]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_sack.c
bhnd(9): Fix a few mandoc related issues
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_sack.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *      The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
33  */
34
35 /*-
36  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *      This product includes software developed by the University of
50  *      California, Berkeley and its contributors.
51  *      This product includes software developed at the Information
52  *      Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_inet.h"
79 #include "opt_inet6.h"
80 #include "opt_tcpdebug.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/proc.h>           /* for proc0 declaration */
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/syslog.h>
93 #include <sys/systm.h>
94
95 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
96
97 #include <vm/uma.h>
98
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/route.h>
102 #include <net/vnet.h>
103
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip6.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/ip6_var.h>
114 #include <netinet6/in6_pcb.h>
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif /* TCPDEBUG */
125
126 #include <machine/in_cksum.h>
127
128 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
129 #define V_sack_hole_zone                VNET(sack_hole_zone)
130
131 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "TCP SACK");
133 VNET_DEFINE(int, tcp_do_sack) = 1;
134 #define V_tcp_do_sack                   VNET(tcp_do_sack)
135 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
136     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
137
138 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
139 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(tcp_sack_maxholes), 0,
141     "Maximum number of TCP SACK holes allowed per connection");
142
143 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
144 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_sack_globalmaxholes), 0,
146     "Global maximum number of TCP SACK holes");
147
148 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
149 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
150     &VNET_NAME(tcp_sack_globalholes), 0,
151     "Global number of TCP SACK holes currently allocated");
152
153 /*
154  * This function will find overlaps with the currently stored sackblocks
155  * and add any overlap as a dsack block upfront
156  */
157 void
158 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
159 {
160         struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
161         int i, j, n, identical;
162         tcp_seq start, end;
163
164         INP_WLOCK_ASSERT(tp->t_inpcb);
165
166         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
167
168         if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
169             ((rcv_end == tp->rcv_nxt) &&
170              (tp->rcv_numsacks > 0 ) &&
171              (tp->sackblks[0].end == tp->rcv_nxt))) {
172                 saved_blks[0].start = rcv_start;
173                 saved_blks[0].end = rcv_end;
174         } else {
175                 saved_blks[0].start = saved_blks[0].end = 0;
176         }
177
178         head_blk.start = head_blk.end = 0;
179         mid_blk.start = rcv_start;
180         mid_blk.end = rcv_end;
181         identical = 0;
182
183         for (i = 0; i < tp->rcv_numsacks; i++) {
184                 start = tp->sackblks[i].start;
185                 end = tp->sackblks[i].end;
186                 if (SEQ_LT(rcv_end, start)) {
187                         /* pkt left to sack blk */
188                         continue;
189                 }
190                 if (SEQ_GT(rcv_start, end)) {
191                         /* pkt right to sack blk */
192                         continue;
193                 }
194                 if (SEQ_GT(tp->rcv_nxt, end)) {
195                         if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
196                             (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
197                             (head_blk.start == head_blk.end))) {
198                                 head_blk.start = SEQ_MAX(rcv_start, start);
199                                 head_blk.end = SEQ_MIN(rcv_end, end);
200                         }
201                         continue;
202                 }
203                 if (((head_blk.start == head_blk.end) ||
204                      SEQ_LT(start, head_blk.start)) &&
205                      (SEQ_GT(end, rcv_start) &&
206                       SEQ_LEQ(start, rcv_end))) {
207                         head_blk.start = start;
208                         head_blk.end = end;
209                 }
210                 mid_blk.start = SEQ_MIN(mid_blk.start, start);
211                 mid_blk.end = SEQ_MAX(mid_blk.end, end);
212                 if ((mid_blk.start == start) &&
213                     (mid_blk.end == end))
214                         identical = 1;
215         }
216         if (SEQ_LT(head_blk.start, head_blk.end)) {
217                 /* store overlapping range */
218                 saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
219                 saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
220         }
221         n = 1;
222         /*
223          * Second, if not ACKed, store the SACK block that
224          * overlaps with the DSACK block unless it is identical
225          */
226         if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
227             !((mid_blk.start == saved_blks[0].start) &&
228             (mid_blk.end == saved_blks[0].end))) ||
229             identical == 1) {
230                 saved_blks[n].start = mid_blk.start;
231                 saved_blks[n++].end = mid_blk.end;
232         }
233         for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
234                 if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
235                       SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
236                     (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
237                 saved_blks[n++] = tp->sackblks[j];
238         }
239         j = 0;
240         for (i = 0; i < n; i++) {
241                 /* we can end up with a stale initial entry */
242                 if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
243                         tp->sackblks[j++] = saved_blks[i];
244                 }
245         }
246         tp->rcv_numsacks = j;
247 }
248
249 /*
250  * This function is called upon receipt of new valid data (while not in
251  * header prediction mode), and it updates the ordered list of sacks.
252  */
253 void
254 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
255 {
256         /*
257          * First reported block MUST be the most recent one.  Subsequent
258          * blocks SHOULD be in the order in which they arrived at the
259          * receiver.  These two conditions make the implementation fully
260          * compliant with RFC 2018.
261          */
262         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
263         int num_head, num_saved, i;
264
265         INP_WLOCK_ASSERT(tp->t_inpcb);
266
267         /* Check arguments. */
268         KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
269
270         if ((rcv_start == rcv_end) &&
271             (tp->rcv_numsacks >= 1) &&
272             (rcv_end == tp->sackblks[0].end)) {
273                 /* retaining DSACK block below rcv_nxt (todrop) */
274                 head_blk = tp->sackblks[0];
275         } else {
276                 /* SACK block for the received segment. */
277                 head_blk.start = rcv_start;
278                 head_blk.end = rcv_end;
279         }
280
281         /*
282          * Merge updated SACK blocks into head_blk, and save unchanged SACK
283          * blocks into saved_blks[].  num_saved will have the number of the
284          * saved SACK blocks.
285          */
286         num_saved = 0;
287         for (i = 0; i < tp->rcv_numsacks; i++) {
288                 tcp_seq start = tp->sackblks[i].start;
289                 tcp_seq end = tp->sackblks[i].end;
290                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
291                         /*
292                          * Discard this SACK block.
293                          */
294                 } else if (SEQ_LEQ(head_blk.start, end) &&
295                            SEQ_GEQ(head_blk.end, start)) {
296                         /*
297                          * Merge this SACK block into head_blk.  This SACK
298                          * block itself will be discarded.
299                          */
300                         /*
301                          * |-|
302                          *   |---|  merge
303                          *
304                          *     |-|
305                          * |---|    merge
306                          *
307                          * |-----|
308                          *   |-|    DSACK smaller
309                          *
310                          *   |-|
311                          * |-----|  DSACK smaller
312                          */
313                         if (head_blk.start == end)
314                                 head_blk.start = start;
315                         else if (head_blk.end == start)
316                                 head_blk.end = end;
317                         else {
318                                 if (SEQ_LT(head_blk.start, start)) {
319                                         tcp_seq temp = start;
320                                         start = head_blk.start;
321                                         head_blk.start = temp;
322                                 }
323                                 if (SEQ_GT(head_blk.end, end)) {
324                                         tcp_seq temp = end;
325                                         end = head_blk.end;
326                                         head_blk.end = temp;
327                                 }
328                                 if ((head_blk.start != start) ||
329                                     (head_blk.end != end)) {
330                                         if ((num_saved >= 1) &&
331                                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
332                                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
333                                                 num_saved--;
334                                         saved_blks[num_saved].start = start;
335                                         saved_blks[num_saved].end = end;
336                                         num_saved++;
337                                 }
338                         }
339                 } else {
340                         /*
341                          * This block supercedes the prior block
342                          */
343                         if ((num_saved >= 1) &&
344                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
345                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
346                                 num_saved--;
347                         /*
348                          * Save this SACK block.
349                          */
350                         saved_blks[num_saved].start = start;
351                         saved_blks[num_saved].end = end;
352                         num_saved++;
353                 }
354         }
355
356         /*
357          * Update SACK list in tp->sackblks[].
358          */
359         num_head = 0;
360         if (SEQ_LT(rcv_start, rcv_end)) {
361                 /*
362                  * The received data segment is an out-of-order segment.  Put
363                  * head_blk at the top of SACK list.
364                  */
365                 tp->sackblks[0] = head_blk;
366                 num_head = 1;
367                 /*
368                  * If the number of saved SACK blocks exceeds its limit,
369                  * discard the last SACK block.
370                  */
371                 if (num_saved >= MAX_SACK_BLKS)
372                         num_saved--;
373         }
374         if ((rcv_start == rcv_end) &&
375             (rcv_start == tp->sackblks[0].end)) {
376                 num_head = 1;
377         }
378         if (num_saved > 0) {
379                 /*
380                  * Copy the saved SACK blocks back.
381                  */
382                 bcopy(saved_blks, &tp->sackblks[num_head],
383                       sizeof(struct sackblk) * num_saved);
384         }
385
386         /* Save the number of SACK blocks. */
387         tp->rcv_numsacks = num_head + num_saved;
388 }
389
390 void
391 tcp_clean_dsack_blocks(struct tcpcb *tp)
392 {
393         struct sackblk saved_blks[MAX_SACK_BLKS];
394         int num_saved, i;
395
396         INP_WLOCK_ASSERT(tp->t_inpcb);
397         /*
398          * Clean up any DSACK blocks that
399          * are in our queue of sack blocks.
400          *
401          */
402         num_saved = 0;
403         for (i = 0; i < tp->rcv_numsacks; i++) {
404                 tcp_seq start = tp->sackblks[i].start;
405                 tcp_seq end = tp->sackblks[i].end;
406                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
407                         /*
408                          * Discard this D-SACK block.
409                          */
410                         continue;
411                 }
412                 /*
413                  * Save this SACK block.
414                  */
415                 saved_blks[num_saved].start = start;
416                 saved_blks[num_saved].end = end;
417                 num_saved++;
418         }
419         if (num_saved > 0) {
420                 /*
421                  * Copy the saved SACK blocks back.
422                  */
423                 bcopy(saved_blks, &tp->sackblks[0],
424                       sizeof(struct sackblk) * num_saved);
425         }
426         tp->rcv_numsacks = num_saved;
427 }
428
429 /*
430  * Delete all receiver-side SACK information.
431  */
432 void
433 tcp_clean_sackreport(struct tcpcb *tp)
434 {
435         int i;
436
437         INP_WLOCK_ASSERT(tp->t_inpcb);
438         tp->rcv_numsacks = 0;
439         for (i = 0; i < MAX_SACK_BLKS; i++)
440                 tp->sackblks[i].start = tp->sackblks[i].end=0;
441 }
442
443 /*
444  * Allocate struct sackhole.
445  */
446 static struct sackhole *
447 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
448 {
449         struct sackhole *hole;
450
451         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
452             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
453                 TCPSTAT_INC(tcps_sack_sboverflow);
454                 return NULL;
455         }
456
457         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
458         if (hole == NULL)
459                 return NULL;
460
461         hole->start = start;
462         hole->end = end;
463         hole->rxmit = start;
464
465         tp->snd_numholes++;
466         atomic_add_int(&V_tcp_sack_globalholes, 1);
467
468         return hole;
469 }
470
471 /*
472  * Free struct sackhole.
473  */
474 static void
475 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
476 {
477
478         uma_zfree(V_sack_hole_zone, hole);
479
480         tp->snd_numholes--;
481         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
482
483         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
484         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
485 }
486
487 /*
488  * Insert new SACK hole into scoreboard.
489  */
490 static struct sackhole *
491 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
492     struct sackhole *after)
493 {
494         struct sackhole *hole;
495
496         /* Allocate a new SACK hole. */
497         hole = tcp_sackhole_alloc(tp, start, end);
498         if (hole == NULL)
499                 return NULL;
500
501         /* Insert the new SACK hole into scoreboard. */
502         if (after != NULL)
503                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
504         else
505                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
506
507         /* Update SACK hint. */
508         if (tp->sackhint.nexthole == NULL)
509                 tp->sackhint.nexthole = hole;
510
511         return hole;
512 }
513
514 /*
515  * Remove SACK hole from scoreboard.
516  */
517 static void
518 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
519 {
520
521         /* Update SACK hint. */
522         if (tp->sackhint.nexthole == hole)
523                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
524
525         /* Remove this SACK hole. */
526         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
527
528         /* Free this SACK hole. */
529         tcp_sackhole_free(tp, hole);
530 }
531
532 /*
533  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
534  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
535  * the sequence space).
536  * Returns 1 if incoming ACK has previously unknown SACK information,
537  * 0 otherwise.
538  */
539 int
540 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
541 {
542         struct sackhole *cur, *temp;
543         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
544         int i, j, num_sack_blks, sack_changed;
545         int delivered_data, left_edge_delta;
546
547         INP_WLOCK_ASSERT(tp->t_inpcb);
548
549         num_sack_blks = 0;
550         sack_changed = 0;
551         delivered_data = 0;
552         left_edge_delta = 0;
553         /*
554          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
555          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
556          * Account changes to SND.UNA always in delivered data.
557          */
558         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
559                 left_edge_delta = th_ack - tp->snd_una;
560                 sack_blocks[num_sack_blks].start = tp->snd_una;
561                 sack_blocks[num_sack_blks++].end = th_ack;
562         }
563         /*
564          * Append received valid SACK blocks to sack_blocks[], but only if we
565          * received new blocks from the other side.
566          */
567         if (to->to_flags & TOF_SACK) {
568                 for (i = 0; i < to->to_nsacks; i++) {
569                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
570                             &sack, sizeof(sack));
571                         sack.start = ntohl(sack.start);
572                         sack.end = ntohl(sack.end);
573                         if (SEQ_GT(sack.end, sack.start) &&
574                             SEQ_GT(sack.start, tp->snd_una) &&
575                             SEQ_GT(sack.start, th_ack) &&
576                             SEQ_LT(sack.start, tp->snd_max) &&
577                             SEQ_GT(sack.end, tp->snd_una) &&
578                             SEQ_LEQ(sack.end, tp->snd_max)) {
579                                 sack_blocks[num_sack_blks++] = sack;
580                         }
581                 }
582         }
583         /*
584          * Return if SND.UNA is not advanced and no valid SACK block is
585          * received.
586          */
587         if (num_sack_blks == 0)
588                 return (sack_changed);
589
590         /*
591          * Sort the SACK blocks so we can update the scoreboard with just one
592          * pass. The overhead of sorting up to 4+1 elements is less than
593          * making up to 4+1 passes over the scoreboard.
594          */
595         for (i = 0; i < num_sack_blks; i++) {
596                 for (j = i + 1; j < num_sack_blks; j++) {
597                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
598                                 sack = sack_blocks[i];
599                                 sack_blocks[i] = sack_blocks[j];
600                                 sack_blocks[j] = sack;
601                         }
602                 }
603         }
604         if (TAILQ_EMPTY(&tp->snd_holes)) {
605                 /*
606                  * Empty scoreboard. Need to initialize snd_fack (it may be
607                  * uninitialized or have a bogus value). Scoreboard holes
608                  * (from the sack blocks received) are created later below
609                  * (in the logic that adds holes to the tail of the
610                  * scoreboard).
611                  */
612                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
613                 tp->sackhint.sacked_bytes = 0;  /* reset */
614         }
615         /*
616          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
617          * SACK holes (snd_holes) are traversed from their tails with just
618          * one pass in order to reduce the number of compares especially when
619          * the bandwidth-delay product is large.
620          *
621          * Note: Typically, in the first RTT of SACK recovery, the highest
622          * three or four SACK blocks with the same ack number are received.
623          * In the second RTT, if retransmitted data segments are not lost,
624          * the highest three or four SACK blocks with ack number advancing
625          * are received.
626          */
627         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
628         tp->sackhint.last_sack_ack = sblkp->end;
629         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
630                 /*
631                  * The highest SACK block is beyond fack.  Append new SACK
632                  * hole at the tail.  If the second or later highest SACK
633                  * blocks are also beyond the current fack, they will be
634                  * inserted by way of hole splitting in the while-loop below.
635                  */
636                 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
637                 if (temp != NULL) {
638                         delivered_data += sblkp->end - sblkp->start;
639                         tp->snd_fack = sblkp->end;
640                         /* Go to the previous sack block. */
641                         sblkp--;
642                         sack_changed = 1;
643                 } else {
644                         /*
645                          * We failed to add a new hole based on the current
646                          * sack block.  Skip over all the sack blocks that
647                          * fall completely to the right of snd_fack and
648                          * proceed to trim the scoreboard based on the
649                          * remaining sack blocks.  This also trims the
650                          * scoreboard for th_ack (which is sack_blocks[0]).
651                          */
652                         while (sblkp >= sack_blocks &&
653                                SEQ_LT(tp->snd_fack, sblkp->start))
654                                 sblkp--;
655                         if (sblkp >= sack_blocks &&
656                             SEQ_LT(tp->snd_fack, sblkp->end)) {
657                                 delivered_data += sblkp->end - tp->snd_fack;
658                                 tp->snd_fack = sblkp->end;
659                                 sack_changed = 1;
660                         }
661                 }
662         } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
663                 /* fack is advanced. */
664                 delivered_data += sblkp->end - tp->snd_fack;
665                 tp->snd_fack = sblkp->end;
666                 sack_changed = 1;
667         }
668         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
669         /*
670          * Since the incoming sack blocks are sorted, we can process them
671          * making one sweep of the scoreboard.
672          */
673         while (sblkp >= sack_blocks  && cur != NULL) {
674                 if (SEQ_GEQ(sblkp->start, cur->end)) {
675                         /*
676                          * SACKs data beyond the current hole.  Go to the
677                          * previous sack block.
678                          */
679                         sblkp--;
680                         continue;
681                 }
682                 if (SEQ_LEQ(sblkp->end, cur->start)) {
683                         /*
684                          * SACKs data before the current hole.  Go to the
685                          * previous hole.
686                          */
687                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
688                         continue;
689                 }
690                 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
691                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
692                     ("sackhint bytes rtx >= 0"));
693                 sack_changed = 1;
694                 if (SEQ_LEQ(sblkp->start, cur->start)) {
695                         /* Data acks at least the beginning of hole. */
696                         if (SEQ_GEQ(sblkp->end, cur->end)) {
697                                 /* Acks entire hole, so delete hole. */
698                                 delivered_data += (cur->end - cur->start);
699                                 temp = cur;
700                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
701                                 tcp_sackhole_remove(tp, temp);
702                                 /*
703                                  * The sack block may ack all or part of the
704                                  * next hole too, so continue onto the next
705                                  * hole.
706                                  */
707                                 continue;
708                         } else {
709                                 /* Move start of hole forward. */
710                                 delivered_data += (sblkp->end - cur->start);
711                                 cur->start = sblkp->end;
712                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
713                         }
714                 } else {
715                         /* Data acks at least the end of hole. */
716                         if (SEQ_GEQ(sblkp->end, cur->end)) {
717                                 /* Move end of hole backward. */
718                                 delivered_data += (cur->end - sblkp->start);
719                                 cur->end = sblkp->start;
720                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
721                         } else {
722                                 /*
723                                  * ACKs some data in middle of a hole; need
724                                  * to split current hole
725                                  */
726                                 temp = tcp_sackhole_insert(tp, sblkp->end,
727                                     cur->end, cur);
728                                 if (temp != NULL) {
729                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
730                                                 temp->rxmit = cur->rxmit;
731                                                 tp->sackhint.sack_bytes_rexmit
732                                                     += (temp->rxmit
733                                                     - temp->start);
734                                         }
735                                         cur->end = sblkp->start;
736                                         cur->rxmit = SEQ_MIN(cur->rxmit,
737                                             cur->end);
738                                         delivered_data += (sblkp->end - sblkp->start);
739                                 }
740                         }
741                 }
742                 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
743                 /*
744                  * Testing sblkp->start against cur->start tells us whether
745                  * we're done with the sack block or the sack hole.
746                  * Accordingly, we advance one or the other.
747                  */
748                 if (SEQ_LEQ(sblkp->start, cur->start))
749                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
750                 else
751                         sblkp--;
752         }
753         tp->sackhint.delivered_data = delivered_data;
754         tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
755         KASSERT((delivered_data >= 0), ("delivered_data < 0"));
756         KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
757         return (sack_changed);
758 }
759
760 /*
761  * Free all SACK holes to clear the scoreboard.
762  */
763 void
764 tcp_free_sackholes(struct tcpcb *tp)
765 {
766         struct sackhole *q;
767
768         INP_WLOCK_ASSERT(tp->t_inpcb);
769         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
770                 tcp_sackhole_remove(tp, q);
771         tp->sackhint.sack_bytes_rexmit = 0;
772
773         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
774         KASSERT(tp->sackhint.nexthole == NULL,
775                 ("tp->sackhint.nexthole == NULL"));
776 }
777
778 /*
779  * Partial ack handling within a sack recovery episode.  Keeping this very
780  * simple for now.  When a partial ack is received, force snd_cwnd to a value
781  * that will allow the sender to transmit no more than 2 segments.  If
782  * necessary, a better scheme can be adopted at a later point, but for now,
783  * the goal is to prevent the sender from bursting a large amount of data in
784  * the midst of sack recovery.
785  */
786 void
787 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
788 {
789         int num_segs = 1;
790         u_int maxseg = tcp_maxseg(tp);
791
792         INP_WLOCK_ASSERT(tp->t_inpcb);
793         tcp_timer_activate(tp, TT_REXMT, 0);
794         tp->t_rtttime = 0;
795         /* Send one or 2 segments based on how much new data was acked. */
796         if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
797                 num_segs = 2;
798         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
799             (tp->snd_nxt - tp->snd_recover) + num_segs * maxseg);
800         if (tp->snd_cwnd > tp->snd_ssthresh)
801                 tp->snd_cwnd = tp->snd_ssthresh;
802         tp->t_flags |= TF_ACKNOW;
803         (void) tp->t_fb->tfb_tcp_output(tp);
804 }
805
806 #if 0
807 /*
808  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
809  * now to sanity check the hint.
810  */
811 static struct sackhole *
812 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
813 {
814         struct sackhole *p;
815
816         INP_WLOCK_ASSERT(tp->t_inpcb);
817         *sack_bytes_rexmt = 0;
818         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
819                 if (SEQ_LT(p->rxmit, p->end)) {
820                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
821                                 continue;
822                         }
823                         *sack_bytes_rexmt += (p->rxmit - p->start);
824                         break;
825                 }
826                 *sack_bytes_rexmt += (p->rxmit - p->start);
827         }
828         return (p);
829 }
830 #endif
831
832 /*
833  * Returns the next hole to retransmit and the number of retransmitted bytes
834  * from the scoreboard.  We store both the next hole and the number of
835  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
836  * reception).  This avoids scoreboard traversals completely.
837  *
838  * The loop here will traverse *at most* one link.  Here's the argument.  For
839  * the loop to traverse more than 1 link before finding the next hole to
840  * retransmit, we would need to have at least 1 node following the current
841  * hint with (rxmit == end).  But, for all holes following the current hint,
842  * (start == rxmit), since we have not yet retransmitted from them.
843  * Therefore, in order to traverse more 1 link in the loop below, we need to
844  * have at least one node following the current hint with (start == rxmit ==
845  * end).  But that can't happen, (start == end) means that all the data in
846  * that hole has been sacked, in which case, the hole would have been removed
847  * from the scoreboard.
848  */
849 struct sackhole *
850 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
851 {
852         struct sackhole *hole = NULL;
853
854         INP_WLOCK_ASSERT(tp->t_inpcb);
855         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
856         hole = tp->sackhint.nexthole;
857         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
858                 goto out;
859         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
860                 if (SEQ_LT(hole->rxmit, hole->end)) {
861                         tp->sackhint.nexthole = hole;
862                         break;
863                 }
864         }
865 out:
866         return (hole);
867 }
868
869 /*
870  * After a timeout, the SACK list may be rebuilt.  This SACK information
871  * should be used to avoid retransmitting SACKed data.  This function
872  * traverses the SACK list to see if snd_nxt should be moved forward.
873  */
874 void
875 tcp_sack_adjust(struct tcpcb *tp)
876 {
877         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
878
879         INP_WLOCK_ASSERT(tp->t_inpcb);
880         if (cur == NULL)
881                 return; /* No holes */
882         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
883                 return; /* We're already beyond any SACKed blocks */
884         /*-
885          * Two cases for which we want to advance snd_nxt:
886          * i) snd_nxt lies between end of one hole and beginning of another
887          * ii) snd_nxt lies between end of last hole and snd_fack
888          */
889         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
890                 if (SEQ_LT(tp->snd_nxt, cur->end))
891                         return;
892                 if (SEQ_GEQ(tp->snd_nxt, p->start))
893                         cur = p;
894                 else {
895                         tp->snd_nxt = p->start;
896                         return;
897                 }
898         }
899         if (SEQ_LT(tp->snd_nxt, cur->end))
900                 return;
901         tp->snd_nxt = tp->snd_fack;
902 }