]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_sack.c
if_tun: check device name
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_sack.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *      The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
33  */
34
35 /*-
36  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *      This product includes software developed by the University of
50  *      California, Berkeley and its contributors.
51  *      This product includes software developed at the Information
52  *      Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74
75 #include <sys/cdefs.h>
76 #include "opt_inet.h"
77 #include "opt_inet6.h"
78 #include "opt_tcpdebug.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/sysctl.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>           /* for proc0 declaration */
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/syslog.h>
91 #include <sys/systm.h>
92
93 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
94
95 #include <vm/uma.h>
96
97 #include <net/if.h>
98 #include <net/if_var.h>
99 #include <net/route.h>
100 #include <net/vnet.h>
101
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/in_var.h>
106 #include <netinet/in_pcb.h>
107 #include <netinet/ip_var.h>
108 #include <netinet/ip6.h>
109 #include <netinet/icmp6.h>
110 #include <netinet6/nd6.h>
111 #include <netinet6/ip6_var.h>
112 #include <netinet6/in6_pcb.h>
113 #include <netinet/tcp.h>
114 #include <netinet/tcp_fsm.h>
115 #include <netinet/tcp_seq.h>
116 #include <netinet/tcp_timer.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet6/tcp6_var.h>
119 #include <netinet/tcpip.h>
120 #ifdef TCPDEBUG
121 #include <netinet/tcp_debug.h>
122 #endif /* TCPDEBUG */
123
124 #include <machine/in_cksum.h>
125
126 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
127 #define V_sack_hole_zone                VNET(sack_hole_zone)
128
129 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
130     "TCP SACK");
131 VNET_DEFINE(int, tcp_do_sack) = 1;
132 #define V_tcp_do_sack                   VNET(tcp_do_sack)
133 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
134     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
135
136 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
137 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
138     &VNET_NAME(tcp_sack_maxholes), 0,
139     "Maximum number of TCP SACK holes allowed per connection");
140
141 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
142 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
143     &VNET_NAME(tcp_sack_globalmaxholes), 0,
144     "Global maximum number of TCP SACK holes");
145
146 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
147 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
148     &VNET_NAME(tcp_sack_globalholes), 0,
149     "Global number of TCP SACK holes currently allocated");
150
151 int
152 tcp_dsack_block_exists(struct tcpcb *tp)
153 {
154         /* Return true if a DSACK block exists */
155         if (tp->rcv_numsacks == 0)
156                 return (0);
157         if (SEQ_LEQ(tp->sackblks[0].end, tp->rcv_nxt))
158                 return(1);
159         return (0);
160 }
161
162 /*
163  * This function will find overlaps with the currently stored sackblocks
164  * and add any overlap as a dsack block upfront
165  */
166 void
167 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
168 {
169         struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
170         int i, j, n, identical;
171         tcp_seq start, end;
172
173         INP_WLOCK_ASSERT(tp->t_inpcb);
174
175         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
176
177         if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
178             ((rcv_end == tp->rcv_nxt) &&
179              (tp->rcv_numsacks > 0 ) &&
180              (tp->sackblks[0].end == tp->rcv_nxt))) {
181                 saved_blks[0].start = rcv_start;
182                 saved_blks[0].end = rcv_end;
183         } else {
184                 saved_blks[0].start = saved_blks[0].end = 0;
185         }
186
187         head_blk.start = head_blk.end = 0;
188         mid_blk.start = rcv_start;
189         mid_blk.end = rcv_end;
190         identical = 0;
191
192         for (i = 0; i < tp->rcv_numsacks; i++) {
193                 start = tp->sackblks[i].start;
194                 end = tp->sackblks[i].end;
195                 if (SEQ_LT(rcv_end, start)) {
196                         /* pkt left to sack blk */
197                         continue;
198                 }
199                 if (SEQ_GT(rcv_start, end)) {
200                         /* pkt right to sack blk */
201                         continue;
202                 }
203                 if (SEQ_GT(tp->rcv_nxt, end)) {
204                         if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
205                             (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
206                             (head_blk.start == head_blk.end))) {
207                                 head_blk.start = SEQ_MAX(rcv_start, start);
208                                 head_blk.end = SEQ_MIN(rcv_end, end);
209                         }
210                         continue;
211                 }
212                 if (((head_blk.start == head_blk.end) ||
213                      SEQ_LT(start, head_blk.start)) &&
214                      (SEQ_GT(end, rcv_start) &&
215                       SEQ_LEQ(start, rcv_end))) {
216                         head_blk.start = start;
217                         head_blk.end = end;
218                 }
219                 mid_blk.start = SEQ_MIN(mid_blk.start, start);
220                 mid_blk.end = SEQ_MAX(mid_blk.end, end);
221                 if ((mid_blk.start == start) &&
222                     (mid_blk.end == end))
223                         identical = 1;
224         }
225         if (SEQ_LT(head_blk.start, head_blk.end)) {
226                 /* store overlapping range */
227                 saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
228                 saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
229         }
230         n = 1;
231         /*
232          * Second, if not ACKed, store the SACK block that
233          * overlaps with the DSACK block unless it is identical
234          */
235         if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
236             !((mid_blk.start == saved_blks[0].start) &&
237             (mid_blk.end == saved_blks[0].end))) ||
238             identical == 1) {
239                 saved_blks[n].start = mid_blk.start;
240                 saved_blks[n++].end = mid_blk.end;
241         }
242         for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
243                 if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
244                       SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
245                     (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
246                 saved_blks[n++] = tp->sackblks[j];
247         }
248         j = 0;
249         for (i = 0; i < n; i++) {
250                 /* we can end up with a stale initial entry */
251                 if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
252                         tp->sackblks[j++] = saved_blks[i];
253                 }
254         }
255         tp->rcv_numsacks = j;
256 }
257
258 /*
259  * This function is called upon receipt of new valid data (while not in
260  * header prediction mode), and it updates the ordered list of sacks.
261  */
262 void
263 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
264 {
265         /*
266          * First reported block MUST be the most recent one.  Subsequent
267          * blocks SHOULD be in the order in which they arrived at the
268          * receiver.  These two conditions make the implementation fully
269          * compliant with RFC 2018.
270          */
271         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
272         int num_head, num_saved, i;
273
274         INP_WLOCK_ASSERT(tp->t_inpcb);
275
276         /* Check arguments. */
277         KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
278
279         if ((rcv_start == rcv_end) &&
280             (tp->rcv_numsacks >= 1) &&
281             (rcv_end == tp->sackblks[0].end)) {
282                 /* retaining DSACK block below rcv_nxt (todrop) */
283                 head_blk = tp->sackblks[0];
284         } else {
285                 /* SACK block for the received segment. */
286                 head_blk.start = rcv_start;
287                 head_blk.end = rcv_end;
288         }
289
290         /*
291          * Merge updated SACK blocks into head_blk, and save unchanged SACK
292          * blocks into saved_blks[].  num_saved will have the number of the
293          * saved SACK blocks.
294          */
295         num_saved = 0;
296         for (i = 0; i < tp->rcv_numsacks; i++) {
297                 tcp_seq start = tp->sackblks[i].start;
298                 tcp_seq end = tp->sackblks[i].end;
299                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
300                         /*
301                          * Discard this SACK block.
302                          */
303                 } else if (SEQ_LEQ(head_blk.start, end) &&
304                            SEQ_GEQ(head_blk.end, start)) {
305                         /*
306                          * Merge this SACK block into head_blk.  This SACK
307                          * block itself will be discarded.
308                          */
309                         /*
310                          * |-|
311                          *   |---|  merge
312                          *
313                          *     |-|
314                          * |---|    merge
315                          *
316                          * |-----|
317                          *   |-|    DSACK smaller
318                          *
319                          *   |-|
320                          * |-----|  DSACK smaller
321                          */
322                         if (head_blk.start == end)
323                                 head_blk.start = start;
324                         else if (head_blk.end == start)
325                                 head_blk.end = end;
326                         else {
327                                 if (SEQ_LT(head_blk.start, start)) {
328                                         tcp_seq temp = start;
329                                         start = head_blk.start;
330                                         head_blk.start = temp;
331                                 }
332                                 if (SEQ_GT(head_blk.end, end)) {
333                                         tcp_seq temp = end;
334                                         end = head_blk.end;
335                                         head_blk.end = temp;
336                                 }
337                                 if ((head_blk.start != start) ||
338                                     (head_blk.end != end)) {
339                                         if ((num_saved >= 1) &&
340                                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
341                                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
342                                                 num_saved--;
343                                         saved_blks[num_saved].start = start;
344                                         saved_blks[num_saved].end = end;
345                                         num_saved++;
346                                 }
347                         }
348                 } else {
349                         /*
350                          * This block supercedes the prior block
351                          */
352                         if ((num_saved >= 1) &&
353                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
354                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
355                                 num_saved--;
356                         /*
357                          * Save this SACK block.
358                          */
359                         saved_blks[num_saved].start = start;
360                         saved_blks[num_saved].end = end;
361                         num_saved++;
362                 }
363         }
364
365         /*
366          * Update SACK list in tp->sackblks[].
367          */
368         num_head = 0;
369         if (SEQ_LT(rcv_start, rcv_end)) {
370                 /*
371                  * The received data segment is an out-of-order segment.  Put
372                  * head_blk at the top of SACK list.
373                  */
374                 tp->sackblks[0] = head_blk;
375                 num_head = 1;
376                 /*
377                  * If the number of saved SACK blocks exceeds its limit,
378                  * discard the last SACK block.
379                  */
380                 if (num_saved >= MAX_SACK_BLKS)
381                         num_saved--;
382         }
383         if ((rcv_start == rcv_end) &&
384             (rcv_start == tp->sackblks[0].end)) {
385                 num_head = 1;
386         }
387         if (num_saved > 0) {
388                 /*
389                  * Copy the saved SACK blocks back.
390                  */
391                 bcopy(saved_blks, &tp->sackblks[num_head],
392                       sizeof(struct sackblk) * num_saved);
393         }
394
395         /* Save the number of SACK blocks. */
396         tp->rcv_numsacks = num_head + num_saved;
397 }
398
399 void
400 tcp_clean_dsack_blocks(struct tcpcb *tp)
401 {
402         struct sackblk saved_blks[MAX_SACK_BLKS];
403         int num_saved, i;
404
405         INP_WLOCK_ASSERT(tp->t_inpcb);
406         /*
407          * Clean up any DSACK blocks that
408          * are in our queue of sack blocks.
409          *
410          */
411         num_saved = 0;
412         for (i = 0; i < tp->rcv_numsacks; i++) {
413                 tcp_seq start = tp->sackblks[i].start;
414                 tcp_seq end = tp->sackblks[i].end;
415                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
416                         /*
417                          * Discard this D-SACK block.
418                          */
419                         continue;
420                 }
421                 /*
422                  * Save this SACK block.
423                  */
424                 saved_blks[num_saved].start = start;
425                 saved_blks[num_saved].end = end;
426                 num_saved++;
427         }
428         if (num_saved > 0) {
429                 /*
430                  * Copy the saved SACK blocks back.
431                  */
432                 bcopy(saved_blks, &tp->sackblks[0],
433                       sizeof(struct sackblk) * num_saved);
434         }
435         tp->rcv_numsacks = num_saved;
436 }
437
438 /*
439  * Delete all receiver-side SACK information.
440  */
441 void
442 tcp_clean_sackreport(struct tcpcb *tp)
443 {
444         int i;
445
446         INP_WLOCK_ASSERT(tp->t_inpcb);
447         tp->rcv_numsacks = 0;
448         for (i = 0; i < MAX_SACK_BLKS; i++)
449                 tp->sackblks[i].start = tp->sackblks[i].end=0;
450 }
451
452 /*
453  * Allocate struct sackhole.
454  */
455 static struct sackhole *
456 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
457 {
458         struct sackhole *hole;
459
460         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
461             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
462                 TCPSTAT_INC(tcps_sack_sboverflow);
463                 return NULL;
464         }
465
466         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
467         if (hole == NULL)
468                 return NULL;
469
470         hole->start = start;
471         hole->end = end;
472         hole->rxmit = start;
473
474         tp->snd_numholes++;
475         atomic_add_int(&V_tcp_sack_globalholes, 1);
476
477         return hole;
478 }
479
480 /*
481  * Free struct sackhole.
482  */
483 static void
484 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
485 {
486
487         uma_zfree(V_sack_hole_zone, hole);
488
489         tp->snd_numholes--;
490         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
491
492         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
493         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
494 }
495
496 /*
497  * Insert new SACK hole into scoreboard.
498  */
499 static struct sackhole *
500 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
501     struct sackhole *after)
502 {
503         struct sackhole *hole;
504
505         /* Allocate a new SACK hole. */
506         hole = tcp_sackhole_alloc(tp, start, end);
507         if (hole == NULL)
508                 return NULL;
509
510         /* Insert the new SACK hole into scoreboard. */
511         if (after != NULL)
512                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
513         else
514                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
515
516         /* Update SACK hint. */
517         if (tp->sackhint.nexthole == NULL)
518                 tp->sackhint.nexthole = hole;
519
520         return hole;
521 }
522
523 /*
524  * Remove SACK hole from scoreboard.
525  */
526 static void
527 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
528 {
529
530         /* Update SACK hint. */
531         if (tp->sackhint.nexthole == hole)
532                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
533
534         /* Remove this SACK hole. */
535         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
536
537         /* Free this SACK hole. */
538         tcp_sackhole_free(tp, hole);
539 }
540
541 /*
542  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
543  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
544  * the sequence space).
545  * Returns 1 if incoming ACK has previously unknown SACK information,
546  * 0 otherwise.
547  */
548 int
549 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
550 {
551         struct sackhole *cur, *temp;
552         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
553         int i, j, num_sack_blks, sack_changed;
554         int delivered_data, left_edge_delta;
555
556         INP_WLOCK_ASSERT(tp->t_inpcb);
557
558         num_sack_blks = 0;
559         sack_changed = 0;
560         delivered_data = 0;
561         left_edge_delta = 0;
562         /*
563          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
564          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
565          * Account changes to SND.UNA always in delivered data.
566          */
567         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
568                 left_edge_delta = th_ack - tp->snd_una;
569                 sack_blocks[num_sack_blks].start = tp->snd_una;
570                 sack_blocks[num_sack_blks++].end = th_ack;
571                 /*
572                  * Pulling snd_fack forward if we got here
573                  * due to DSACK blocks
574                  */
575                 if (SEQ_LT(tp->snd_fack, th_ack)) {
576                         delivered_data += th_ack - tp->snd_una;
577                         tp->snd_fack = th_ack;
578                         sack_changed = 1;
579                 }
580         }
581         /*
582          * Append received valid SACK blocks to sack_blocks[], but only if we
583          * received new blocks from the other side.
584          */
585         if (to->to_flags & TOF_SACK) {
586                 for (i = 0; i < to->to_nsacks; i++) {
587                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
588                             &sack, sizeof(sack));
589                         sack.start = ntohl(sack.start);
590                         sack.end = ntohl(sack.end);
591                         if (SEQ_GT(sack.end, sack.start) &&
592                             SEQ_GT(sack.start, tp->snd_una) &&
593                             SEQ_GT(sack.start, th_ack) &&
594                             SEQ_LT(sack.start, tp->snd_max) &&
595                             SEQ_GT(sack.end, tp->snd_una) &&
596                             SEQ_LEQ(sack.end, tp->snd_max)) {
597                                 sack_blocks[num_sack_blks++] = sack;
598                         }
599                 }
600         }
601         /*
602          * Return if SND.UNA is not advanced and no valid SACK block is
603          * received.
604          */
605         if (num_sack_blks == 0)
606                 return (sack_changed);
607
608         /*
609          * Sort the SACK blocks so we can update the scoreboard with just one
610          * pass. The overhead of sorting up to 4+1 elements is less than
611          * making up to 4+1 passes over the scoreboard.
612          */
613         for (i = 0; i < num_sack_blks; i++) {
614                 for (j = i + 1; j < num_sack_blks; j++) {
615                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
616                                 sack = sack_blocks[i];
617                                 sack_blocks[i] = sack_blocks[j];
618                                 sack_blocks[j] = sack;
619                         }
620                 }
621         }
622         if (TAILQ_EMPTY(&tp->snd_holes)) {
623                 /*
624                  * Empty scoreboard. Need to initialize snd_fack (it may be
625                  * uninitialized or have a bogus value). Scoreboard holes
626                  * (from the sack blocks received) are created later below
627                  * (in the logic that adds holes to the tail of the
628                  * scoreboard).
629                  */
630                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
631                 tp->sackhint.sacked_bytes = 0;  /* reset */
632         }
633         /*
634          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
635          * SACK holes (snd_holes) are traversed from their tails with just
636          * one pass in order to reduce the number of compares especially when
637          * the bandwidth-delay product is large.
638          *
639          * Note: Typically, in the first RTT of SACK recovery, the highest
640          * three or four SACK blocks with the same ack number are received.
641          * In the second RTT, if retransmitted data segments are not lost,
642          * the highest three or four SACK blocks with ack number advancing
643          * are received.
644          */
645         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
646         tp->sackhint.last_sack_ack = sblkp->end;
647         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
648                 /*
649                  * The highest SACK block is beyond fack.  First,
650                  * check if there was a successful Rescue Retransmission,
651                  * and move this hole left. With normal holes, snd_fack
652                  * is always to the right of the end.
653                  */
654                 if (((temp = TAILQ_LAST(&tp->snd_holes, sackhole_head)) != NULL) &&
655                     SEQ_LEQ(tp->snd_fack,temp->end)) {
656                         temp->start = SEQ_MAX(tp->snd_fack, SEQ_MAX(tp->snd_una, th_ack));
657                         temp->end = sblkp->start;
658                         temp->rxmit = temp->start;
659                         delivered_data += sblkp->end - sblkp->start;
660                         tp->snd_fack = sblkp->end;
661                         sblkp--;
662                         sack_changed = 1;
663                 } else {
664                         /*
665                          * Append a new SACK hole at the tail.  If the
666                          * second or later highest SACK blocks are also
667                          * beyond the current fack, they will be inserted
668                          * by way of hole splitting in the while-loop below.
669                          */
670                         temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
671                         if (temp != NULL) {
672                                 delivered_data += sblkp->end - sblkp->start;
673                                 tp->snd_fack = sblkp->end;
674                                 /* Go to the previous sack block. */
675                                 sblkp--;
676                                 sack_changed = 1;
677                         } else {
678                                 /*
679                                  * We failed to add a new hole based on the current
680                                  * sack block.  Skip over all the sack blocks that
681                                  * fall completely to the right of snd_fack and
682                                  * proceed to trim the scoreboard based on the
683                                  * remaining sack blocks.  This also trims the
684                                  * scoreboard for th_ack (which is sack_blocks[0]).
685                                  */
686                                 while (sblkp >= sack_blocks &&
687                                        SEQ_LT(tp->snd_fack, sblkp->start))
688                                         sblkp--;
689                                 if (sblkp >= sack_blocks &&
690                                     SEQ_LT(tp->snd_fack, sblkp->end)) {
691                                         delivered_data += sblkp->end - tp->snd_fack;
692                                         tp->snd_fack = sblkp->end;
693                                         sack_changed = 1;
694                                 }
695                         }
696                 }
697         } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
698                 /* fack is advanced. */
699                 delivered_data += sblkp->end - tp->snd_fack;
700                 tp->snd_fack = sblkp->end;
701                 sack_changed = 1;
702         }
703         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
704         /*
705          * Since the incoming sack blocks are sorted, we can process them
706          * making one sweep of the scoreboard.
707          */
708         while (sblkp >= sack_blocks  && cur != NULL) {
709                 if (SEQ_GEQ(sblkp->start, cur->end)) {
710                         /*
711                          * SACKs data beyond the current hole.  Go to the
712                          * previous sack block.
713                          */
714                         sblkp--;
715                         continue;
716                 }
717                 if (SEQ_LEQ(sblkp->end, cur->start)) {
718                         /*
719                          * SACKs data before the current hole.  Go to the
720                          * previous hole.
721                          */
722                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
723                         continue;
724                 }
725                 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
726                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
727                     ("sackhint bytes rtx >= 0"));
728                 sack_changed = 1;
729                 if (SEQ_LEQ(sblkp->start, cur->start)) {
730                         /* Data acks at least the beginning of hole. */
731                         if (SEQ_GEQ(sblkp->end, cur->end)) {
732                                 /* Acks entire hole, so delete hole. */
733                                 delivered_data += (cur->end - cur->start);
734                                 temp = cur;
735                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
736                                 tcp_sackhole_remove(tp, temp);
737                                 /*
738                                  * The sack block may ack all or part of the
739                                  * next hole too, so continue onto the next
740                                  * hole.
741                                  */
742                                 continue;
743                         } else {
744                                 /* Move start of hole forward. */
745                                 delivered_data += (sblkp->end - cur->start);
746                                 cur->start = sblkp->end;
747                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
748                         }
749                 } else {
750                         /* Data acks at least the end of hole. */
751                         if (SEQ_GEQ(sblkp->end, cur->end)) {
752                                 /* Move end of hole backward. */
753                                 delivered_data += (cur->end - sblkp->start);
754                                 cur->end = sblkp->start;
755                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
756                         } else {
757                                 /*
758                                  * ACKs some data in middle of a hole; need
759                                  * to split current hole
760                                  */
761                                 temp = tcp_sackhole_insert(tp, sblkp->end,
762                                     cur->end, cur);
763                                 if (temp != NULL) {
764                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
765                                                 temp->rxmit = cur->rxmit;
766                                                 tp->sackhint.sack_bytes_rexmit
767                                                     += (temp->rxmit
768                                                     - temp->start);
769                                         }
770                                         cur->end = sblkp->start;
771                                         cur->rxmit = SEQ_MIN(cur->rxmit,
772                                             cur->end);
773                                         delivered_data += (sblkp->end - sblkp->start);
774                                 }
775                         }
776                 }
777                 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
778                 /*
779                  * Testing sblkp->start against cur->start tells us whether
780                  * we're done with the sack block or the sack hole.
781                  * Accordingly, we advance one or the other.
782                  */
783                 if (SEQ_LEQ(sblkp->start, cur->start))
784                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
785                 else
786                         sblkp--;
787         }
788         if (!(to->to_flags & TOF_SACK))
789                 /*
790                  * If this ACK did not contain any
791                  * SACK blocks, any only moved the
792                  * left edge right, it is a pure
793                  * cumulative ACK. Do not count
794                  * DupAck for this. Also required
795                  * for RFC6675 rescue retransmission.
796                  */
797                 sack_changed = 0;
798         tp->sackhint.delivered_data = delivered_data;
799         tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
800         KASSERT((delivered_data >= 0), ("delivered_data < 0"));
801         KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
802         return (sack_changed);
803 }
804
805 /*
806  * Free all SACK holes to clear the scoreboard.
807  */
808 void
809 tcp_free_sackholes(struct tcpcb *tp)
810 {
811         struct sackhole *q;
812
813         INP_WLOCK_ASSERT(tp->t_inpcb);
814         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
815                 tcp_sackhole_remove(tp, q);
816         tp->sackhint.sack_bytes_rexmit = 0;
817
818         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
819         KASSERT(tp->sackhint.nexthole == NULL,
820                 ("tp->sackhint.nexthole == NULL"));
821 }
822
823 /*
824  * Partial ack handling within a sack recovery episode.  Keeping this very
825  * simple for now.  When a partial ack is received, force snd_cwnd to a value
826  * that will allow the sender to transmit no more than 2 segments.  If
827  * necessary, a better scheme can be adopted at a later point, but for now,
828  * the goal is to prevent the sender from bursting a large amount of data in
829  * the midst of sack recovery.
830  */
831 void
832 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
833 {
834         int num_segs = 1;
835         u_int maxseg = tcp_maxseg(tp);
836
837         INP_WLOCK_ASSERT(tp->t_inpcb);
838         tcp_timer_activate(tp, TT_REXMT, 0);
839         tp->t_rtttime = 0;
840         /* Send one or 2 segments based on how much new data was acked. */
841         if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
842                 num_segs = 2;
843         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
844             (tp->snd_nxt - tp->snd_recover) + num_segs * maxseg);
845         if (tp->snd_cwnd > tp->snd_ssthresh)
846                 tp->snd_cwnd = tp->snd_ssthresh;
847         tp->t_flags |= TF_ACKNOW;
848         /*
849          * RFC6675 rescue retransmission
850          * Add a hole between th_ack (snd_una is not yet set) and snd_max,
851          * if this was a pure cumulative ACK and no data was send beyond
852          * recovery point. Since the data in the socket has not been freed
853          * at this point, we check if the scoreboard is empty, and the ACK
854          * delivered some new data, indicating a full ACK. Also, if the
855          * recovery point is still at snd_max, we are probably application
856          * limited. However, this inference might not always be true. The
857          * rescue retransmission may rarely be slightly premature
858          * compared to RFC6675.
859          * The corresponding ACK+SACK will cause any further outstanding
860          * segments to be retransmitted. This addresses a corner case, when
861          * the trailing packets of a window are lost and no further data
862          * is available for sending.
863          */
864         if ((V_tcp_do_rfc6675_pipe) &&
865             SEQ_LT(th->th_ack, tp->snd_recover) &&
866             (tp->snd_recover == tp->snd_max) &&
867             TAILQ_EMPTY(&tp->snd_holes) &&
868             (tp->sackhint.delivered_data > 0)) {
869                 /*
870                  * Exclude FIN sequence space in
871                  * the hole for the rescue retransmission,
872                  * and also don't create a hole, if only
873                  * the ACK for a FIN is outstanding.
874                  */
875                 tcp_seq highdata = tp->snd_max;
876                 if (tp->t_flags & TF_SENTFIN)
877                         highdata--;
878                 if (th->th_ack != highdata) {
879                         tp->snd_fack = th->th_ack;
880                         (void)tcp_sackhole_insert(tp, SEQ_MAX(th->th_ack,
881                             highdata - maxseg), highdata, NULL);
882                 }
883         }
884         (void) tp->t_fb->tfb_tcp_output(tp);
885 }
886
887 #if 0
888 /*
889  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
890  * now to sanity check the hint.
891  */
892 static struct sackhole *
893 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
894 {
895         struct sackhole *p;
896
897         INP_WLOCK_ASSERT(tp->t_inpcb);
898         *sack_bytes_rexmt = 0;
899         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
900                 if (SEQ_LT(p->rxmit, p->end)) {
901                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
902                                 continue;
903                         }
904                         *sack_bytes_rexmt += (p->rxmit - p->start);
905                         break;
906                 }
907                 *sack_bytes_rexmt += (p->rxmit - p->start);
908         }
909         return (p);
910 }
911 #endif
912
913 /*
914  * Returns the next hole to retransmit and the number of retransmitted bytes
915  * from the scoreboard.  We store both the next hole and the number of
916  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
917  * reception).  This avoids scoreboard traversals completely.
918  *
919  * The loop here will traverse *at most* one link.  Here's the argument.  For
920  * the loop to traverse more than 1 link before finding the next hole to
921  * retransmit, we would need to have at least 1 node following the current
922  * hint with (rxmit == end).  But, for all holes following the current hint,
923  * (start == rxmit), since we have not yet retransmitted from them.
924  * Therefore, in order to traverse more 1 link in the loop below, we need to
925  * have at least one node following the current hint with (start == rxmit ==
926  * end).  But that can't happen, (start == end) means that all the data in
927  * that hole has been sacked, in which case, the hole would have been removed
928  * from the scoreboard.
929  */
930 struct sackhole *
931 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
932 {
933         struct sackhole *hole = NULL;
934
935         INP_WLOCK_ASSERT(tp->t_inpcb);
936         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
937         hole = tp->sackhint.nexthole;
938         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
939                 goto out;
940         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
941                 if (SEQ_LT(hole->rxmit, hole->end)) {
942                         tp->sackhint.nexthole = hole;
943                         break;
944                 }
945         }
946 out:
947         return (hole);
948 }
949
950 /*
951  * After a timeout, the SACK list may be rebuilt.  This SACK information
952  * should be used to avoid retransmitting SACKed data.  This function
953  * traverses the SACK list to see if snd_nxt should be moved forward.
954  */
955 void
956 tcp_sack_adjust(struct tcpcb *tp)
957 {
958         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
959
960         INP_WLOCK_ASSERT(tp->t_inpcb);
961         if (cur == NULL)
962                 return; /* No holes */
963         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
964                 return; /* We're already beyond any SACKed blocks */
965         /*-
966          * Two cases for which we want to advance snd_nxt:
967          * i) snd_nxt lies between end of one hole and beginning of another
968          * ii) snd_nxt lies between end of last hole and snd_fack
969          */
970         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
971                 if (SEQ_LT(tp->snd_nxt, cur->end))
972                         return;
973                 if (SEQ_GEQ(tp->snd_nxt, p->start))
974                         cur = p;
975                 else {
976                         tp->snd_nxt = p->start;
977                         return;
978                 }
979         }
980         if (SEQ_LT(tp->snd_nxt, cur->end))
981                 return;
982         tp->snd_nxt = tp->snd_fack;
983 }