]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_sack.c
ssh: remove 11.x from FREEBSD-upgrade instructions
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_sack.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *      The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
33  */
34
35 /*-
36  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *      This product includes software developed by the University of
50  *      California, Berkeley and its contributors.
51  *      This product includes software developed at the Information
52  *      Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_inet.h"
79 #include "opt_inet6.h"
80 #include "opt_tcpdebug.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/proc.h>           /* for proc0 declaration */
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/syslog.h>
93 #include <sys/systm.h>
94
95 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
96
97 #include <vm/uma.h>
98
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/route.h>
102 #include <net/vnet.h>
103
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip6.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/ip6_var.h>
114 #include <netinet6/in6_pcb.h>
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif /* TCPDEBUG */
125
126 #include <machine/in_cksum.h>
127
128 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
129 #define V_sack_hole_zone                VNET(sack_hole_zone)
130
131 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "TCP SACK");
133 VNET_DEFINE(int, tcp_do_sack) = 1;
134 #define V_tcp_do_sack                   VNET(tcp_do_sack)
135 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
136     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
137
138 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
139 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(tcp_sack_maxholes), 0,
141     "Maximum number of TCP SACK holes allowed per connection");
142
143 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
144 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_sack_globalmaxholes), 0,
146     "Global maximum number of TCP SACK holes");
147
148 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
149 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
150     &VNET_NAME(tcp_sack_globalholes), 0,
151     "Global number of TCP SACK holes currently allocated");
152
153 int
154 tcp_dsack_block_exists(struct tcpcb *tp)
155 {
156         /* Return true if a DSACK block exists */
157         if (tp->rcv_numsacks == 0)
158                 return (0);
159         if (SEQ_LEQ(tp->sackblks[0].end, tp->rcv_nxt))
160                 return(1);
161         return (0);
162 }
163
164 /*
165  * This function will find overlaps with the currently stored sackblocks
166  * and add any overlap as a dsack block upfront
167  */
168 void
169 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
170 {
171         struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
172         int i, j, n, identical;
173         tcp_seq start, end;
174
175         INP_WLOCK_ASSERT(tp->t_inpcb);
176
177         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
178
179         if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
180             ((rcv_end == tp->rcv_nxt) &&
181              (tp->rcv_numsacks > 0 ) &&
182              (tp->sackblks[0].end == tp->rcv_nxt))) {
183                 saved_blks[0].start = rcv_start;
184                 saved_blks[0].end = rcv_end;
185         } else {
186                 saved_blks[0].start = saved_blks[0].end = 0;
187         }
188
189         head_blk.start = head_blk.end = 0;
190         mid_blk.start = rcv_start;
191         mid_blk.end = rcv_end;
192         identical = 0;
193
194         for (i = 0; i < tp->rcv_numsacks; i++) {
195                 start = tp->sackblks[i].start;
196                 end = tp->sackblks[i].end;
197                 if (SEQ_LT(rcv_end, start)) {
198                         /* pkt left to sack blk */
199                         continue;
200                 }
201                 if (SEQ_GT(rcv_start, end)) {
202                         /* pkt right to sack blk */
203                         continue;
204                 }
205                 if (SEQ_GT(tp->rcv_nxt, end)) {
206                         if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
207                             (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
208                             (head_blk.start == head_blk.end))) {
209                                 head_blk.start = SEQ_MAX(rcv_start, start);
210                                 head_blk.end = SEQ_MIN(rcv_end, end);
211                         }
212                         continue;
213                 }
214                 if (((head_blk.start == head_blk.end) ||
215                      SEQ_LT(start, head_blk.start)) &&
216                      (SEQ_GT(end, rcv_start) &&
217                       SEQ_LEQ(start, rcv_end))) {
218                         head_blk.start = start;
219                         head_blk.end = end;
220                 }
221                 mid_blk.start = SEQ_MIN(mid_blk.start, start);
222                 mid_blk.end = SEQ_MAX(mid_blk.end, end);
223                 if ((mid_blk.start == start) &&
224                     (mid_blk.end == end))
225                         identical = 1;
226         }
227         if (SEQ_LT(head_blk.start, head_blk.end)) {
228                 /* store overlapping range */
229                 saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
230                 saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
231         }
232         n = 1;
233         /*
234          * Second, if not ACKed, store the SACK block that
235          * overlaps with the DSACK block unless it is identical
236          */
237         if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
238             !((mid_blk.start == saved_blks[0].start) &&
239             (mid_blk.end == saved_blks[0].end))) ||
240             identical == 1) {
241                 saved_blks[n].start = mid_blk.start;
242                 saved_blks[n++].end = mid_blk.end;
243         }
244         for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
245                 if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
246                       SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
247                     (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
248                 saved_blks[n++] = tp->sackblks[j];
249         }
250         j = 0;
251         for (i = 0; i < n; i++) {
252                 /* we can end up with a stale initial entry */
253                 if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
254                         tp->sackblks[j++] = saved_blks[i];
255                 }
256         }
257         tp->rcv_numsacks = j;
258 }
259
260 /*
261  * This function is called upon receipt of new valid data (while not in
262  * header prediction mode), and it updates the ordered list of sacks.
263  */
264 void
265 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
266 {
267         /*
268          * First reported block MUST be the most recent one.  Subsequent
269          * blocks SHOULD be in the order in which they arrived at the
270          * receiver.  These two conditions make the implementation fully
271          * compliant with RFC 2018.
272          */
273         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
274         int num_head, num_saved, i;
275
276         INP_WLOCK_ASSERT(tp->t_inpcb);
277
278         /* Check arguments. */
279         KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
280
281         if ((rcv_start == rcv_end) &&
282             (tp->rcv_numsacks >= 1) &&
283             (rcv_end == tp->sackblks[0].end)) {
284                 /* retaining DSACK block below rcv_nxt (todrop) */
285                 head_blk = tp->sackblks[0];
286         } else {
287                 /* SACK block for the received segment. */
288                 head_blk.start = rcv_start;
289                 head_blk.end = rcv_end;
290         }
291
292         /*
293          * Merge updated SACK blocks into head_blk, and save unchanged SACK
294          * blocks into saved_blks[].  num_saved will have the number of the
295          * saved SACK blocks.
296          */
297         num_saved = 0;
298         for (i = 0; i < tp->rcv_numsacks; i++) {
299                 tcp_seq start = tp->sackblks[i].start;
300                 tcp_seq end = tp->sackblks[i].end;
301                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
302                         /*
303                          * Discard this SACK block.
304                          */
305                 } else if (SEQ_LEQ(head_blk.start, end) &&
306                            SEQ_GEQ(head_blk.end, start)) {
307                         /*
308                          * Merge this SACK block into head_blk.  This SACK
309                          * block itself will be discarded.
310                          */
311                         /*
312                          * |-|
313                          *   |---|  merge
314                          *
315                          *     |-|
316                          * |---|    merge
317                          *
318                          * |-----|
319                          *   |-|    DSACK smaller
320                          *
321                          *   |-|
322                          * |-----|  DSACK smaller
323                          */
324                         if (head_blk.start == end)
325                                 head_blk.start = start;
326                         else if (head_blk.end == start)
327                                 head_blk.end = end;
328                         else {
329                                 if (SEQ_LT(head_blk.start, start)) {
330                                         tcp_seq temp = start;
331                                         start = head_blk.start;
332                                         head_blk.start = temp;
333                                 }
334                                 if (SEQ_GT(head_blk.end, end)) {
335                                         tcp_seq temp = end;
336                                         end = head_blk.end;
337                                         head_blk.end = temp;
338                                 }
339                                 if ((head_blk.start != start) ||
340                                     (head_blk.end != end)) {
341                                         if ((num_saved >= 1) &&
342                                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
343                                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
344                                                 num_saved--;
345                                         saved_blks[num_saved].start = start;
346                                         saved_blks[num_saved].end = end;
347                                         num_saved++;
348                                 }
349                         }
350                 } else {
351                         /*
352                          * This block supercedes the prior block
353                          */
354                         if ((num_saved >= 1) &&
355                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
356                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
357                                 num_saved--;
358                         /*
359                          * Save this SACK block.
360                          */
361                         saved_blks[num_saved].start = start;
362                         saved_blks[num_saved].end = end;
363                         num_saved++;
364                 }
365         }
366
367         /*
368          * Update SACK list in tp->sackblks[].
369          */
370         num_head = 0;
371         if (SEQ_LT(rcv_start, rcv_end)) {
372                 /*
373                  * The received data segment is an out-of-order segment.  Put
374                  * head_blk at the top of SACK list.
375                  */
376                 tp->sackblks[0] = head_blk;
377                 num_head = 1;
378                 /*
379                  * If the number of saved SACK blocks exceeds its limit,
380                  * discard the last SACK block.
381                  */
382                 if (num_saved >= MAX_SACK_BLKS)
383                         num_saved--;
384         }
385         if ((rcv_start == rcv_end) &&
386             (rcv_start == tp->sackblks[0].end)) {
387                 num_head = 1;
388         }
389         if (num_saved > 0) {
390                 /*
391                  * Copy the saved SACK blocks back.
392                  */
393                 bcopy(saved_blks, &tp->sackblks[num_head],
394                       sizeof(struct sackblk) * num_saved);
395         }
396
397         /* Save the number of SACK blocks. */
398         tp->rcv_numsacks = num_head + num_saved;
399 }
400
401 void
402 tcp_clean_dsack_blocks(struct tcpcb *tp)
403 {
404         struct sackblk saved_blks[MAX_SACK_BLKS];
405         int num_saved, i;
406
407         INP_WLOCK_ASSERT(tp->t_inpcb);
408         /*
409          * Clean up any DSACK blocks that
410          * are in our queue of sack blocks.
411          *
412          */
413         num_saved = 0;
414         for (i = 0; i < tp->rcv_numsacks; i++) {
415                 tcp_seq start = tp->sackblks[i].start;
416                 tcp_seq end = tp->sackblks[i].end;
417                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
418                         /*
419                          * Discard this D-SACK block.
420                          */
421                         continue;
422                 }
423                 /*
424                  * Save this SACK block.
425                  */
426                 saved_blks[num_saved].start = start;
427                 saved_blks[num_saved].end = end;
428                 num_saved++;
429         }
430         if (num_saved > 0) {
431                 /*
432                  * Copy the saved SACK blocks back.
433                  */
434                 bcopy(saved_blks, &tp->sackblks[0],
435                       sizeof(struct sackblk) * num_saved);
436         }
437         tp->rcv_numsacks = num_saved;
438 }
439
440 /*
441  * Delete all receiver-side SACK information.
442  */
443 void
444 tcp_clean_sackreport(struct tcpcb *tp)
445 {
446         int i;
447
448         INP_WLOCK_ASSERT(tp->t_inpcb);
449         tp->rcv_numsacks = 0;
450         for (i = 0; i < MAX_SACK_BLKS; i++)
451                 tp->sackblks[i].start = tp->sackblks[i].end=0;
452 }
453
454 /*
455  * Allocate struct sackhole.
456  */
457 static struct sackhole *
458 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
459 {
460         struct sackhole *hole;
461
462         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
463             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
464                 TCPSTAT_INC(tcps_sack_sboverflow);
465                 return NULL;
466         }
467
468         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
469         if (hole == NULL)
470                 return NULL;
471
472         hole->start = start;
473         hole->end = end;
474         hole->rxmit = start;
475
476         tp->snd_numholes++;
477         atomic_add_int(&V_tcp_sack_globalholes, 1);
478
479         return hole;
480 }
481
482 /*
483  * Free struct sackhole.
484  */
485 static void
486 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
487 {
488
489         uma_zfree(V_sack_hole_zone, hole);
490
491         tp->snd_numholes--;
492         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
493
494         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
495         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
496 }
497
498 /*
499  * Insert new SACK hole into scoreboard.
500  */
501 static struct sackhole *
502 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
503     struct sackhole *after)
504 {
505         struct sackhole *hole;
506
507         /* Allocate a new SACK hole. */
508         hole = tcp_sackhole_alloc(tp, start, end);
509         if (hole == NULL)
510                 return NULL;
511
512         /* Insert the new SACK hole into scoreboard. */
513         if (after != NULL)
514                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
515         else
516                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
517
518         /* Update SACK hint. */
519         if (tp->sackhint.nexthole == NULL)
520                 tp->sackhint.nexthole = hole;
521
522         return hole;
523 }
524
525 /*
526  * Remove SACK hole from scoreboard.
527  */
528 static void
529 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
530 {
531
532         /* Update SACK hint. */
533         if (tp->sackhint.nexthole == hole)
534                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
535
536         /* Remove this SACK hole. */
537         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
538
539         /* Free this SACK hole. */
540         tcp_sackhole_free(tp, hole);
541 }
542
543 /*
544  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
545  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
546  * the sequence space).
547  * Returns 1 if incoming ACK has previously unknown SACK information,
548  * 0 otherwise.
549  */
550 int
551 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
552 {
553         struct sackhole *cur, *temp;
554         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
555         int i, j, num_sack_blks, sack_changed;
556         int delivered_data, left_edge_delta;
557
558         INP_WLOCK_ASSERT(tp->t_inpcb);
559
560         num_sack_blks = 0;
561         sack_changed = 0;
562         delivered_data = 0;
563         left_edge_delta = 0;
564         /*
565          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
566          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
567          * Account changes to SND.UNA always in delivered data.
568          */
569         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
570                 left_edge_delta = th_ack - tp->snd_una;
571                 sack_blocks[num_sack_blks].start = tp->snd_una;
572                 sack_blocks[num_sack_blks++].end = th_ack;
573                 /*
574                  * Pulling snd_fack forward if we got here
575                  * due to DSACK blocks
576                  */
577                 if (SEQ_LT(tp->snd_fack, th_ack)) {
578                         delivered_data += th_ack - tp->snd_una;
579                         tp->snd_fack = th_ack;
580                         sack_changed = 1;
581                 }
582         }
583         /*
584          * Append received valid SACK blocks to sack_blocks[], but only if we
585          * received new blocks from the other side.
586          */
587         if (to->to_flags & TOF_SACK) {
588                 for (i = 0; i < to->to_nsacks; i++) {
589                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
590                             &sack, sizeof(sack));
591                         sack.start = ntohl(sack.start);
592                         sack.end = ntohl(sack.end);
593                         if (SEQ_GT(sack.end, sack.start) &&
594                             SEQ_GT(sack.start, tp->snd_una) &&
595                             SEQ_GT(sack.start, th_ack) &&
596                             SEQ_LT(sack.start, tp->snd_max) &&
597                             SEQ_GT(sack.end, tp->snd_una) &&
598                             SEQ_LEQ(sack.end, tp->snd_max)) {
599                                 sack_blocks[num_sack_blks++] = sack;
600                         }
601                 }
602         }
603         /*
604          * Return if SND.UNA is not advanced and no valid SACK block is
605          * received.
606          */
607         if (num_sack_blks == 0)
608                 return (sack_changed);
609
610         /*
611          * Sort the SACK blocks so we can update the scoreboard with just one
612          * pass. The overhead of sorting up to 4+1 elements is less than
613          * making up to 4+1 passes over the scoreboard.
614          */
615         for (i = 0; i < num_sack_blks; i++) {
616                 for (j = i + 1; j < num_sack_blks; j++) {
617                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
618                                 sack = sack_blocks[i];
619                                 sack_blocks[i] = sack_blocks[j];
620                                 sack_blocks[j] = sack;
621                         }
622                 }
623         }
624         if (TAILQ_EMPTY(&tp->snd_holes)) {
625                 /*
626                  * Empty scoreboard. Need to initialize snd_fack (it may be
627                  * uninitialized or have a bogus value). Scoreboard holes
628                  * (from the sack blocks received) are created later below
629                  * (in the logic that adds holes to the tail of the
630                  * scoreboard).
631                  */
632                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
633                 tp->sackhint.sacked_bytes = 0;  /* reset */
634         }
635         /*
636          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
637          * SACK holes (snd_holes) are traversed from their tails with just
638          * one pass in order to reduce the number of compares especially when
639          * the bandwidth-delay product is large.
640          *
641          * Note: Typically, in the first RTT of SACK recovery, the highest
642          * three or four SACK blocks with the same ack number are received.
643          * In the second RTT, if retransmitted data segments are not lost,
644          * the highest three or four SACK blocks with ack number advancing
645          * are received.
646          */
647         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
648         tp->sackhint.last_sack_ack = sblkp->end;
649         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
650                 /*
651                  * The highest SACK block is beyond fack.  First,
652                  * check if there was a successful Rescue Retransmission,
653                  * and move this hole left. With normal holes, snd_fack
654                  * is always to the right of the end.
655                  */
656                 if (((temp = TAILQ_LAST(&tp->snd_holes, sackhole_head)) != NULL) &&
657                     SEQ_LEQ(tp->snd_fack,temp->end)) {
658                         temp->start = SEQ_MAX(tp->snd_fack, SEQ_MAX(tp->snd_una, th_ack));
659                         temp->end = sblkp->start;
660                         temp->rxmit = temp->start;
661                         delivered_data += sblkp->end - sblkp->start;
662                         tp->snd_fack = sblkp->end;
663                         sblkp--;
664                         sack_changed = 1;
665                 } else {
666                         /*
667                          * Append a new SACK hole at the tail.  If the
668                          * second or later highest SACK blocks are also
669                          * beyond the current fack, they will be inserted
670                          * by way of hole splitting in the while-loop below.
671                          */
672                         temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
673                         if (temp != NULL) {
674                                 delivered_data += sblkp->end - sblkp->start;
675                                 tp->snd_fack = sblkp->end;
676                                 /* Go to the previous sack block. */
677                                 sblkp--;
678                                 sack_changed = 1;
679                         } else {
680                                 /*
681                                  * We failed to add a new hole based on the current
682                                  * sack block.  Skip over all the sack blocks that
683                                  * fall completely to the right of snd_fack and
684                                  * proceed to trim the scoreboard based on the
685                                  * remaining sack blocks.  This also trims the
686                                  * scoreboard for th_ack (which is sack_blocks[0]).
687                                  */
688                                 while (sblkp >= sack_blocks &&
689                                        SEQ_LT(tp->snd_fack, sblkp->start))
690                                         sblkp--;
691                                 if (sblkp >= sack_blocks &&
692                                     SEQ_LT(tp->snd_fack, sblkp->end)) {
693                                         delivered_data += sblkp->end - tp->snd_fack;
694                                         tp->snd_fack = sblkp->end;
695                                         sack_changed = 1;
696                                 }
697                         }
698                 }
699         } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
700                 /* fack is advanced. */
701                 delivered_data += sblkp->end - tp->snd_fack;
702                 tp->snd_fack = sblkp->end;
703                 sack_changed = 1;
704         }
705         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
706         /*
707          * Since the incoming sack blocks are sorted, we can process them
708          * making one sweep of the scoreboard.
709          */
710         while (sblkp >= sack_blocks  && cur != NULL) {
711                 if (SEQ_GEQ(sblkp->start, cur->end)) {
712                         /*
713                          * SACKs data beyond the current hole.  Go to the
714                          * previous sack block.
715                          */
716                         sblkp--;
717                         continue;
718                 }
719                 if (SEQ_LEQ(sblkp->end, cur->start)) {
720                         /*
721                          * SACKs data before the current hole.  Go to the
722                          * previous hole.
723                          */
724                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
725                         continue;
726                 }
727                 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
728                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
729                     ("sackhint bytes rtx >= 0"));
730                 sack_changed = 1;
731                 if (SEQ_LEQ(sblkp->start, cur->start)) {
732                         /* Data acks at least the beginning of hole. */
733                         if (SEQ_GEQ(sblkp->end, cur->end)) {
734                                 /* Acks entire hole, so delete hole. */
735                                 delivered_data += (cur->end - cur->start);
736                                 temp = cur;
737                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
738                                 tcp_sackhole_remove(tp, temp);
739                                 /*
740                                  * The sack block may ack all or part of the
741                                  * next hole too, so continue onto the next
742                                  * hole.
743                                  */
744                                 continue;
745                         } else {
746                                 /* Move start of hole forward. */
747                                 delivered_data += (sblkp->end - cur->start);
748                                 cur->start = sblkp->end;
749                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
750                         }
751                 } else {
752                         /* Data acks at least the end of hole. */
753                         if (SEQ_GEQ(sblkp->end, cur->end)) {
754                                 /* Move end of hole backward. */
755                                 delivered_data += (cur->end - sblkp->start);
756                                 cur->end = sblkp->start;
757                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
758                         } else {
759                                 /*
760                                  * ACKs some data in middle of a hole; need
761                                  * to split current hole
762                                  */
763                                 temp = tcp_sackhole_insert(tp, sblkp->end,
764                                     cur->end, cur);
765                                 if (temp != NULL) {
766                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
767                                                 temp->rxmit = cur->rxmit;
768                                                 tp->sackhint.sack_bytes_rexmit
769                                                     += (temp->rxmit
770                                                     - temp->start);
771                                         }
772                                         cur->end = sblkp->start;
773                                         cur->rxmit = SEQ_MIN(cur->rxmit,
774                                             cur->end);
775                                         delivered_data += (sblkp->end - sblkp->start);
776                                 }
777                         }
778                 }
779                 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
780                 /*
781                  * Testing sblkp->start against cur->start tells us whether
782                  * we're done with the sack block or the sack hole.
783                  * Accordingly, we advance one or the other.
784                  */
785                 if (SEQ_LEQ(sblkp->start, cur->start))
786                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
787                 else
788                         sblkp--;
789         }
790         if (!(to->to_flags & TOF_SACK))
791                 /*
792                  * If this ACK did not contain any
793                  * SACK blocks, any only moved the
794                  * left edge right, it is a pure
795                  * cumulative ACK. Do not count
796                  * DupAck for this. Also required
797                  * for RFC6675 rescue retransmission.
798                  */
799                 sack_changed = 0;
800         tp->sackhint.delivered_data = delivered_data;
801         tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
802         KASSERT((delivered_data >= 0), ("delivered_data < 0"));
803         KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
804         return (sack_changed);
805 }
806
807 /*
808  * Free all SACK holes to clear the scoreboard.
809  */
810 void
811 tcp_free_sackholes(struct tcpcb *tp)
812 {
813         struct sackhole *q;
814
815         INP_WLOCK_ASSERT(tp->t_inpcb);
816         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
817                 tcp_sackhole_remove(tp, q);
818         tp->sackhint.sack_bytes_rexmit = 0;
819
820         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
821         KASSERT(tp->sackhint.nexthole == NULL,
822                 ("tp->sackhint.nexthole == NULL"));
823 }
824
825 /*
826  * Partial ack handling within a sack recovery episode.  Keeping this very
827  * simple for now.  When a partial ack is received, force snd_cwnd to a value
828  * that will allow the sender to transmit no more than 2 segments.  If
829  * necessary, a better scheme can be adopted at a later point, but for now,
830  * the goal is to prevent the sender from bursting a large amount of data in
831  * the midst of sack recovery.
832  */
833 void
834 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
835 {
836         int num_segs = 1;
837         u_int maxseg = tcp_maxseg(tp);
838
839         INP_WLOCK_ASSERT(tp->t_inpcb);
840         tcp_timer_activate(tp, TT_REXMT, 0);
841         tp->t_rtttime = 0;
842         /* Send one or 2 segments based on how much new data was acked. */
843         if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
844                 num_segs = 2;
845         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
846             (tp->snd_nxt - tp->snd_recover) + num_segs * maxseg);
847         if (tp->snd_cwnd > tp->snd_ssthresh)
848                 tp->snd_cwnd = tp->snd_ssthresh;
849         tp->t_flags |= TF_ACKNOW;
850         /*
851          * RFC6675 rescue retransmission
852          * Add a hole between th_ack (snd_una is not yet set) and snd_max,
853          * if this was a pure cumulative ACK and no data was send beyond
854          * recovery point. Since the data in the socket has not been freed
855          * at this point, we check if the scoreboard is empty, and the ACK
856          * delivered some new data, indicating a full ACK. Also, if the
857          * recovery point is still at snd_max, we are probably application
858          * limited. However, this inference might not always be true. The
859          * rescue retransmission may rarely be slightly premature
860          * compared to RFC6675.
861          * The corresponding ACK+SACK will cause any further outstanding
862          * segments to be retransmitted. This addresses a corner case, when
863          * the trailing packets of a window are lost and no further data
864          * is available for sending.
865          */
866         if ((V_tcp_do_rfc6675_pipe) &&
867             SEQ_LT(th->th_ack, tp->snd_recover) &&
868             (tp->snd_recover == tp->snd_max) &&
869             TAILQ_EMPTY(&tp->snd_holes) &&
870             (tp->sackhint.delivered_data > 0)) {
871                 /*
872                  * Exclude FIN sequence space in
873                  * the hole for the rescue retransmission,
874                  * and also don't create a hole, if only
875                  * the ACK for a FIN is outstanding.
876                  */
877                 tcp_seq highdata = tp->snd_max;
878                 if (tp->t_flags & TF_SENTFIN)
879                         highdata--;
880                 if (th->th_ack != highdata) {
881                         tp->snd_fack = th->th_ack;
882                         (void)tcp_sackhole_insert(tp, SEQ_MAX(th->th_ack,
883                             highdata - maxseg), highdata, NULL);
884                 }
885         }
886         (void) tp->t_fb->tfb_tcp_output(tp);
887 }
888
889 #if 0
890 /*
891  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
892  * now to sanity check the hint.
893  */
894 static struct sackhole *
895 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
896 {
897         struct sackhole *p;
898
899         INP_WLOCK_ASSERT(tp->t_inpcb);
900         *sack_bytes_rexmt = 0;
901         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
902                 if (SEQ_LT(p->rxmit, p->end)) {
903                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
904                                 continue;
905                         }
906                         *sack_bytes_rexmt += (p->rxmit - p->start);
907                         break;
908                 }
909                 *sack_bytes_rexmt += (p->rxmit - p->start);
910         }
911         return (p);
912 }
913 #endif
914
915 /*
916  * Returns the next hole to retransmit and the number of retransmitted bytes
917  * from the scoreboard.  We store both the next hole and the number of
918  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
919  * reception).  This avoids scoreboard traversals completely.
920  *
921  * The loop here will traverse *at most* one link.  Here's the argument.  For
922  * the loop to traverse more than 1 link before finding the next hole to
923  * retransmit, we would need to have at least 1 node following the current
924  * hint with (rxmit == end).  But, for all holes following the current hint,
925  * (start == rxmit), since we have not yet retransmitted from them.
926  * Therefore, in order to traverse more 1 link in the loop below, we need to
927  * have at least one node following the current hint with (start == rxmit ==
928  * end).  But that can't happen, (start == end) means that all the data in
929  * that hole has been sacked, in which case, the hole would have been removed
930  * from the scoreboard.
931  */
932 struct sackhole *
933 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
934 {
935         struct sackhole *hole = NULL;
936
937         INP_WLOCK_ASSERT(tp->t_inpcb);
938         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
939         hole = tp->sackhint.nexthole;
940         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
941                 goto out;
942         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
943                 if (SEQ_LT(hole->rxmit, hole->end)) {
944                         tp->sackhint.nexthole = hole;
945                         break;
946                 }
947         }
948 out:
949         return (hole);
950 }
951
952 /*
953  * After a timeout, the SACK list may be rebuilt.  This SACK information
954  * should be used to avoid retransmitting SACKed data.  This function
955  * traverses the SACK list to see if snd_nxt should be moved forward.
956  */
957 void
958 tcp_sack_adjust(struct tcpcb *tp)
959 {
960         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
961
962         INP_WLOCK_ASSERT(tp->t_inpcb);
963         if (cur == NULL)
964                 return; /* No holes */
965         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
966                 return; /* We're already beyond any SACKed blocks */
967         /*-
968          * Two cases for which we want to advance snd_nxt:
969          * i) snd_nxt lies between end of one hole and beginning of another
970          * ii) snd_nxt lies between end of last hole and snd_fack
971          */
972         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
973                 if (SEQ_LT(tp->snd_nxt, cur->end))
974                         return;
975                 if (SEQ_GEQ(tp->snd_nxt, p->start))
976                         cur = p;
977                 else {
978                         tp->snd_nxt = p->start;
979                         return;
980                 }
981         }
982         if (SEQ_LT(tp->snd_nxt, cur->end))
983                 return;
984         tp->snd_nxt = tp->snd_fack;
985 }