]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_sack.c
linux(4): Add CLONE_PIDFD option bit.
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_sack.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *      The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
33  */
34
35 /*-
36  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *      This product includes software developed by the University of
50  *      California, Berkeley and its contributors.
51  *      This product includes software developed at the Information
52  *      Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_inet.h"
79 #include "opt_inet6.h"
80 #include "opt_tcpdebug.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/proc.h>           /* for proc0 declaration */
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/syslog.h>
93 #include <sys/systm.h>
94
95 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
96
97 #include <vm/uma.h>
98
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/route.h>
102 #include <net/vnet.h>
103
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip6.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/ip6_var.h>
114 #include <netinet6/in6_pcb.h>
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #include <netinet/cc/cc.h>
123 #ifdef TCPDEBUG
124 #include <netinet/tcp_debug.h>
125 #endif /* TCPDEBUG */
126
127 #include <machine/in_cksum.h>
128
129 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
130 #define V_sack_hole_zone                VNET(sack_hole_zone)
131
132 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133     "TCP SACK");
134
135 VNET_DEFINE(int, tcp_do_sack) = 1;
136 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
137     &VNET_NAME(tcp_do_sack), 0,
138     "Enable/Disable TCP SACK support");
139
140 VNET_DEFINE(int, tcp_do_newsack) = 1;
141 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, revised, CTLFLAG_VNET | CTLFLAG_RW,
142     &VNET_NAME(tcp_do_newsack), 0,
143     "Use revised SACK loss recovery per RFC 6675");
144
145 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
146 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
147     &VNET_NAME(tcp_sack_maxholes), 0,
148     "Maximum number of TCP SACK holes allowed per connection");
149
150 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
151 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
152     &VNET_NAME(tcp_sack_globalmaxholes), 0,
153     "Global maximum number of TCP SACK holes");
154
155 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
156 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
157     &VNET_NAME(tcp_sack_globalholes), 0,
158     "Global number of TCP SACK holes currently allocated");
159
160 int
161 tcp_dsack_block_exists(struct tcpcb *tp)
162 {
163         /* Return true if a DSACK block exists */
164         if (tp->rcv_numsacks == 0)
165                 return (0);
166         if (SEQ_LEQ(tp->sackblks[0].end, tp->rcv_nxt))
167                 return(1);
168         return (0);
169 }
170
171 /*
172  * This function will find overlaps with the currently stored sackblocks
173  * and add any overlap as a dsack block upfront
174  */
175 void
176 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
177 {
178         struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
179         int i, j, n, identical;
180         tcp_seq start, end;
181
182         INP_WLOCK_ASSERT(tp->t_inpcb);
183
184         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
185
186         if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
187             ((rcv_end == tp->rcv_nxt) &&
188              (tp->rcv_numsacks > 0 ) &&
189              (tp->sackblks[0].end == tp->rcv_nxt))) {
190                 saved_blks[0].start = rcv_start;
191                 saved_blks[0].end = rcv_end;
192         } else {
193                 saved_blks[0].start = saved_blks[0].end = 0;
194         }
195
196         head_blk.start = head_blk.end = 0;
197         mid_blk.start = rcv_start;
198         mid_blk.end = rcv_end;
199         identical = 0;
200
201         for (i = 0; i < tp->rcv_numsacks; i++) {
202                 start = tp->sackblks[i].start;
203                 end = tp->sackblks[i].end;
204                 if (SEQ_LT(rcv_end, start)) {
205                         /* pkt left to sack blk */
206                         continue;
207                 }
208                 if (SEQ_GT(rcv_start, end)) {
209                         /* pkt right to sack blk */
210                         continue;
211                 }
212                 if (SEQ_GT(tp->rcv_nxt, end)) {
213                         if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
214                             (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
215                             (head_blk.start == head_blk.end))) {
216                                 head_blk.start = SEQ_MAX(rcv_start, start);
217                                 head_blk.end = SEQ_MIN(rcv_end, end);
218                         }
219                         continue;
220                 }
221                 if (((head_blk.start == head_blk.end) ||
222                      SEQ_LT(start, head_blk.start)) &&
223                      (SEQ_GT(end, rcv_start) &&
224                       SEQ_LEQ(start, rcv_end))) {
225                         head_blk.start = start;
226                         head_blk.end = end;
227                 }
228                 mid_blk.start = SEQ_MIN(mid_blk.start, start);
229                 mid_blk.end = SEQ_MAX(mid_blk.end, end);
230                 if ((mid_blk.start == start) &&
231                     (mid_blk.end == end))
232                         identical = 1;
233         }
234         if (SEQ_LT(head_blk.start, head_blk.end)) {
235                 /* store overlapping range */
236                 saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
237                 saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
238         }
239         n = 1;
240         /*
241          * Second, if not ACKed, store the SACK block that
242          * overlaps with the DSACK block unless it is identical
243          */
244         if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
245             !((mid_blk.start == saved_blks[0].start) &&
246             (mid_blk.end == saved_blks[0].end))) ||
247             identical == 1) {
248                 saved_blks[n].start = mid_blk.start;
249                 saved_blks[n++].end = mid_blk.end;
250         }
251         for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
252                 if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
253                       SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
254                     (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
255                 saved_blks[n++] = tp->sackblks[j];
256         }
257         j = 0;
258         for (i = 0; i < n; i++) {
259                 /* we can end up with a stale initial entry */
260                 if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
261                         tp->sackblks[j++] = saved_blks[i];
262                 }
263         }
264         tp->rcv_numsacks = j;
265 }
266
267 /*
268  * This function is called upon receipt of new valid data (while not in
269  * header prediction mode), and it updates the ordered list of sacks.
270  */
271 void
272 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
273 {
274         /*
275          * First reported block MUST be the most recent one.  Subsequent
276          * blocks SHOULD be in the order in which they arrived at the
277          * receiver.  These two conditions make the implementation fully
278          * compliant with RFC 2018.
279          */
280         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
281         int num_head, num_saved, i;
282
283         INP_WLOCK_ASSERT(tp->t_inpcb);
284
285         /* Check arguments. */
286         KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
287
288         if ((rcv_start == rcv_end) &&
289             (tp->rcv_numsacks >= 1) &&
290             (rcv_end == tp->sackblks[0].end)) {
291                 /* retaining DSACK block below rcv_nxt (todrop) */
292                 head_blk = tp->sackblks[0];
293         } else {
294                 /* SACK block for the received segment. */
295                 head_blk.start = rcv_start;
296                 head_blk.end = rcv_end;
297         }
298
299         /*
300          * Merge updated SACK blocks into head_blk, and save unchanged SACK
301          * blocks into saved_blks[].  num_saved will have the number of the
302          * saved SACK blocks.
303          */
304         num_saved = 0;
305         for (i = 0; i < tp->rcv_numsacks; i++) {
306                 tcp_seq start = tp->sackblks[i].start;
307                 tcp_seq end = tp->sackblks[i].end;
308                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
309                         /*
310                          * Discard this SACK block.
311                          */
312                 } else if (SEQ_LEQ(head_blk.start, end) &&
313                            SEQ_GEQ(head_blk.end, start)) {
314                         /*
315                          * Merge this SACK block into head_blk.  This SACK
316                          * block itself will be discarded.
317                          */
318                         /*
319                          * |-|
320                          *   |---|  merge
321                          *
322                          *     |-|
323                          * |---|    merge
324                          *
325                          * |-----|
326                          *   |-|    DSACK smaller
327                          *
328                          *   |-|
329                          * |-----|  DSACK smaller
330                          */
331                         if (head_blk.start == end)
332                                 head_blk.start = start;
333                         else if (head_blk.end == start)
334                                 head_blk.end = end;
335                         else {
336                                 if (SEQ_LT(head_blk.start, start)) {
337                                         tcp_seq temp = start;
338                                         start = head_blk.start;
339                                         head_blk.start = temp;
340                                 }
341                                 if (SEQ_GT(head_blk.end, end)) {
342                                         tcp_seq temp = end;
343                                         end = head_blk.end;
344                                         head_blk.end = temp;
345                                 }
346                                 if ((head_blk.start != start) ||
347                                     (head_blk.end != end)) {
348                                         if ((num_saved >= 1) &&
349                                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
350                                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
351                                                 num_saved--;
352                                         saved_blks[num_saved].start = start;
353                                         saved_blks[num_saved].end = end;
354                                         num_saved++;
355                                 }
356                         }
357                 } else {
358                         /*
359                          * This block supercedes the prior block
360                          */
361                         if ((num_saved >= 1) &&
362                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
363                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
364                                 num_saved--;
365                         /*
366                          * Save this SACK block.
367                          */
368                         saved_blks[num_saved].start = start;
369                         saved_blks[num_saved].end = end;
370                         num_saved++;
371                 }
372         }
373
374         /*
375          * Update SACK list in tp->sackblks[].
376          */
377         num_head = 0;
378         if (SEQ_LT(rcv_start, rcv_end)) {
379                 /*
380                  * The received data segment is an out-of-order segment.  Put
381                  * head_blk at the top of SACK list.
382                  */
383                 tp->sackblks[0] = head_blk;
384                 num_head = 1;
385                 /*
386                  * If the number of saved SACK blocks exceeds its limit,
387                  * discard the last SACK block.
388                  */
389                 if (num_saved >= MAX_SACK_BLKS)
390                         num_saved--;
391         }
392         if ((rcv_start == rcv_end) &&
393             (rcv_start == tp->sackblks[0].end)) {
394                 num_head = 1;
395         }
396         if (num_saved > 0) {
397                 /*
398                  * Copy the saved SACK blocks back.
399                  */
400                 bcopy(saved_blks, &tp->sackblks[num_head],
401                       sizeof(struct sackblk) * num_saved);
402         }
403
404         /* Save the number of SACK blocks. */
405         tp->rcv_numsacks = num_head + num_saved;
406 }
407
408 void
409 tcp_clean_dsack_blocks(struct tcpcb *tp)
410 {
411         struct sackblk saved_blks[MAX_SACK_BLKS];
412         int num_saved, i;
413
414         INP_WLOCK_ASSERT(tp->t_inpcb);
415         /*
416          * Clean up any DSACK blocks that
417          * are in our queue of sack blocks.
418          *
419          */
420         num_saved = 0;
421         for (i = 0; i < tp->rcv_numsacks; i++) {
422                 tcp_seq start = tp->sackblks[i].start;
423                 tcp_seq end = tp->sackblks[i].end;
424                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
425                         /*
426                          * Discard this D-SACK block.
427                          */
428                         continue;
429                 }
430                 /*
431                  * Save this SACK block.
432                  */
433                 saved_blks[num_saved].start = start;
434                 saved_blks[num_saved].end = end;
435                 num_saved++;
436         }
437         if (num_saved > 0) {
438                 /*
439                  * Copy the saved SACK blocks back.
440                  */
441                 bcopy(saved_blks, &tp->sackblks[0],
442                       sizeof(struct sackblk) * num_saved);
443         }
444         tp->rcv_numsacks = num_saved;
445 }
446
447 /*
448  * Delete all receiver-side SACK information.
449  */
450 void
451 tcp_clean_sackreport(struct tcpcb *tp)
452 {
453         int i;
454
455         INP_WLOCK_ASSERT(tp->t_inpcb);
456         tp->rcv_numsacks = 0;
457         for (i = 0; i < MAX_SACK_BLKS; i++)
458                 tp->sackblks[i].start = tp->sackblks[i].end=0;
459 }
460
461 /*
462  * Allocate struct sackhole.
463  */
464 static struct sackhole *
465 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
466 {
467         struct sackhole *hole;
468
469         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
470             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
471                 TCPSTAT_INC(tcps_sack_sboverflow);
472                 return NULL;
473         }
474
475         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
476         if (hole == NULL)
477                 return NULL;
478
479         hole->start = start;
480         hole->end = end;
481         hole->rxmit = start;
482
483         tp->snd_numholes++;
484         atomic_add_int(&V_tcp_sack_globalholes, 1);
485
486         return hole;
487 }
488
489 /*
490  * Free struct sackhole.
491  */
492 static void
493 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
494 {
495
496         uma_zfree(V_sack_hole_zone, hole);
497
498         tp->snd_numholes--;
499         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
500
501         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
502         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
503 }
504
505 /*
506  * Insert new SACK hole into scoreboard.
507  */
508 static struct sackhole *
509 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
510     struct sackhole *after)
511 {
512         struct sackhole *hole;
513
514         /* Allocate a new SACK hole. */
515         hole = tcp_sackhole_alloc(tp, start, end);
516         if (hole == NULL)
517                 return NULL;
518
519         /* Insert the new SACK hole into scoreboard. */
520         if (after != NULL)
521                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
522         else
523                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
524
525         /* Update SACK hint. */
526         if (tp->sackhint.nexthole == NULL)
527                 tp->sackhint.nexthole = hole;
528
529         return hole;
530 }
531
532 /*
533  * Remove SACK hole from scoreboard.
534  */
535 static void
536 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
537 {
538
539         /* Update SACK hint. */
540         if (tp->sackhint.nexthole == hole)
541                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
542
543         /* Remove this SACK hole. */
544         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
545
546         /* Free this SACK hole. */
547         tcp_sackhole_free(tp, hole);
548 }
549
550 /*
551  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
552  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
553  * the sequence space).
554  * Returns 1 if incoming ACK has previously unknown SACK information,
555  * 0 otherwise.
556  */
557 int
558 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
559 {
560         struct sackhole *cur, *temp;
561         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
562         int i, j, num_sack_blks, sack_changed;
563         int delivered_data, left_edge_delta;
564
565         INP_WLOCK_ASSERT(tp->t_inpcb);
566
567         num_sack_blks = 0;
568         sack_changed = 0;
569         delivered_data = 0;
570         left_edge_delta = 0;
571         /*
572          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
573          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
574          * Account changes to SND.UNA always in delivered data.
575          */
576         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
577                 left_edge_delta = th_ack - tp->snd_una;
578                 sack_blocks[num_sack_blks].start = tp->snd_una;
579                 sack_blocks[num_sack_blks++].end = th_ack;
580                 /*
581                  * Pulling snd_fack forward if we got here
582                  * due to DSACK blocks
583                  */
584                 if (SEQ_LT(tp->snd_fack, th_ack)) {
585                         delivered_data += th_ack - tp->snd_una;
586                         tp->snd_fack = th_ack;
587                         sack_changed = 1;
588                 }
589         }
590         /*
591          * Append received valid SACK blocks to sack_blocks[], but only if we
592          * received new blocks from the other side.
593          */
594         if (to->to_flags & TOF_SACK) {
595                 for (i = 0; i < to->to_nsacks; i++) {
596                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
597                             &sack, sizeof(sack));
598                         sack.start = ntohl(sack.start);
599                         sack.end = ntohl(sack.end);
600                         if (SEQ_GT(sack.end, sack.start) &&
601                             SEQ_GT(sack.start, tp->snd_una) &&
602                             SEQ_GT(sack.start, th_ack) &&
603                             SEQ_LT(sack.start, tp->snd_max) &&
604                             SEQ_GT(sack.end, tp->snd_una) &&
605                             SEQ_LEQ(sack.end, tp->snd_max)) {
606                                 sack_blocks[num_sack_blks++] = sack;
607                         }
608                 }
609         }
610         /*
611          * Return if SND.UNA is not advanced and no valid SACK block is
612          * received.
613          */
614         if (num_sack_blks == 0)
615                 return (sack_changed);
616
617         /*
618          * Sort the SACK blocks so we can update the scoreboard with just one
619          * pass. The overhead of sorting up to 4+1 elements is less than
620          * making up to 4+1 passes over the scoreboard.
621          */
622         for (i = 0; i < num_sack_blks; i++) {
623                 for (j = i + 1; j < num_sack_blks; j++) {
624                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
625                                 sack = sack_blocks[i];
626                                 sack_blocks[i] = sack_blocks[j];
627                                 sack_blocks[j] = sack;
628                         }
629                 }
630         }
631         if (TAILQ_EMPTY(&tp->snd_holes)) {
632                 /*
633                  * Empty scoreboard. Need to initialize snd_fack (it may be
634                  * uninitialized or have a bogus value). Scoreboard holes
635                  * (from the sack blocks received) are created later below
636                  * (in the logic that adds holes to the tail of the
637                  * scoreboard).
638                  */
639                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
640                 tp->sackhint.sacked_bytes = 0;  /* reset */
641         }
642         /*
643          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
644          * SACK holes (snd_holes) are traversed from their tails with just
645          * one pass in order to reduce the number of compares especially when
646          * the bandwidth-delay product is large.
647          *
648          * Note: Typically, in the first RTT of SACK recovery, the highest
649          * three or four SACK blocks with the same ack number are received.
650          * In the second RTT, if retransmitted data segments are not lost,
651          * the highest three or four SACK blocks with ack number advancing
652          * are received.
653          */
654         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
655         tp->sackhint.last_sack_ack = sblkp->end;
656         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
657                 /*
658                  * The highest SACK block is beyond fack.  First,
659                  * check if there was a successful Rescue Retransmission,
660                  * and move this hole left. With normal holes, snd_fack
661                  * is always to the right of the end.
662                  */
663                 if (((temp = TAILQ_LAST(&tp->snd_holes, sackhole_head)) != NULL) &&
664                     SEQ_LEQ(tp->snd_fack,temp->end)) {
665                         temp->start = SEQ_MAX(tp->snd_fack, SEQ_MAX(tp->snd_una, th_ack));
666                         temp->end = sblkp->start;
667                         temp->rxmit = temp->start;
668                         delivered_data += sblkp->end - sblkp->start;
669                         tp->snd_fack = sblkp->end;
670                         sblkp--;
671                         sack_changed = 1;
672                 } else {
673                         /*
674                          * Append a new SACK hole at the tail.  If the
675                          * second or later highest SACK blocks are also
676                          * beyond the current fack, they will be inserted
677                          * by way of hole splitting in the while-loop below.
678                          */
679                         temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
680                         if (temp != NULL) {
681                                 delivered_data += sblkp->end - sblkp->start;
682                                 tp->snd_fack = sblkp->end;
683                                 /* Go to the previous sack block. */
684                                 sblkp--;
685                                 sack_changed = 1;
686                         } else {
687                                 /*
688                                  * We failed to add a new hole based on the current
689                                  * sack block.  Skip over all the sack blocks that
690                                  * fall completely to the right of snd_fack and
691                                  * proceed to trim the scoreboard based on the
692                                  * remaining sack blocks.  This also trims the
693                                  * scoreboard for th_ack (which is sack_blocks[0]).
694                                  */
695                                 while (sblkp >= sack_blocks &&
696                                        SEQ_LT(tp->snd_fack, sblkp->start))
697                                         sblkp--;
698                                 if (sblkp >= sack_blocks &&
699                                     SEQ_LT(tp->snd_fack, sblkp->end)) {
700                                         delivered_data += sblkp->end - tp->snd_fack;
701                                         tp->snd_fack = sblkp->end;
702                                         sack_changed = 1;
703                                 }
704                         }
705                 }
706         } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
707                 /* fack is advanced. */
708                 delivered_data += sblkp->end - tp->snd_fack;
709                 tp->snd_fack = sblkp->end;
710                 sack_changed = 1;
711         }
712         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
713         /*
714          * Since the incoming sack blocks are sorted, we can process them
715          * making one sweep of the scoreboard.
716          */
717         while (sblkp >= sack_blocks  && cur != NULL) {
718                 if (SEQ_GEQ(sblkp->start, cur->end)) {
719                         /*
720                          * SACKs data beyond the current hole.  Go to the
721                          * previous sack block.
722                          */
723                         sblkp--;
724                         continue;
725                 }
726                 if (SEQ_LEQ(sblkp->end, cur->start)) {
727                         /*
728                          * SACKs data before the current hole.  Go to the
729                          * previous hole.
730                          */
731                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
732                         continue;
733                 }
734                 tp->sackhint.sack_bytes_rexmit -=
735                     (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
736                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
737                     ("sackhint bytes rtx >= 0"));
738                 sack_changed = 1;
739                 if (SEQ_LEQ(sblkp->start, cur->start)) {
740                         /* Data acks at least the beginning of hole. */
741                         if (SEQ_GEQ(sblkp->end, cur->end)) {
742                                 /* Acks entire hole, so delete hole. */
743                                 delivered_data += (cur->end - cur->start);
744                                 temp = cur;
745                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
746                                 tcp_sackhole_remove(tp, temp);
747                                 /*
748                                  * The sack block may ack all or part of the
749                                  * next hole too, so continue onto the next
750                                  * hole.
751                                  */
752                                 continue;
753                         } else {
754                                 /* Move start of hole forward. */
755                                 delivered_data += (sblkp->end - cur->start);
756                                 cur->start = sblkp->end;
757                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
758                         }
759                 } else {
760                         /* Data acks at least the end of hole. */
761                         if (SEQ_GEQ(sblkp->end, cur->end)) {
762                                 /* Move end of hole backward. */
763                                 delivered_data += (cur->end - sblkp->start);
764                                 cur->end = sblkp->start;
765                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
766                                 if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
767                                         cur->rxmit = tp->snd_recover;
768                         } else {
769                                 /*
770                                  * ACKs some data in middle of a hole; need
771                                  * to split current hole
772                                  */
773                                 temp = tcp_sackhole_insert(tp, sblkp->end,
774                                     cur->end, cur);
775                                 if (temp != NULL) {
776                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
777                                                 temp->rxmit = cur->rxmit;
778                                                 tp->sackhint.sack_bytes_rexmit +=
779                                                     (SEQ_MIN(temp->rxmit,
780                                                     temp->end) - temp->start);
781                                         }
782                                         cur->end = sblkp->start;
783                                         cur->rxmit = SEQ_MIN(cur->rxmit,
784                                             cur->end);
785                                         if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
786                                                 cur->rxmit = tp->snd_recover;
787                                         delivered_data += (sblkp->end - sblkp->start);
788                                 }
789                         }
790                 }
791                 tp->sackhint.sack_bytes_rexmit +=
792                     (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
793                 /*
794                  * Testing sblkp->start against cur->start tells us whether
795                  * we're done with the sack block or the sack hole.
796                  * Accordingly, we advance one or the other.
797                  */
798                 if (SEQ_LEQ(sblkp->start, cur->start))
799                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
800                 else
801                         sblkp--;
802         }
803         if (!(to->to_flags & TOF_SACK))
804                 /*
805                  * If this ACK did not contain any
806                  * SACK blocks, any only moved the
807                  * left edge right, it is a pure
808                  * cumulative ACK. Do not count
809                  * DupAck for this. Also required
810                  * for RFC6675 rescue retransmission.
811                  */
812                 sack_changed = 0;
813         tp->sackhint.delivered_data = delivered_data;
814         tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
815         KASSERT((delivered_data >= 0), ("delivered_data < 0"));
816         KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
817         return (sack_changed);
818 }
819
820 /*
821  * Free all SACK holes to clear the scoreboard.
822  */
823 void
824 tcp_free_sackholes(struct tcpcb *tp)
825 {
826         struct sackhole *q;
827
828         INP_WLOCK_ASSERT(tp->t_inpcb);
829         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
830                 tcp_sackhole_remove(tp, q);
831         tp->sackhint.sack_bytes_rexmit = 0;
832
833         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
834         KASSERT(tp->sackhint.nexthole == NULL,
835                 ("tp->sackhint.nexthole == NULL"));
836 }
837
838 /*
839  * Partial ack handling within a sack recovery episode.  Keeping this very
840  * simple for now.  When a partial ack is received, force snd_cwnd to a value
841  * that will allow the sender to transmit no more than 2 segments.  If
842  * necessary, a better scheme can be adopted at a later point, but for now,
843  * the goal is to prevent the sender from bursting a large amount of data in
844  * the midst of sack recovery.
845  */
846 void
847 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
848 {
849         int num_segs = 1;
850         u_int maxseg = tcp_maxseg(tp);
851
852         INP_WLOCK_ASSERT(tp->t_inpcb);
853         tcp_timer_activate(tp, TT_REXMT, 0);
854         tp->t_rtttime = 0;
855         /* Send one or 2 segments based on how much new data was acked. */
856         if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
857                 num_segs = 2;
858         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
859             (tp->snd_nxt - tp->snd_recover) + num_segs * maxseg);
860         if (tp->snd_cwnd > tp->snd_ssthresh)
861                 tp->snd_cwnd = tp->snd_ssthresh;
862         tp->t_flags |= TF_ACKNOW;
863         /*
864          * RFC6675 rescue retransmission
865          * Add a hole between th_ack (snd_una is not yet set) and snd_max,
866          * if this was a pure cumulative ACK and no data was send beyond
867          * recovery point. Since the data in the socket has not been freed
868          * at this point, we check if the scoreboard is empty, and the ACK
869          * delivered some new data, indicating a full ACK. Also, if the
870          * recovery point is still at snd_max, we are probably application
871          * limited. However, this inference might not always be true. The
872          * rescue retransmission may rarely be slightly premature
873          * compared to RFC6675.
874          * The corresponding ACK+SACK will cause any further outstanding
875          * segments to be retransmitted. This addresses a corner case, when
876          * the trailing packets of a window are lost and no further data
877          * is available for sending.
878          */
879         if ((V_tcp_do_newsack) &&
880             SEQ_LT(th->th_ack, tp->snd_recover) &&
881             (tp->snd_recover == tp->snd_max) &&
882             TAILQ_EMPTY(&tp->snd_holes) &&
883             (tp->sackhint.delivered_data > 0)) {
884                 /*
885                  * Exclude FIN sequence space in
886                  * the hole for the rescue retransmission,
887                  * and also don't create a hole, if only
888                  * the ACK for a FIN is outstanding.
889                  */
890                 tcp_seq highdata = tp->snd_max;
891                 if (tp->t_flags & TF_SENTFIN)
892                         highdata--;
893                 if (th->th_ack != highdata) {
894                         tp->snd_fack = th->th_ack;
895                         (void)tcp_sackhole_insert(tp, SEQ_MAX(th->th_ack,
896                             highdata - maxseg), highdata, NULL);
897                 }
898         }
899         (void) tp->t_fb->tfb_tcp_output(tp);
900 }
901
902 #if 0
903 /*
904  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
905  * now to sanity check the hint.
906  */
907 static struct sackhole *
908 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
909 {
910         struct sackhole *p;
911
912         INP_WLOCK_ASSERT(tp->t_inpcb);
913         *sack_bytes_rexmt = 0;
914         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
915                 if (SEQ_LT(p->rxmit, p->end)) {
916                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
917                                 continue;
918                         }
919                         *sack_bytes_rexmt += (p->rxmit - p->start);
920                         break;
921                 }
922                 *sack_bytes_rexmt += (SEQ_MIN(p->rxmit, p->end) - p->start);
923         }
924         return (p);
925 }
926 #endif
927
928 /*
929  * Returns the next hole to retransmit and the number of retransmitted bytes
930  * from the scoreboard.  We store both the next hole and the number of
931  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
932  * reception).  This avoids scoreboard traversals completely.
933  *
934  * The loop here will traverse *at most* one link.  Here's the argument.  For
935  * the loop to traverse more than 1 link before finding the next hole to
936  * retransmit, we would need to have at least 1 node following the current
937  * hint with (rxmit == end).  But, for all holes following the current hint,
938  * (start == rxmit), since we have not yet retransmitted from them.
939  * Therefore, in order to traverse more 1 link in the loop below, we need to
940  * have at least one node following the current hint with (start == rxmit ==
941  * end).  But that can't happen, (start == end) means that all the data in
942  * that hole has been sacked, in which case, the hole would have been removed
943  * from the scoreboard.
944  */
945 struct sackhole *
946 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
947 {
948         struct sackhole *hole = NULL;
949
950         INP_WLOCK_ASSERT(tp->t_inpcb);
951         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
952         hole = tp->sackhint.nexthole;
953         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
954                 goto out;
955         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
956                 if (SEQ_LT(hole->rxmit, hole->end)) {
957                         tp->sackhint.nexthole = hole;
958                         break;
959                 }
960         }
961 out:
962         return (hole);
963 }
964
965 /*
966  * After a timeout, the SACK list may be rebuilt.  This SACK information
967  * should be used to avoid retransmitting SACKed data.  This function
968  * traverses the SACK list to see if snd_nxt should be moved forward.
969  */
970 void
971 tcp_sack_adjust(struct tcpcb *tp)
972 {
973         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
974
975         INP_WLOCK_ASSERT(tp->t_inpcb);
976         if (cur == NULL)
977                 return; /* No holes */
978         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
979                 return; /* We're already beyond any SACKed blocks */
980         /*-
981          * Two cases for which we want to advance snd_nxt:
982          * i) snd_nxt lies between end of one hole and beginning of another
983          * ii) snd_nxt lies between end of last hole and snd_fack
984          */
985         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
986                 if (SEQ_LT(tp->snd_nxt, cur->end))
987                         return;
988                 if (SEQ_GEQ(tp->snd_nxt, p->start))
989                         cur = p;
990                 else {
991                         tp->snd_nxt = p->start;
992                         return;
993                 }
994         }
995         if (SEQ_LT(tp->snd_nxt, cur->end))
996                 return;
997         tp->snd_nxt = tp->snd_fack;
998 }
999
1000 /*
1001  * Lost Retransmission Detection
1002  * Check is FACK is beyond the rexmit of the leftmost hole.
1003  * If yes, we restart sending from still existing holes,
1004  * and adjust cwnd via the congestion control module.
1005  */
1006 void
1007 tcp_sack_lost_retransmission(struct tcpcb *tp, struct tcphdr *th)
1008 {
1009         struct sackhole *temp;
1010         uint32_t prev_cwnd;
1011         if (IN_RECOVERY(tp->t_flags) &&
1012             SEQ_GT(tp->snd_fack, tp->snd_recover) &&
1013             ((temp = TAILQ_FIRST(&tp->snd_holes)) != NULL) &&
1014             SEQ_GEQ(temp->rxmit, temp->end) &&
1015             SEQ_GEQ(tp->snd_fack, temp->rxmit)) {
1016                 TCPSTAT_INC(tcps_sack_lostrexmt);
1017                 /*
1018                  * Start retransmissions from the first hole, and
1019                  * subsequently all other remaining holes, including
1020                  * those, which had been sent completely before.
1021                  */
1022                 tp->sackhint.nexthole = temp;
1023                 TAILQ_FOREACH(temp, &tp->snd_holes, scblink) {
1024                         if (SEQ_GEQ(tp->snd_fack, temp->rxmit) &&
1025                             SEQ_GEQ(temp->rxmit, temp->end))
1026                                 temp->rxmit = temp->start;
1027                 }
1028                 /*
1029                  * Remember the old ssthresh, to deduct the beta factor used
1030                  * by the CC module. Finally, set cwnd to ssthresh just
1031                  * prior to invoking another cwnd reduction by the CC
1032                  * module, to not shrink it excessively.
1033                  */
1034                 prev_cwnd = tp->snd_cwnd;
1035                 tp->snd_cwnd = tp->snd_ssthresh;
1036                 /*
1037                  * Formally exit recovery, and let the CC module adjust
1038                  * ssthresh as intended.
1039                  */
1040                 EXIT_RECOVERY(tp->t_flags);
1041                 cc_cong_signal(tp, th, CC_NDUPACK);
1042                 /*
1043                  * For PRR, adjust recover_fs as if this new reduction
1044                  * initialized this variable.
1045                  * cwnd will be adjusted by SACK or PRR processing
1046                  * subsequently, only set it to a safe value here.
1047                  */
1048                 tp->snd_cwnd = tcp_maxseg(tp);
1049                 tp->sackhint.recover_fs = (tp->snd_max - tp->snd_una) -
1050                                             tp->sackhint.recover_fs;
1051         }
1052 }