other
1380                                  * than the previous inp) and there no
1381                                  * assurance that ninp was not pulled while
1382                                  * we were processing inp and freed. If this
1383                                  * occured it could mean that either:
1384                                  *
1385                                  * a) Its NULL (which is fine we won't go
1386                                  * here) <or> b) Its valid (which is cool we
1387                                  * will prefetch it) <or> c) The inp got
1388                                  * freed back to the slab which was
1389                                  * reallocated. Then the piece of memory was
1390                                  * re-used and something else (not an
1391                                  * address) is in inp_ppcb. If that occurs
1392                                  * we don't crash, but take a TLB shootdown
1393                                  * performance hit (same as if it was NULL
1394                                  * and we tried to pre-fetch it).
1395                                  *
1396                                  * Considering that the likelyhood of <c> is
1397                                  * quite rare we will take a risk on doing
1398                                  * this. If performance drops after testing
1399                                  * we can always take this out. NB: the
1400                                  * kern_prefetch on amd64 actually has
1401                                  * protection against a bad address now via
1402                                  * the DMAP_() tests. This will prevent the
1403                                  * TLB hit, and instead if <c> occurs just
1404                                  * cause us to load cache with a useless
1405                                  * address (to us).
1406                                  */
1407                                 kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1408                                 prefetch_tp = 1;
1409                         }
1410                         INP_WUNLOCK(inp);
1411                 skip_pacing:
1412                         CURVNET_RESTORE();
1413                 }
1414                 if (seen_endpoint) {
1415                         /*
1416                          * We now have a accurate distance between
1417                          * slot_pos_of_endpoint <-> orig_exit_slot
1418                          * to tell us how late we were, orig_exit_slot
1419                          * is where we calculated the end of our cycle to
1420                          * be when we first entered.
1421                          */
1422                         completed_measure = 1;
1423                 }
1424                 HPTS_LOCK(hpts);
1425                 hpts->p_runningslot++;
1426                 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1427                         hpts->p_runningslot = 0;
1428                 }
1429         }
1430 no_one:
1431         HPTS_MTX_ASSERT(hpts);
1432         hpts->p_delayed_by = 0;
1433         /*
1434          * Check to see if we took an excess amount of time and need to run
1435          * more ticks (if we did not hit eno-bufs).
1436          */
1437         hpts->p_prev_slot = hpts->p_cur_slot;
1438         hpts->p_lasttick = hpts->p_curtick;
1439         if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1440                 /*
1441                  * Something is serious slow we have
1442                  * looped through processing the wheel
1443                  * and by the time we cleared the
1444                  * needs to run max_pacer_loops time
1445                  * we still needed to run. That means
1446                  * the system is hopelessly behind and
1447                  * can never catch up :(
1448                  *
1449                  * We will just lie to this thread
1450                  * and let it thing p_curtick is
1451                  * correct. When it next awakens
1452                  * it will find itself further behind.
1453                  */
1454                 if (from_callout)
1455                         counter_u64_add(hpts_hopelessly_behind, 1);
1456                 goto no_run;
1457         }
1458         hpts->p_curtick = tcp_gethptstick(&tv);
1459         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1460         if (seen_endpoint == 0) {
1461                 /* We saw no endpoint but we may be looping */
1462                 orig_exit_slot = hpts->p_cur_slot;
1463         }
1464         if ((wrap_loop_cnt < 2) &&
1465             (hpts->p_lasttick != hpts->p_curtick)) {
1466                 counter_u64_add(hpts_loops, 1);
1467                 loop_cnt++;
1468                 goto again;
1469         }
1470 no_run:
1471         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1472         /*
1473          * Set flag to tell that we are done for
1474          * any slot input that happens during
1475          * input.
1476          */
1477         hpts->p_wheel_complete = 1;
1478         /*
1479          * Now did we spend too long running input and need to run more ticks?
1480          * Note that if wrap_loop_cnt < 2 then we should have the conditions
1481          * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1482          * is greater than 2, then the condtion most likely are *not* true.
1483          * Also if we are called not from the callout, we don't run the wheel
1484          * multiple times so the slots may not align either.
1485          */
1486         KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1487                  (wrap_loop_cnt >= 2) || (from_callout == 0)),
1488                 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1489                  hpts->p_prev_slot, hpts->p_cur_slot));
1490         KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1491                  || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1492                 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1493                  hpts->p_lasttick, hpts->p_curtick));
1494         if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1495                 hpts->p_curtick = tcp_gethptstick(&tv);
1496                 counter_u64_add(hpts_loops, 1);
1497                 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1498                 goto again;
1499         }
1500
1501         if (from_callout){
1502                 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1503         }
1504         if (seen_endpoint)
1505                 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1506         else
1507                 return (0);
1508 }
1509
1510 void
1511 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1512 {
1513         struct tcp_hpts_entry *hpts;
1514         int failed;
1515
1516         INP_WLOCK_ASSERT(inp);
1517         hpts = tcp_hpts_lock(inp);
1518         if ((inp->inp_in_hpts == 0) &&
1519             (inp->inp_hpts_cpu_set == 0)) {
1520                 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1521                 if (failed == 0)
1522                         inp->inp_hpts_cpu_set = 1;
1523         }
1524         mtx_unlock(&hpts->p_mtx);
1525 }
1526
1527 static void
1528 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1529 {
1530         int ticks_ran;
1531
1532         if (hpts->p_hpts_active) {
1533                 /* Already active */
1534                 return;
1535         }
1536         if (mtx_trylock(&hpts->p_mtx) == 0) {
1537                 /* Someone else got the lock */
1538                 return;
1539         }
1540         if (hpts->p_hpts_active)
1541                 goto out_with_mtx;
1542         hpts->syscall_cnt++;
1543         counter_u64_add(hpts_direct_call, 1);
1544         hpts->p_hpts_active = 1;
1545         ticks_ran = tcp_hptsi(hpts, 0);
1546         /* We may want to adjust the sleep values here */
1547         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1548                 if (ticks_ran > ticks_indicate_less_sleep) {
1549                         struct timeval tv;
1550                         sbintime_t sb;
1551
1552                         hpts->p_mysleep.tv_usec /= 2;
1553                         if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1554                                 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1555                         /* Reschedule with new to value */
1556                         tcp_hpts_set_max_sleep(hpts, 0);
1557                         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1558                         /* Validate its in the right ranges */
1559                         if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1560                                 hpts->overidden_sleep = tv.tv_usec;
1561                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1562                         } else if (tv.tv_usec > dynamic_max_sleep) {
1563                                 /* Lets not let sleep get above this value */
1564                                 hpts->overidden_sleep = tv.tv_usec;
1565                                 tv.tv_usec = dynamic_max_sleep;
1566                         }
1567                         /*
1568                          * In this mode the timer is a backstop to
1569                          * all the userret/lro_flushes so we use
1570                          * the dynamic value and set the on_min_sleep
1571                          * flag so we will not be awoken.
1572                          */
1573                         sb = tvtosbt(tv);
1574                         /* Store off to make visible the actual sleep time */
1575                         hpts->sleeping = tv.tv_usec;
1576                         callout_reset_sbt_on(&hpts->co, sb, 0,
1577                                              hpts_timeout_swi, hpts, hpts->p_cpu,
1578                                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1579                 } else if (ticks_ran < ticks_indicate_more_sleep) {
1580                         /* For the further sleep, don't reschedule  hpts */
1581                         hpts->p_mysleep.tv_usec *= 2;
1582                         if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1583                                 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1584                 }
1585                 hpts->p_on_min_sleep = 1;
1586         }
1587         hpts->p_hpts_active = 0;
1588 out_with_mtx:
1589         HPTS_MTX_ASSERT(hpts);
1590         mtx_unlock(&hpts->p_mtx);
1591 }
1592
1593 static struct tcp_hpts_entry *
1594 tcp_choose_hpts_to_run()
1595 {
1596         int i, oldest_idx, start, end;
1597         uint32_t cts, time_since_ran, calc;
1598
1599         cts = tcp_get_usecs(NULL);
1600         time_since_ran = 0;
1601         /* Default is all one group */
1602         start = 0;
1603         end = tcp_pace.rp_num_hptss;
1604         /*
1605          * If we have more than one L3 group figure out which one
1606          * this CPU is in.
1607          */
1608         if (tcp_pace.grp_cnt > 1) {
1609                 for (i = 0; i < tcp_pace.grp_cnt; i++) {
1610                         if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1611                                 start = tcp_pace.grps[i]->cg_first;
1612                                 end = (tcp_pace.grps[i]->cg_last + 1);
1613                                 break;
1614                         }
1615                 }
1616         }
1617         oldest_idx = -1;
1618         for (i = start; i < end; i++) {
1619                 if (TSTMP_GT(cts, cts_last_ran[i]))
1620                         calc = cts - cts_last_ran[i];
1621                 else
1622                         calc = 0;
1623                 if (calc > time_since_ran) {
1624                         oldest_idx = i;
1625                         time_since_ran = calc;
1626                 }
1627         }
1628         if (oldest_idx >= 0)
1629                 return(tcp_pace.rp_ent[oldest_idx]);
1630         else
1631                 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1632 }
1633
1634
1635 void
1636 tcp_run_hpts(void)
1637 {
1638         static struct tcp_hpts_entry *hpts;
1639         struct epoch_tracker et;
1640
1641         NET_EPOCH_ENTER(et);
1642         hpts = tcp_choose_hpts_to_run();
1643         __tcp_run_hpts(hpts);
1644         NET_EPOCH_EXIT(et);
1645 }
1646
1647
1648 static void
1649 tcp_hpts_thread(void *ctx)
1650 {
1651         struct tcp_hpts_entry *hpts;
1652         struct epoch_tracker et;
1653         struct timeval tv;
1654         sbintime_t sb;
1655         int ticks_ran;
1656
1657         hpts = (struct tcp_hpts_entry *)ctx;
1658         mtx_lock(&hpts->p_mtx);
1659         if (hpts->p_direct_wake) {
1660                 /* Signaled by input or output with low occupancy count. */
1661                 callout_stop(&hpts->co);
1662                 counter_u64_add(hpts_direct_awakening, 1);
1663         } else {
1664                 /* Timed out, the normal case. */
1665                 counter_u64_add(hpts_wake_timeout, 1);
1666                 if (callout_pending(&hpts->co) ||
1667                     !callout_active(&hpts->co)) {
1668                         mtx_unlock(&hpts->p_mtx);
1669                         return;
1670                 }
1671         }
1672         callout_deactivate(&hpts->co);
1673         hpts->p_hpts_wake_scheduled = 0;
1674         NET_EPOCH_ENTER(et);
1675         if (hpts->p_hpts_active) {
1676                 /*
1677                  * We are active already. This means that a syscall
1678                  * trap or LRO is running in behalf of hpts. In that case
1679                  * we need to double our timeout since there seems to be
1680                  * enough activity in the system that we don't need to
1681                  * run as often (if we were not directly woken).
1682                  */
1683                 if (hpts->p_direct_wake == 0) {
1684                         counter_u64_add(hpts_back_tosleep, 1);
1685                         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1686                                 hpts->p_mysleep.tv_usec *= 2;
1687                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1688                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1689                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
1690                                 hpts->p_on_min_sleep = 1;
1691                         } else {
1692                                 /*
1693                                  * Here we have low count on the wheel, but
1694                                  * somehow we still collided with one of the
1695                                  * connections. Lets go back to sleep for a
1696                                  * min sleep time, but clear the flag so we
1697                                  * can be awoken by insert.
1698                                  */
1699                                 hpts->p_on_min_sleep = 0;
1700                                 tv.tv_usec = tcp_min_hptsi_time;
1701                         }
1702                 } else {
1703                         /*
1704                          * Directly woken most likely to reset the
1705                          * callout time.
1706                          */
1707                         tv.tv_sec = 0;
1708                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1709                 }
1710                 goto back_to_sleep;
1711         }
1712         hpts->sleeping = 0;
1713         hpts->p_hpts_active = 1;
1714         ticks_ran = tcp_hptsi(hpts, 1);
1715         tv.tv_sec = 0;
1716         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1717         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1718                 if(hpts->p_direct_wake == 0) {
1719                         /*
1720                          * Only adjust sleep time if we were
1721                          * called from the callout i.e. direct_wake == 0.
1722                          */
1723                         if (ticks_ran < ticks_indicate_more_sleep) {
1724                                 hpts->p_mysleep.tv_usec *= 2;
1725                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1726                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1727                         } else if (ticks_ran > ticks_indicate_less_sleep) {
1728                                 hpts->p_mysleep.tv_usec /= 2;
1729                                 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1730                                         hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1731                         }
1732                 }
1733                 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1734                         hpts->overidden_sleep = tv.tv_usec;
1735                         tv.tv_usec = hpts->p_mysleep.tv_usec;
1736                 } else if (tv.tv_usec > dynamic_max_sleep) {
1737                         /* Lets not let sleep get above this value */
1738                         hpts->overidden_sleep = tv.tv_usec;
1739                         tv.tv_usec = dynamic_max_sleep;
1740                 }
1741                 /*
1742                  * In this mode the timer is a backstop to
1743                  * all the userret/lro_flushes so we use
1744                  * the dynamic value and set the on_min_sleep
1745                  * flag so we will not be awoken.
1746                  */
1747                 hpts->p_on_min_sleep = 1;
1748         } else if (hpts->p_on_queue_cnt == 0)  {
1749                 /*
1750                  * No one on the wheel, please wake us up
1751                  * if you insert on the wheel.
1752                  */
1753                 hpts->p_on_min_sleep = 0;
1754                 hpts->overidden_sleep = 0;
1755         } else {
1756                 /*
1757                  * We hit here when we have a low number of
1758                  * clients on the wheel (our else clause).
1759                  * We may need to go on min sleep, if we set
1760                  * the flag we will not be awoken if someone
1761                  * is inserted ahead of us. Clearing the flag
1762                  * means we can be awoken. This is "old mode"
1763                  * where the timer is what runs hpts mainly.
1764                  */
1765                 if (tv.tv_usec < tcp_min_hptsi_time) {
1766                         /*
1767                          * Yes on min sleep, which means
1768                          * we cannot be awoken.
1769                          */
1770                         hpts->overidden_sleep = tv.tv_usec;
1771                         tv.tv_usec = tcp_min_hptsi_time;
1772                         hpts->p_on_min_sleep = 1;
1773                 } else {
1774                         /* Clear the min sleep flag */
1775                         hpts->overidden_sleep = 0;
1776                         hpts->p_on_min_sleep = 0;
1777                 }
1778         }
1779         HPTS_MTX_ASSERT(hpts);
1780         hpts->p_hpts_active = 0;
1781 back_to_sleep:
1782         hpts->p_direct_wake = 0;
1783         sb = tvtosbt(tv);
1784         /* Store off to make visible the actual sleep time */
1785         hpts->sleeping = tv.tv_usec;
1786         callout_reset_sbt_on(&hpts->co, sb, 0,
1787                              hpts_timeout_swi, hpts, hpts->p_cpu,
1788                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1789         NET_EPOCH_EXIT(et);
1790         mtx_unlock(&hpts->p_mtx);
1791 }
1792
1793 #undef  timersub
1794
1795 static int32_t
1796 hpts_count_level(struct cpu_group *cg)
1797 {
1798         int32_t count_l3, i;
1799
1800         count_l3 = 0;
1801         if (cg->cg_level == CG_SHARE_L3)
1802                 count_l3++;
1803         /* Walk all the children looking for L3 */
1804         for (i = 0; i < cg->cg_children; i++) {
1805                 count_l3 += hpts_count_level(&cg->cg_child[i]);
1806         }
1807         return (count_l3);
1808 }
1809
1810 static void
1811 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1812 {
1813         int32_t idx, i;
1814
1815         idx = *at;
1816         if (cg->cg_level == CG_SHARE_L3) {
1817                 grps[idx] = cg;
1818                 idx++;
1819                 if (idx == max) {
1820                         *at = idx;
1821                         return;
1822                 }
1823         }
1824         *at = idx;
1825         /* Walk all the children looking for L3 */
1826         for (i = 0; i < cg->cg_children; i++) {
1827                 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1828         }
1829 }
1830
1831 static void
1832 tcp_init_hptsi(void *st)
1833 {
1834         struct cpu_group *cpu_top;
1835         int32_t error __diagused;
1836         int32_t i, j, bound = 0, created = 0;
1837         size_t sz, asz;
1838         struct timeval tv;
1839         sbintime_t sb;
1840         struct tcp_hpts_entry *hpts;
1841         struct pcpu *pc;
1842         char unit[16];
1843         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1844         int count, domain;
1845
1846 #ifdef SMP
1847         cpu_top = smp_topo();
1848 #else
1849         cpu_top = NULL;
1850 #endif
1851         tcp_pace.rp_num_hptss = ncpus;
1852         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1853         hpts_loops = counter_u64_alloc(M_WAITOK);
1854         back_tosleep = counter_u64_alloc(M_WAITOK);
1855         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1856         wheel_wrap = counter_u64_alloc(M_WAITOK);
1857         hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1858         hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1859         hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1860         hpts_direct_call = counter_u64_alloc(M_WAITOK);
1861         cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1862         cpu_uses_random = counter_u64_alloc(M_WAITOK);
1863
1864         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1865         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1866         sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1867         cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1868         tcp_pace.grp_cnt = 0;
1869         if (cpu_top == NULL) {
1870                 tcp_pace.grp_cnt = 1;
1871         } else {
1872                 /* Find out how many cache level 3 domains we have */
1873                 count = 0;
1874                 tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1875                 if (tcp_pace.grp_cnt == 0) {
1876                         tcp_pace.grp_cnt = 1;
1877                 }
1878                 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1879                 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1880                 /* Now populate the groups */
1881                 if (tcp_pace.grp_cnt == 1) {
1882                         /*
1883                          * All we need is the top level all cpu's are in
1884                          * the same cache so when we use grp[0]->cg_mask
1885                          * with the cg_first <-> cg_last it will include
1886                          * all cpu's in it. The level here is probably
1887                          * zero which is ok.
1888                          */
1889                         tcp_pace.grps[0] = cpu_top;
1890                 } else {
1891                         /*
1892                          * Here we must find all the level three cache domains
1893                          * and setup our pointers to them.
1894                          */
1895                         count = 0;
1896                         hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1897                 }
1898         }
1899         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1900         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1901                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1902                     M_TCPHPTS, M_WAITOK | M_ZERO);
1903                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1904                 hpts = tcp_pace.rp_ent[i];
1905                 /*
1906                  * Init all the hpts structures that are not specifically
1907                  * zero'd by the allocations. Also lets attach them to the
1908                  * appropriate sysctl block as well.
1909                  */
1910                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1911                     "hpts", MTX_DEF | MTX_DUPOK);
1912                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1913                         TAILQ_INIT(&hpts->p_hptss[j].head);
1914                         hpts->p_hptss[j].count = 0;
1915                         hpts->p_hptss[j].gencnt = 0;
1916                 }
1917                 sysctl_ctx_init(&hpts->hpts_ctx);
1918                 sprintf(unit, "%d", i);
1919                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1920                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1921                     OID_AUTO,
1922                     unit,
1923                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1924                     "");
1925                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1926                     SYSCTL_CHILDREN(hpts->hpts_root),
1927                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
1928                     &hpts->p_on_queue_cnt, 0,
1929                     "Count TCB's awaiting output processing");
1930                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1931                     SYSCTL_CHILDREN(hpts->hpts_root),
1932                     OID_AUTO, "active", CTLFLAG_RD,
1933                     &hpts->p_hpts_active, 0,
1934                     "Is the hpts active");
1935                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1936                     SYSCTL_CHILDREN(hpts->hpts_root),
1937                     OID_AUTO, "curslot", CTLFLAG_RD,
1938                     &hpts->p_cur_slot, 0,
1939                     "What the current running pacers goal");
1940                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1941                     SYSCTL_CHILDREN(hpts->hpts_root),
1942                     OID_AUTO, "runtick", CTLFLAG_RD,
1943                     &hpts->p_runningslot, 0,
1944                     "What the running pacers current slot is");
1945                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1946                     SYSCTL_CHILDREN(hpts->hpts_root),
1947                     OID_AUTO, "curtick", CTLFLAG_RD,
1948                     &hpts->p_curtick, 0,
1949                     "What the running pacers last tick mapped to the wheel was");
1950                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1951                     SYSCTL_CHILDREN(hpts->hpts_root),
1952                     OID_AUTO, "lastran", CTLFLAG_RD,
1953                     &cts_last_ran[i], 0,
1954                     "The last usec tick that this hpts ran");
1955                 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1956                     SYSCTL_CHILDREN(hpts->hpts_root),
1957                     OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1958                     &hpts->p_mysleep.tv_usec,
1959                     "What the running pacers is using for p_mysleep.tv_usec");
1960                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1961                     SYSCTL_CHILDREN(hpts->hpts_root),
1962                     OID_AUTO, "now_sleeping", CTLFLAG_RD,
1963                     &hpts->sleeping, 0,
1964                     "What the running pacers is actually sleeping for");
1965                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1966                     SYSCTL_CHILDREN(hpts->hpts_root),
1967                     OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1968                     &hpts->syscall_cnt, 0,
1969                     "How many times we had syscalls on this hpts");
1970
1971                 hpts->p_hpts_sleep_time = hpts_sleep_max;
1972                 hpts->p_num = i;
1973                 hpts->p_curtick = tcp_gethptstick(&tv);
1974                 cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1975                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1976                 hpts->p_cpu = 0xffff;
1977                 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1978                 callout_init(&hpts->co, 1);
1979         }
1980         /* Don't try to bind to NUMA domains if we don't have any */
1981         if (vm_ndomains == 1 && tcp_bind_threads == 2)
1982                 tcp_bind_threads = 0;
1983
1984         /*
1985          * Now lets start ithreads to handle the hptss.
1986          */
1987         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1988                 hpts = tcp_pace.rp_ent[i];
1989                 hpts->p_cpu = i;
1990
1991                 error = swi_add(&hpts->ie, "hpts",
1992                     tcp_hpts_thread, (void *)hpts,
1993                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1994                 KASSERT(error == 0,
1995                         ("Can't add hpts:%p i:%d err:%d",
1996                          hpts, i, error));
1997                 created++;
1998                 hpts->p_mysleep.tv_sec = 0;
1999                 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
2000                 if (tcp_bind_threads == 1) {
2001                         if (intr_event_bind(hpts->ie, i) == 0)
2002                                 bound++;
2003                 } else if (tcp_bind_threads == 2) {
2004                         /* Find the group for this CPU (i) and bind into it */
2005                         for (j = 0; j < tcp_pace.grp_cnt; j++) {
2006                                 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
2007                                         if (intr_event_bind_ithread_cpuset(hpts->ie,
2008                                                 &tcp_pace.grps[j]->cg_mask) == 0) {
2009                                                 bound++;
2010                                                 pc = pcpu_find(i);
2011                                                 domain = pc->pc_domain;
2012                                                 count = hpts_domains[domain].count;
2013                                                 hpts_domains[domain].cpu[count] = i;
2014                                                 hpts_domains[domain].count++;
2015                                                 break;
2016                                         }
2017                                 }
2018                         }
2019                 }
2020                 tv.tv_sec = 0;
2021                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
2022                 hpts->sleeping = tv.tv_usec;
2023                 sb = tvtosbt(tv);
2024                 callout_reset_sbt_on(&hpts->co, sb, 0,
2025                                      hpts_timeout_swi, hpts, hpts->p_cpu,
2026                                      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2027         }
2028         /*
2029          * If we somehow have an empty domain, fall back to choosing
2030          * among all htps threads.
2031          */
2032         for (i = 0; i < vm_ndomains; i++) {
2033                 if (hpts_domains[i].count == 0) {
2034                         tcp_bind_threads = 0;
2035                         break;
2036                 }
2037         }
2038         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2039             created, bound,
2040             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2041 #ifdef INVARIANTS
2042         printf("HPTS is in INVARIANT mode!!\n");
2043 #endif
2044 }
2045
2046 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2047 MODULE_VERSION(tcphpts, 1);