]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_sack.c
MFV r356163,r356197:
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_sack.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *      The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
33  */
34
35 /*-
36  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *      This product includes software developed by the University of
50  *      California, Berkeley and its contributors.
51  *      This product includes software developed at the Information
52  *      Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_inet.h"
79 #include "opt_inet6.h"
80 #include "opt_tcpdebug.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/proc.h>           /* for proc0 declaration */
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/syslog.h>
93 #include <sys/systm.h>
94
95 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
96
97 #include <vm/uma.h>
98
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/route.h>
102 #include <net/vnet.h>
103
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip6.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/ip6_var.h>
114 #include <netinet6/in6_pcb.h>
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif /* TCPDEBUG */
125
126 #include <machine/in_cksum.h>
127
128 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
129 #define V_sack_hole_zone                VNET(sack_hole_zone)
130
131 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
132 VNET_DEFINE(int, tcp_do_sack) = 1;
133 #define V_tcp_do_sack                   VNET(tcp_do_sack)
134 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
135     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
136
137 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
138 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
139     &VNET_NAME(tcp_sack_maxholes), 0,
140     "Maximum number of TCP SACK holes allowed per connection");
141
142 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
143 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
144     &VNET_NAME(tcp_sack_globalmaxholes), 0, 
145     "Global maximum number of TCP SACK holes");
146
147 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
148 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
149     &VNET_NAME(tcp_sack_globalholes), 0,
150     "Global number of TCP SACK holes currently allocated");
151
152
153 /*
154  * This function will find overlaps with the currently stored sackblocks
155  * and add any overlap as a dsack block upfront
156  */
157 void
158 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
159 {
160         struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
161         int i, j, n, identical;
162         tcp_seq start, end;
163
164         INP_WLOCK_ASSERT(tp->t_inpcb);
165
166         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
167
168         if (tp->t_inpcb->inp_socket->so_options & SO_DEBUG) {
169                 log(LOG_DEBUG, "\nDSACK update: %d..%d, rcv_nxt: %u\n",
170                 rcv_start, rcv_end, tp->rcv_nxt);
171         }
172
173         if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
174             ((rcv_end == tp->rcv_nxt) &&
175              (tp->rcv_numsacks > 0 ) &&
176              (tp->sackblks[0].end == tp->rcv_nxt))) {
177                 saved_blks[0].start = rcv_start;
178                 saved_blks[0].end = rcv_end;
179         } else {
180                 saved_blks[0].start = saved_blks[0].end = 0;
181         }
182
183         head_blk.start = head_blk.end = 0;
184         mid_blk.start = rcv_start;
185         mid_blk.end = rcv_end;
186         identical = 0;
187
188         for (i = 0; i < tp->rcv_numsacks; i++) {
189                 start = tp->sackblks[i].start;
190                 end = tp->sackblks[i].end;
191                 if (SEQ_LT(rcv_end, start)) {
192                         /* pkt left to sack blk */
193                         continue;
194                 }
195                 if (SEQ_GT(rcv_start, end)) {
196                         /* pkt right to sack blk */
197                         continue;
198                 }
199                 if (SEQ_GT(tp->rcv_nxt, end)) {
200                         if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
201                             (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
202                             (head_blk.start == head_blk.end))) {
203                                 head_blk.start = SEQ_MAX(rcv_start, start);
204                                 head_blk.end = SEQ_MIN(rcv_end, end);
205                         }
206                         continue;
207                 }
208                 if (((head_blk.start == head_blk.end) ||
209                      SEQ_LT(start, head_blk.start)) &&
210                      (SEQ_GT(end, rcv_start) &&
211                       SEQ_LEQ(start, rcv_end))) {
212                         head_blk.start = start;
213                         head_blk.end = end;
214                 }
215                 mid_blk.start = SEQ_MIN(mid_blk.start, start);
216                 mid_blk.end = SEQ_MAX(mid_blk.end, end);
217                 if ((mid_blk.start == start) &&
218                     (mid_blk.end == end))
219                         identical = 1;
220         }
221         if (SEQ_LT(head_blk.start, head_blk.end)) {
222                 /* store overlapping range */
223                 saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
224                 saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
225         }
226         n = 1;
227         /*
228          * Second, if not ACKed, store the SACK block that
229          * overlaps with the DSACK block unless it is identical
230          */
231         if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
232             !((mid_blk.start == saved_blks[0].start) &&
233             (mid_blk.end == saved_blks[0].end))) ||
234             identical == 1) {
235                 saved_blks[n].start = mid_blk.start;
236                 saved_blks[n++].end = mid_blk.end;
237         }
238         for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
239                 if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
240                       SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
241                     (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
242                 saved_blks[n++] = tp->sackblks[j];
243         }
244         j = 0;
245         for (i = 0; i < n; i++) {
246                 /* we can end up with a stale inital entry */
247                 if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
248                         tp->sackblks[j++] = saved_blks[i];
249                 }
250         }
251         tp->rcv_numsacks = j;
252 }
253
254 /*
255  * This function is called upon receipt of new valid data (while not in
256  * header prediction mode), and it updates the ordered list of sacks.
257  */
258 void
259 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
260 {
261         /*
262          * First reported block MUST be the most recent one.  Subsequent
263          * blocks SHOULD be in the order in which they arrived at the
264          * receiver.  These two conditions make the implementation fully
265          * compliant with RFC 2018.
266          */
267         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
268         int num_head, num_saved, i;
269
270         INP_WLOCK_ASSERT(tp->t_inpcb);
271
272         /* Check arguments. */
273         KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
274
275         if ((rcv_start == rcv_end) &&
276             (tp->rcv_numsacks >= 1) &&
277             (rcv_end == tp->sackblks[0].end)) {
278                 /* retaining DSACK block below rcv_nxt (todrop) */
279                 head_blk = tp->sackblks[0];
280         } else {
281                 /* SACK block for the received segment. */
282                 head_blk.start = rcv_start;
283                 head_blk.end = rcv_end;
284         }
285
286         /*
287          * Merge updated SACK blocks into head_blk, and save unchanged SACK
288          * blocks into saved_blks[].  num_saved will have the number of the
289          * saved SACK blocks.
290          */
291         num_saved = 0;
292         for (i = 0; i < tp->rcv_numsacks; i++) {
293                 tcp_seq start = tp->sackblks[i].start;
294                 tcp_seq end = tp->sackblks[i].end;
295                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
296                         /*
297                          * Discard this SACK block.
298                          */
299                 } else if (SEQ_LEQ(head_blk.start, end) &&
300                            SEQ_GEQ(head_blk.end, start)) {
301                         /*
302                          * Merge this SACK block into head_blk.  This SACK
303                          * block itself will be discarded.
304                          */
305                         /*
306                          * |-|
307                          *   |---|  merge
308                          *
309                          *     |-|
310                          * |---|    merge
311                          *
312                          * |-----|
313                          *   |-|    DSACK smaller
314                          *
315                          *   |-|
316                          * |-----|  DSACK smaller
317                          */
318                         if (head_blk.start == end)
319                                 head_blk.start = start;
320                         else if (head_blk.end == start)
321                                 head_blk.end = end;
322                         else {
323                                 if (SEQ_LT(head_blk.start, start)) {
324                                         tcp_seq temp = start;
325                                         start = head_blk.start;
326                                         head_blk.start = temp;
327                                 }
328                                 if (SEQ_GT(head_blk.end, end)) {
329                                         tcp_seq temp = end;
330                                         end = head_blk.end;
331                                         head_blk.end = temp;
332                                 }
333                                 if ((head_blk.start != start) ||
334                                     (head_blk.end != end)) {
335                                         if ((num_saved >= 1) &&
336                                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
337                                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
338                                                 num_saved--;
339                                         saved_blks[num_saved].start = start;
340                                         saved_blks[num_saved].end = end;
341                                         num_saved++;
342                                 }
343                         }
344                 } else {
345                         /*
346                          * This block supercedes the prior block
347                          */
348                         if ((num_saved >= 1) &&
349                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
350                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
351                                 num_saved--;
352                         /*
353                          * Save this SACK block.
354                          */
355                         saved_blks[num_saved].start = start;
356                         saved_blks[num_saved].end = end;
357                         num_saved++;
358                 }
359         }
360
361         /*
362          * Update SACK list in tp->sackblks[].
363          */
364         num_head = 0;
365         if (SEQ_LT(rcv_start, rcv_end)) {
366                 /*
367                  * The received data segment is an out-of-order segment.  Put
368                  * head_blk at the top of SACK list.
369                  */
370                 tp->sackblks[0] = head_blk;
371                 num_head = 1;
372                 /*
373                  * If the number of saved SACK blocks exceeds its limit,
374                  * discard the last SACK block.
375                  */
376                 if (num_saved >= MAX_SACK_BLKS)
377                         num_saved--;
378         }
379         if ((rcv_start == rcv_end) &&
380             (rcv_start == tp->sackblks[0].end)) {
381                 num_head = 1;
382         }
383         if (num_saved > 0) {
384                 /*
385                  * Copy the saved SACK blocks back.
386                  */
387                 bcopy(saved_blks, &tp->sackblks[num_head],
388                       sizeof(struct sackblk) * num_saved);
389         }
390
391         /* Save the number of SACK blocks. */
392         tp->rcv_numsacks = num_head + num_saved;
393 }
394
395 void
396 tcp_clean_dsack_blocks(struct tcpcb *tp)
397 {
398         struct sackblk saved_blks[MAX_SACK_BLKS];
399         int num_saved, i;
400
401         INP_WLOCK_ASSERT(tp->t_inpcb);
402         /*
403          * Clean up any DSACK blocks that
404          * are in our queue of sack blocks.
405          * 
406          */
407         num_saved = 0;
408         for (i = 0; i < tp->rcv_numsacks; i++) {
409                 tcp_seq start = tp->sackblks[i].start;
410                 tcp_seq end = tp->sackblks[i].end;
411                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
412                         /*
413                          * Discard this D-SACK block.
414                          */
415                         continue;
416                 }
417                 /*
418                  * Save this SACK block.
419                  */
420                 saved_blks[num_saved].start = start;
421                 saved_blks[num_saved].end = end;
422                 num_saved++;
423         }
424         if (num_saved > 0) {
425                 /*
426                  * Copy the saved SACK blocks back.
427                  */
428                 bcopy(saved_blks, &tp->sackblks[0],
429                       sizeof(struct sackblk) * num_saved);
430         }
431         tp->rcv_numsacks = num_saved;
432 }
433
434 /*
435  * Delete all receiver-side SACK information.
436  */
437 void
438 tcp_clean_sackreport(struct tcpcb *tp)
439 {
440         int i;
441
442         INP_WLOCK_ASSERT(tp->t_inpcb);
443         tp->rcv_numsacks = 0;
444         for (i = 0; i < MAX_SACK_BLKS; i++)
445                 tp->sackblks[i].start = tp->sackblks[i].end=0;
446 }
447
448 /*
449  * Allocate struct sackhole.
450  */
451 static struct sackhole *
452 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
453 {
454         struct sackhole *hole;
455
456         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
457             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
458                 TCPSTAT_INC(tcps_sack_sboverflow);
459                 return NULL;
460         }
461
462         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
463         if (hole == NULL)
464                 return NULL;
465
466         hole->start = start;
467         hole->end = end;
468         hole->rxmit = start;
469
470         tp->snd_numholes++;
471         atomic_add_int(&V_tcp_sack_globalholes, 1);
472
473         return hole;
474 }
475
476 /*
477  * Free struct sackhole.
478  */
479 static void
480 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
481 {
482
483         uma_zfree(V_sack_hole_zone, hole);
484
485         tp->snd_numholes--;
486         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
487
488         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
489         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
490 }
491
492 /*
493  * Insert new SACK hole into scoreboard.
494  */
495 static struct sackhole *
496 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
497     struct sackhole *after)
498 {
499         struct sackhole *hole;
500
501         /* Allocate a new SACK hole. */
502         hole = tcp_sackhole_alloc(tp, start, end);
503         if (hole == NULL)
504                 return NULL;
505
506         /* Insert the new SACK hole into scoreboard. */
507         if (after != NULL)
508                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
509         else
510                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
511
512         /* Update SACK hint. */
513         if (tp->sackhint.nexthole == NULL)
514                 tp->sackhint.nexthole = hole;
515
516         return hole;
517 }
518
519 /*
520  * Remove SACK hole from scoreboard.
521  */
522 static void
523 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
524 {
525
526         /* Update SACK hint. */
527         if (tp->sackhint.nexthole == hole)
528                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
529
530         /* Remove this SACK hole. */
531         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
532
533         /* Free this SACK hole. */
534         tcp_sackhole_free(tp, hole);
535 }
536
537 /*
538  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
539  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
540  * the sequence space).
541  * Returns 1 if incoming ACK has previously unknown SACK information,
542  * 0 otherwise. Note: We treat (snd_una, th_ack) as a sack block so any changes
543  * to that (i.e. left edge moving) would also be considered a change in SACK
544  * information which is slightly different than rfc6675.
545  */
546 int
547 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
548 {
549         struct sackhole *cur, *temp;
550         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
551         int i, j, num_sack_blks, sack_changed;
552
553         INP_WLOCK_ASSERT(tp->t_inpcb);
554
555         num_sack_blks = 0;
556         sack_changed = 0;
557         /*
558          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
559          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
560          */
561         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
562                 sack_blocks[num_sack_blks].start = tp->snd_una;
563                 sack_blocks[num_sack_blks++].end = th_ack;
564         }
565         /*
566          * Append received valid SACK blocks to sack_blocks[], but only if we
567          * received new blocks from the other side.
568          */
569         if (to->to_flags & TOF_SACK) {
570                 tp->sackhint.sacked_bytes = 0;  /* reset */
571                 for (i = 0; i < to->to_nsacks; i++) {
572                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
573                             &sack, sizeof(sack));
574                         sack.start = ntohl(sack.start);
575                         sack.end = ntohl(sack.end);
576                         if (SEQ_GT(sack.end, sack.start) &&
577                             SEQ_GT(sack.start, tp->snd_una) &&
578                             SEQ_GT(sack.start, th_ack) &&
579                             SEQ_LT(sack.start, tp->snd_max) &&
580                             SEQ_GT(sack.end, tp->snd_una) &&
581                             SEQ_LEQ(sack.end, tp->snd_max)) {
582                                 sack_blocks[num_sack_blks++] = sack;
583                                 tp->sackhint.sacked_bytes +=
584                                     (sack.end-sack.start);
585                         }
586                 }
587         }
588         /*
589          * Return if SND.UNA is not advanced and no valid SACK block is
590          * received.
591          */
592         if (num_sack_blks == 0)
593                 return (sack_changed);
594
595         /*
596          * Sort the SACK blocks so we can update the scoreboard with just one
597          * pass. The overhead of sorting up to 4+1 elements is less than
598          * making up to 4+1 passes over the scoreboard.
599          */
600         for (i = 0; i < num_sack_blks; i++) {
601                 for (j = i + 1; j < num_sack_blks; j++) {
602                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
603                                 sack = sack_blocks[i];
604                                 sack_blocks[i] = sack_blocks[j];
605                                 sack_blocks[j] = sack;
606                         }
607                 }
608         }
609         if (TAILQ_EMPTY(&tp->snd_holes))
610                 /*
611                  * Empty scoreboard. Need to initialize snd_fack (it may be
612                  * uninitialized or have a bogus value). Scoreboard holes
613                  * (from the sack blocks received) are created later below
614                  * (in the logic that adds holes to the tail of the
615                  * scoreboard).
616                  */
617                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
618         /*
619          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
620          * SACK holes (snd_holes) are traversed from their tails with just
621          * one pass in order to reduce the number of compares especially when
622          * the bandwidth-delay product is large.
623          *
624          * Note: Typically, in the first RTT of SACK recovery, the highest
625          * three or four SACK blocks with the same ack number are received.
626          * In the second RTT, if retransmitted data segments are not lost,
627          * the highest three or four SACK blocks with ack number advancing
628          * are received.
629          */
630         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
631         tp->sackhint.last_sack_ack = sblkp->end;
632         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
633                 /*
634                  * The highest SACK block is beyond fack.  Append new SACK
635                  * hole at the tail.  If the second or later highest SACK
636                  * blocks are also beyond the current fack, they will be
637                  * inserted by way of hole splitting in the while-loop below.
638                  */
639                 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
640                 if (temp != NULL) {
641                         tp->snd_fack = sblkp->end;
642                         /* Go to the previous sack block. */
643                         sblkp--;
644                         sack_changed = 1;
645                 } else {
646                         /* 
647                          * We failed to add a new hole based on the current 
648                          * sack block.  Skip over all the sack blocks that 
649                          * fall completely to the right of snd_fack and
650                          * proceed to trim the scoreboard based on the
651                          * remaining sack blocks.  This also trims the
652                          * scoreboard for th_ack (which is sack_blocks[0]).
653                          */
654                         while (sblkp >= sack_blocks && 
655                                SEQ_LT(tp->snd_fack, sblkp->start))
656                                 sblkp--;
657                         if (sblkp >= sack_blocks && 
658                             SEQ_LT(tp->snd_fack, sblkp->end))
659                                 tp->snd_fack = sblkp->end;
660                 }
661         } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
662                 /* fack is advanced. */
663                 tp->snd_fack = sblkp->end;
664                 sack_changed = 1;
665         }
666         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
667         /*
668          * Since the incoming sack blocks are sorted, we can process them
669          * making one sweep of the scoreboard.
670          */
671         while (sblkp >= sack_blocks  && cur != NULL) {
672                 if (SEQ_GEQ(sblkp->start, cur->end)) {
673                         /*
674                          * SACKs data beyond the current hole.  Go to the
675                          * previous sack block.
676                          */
677                         sblkp--;
678                         continue;
679                 }
680                 if (SEQ_LEQ(sblkp->end, cur->start)) {
681                         /*
682                          * SACKs data before the current hole.  Go to the
683                          * previous hole.
684                          */
685                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
686                         continue;
687                 }
688                 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
689                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
690                     ("sackhint bytes rtx >= 0"));
691                 sack_changed = 1;
692                 if (SEQ_LEQ(sblkp->start, cur->start)) {
693                         /* Data acks at least the beginning of hole. */
694                         if (SEQ_GEQ(sblkp->end, cur->end)) {
695                                 /* Acks entire hole, so delete hole. */
696                                 temp = cur;
697                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
698                                 tcp_sackhole_remove(tp, temp);
699                                 /*
700                                  * The sack block may ack all or part of the
701                                  * next hole too, so continue onto the next
702                                  * hole.
703                                  */
704                                 continue;
705                         } else {
706                                 /* Move start of hole forward. */
707                                 cur->start = sblkp->end;
708                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
709                         }
710                 } else {
711                         /* Data acks at least the end of hole. */
712                         if (SEQ_GEQ(sblkp->end, cur->end)) {
713                                 /* Move end of hole backward. */
714                                 cur->end = sblkp->start;
715                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
716                         } else {
717                                 /*
718                                  * ACKs some data in middle of a hole; need
719                                  * to split current hole
720                                  */
721                                 temp = tcp_sackhole_insert(tp, sblkp->end,
722                                     cur->end, cur);
723                                 if (temp != NULL) {
724                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
725                                                 temp->rxmit = cur->rxmit;
726                                                 tp->sackhint.sack_bytes_rexmit
727                                                     += (temp->rxmit
728                                                     - temp->start);
729                                         }
730                                         cur->end = sblkp->start;
731                                         cur->rxmit = SEQ_MIN(cur->rxmit,
732                                             cur->end);
733                                 }
734                         }
735                 }
736                 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
737                 /*
738                  * Testing sblkp->start against cur->start tells us whether
739                  * we're done with the sack block or the sack hole.
740                  * Accordingly, we advance one or the other.
741                  */
742                 if (SEQ_LEQ(sblkp->start, cur->start))
743                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
744                 else
745                         sblkp--;
746         }
747         return (sack_changed);
748 }
749
750 /*
751  * Free all SACK holes to clear the scoreboard.
752  */
753 void
754 tcp_free_sackholes(struct tcpcb *tp)
755 {
756         struct sackhole *q;
757
758         INP_WLOCK_ASSERT(tp->t_inpcb);
759         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
760                 tcp_sackhole_remove(tp, q);
761         tp->sackhint.sack_bytes_rexmit = 0;
762
763         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
764         KASSERT(tp->sackhint.nexthole == NULL,
765                 ("tp->sackhint.nexthole == NULL"));
766 }
767
768 /*
769  * Partial ack handling within a sack recovery episode.  Keeping this very
770  * simple for now.  When a partial ack is received, force snd_cwnd to a value
771  * that will allow the sender to transmit no more than 2 segments.  If
772  * necessary, a better scheme can be adopted at a later point, but for now,
773  * the goal is to prevent the sender from bursting a large amount of data in
774  * the midst of sack recovery.
775  */
776 void
777 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
778 {
779         int num_segs = 1;
780
781         INP_WLOCK_ASSERT(tp->t_inpcb);
782         tcp_timer_activate(tp, TT_REXMT, 0);
783         tp->t_rtttime = 0;
784         /* Send one or 2 segments based on how much new data was acked. */
785         if ((BYTES_THIS_ACK(tp, th) / tp->t_maxseg) >= 2)
786                 num_segs = 2;
787         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
788             (tp->snd_nxt - tp->sack_newdata) + num_segs * tp->t_maxseg);
789         if (tp->snd_cwnd > tp->snd_ssthresh)
790                 tp->snd_cwnd = tp->snd_ssthresh;
791         tp->t_flags |= TF_ACKNOW;
792         (void) tp->t_fb->tfb_tcp_output(tp);
793 }
794
795 #if 0
796 /*
797  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
798  * now to sanity check the hint.
799  */
800 static struct sackhole *
801 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
802 {
803         struct sackhole *p;
804
805         INP_WLOCK_ASSERT(tp->t_inpcb);
806         *sack_bytes_rexmt = 0;
807         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
808                 if (SEQ_LT(p->rxmit, p->end)) {
809                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
810                                 continue;
811                         }
812                         *sack_bytes_rexmt += (p->rxmit - p->start);
813                         break;
814                 }
815                 *sack_bytes_rexmt += (p->rxmit - p->start);
816         }
817         return (p);
818 }
819 #endif
820
821 /*
822  * Returns the next hole to retransmit and the number of retransmitted bytes
823  * from the scoreboard.  We store both the next hole and the number of
824  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
825  * reception).  This avoids scoreboard traversals completely.
826  *
827  * The loop here will traverse *at most* one link.  Here's the argument.  For
828  * the loop to traverse more than 1 link before finding the next hole to
829  * retransmit, we would need to have at least 1 node following the current
830  * hint with (rxmit == end).  But, for all holes following the current hint,
831  * (start == rxmit), since we have not yet retransmitted from them.
832  * Therefore, in order to traverse more 1 link in the loop below, we need to
833  * have at least one node following the current hint with (start == rxmit ==
834  * end).  But that can't happen, (start == end) means that all the data in
835  * that hole has been sacked, in which case, the hole would have been removed
836  * from the scoreboard.
837  */
838 struct sackhole *
839 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
840 {
841         struct sackhole *hole = NULL;
842
843         INP_WLOCK_ASSERT(tp->t_inpcb);
844         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
845         hole = tp->sackhint.nexthole;
846         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
847                 goto out;
848         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
849                 if (SEQ_LT(hole->rxmit, hole->end)) {
850                         tp->sackhint.nexthole = hole;
851                         break;
852                 }
853         }
854 out:
855         return (hole);
856 }
857
858 /*
859  * After a timeout, the SACK list may be rebuilt.  This SACK information
860  * should be used to avoid retransmitting SACKed data.  This function
861  * traverses the SACK list to see if snd_nxt should be moved forward.
862  */
863 void
864 tcp_sack_adjust(struct tcpcb *tp)
865 {
866         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
867
868         INP_WLOCK_ASSERT(tp->t_inpcb);
869         if (cur == NULL)
870                 return; /* No holes */
871         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
872                 return; /* We're already beyond any SACKed blocks */
873         /*-
874          * Two cases for which we want to advance snd_nxt:
875          * i) snd_nxt lies between end of one hole and beginning of another
876          * ii) snd_nxt lies between end of last hole and snd_fack
877          */
878         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
879                 if (SEQ_LT(tp->snd_nxt, cur->end))
880                         return;
881                 if (SEQ_GEQ(tp->snd_nxt, p->start))
882                         cur = p;
883                 else {
884                         tp->snd_nxt = p->start;
885                         return;
886                 }
887         }
888         if (SEQ_LT(tp->snd_nxt, cur->end))
889                 return;
890         tp->snd_nxt = tp->snd_fack;
891 }