]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_sack.c
Merge ^/head r364082 through r364250.
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_sack.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *      The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
33  */
34
35 /*-
36  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *      This product includes software developed by the University of
50  *      California, Berkeley and its contributors.
51  *      This product includes software developed at the Information
52  *      Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_inet.h"
79 #include "opt_inet6.h"
80 #include "opt_tcpdebug.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/proc.h>           /* for proc0 declaration */
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/syslog.h>
93 #include <sys/systm.h>
94
95 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
96
97 #include <vm/uma.h>
98
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/route.h>
102 #include <net/vnet.h>
103
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip6.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/ip6_var.h>
114 #include <netinet6/in6_pcb.h>
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif /* TCPDEBUG */
125
126 #include <machine/in_cksum.h>
127
128 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
129 #define V_sack_hole_zone                VNET(sack_hole_zone)
130
131 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "TCP SACK");
133 VNET_DEFINE(int, tcp_do_sack) = 1;
134 #define V_tcp_do_sack                   VNET(tcp_do_sack)
135 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
136     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
137
138 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
139 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(tcp_sack_maxholes), 0,
141     "Maximum number of TCP SACK holes allowed per connection");
142
143 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
144 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_sack_globalmaxholes), 0,
146     "Global maximum number of TCP SACK holes");
147
148 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
149 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
150     &VNET_NAME(tcp_sack_globalholes), 0,
151     "Global number of TCP SACK holes currently allocated");
152
153
154 /*
155  * This function will find overlaps with the currently stored sackblocks
156  * and add any overlap as a dsack block upfront
157  */
158 void
159 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
160 {
161         struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
162         int i, j, n, identical;
163         tcp_seq start, end;
164
165         INP_WLOCK_ASSERT(tp->t_inpcb);
166
167         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
168
169         if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
170             ((rcv_end == tp->rcv_nxt) &&
171              (tp->rcv_numsacks > 0 ) &&
172              (tp->sackblks[0].end == tp->rcv_nxt))) {
173                 saved_blks[0].start = rcv_start;
174                 saved_blks[0].end = rcv_end;
175         } else {
176                 saved_blks[0].start = saved_blks[0].end = 0;
177         }
178
179         head_blk.start = head_blk.end = 0;
180         mid_blk.start = rcv_start;
181         mid_blk.end = rcv_end;
182         identical = 0;
183
184         for (i = 0; i < tp->rcv_numsacks; i++) {
185                 start = tp->sackblks[i].start;
186                 end = tp->sackblks[i].end;
187                 if (SEQ_LT(rcv_end, start)) {
188                         /* pkt left to sack blk */
189                         continue;
190                 }
191                 if (SEQ_GT(rcv_start, end)) {
192                         /* pkt right to sack blk */
193                         continue;
194                 }
195                 if (SEQ_GT(tp->rcv_nxt, end)) {
196                         if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
197                             (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
198                             (head_blk.start == head_blk.end))) {
199                                 head_blk.start = SEQ_MAX(rcv_start, start);
200                                 head_blk.end = SEQ_MIN(rcv_end, end);
201                         }
202                         continue;
203                 }
204                 if (((head_blk.start == head_blk.end) ||
205                      SEQ_LT(start, head_blk.start)) &&
206                      (SEQ_GT(end, rcv_start) &&
207                       SEQ_LEQ(start, rcv_end))) {
208                         head_blk.start = start;
209                         head_blk.end = end;
210                 }
211                 mid_blk.start = SEQ_MIN(mid_blk.start, start);
212                 mid_blk.end = SEQ_MAX(mid_blk.end, end);
213                 if ((mid_blk.start == start) &&
214                     (mid_blk.end == end))
215                         identical = 1;
216         }
217         if (SEQ_LT(head_blk.start, head_blk.end)) {
218                 /* store overlapping range */
219                 saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
220                 saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
221         }
222         n = 1;
223         /*
224          * Second, if not ACKed, store the SACK block that
225          * overlaps with the DSACK block unless it is identical
226          */
227         if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
228             !((mid_blk.start == saved_blks[0].start) &&
229             (mid_blk.end == saved_blks[0].end))) ||
230             identical == 1) {
231                 saved_blks[n].start = mid_blk.start;
232                 saved_blks[n++].end = mid_blk.end;
233         }
234         for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
235                 if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
236                       SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
237                     (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
238                 saved_blks[n++] = tp->sackblks[j];
239         }
240         j = 0;
241         for (i = 0; i < n; i++) {
242                 /* we can end up with a stale initial entry */
243                 if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
244                         tp->sackblks[j++] = saved_blks[i];
245                 }
246         }
247         tp->rcv_numsacks = j;
248 }
249
250 /*
251  * This function is called upon receipt of new valid data (while not in
252  * header prediction mode), and it updates the ordered list of sacks.
253  */
254 void
255 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
256 {
257         /*
258          * First reported block MUST be the most recent one.  Subsequent
259          * blocks SHOULD be in the order in which they arrived at the
260          * receiver.  These two conditions make the implementation fully
261          * compliant with RFC 2018.
262          */
263         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
264         int num_head, num_saved, i;
265
266         INP_WLOCK_ASSERT(tp->t_inpcb);
267
268         /* Check arguments. */
269         KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
270
271         if ((rcv_start == rcv_end) &&
272             (tp->rcv_numsacks >= 1) &&
273             (rcv_end == tp->sackblks[0].end)) {
274                 /* retaining DSACK block below rcv_nxt (todrop) */
275                 head_blk = tp->sackblks[0];
276         } else {
277                 /* SACK block for the received segment. */
278                 head_blk.start = rcv_start;
279                 head_blk.end = rcv_end;
280         }
281
282         /*
283          * Merge updated SACK blocks into head_blk, and save unchanged SACK
284          * blocks into saved_blks[].  num_saved will have the number of the
285          * saved SACK blocks.
286          */
287         num_saved = 0;
288         for (i = 0; i < tp->rcv_numsacks; i++) {
289                 tcp_seq start = tp->sackblks[i].start;
290                 tcp_seq end = tp->sackblks[i].end;
291                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
292                         /*
293                          * Discard this SACK block.
294                          */
295                 } else if (SEQ_LEQ(head_blk.start, end) &&
296                            SEQ_GEQ(head_blk.end, start)) {
297                         /*
298                          * Merge this SACK block into head_blk.  This SACK
299                          * block itself will be discarded.
300                          */
301                         /*
302                          * |-|
303                          *   |---|  merge
304                          *
305                          *     |-|
306                          * |---|    merge
307                          *
308                          * |-----|
309                          *   |-|    DSACK smaller
310                          *
311                          *   |-|
312                          * |-----|  DSACK smaller
313                          */
314                         if (head_blk.start == end)
315                                 head_blk.start = start;
316                         else if (head_blk.end == start)
317                                 head_blk.end = end;
318                         else {
319                                 if (SEQ_LT(head_blk.start, start)) {
320                                         tcp_seq temp = start;
321                                         start = head_blk.start;
322                                         head_blk.start = temp;
323                                 }
324                                 if (SEQ_GT(head_blk.end, end)) {
325                                         tcp_seq temp = end;
326                                         end = head_blk.end;
327                                         head_blk.end = temp;
328                                 }
329                                 if ((head_blk.start != start) ||
330                                     (head_blk.end != end)) {
331                                         if ((num_saved >= 1) &&
332                                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
333                                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
334                                                 num_saved--;
335                                         saved_blks[num_saved].start = start;
336                                         saved_blks[num_saved].end = end;
337                                         num_saved++;
338                                 }
339                         }
340                 } else {
341                         /*
342                          * This block supercedes the prior block
343                          */
344                         if ((num_saved >= 1) &&
345                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
346                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
347                                 num_saved--;
348                         /*
349                          * Save this SACK block.
350                          */
351                         saved_blks[num_saved].start = start;
352                         saved_blks[num_saved].end = end;
353                         num_saved++;
354                 }
355         }
356
357         /*
358          * Update SACK list in tp->sackblks[].
359          */
360         num_head = 0;
361         if (SEQ_LT(rcv_start, rcv_end)) {
362                 /*
363                  * The received data segment is an out-of-order segment.  Put
364                  * head_blk at the top of SACK list.
365                  */
366                 tp->sackblks[0] = head_blk;
367                 num_head = 1;
368                 /*
369                  * If the number of saved SACK blocks exceeds its limit,
370                  * discard the last SACK block.
371                  */
372                 if (num_saved >= MAX_SACK_BLKS)
373                         num_saved--;
374         }
375         if ((rcv_start == rcv_end) &&
376             (rcv_start == tp->sackblks[0].end)) {
377                 num_head = 1;
378         }
379         if (num_saved > 0) {
380                 /*
381                  * Copy the saved SACK blocks back.
382                  */
383                 bcopy(saved_blks, &tp->sackblks[num_head],
384                       sizeof(struct sackblk) * num_saved);
385         }
386
387         /* Save the number of SACK blocks. */
388         tp->rcv_numsacks = num_head + num_saved;
389 }
390
391 void
392 tcp_clean_dsack_blocks(struct tcpcb *tp)
393 {
394         struct sackblk saved_blks[MAX_SACK_BLKS];
395         int num_saved, i;
396
397         INP_WLOCK_ASSERT(tp->t_inpcb);
398         /*
399          * Clean up any DSACK blocks that
400          * are in our queue of sack blocks.
401          *
402          */
403         num_saved = 0;
404         for (i = 0; i < tp->rcv_numsacks; i++) {
405                 tcp_seq start = tp->sackblks[i].start;
406                 tcp_seq end = tp->sackblks[i].end;
407                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
408                         /*
409                          * Discard this D-SACK block.
410                          */
411                         continue;
412                 }
413                 /*
414                  * Save this SACK block.
415                  */
416                 saved_blks[num_saved].start = start;
417                 saved_blks[num_saved].end = end;
418                 num_saved++;
419         }
420         if (num_saved > 0) {
421                 /*
422                  * Copy the saved SACK blocks back.
423                  */
424                 bcopy(saved_blks, &tp->sackblks[0],
425                       sizeof(struct sackblk) * num_saved);
426         }
427         tp->rcv_numsacks = num_saved;
428 }
429
430 /*
431  * Delete all receiver-side SACK information.
432  */
433 void
434 tcp_clean_sackreport(struct tcpcb *tp)
435 {
436         int i;
437
438         INP_WLOCK_ASSERT(tp->t_inpcb);
439         tp->rcv_numsacks = 0;
440         for (i = 0; i < MAX_SACK_BLKS; i++)
441                 tp->sackblks[i].start = tp->sackblks[i].end=0;
442 }
443
444 /*
445  * Allocate struct sackhole.
446  */
447 static struct sackhole *
448 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
449 {
450         struct sackhole *hole;
451
452         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
453             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
454                 TCPSTAT_INC(tcps_sack_sboverflow);
455                 return NULL;
456         }
457
458         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
459         if (hole == NULL)
460                 return NULL;
461
462         hole->start = start;
463         hole->end = end;
464         hole->rxmit = start;
465
466         tp->snd_numholes++;
467         atomic_add_int(&V_tcp_sack_globalholes, 1);
468
469         return hole;
470 }
471
472 /*
473  * Free struct sackhole.
474  */
475 static void
476 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
477 {
478
479         uma_zfree(V_sack_hole_zone, hole);
480
481         tp->snd_numholes--;
482         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
483
484         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
485         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
486 }
487
488 /*
489  * Insert new SACK hole into scoreboard.
490  */
491 static struct sackhole *
492 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
493     struct sackhole *after)
494 {
495         struct sackhole *hole;
496
497         /* Allocate a new SACK hole. */
498         hole = tcp_sackhole_alloc(tp, start, end);
499         if (hole == NULL)
500                 return NULL;
501
502         /* Insert the new SACK hole into scoreboard. */
503         if (after != NULL)
504                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
505         else
506                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
507
508         /* Update SACK hint. */
509         if (tp->sackhint.nexthole == NULL)
510                 tp->sackhint.nexthole = hole;
511
512         return hole;
513 }
514
515 /*
516  * Remove SACK hole from scoreboard.
517  */
518 static void
519 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
520 {
521
522         /* Update SACK hint. */
523         if (tp->sackhint.nexthole == hole)
524                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
525
526         /* Remove this SACK hole. */
527         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
528
529         /* Free this SACK hole. */
530         tcp_sackhole_free(tp, hole);
531 }
532
533 /*
534  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
535  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
536  * the sequence space).
537  * Returns 1 if incoming ACK has previously unknown SACK information,
538  * 0 otherwise.
539  */
540 int
541 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
542 {
543         struct sackhole *cur, *temp;
544         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
545         int i, j, num_sack_blks, sack_changed;
546         int delivered_data, left_edge_delta;
547
548         INP_WLOCK_ASSERT(tp->t_inpcb);
549
550         num_sack_blks = 0;
551         sack_changed = 0;
552         delivered_data = 0;
553         left_edge_delta = 0;
554         /*
555          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
556          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
557          * Account changes to SND.UNA always in delivered data.
558          */
559         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
560                 left_edge_delta = th_ack - tp->snd_una;
561                 sack_blocks[num_sack_blks].start = tp->snd_una;
562                 sack_blocks[num_sack_blks++].end = th_ack;
563         }
564         /*
565          * Append received valid SACK blocks to sack_blocks[], but only if we
566          * received new blocks from the other side.
567          */
568         if (to->to_flags & TOF_SACK) {
569                 for (i = 0; i < to->to_nsacks; i++) {
570                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
571                             &sack, sizeof(sack));
572                         sack.start = ntohl(sack.start);
573                         sack.end = ntohl(sack.end);
574                         if (SEQ_GT(sack.end, sack.start) &&
575                             SEQ_GT(sack.start, tp->snd_una) &&
576                             SEQ_GT(sack.start, th_ack) &&
577                             SEQ_LT(sack.start, tp->snd_max) &&
578                             SEQ_GT(sack.end, tp->snd_una) &&
579                             SEQ_LEQ(sack.end, tp->snd_max)) {
580                                 sack_blocks[num_sack_blks++] = sack;
581                         }
582                 }
583         }
584         /*
585          * Return if SND.UNA is not advanced and no valid SACK block is
586          * received.
587          */
588         if (num_sack_blks == 0)
589                 return (sack_changed);
590
591         /*
592          * Sort the SACK blocks so we can update the scoreboard with just one
593          * pass. The overhead of sorting up to 4+1 elements is less than
594          * making up to 4+1 passes over the scoreboard.
595          */
596         for (i = 0; i < num_sack_blks; i++) {
597                 for (j = i + 1; j < num_sack_blks; j++) {
598                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
599                                 sack = sack_blocks[i];
600                                 sack_blocks[i] = sack_blocks[j];
601                                 sack_blocks[j] = sack;
602                         }
603                 }
604         }
605         if (TAILQ_EMPTY(&tp->snd_holes)) {
606                 /*
607                  * Empty scoreboard. Need to initialize snd_fack (it may be
608                  * uninitialized or have a bogus value). Scoreboard holes
609                  * (from the sack blocks received) are created later below
610                  * (in the logic that adds holes to the tail of the
611                  * scoreboard).
612                  */
613                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
614                 tp->sackhint.sacked_bytes = 0;  /* reset */
615         }
616         /*
617          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
618          * SACK holes (snd_holes) are traversed from their tails with just
619          * one pass in order to reduce the number of compares especially when
620          * the bandwidth-delay product is large.
621          *
622          * Note: Typically, in the first RTT of SACK recovery, the highest
623          * three or four SACK blocks with the same ack number are received.
624          * In the second RTT, if retransmitted data segments are not lost,
625          * the highest three or four SACK blocks with ack number advancing
626          * are received.
627          */
628         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
629         tp->sackhint.last_sack_ack = sblkp->end;
630         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
631                 /*
632                  * The highest SACK block is beyond fack.  Append new SACK
633                  * hole at the tail.  If the second or later highest SACK
634                  * blocks are also beyond the current fack, they will be
635                  * inserted by way of hole splitting in the while-loop below.
636                  */
637                 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
638                 if (temp != NULL) {
639                         delivered_data += sblkp->end - sblkp->start;
640                         tp->snd_fack = sblkp->end;
641                         /* Go to the previous sack block. */
642                         sblkp--;
643                         sack_changed = 1;
644                 } else {
645                         /*
646                          * We failed to add a new hole based on the current
647                          * sack block.  Skip over all the sack blocks that
648                          * fall completely to the right of snd_fack and
649                          * proceed to trim the scoreboard based on the
650                          * remaining sack blocks.  This also trims the
651                          * scoreboard for th_ack (which is sack_blocks[0]).
652                          */
653                         while (sblkp >= sack_blocks &&
654                                SEQ_LT(tp->snd_fack, sblkp->start))
655                                 sblkp--;
656                         if (sblkp >= sack_blocks &&
657                             SEQ_LT(tp->snd_fack, sblkp->end)) {
658                                 delivered_data += sblkp->end - tp->snd_fack;
659                                 tp->snd_fack = sblkp->end;
660                                 sack_changed = 1;
661                         }
662                 }
663         } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
664                 /* fack is advanced. */
665                 delivered_data += sblkp->end - tp->snd_fack;
666                 tp->snd_fack = sblkp->end;
667                 sack_changed = 1;
668         }
669         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
670         /*
671          * Since the incoming sack blocks are sorted, we can process them
672          * making one sweep of the scoreboard.
673          */
674         while (sblkp >= sack_blocks  && cur != NULL) {
675                 if (SEQ_GEQ(sblkp->start, cur->end)) {
676                         /*
677                          * SACKs data beyond the current hole.  Go to the
678                          * previous sack block.
679                          */
680                         sblkp--;
681                         continue;
682                 }
683                 if (SEQ_LEQ(sblkp->end, cur->start)) {
684                         /*
685                          * SACKs data before the current hole.  Go to the
686                          * previous hole.
687                          */
688                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
689                         continue;
690                 }
691                 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
692                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
693                     ("sackhint bytes rtx >= 0"));
694                 sack_changed = 1;
695                 if (SEQ_LEQ(sblkp->start, cur->start)) {
696                         /* Data acks at least the beginning of hole. */
697                         if (SEQ_GEQ(sblkp->end, cur->end)) {
698                                 /* Acks entire hole, so delete hole. */
699                                 delivered_data += (cur->end - cur->start);
700                                 temp = cur;
701                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
702                                 tcp_sackhole_remove(tp, temp);
703                                 /*
704                                  * The sack block may ack all or part of the
705                                  * next hole too, so continue onto the next
706                                  * hole.
707                                  */
708                                 continue;
709                         } else {
710                                 /* Move start of hole forward. */
711                                 delivered_data += (sblkp->end - cur->start);
712                                 cur->start = sblkp->end;
713                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
714                         }
715                 } else {
716                         /* Data acks at least the end of hole. */
717                         if (SEQ_GEQ(sblkp->end, cur->end)) {
718                                 /* Move end of hole backward. */
719                                 delivered_data += (cur->end - sblkp->start);
720                                 cur->end = sblkp->start;
721                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
722                         } else {
723                                 /*
724                                  * ACKs some data in middle of a hole; need
725                                  * to split current hole
726                                  */
727                                 temp = tcp_sackhole_insert(tp, sblkp->end,
728                                     cur->end, cur);
729                                 if (temp != NULL) {
730                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
731                                                 temp->rxmit = cur->rxmit;
732                                                 tp->sackhint.sack_bytes_rexmit
733                                                     += (temp->rxmit
734                                                     - temp->start);
735                                         }
736                                         cur->end = sblkp->start;
737                                         cur->rxmit = SEQ_MIN(cur->rxmit,
738                                             cur->end);
739                                         delivered_data += (sblkp->end - sblkp->start);
740                                 }
741                         }
742                 }
743                 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
744                 /*
745                  * Testing sblkp->start against cur->start tells us whether
746                  * we're done with the sack block or the sack hole.
747                  * Accordingly, we advance one or the other.
748                  */
749                 if (SEQ_LEQ(sblkp->start, cur->start))
750                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
751                 else
752                         sblkp--;
753         }
754         tp->sackhint.delivered_data = delivered_data;
755         tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
756         KASSERT((delivered_data >= 0), ("delivered_data < 0"));
757         KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
758         return (sack_changed);
759 }
760
761 /*
762  * Free all SACK holes to clear the scoreboard.
763  */
764 void
765 tcp_free_sackholes(struct tcpcb *tp)
766 {
767         struct sackhole *q;
768
769         INP_WLOCK_ASSERT(tp->t_inpcb);
770         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
771                 tcp_sackhole_remove(tp, q);
772         tp->sackhint.sack_bytes_rexmit = 0;
773
774         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
775         KASSERT(tp->sackhint.nexthole == NULL,
776                 ("tp->sackhint.nexthole == NULL"));
777 }
778
779 /*
780  * Partial ack handling within a sack recovery episode.  Keeping this very
781  * simple for now.  When a partial ack is received, force snd_cwnd to a value
782  * that will allow the sender to transmit no more than 2 segments.  If
783  * necessary, a better scheme can be adopted at a later point, but for now,
784  * the goal is to prevent the sender from bursting a large amount of data in
785  * the midst of sack recovery.
786  */
787 void
788 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
789 {
790         int num_segs = 1;
791
792         INP_WLOCK_ASSERT(tp->t_inpcb);
793         tcp_timer_activate(tp, TT_REXMT, 0);
794         tp->t_rtttime = 0;
795         /* Send one or 2 segments based on how much new data was acked. */
796         if ((BYTES_THIS_ACK(tp, th) / tp->t_maxseg) >= 2)
797                 num_segs = 2;
798         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
799             (tp->snd_nxt - tp->snd_recover) + num_segs * tp->t_maxseg);
800         if (tp->snd_cwnd > tp->snd_ssthresh)
801                 tp->snd_cwnd = tp->snd_ssthresh;
802         tp->t_flags |= TF_ACKNOW;
803         (void) tp->t_fb->tfb_tcp_output(tp);
804 }
805
806 #if 0
807 /*
808  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
809  * now to sanity check the hint.
810  */
811 static struct sackhole *
812 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
813 {
814         struct sackhole *p;
815
816         INP_WLOCK_ASSERT(tp->t_inpcb);
817         *sack_bytes_rexmt = 0;
818         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
819                 if (SEQ_LT(p->rxmit, p->end)) {
820                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
821                                 continue;
822                         }
823                         *sack_bytes_rexmt += (p->rxmit - p->start);
824                         break;
825                 }
826                 *sack_bytes_rexmt += (p->rxmit - p->start);
827         }
828         return (p);
829 }
830 #endif
831
832 /*
833  * Returns the next hole to retransmit and the number of retransmitted bytes
834  * from the scoreboard.  We store both the next hole and the number of
835  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
836  * reception).  This avoids scoreboard traversals completely.
837  *
838  * The loop here will traverse *at most* one link.  Here's the argument.  For
839  * the loop to traverse more than 1 link before finding the next hole to
840  * retransmit, we would need to have at least 1 node following the current
841  * hint with (rxmit == end).  But, for all holes following the current hint,
842  * (start == rxmit), since we have not yet retransmitted from them.
843  * Therefore, in order to traverse more 1 link in the loop below, we need to
844  * have at least one node following the current hint with (start == rxmit ==
845  * end).  But that can't happen, (start == end) means that all the data in
846  * that hole has been sacked, in which case, the hole would have been removed
847  * from the scoreboard.
848  */
849 struct sackhole *
850 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
851 {
852         struct sackhole *hole = NULL;
853
854         INP_WLOCK_ASSERT(tp->t_inpcb);
855         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
856         hole = tp->sackhint.nexthole;
857         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
858                 goto out;
859         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
860                 if (SEQ_LT(hole->rxmit, hole->end)) {
861                         tp->sackhint.nexthole = hole;
862                         break;
863                 }
864         }
865 out:
866         return (hole);
867 }
868
869 /*
870  * After a timeout, the SACK list may be rebuilt.  This SACK information
871  * should be used to avoid retransmitting SACKed data.  This function
872  * traverses the SACK list to see if snd_nxt should be moved forward.
873  */
874 void
875 tcp_sack_adjust(struct tcpcb *tp)
876 {
877         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
878
879         INP_WLOCK_ASSERT(tp->t_inpcb);
880         if (cur == NULL)
881                 return; /* No holes */
882         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
883                 return; /* We're already beyond any SACKed blocks */
884         /*-
885          * Two cases for which we want to advance snd_nxt:
886          * i) snd_nxt lies between end of one hole and beginning of another
887          * ii) snd_nxt lies between end of last hole and snd_fack
888          */
889         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
890                 if (SEQ_LT(tp->snd_nxt, cur->end))
891                         return;
892                 if (SEQ_GEQ(tp->snd_nxt, p->start))
893                         cur = p;
894                 else {
895                         tp->snd_nxt = p->start;
896                         return;
897                 }
898         }
899         if (SEQ_LT(tp->snd_nxt, cur->end))
900                 return;
901         tp->snd_nxt = tp->snd_fack;
902 }