]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_sack.c
Import device-tree files from Linux 5.19
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_sack.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *      The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
33  */
34
35 /*-
36  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *      This product includes software developed by the University of
50  *      California, Berkeley and its contributors.
51  *      This product includes software developed at the Information
52  *      Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_inet.h"
79 #include "opt_inet6.h"
80 #include "opt_tcpdebug.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/proc.h>           /* for proc0 declaration */
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/syslog.h>
93 #include <sys/systm.h>
94
95 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
96
97 #include <vm/uma.h>
98
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/route.h>
102 #include <net/vnet.h>
103
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip6.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/ip6_var.h>
114 #include <netinet6/in6_pcb.h>
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet/tcpip.h>
121 #include <netinet/cc/cc.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif /* TCPDEBUG */
125
126 #include <machine/in_cksum.h>
127
128 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
129 #define V_sack_hole_zone                VNET(sack_hole_zone)
130
131 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "TCP SACK");
133
134 VNET_DEFINE(int, tcp_do_sack) = 1;
135 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
136     &VNET_NAME(tcp_do_sack), 0,
137     "Enable/Disable TCP SACK support");
138
139 VNET_DEFINE(int, tcp_do_newsack) = 1;
140 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, revised, CTLFLAG_VNET | CTLFLAG_RW,
141     &VNET_NAME(tcp_do_newsack), 0,
142     "Use revised SACK loss recovery per RFC 6675");
143
144 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
145 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
146     &VNET_NAME(tcp_sack_maxholes), 0,
147     "Maximum number of TCP SACK holes allowed per connection");
148
149 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
150 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
151     &VNET_NAME(tcp_sack_globalmaxholes), 0,
152     "Global maximum number of TCP SACK holes");
153
154 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
155 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
156     &VNET_NAME(tcp_sack_globalholes), 0,
157     "Global number of TCP SACK holes currently allocated");
158
159 int
160 tcp_dsack_block_exists(struct tcpcb *tp)
161 {
162         /* Return true if a DSACK block exists */
163         if (tp->rcv_numsacks == 0)
164                 return (0);
165         if (SEQ_LEQ(tp->sackblks[0].end, tp->rcv_nxt))
166                 return(1);
167         return (0);
168 }
169
170 /*
171  * This function will find overlaps with the currently stored sackblocks
172  * and add any overlap as a dsack block upfront
173  */
174 void
175 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
176 {
177         struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
178         int i, j, n, identical;
179         tcp_seq start, end;
180
181         INP_WLOCK_ASSERT(tptoinpcb(tp));
182
183         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
184
185         if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
186             ((rcv_end == tp->rcv_nxt) &&
187              (tp->rcv_numsacks > 0 ) &&
188              (tp->sackblks[0].end == tp->rcv_nxt))) {
189                 saved_blks[0].start = rcv_start;
190                 saved_blks[0].end = rcv_end;
191         } else {
192                 saved_blks[0].start = saved_blks[0].end = 0;
193         }
194
195         head_blk.start = head_blk.end = 0;
196         mid_blk.start = rcv_start;
197         mid_blk.end = rcv_end;
198         identical = 0;
199
200         for (i = 0; i < tp->rcv_numsacks; i++) {
201                 start = tp->sackblks[i].start;
202                 end = tp->sackblks[i].end;
203                 if (SEQ_LT(rcv_end, start)) {
204                         /* pkt left to sack blk */
205                         continue;
206                 }
207                 if (SEQ_GT(rcv_start, end)) {
208                         /* pkt right to sack blk */
209                         continue;
210                 }
211                 if (SEQ_GT(tp->rcv_nxt, end)) {
212                         if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
213                             (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
214                             (head_blk.start == head_blk.end))) {
215                                 head_blk.start = SEQ_MAX(rcv_start, start);
216                                 head_blk.end = SEQ_MIN(rcv_end, end);
217                         }
218                         continue;
219                 }
220                 if (((head_blk.start == head_blk.end) ||
221                      SEQ_LT(start, head_blk.start)) &&
222                      (SEQ_GT(end, rcv_start) &&
223                       SEQ_LEQ(start, rcv_end))) {
224                         head_blk.start = start;
225                         head_blk.end = end;
226                 }
227                 mid_blk.start = SEQ_MIN(mid_blk.start, start);
228                 mid_blk.end = SEQ_MAX(mid_blk.end, end);
229                 if ((mid_blk.start == start) &&
230                     (mid_blk.end == end))
231                         identical = 1;
232         }
233         if (SEQ_LT(head_blk.start, head_blk.end)) {
234                 /* store overlapping range */
235                 saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
236                 saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
237         }
238         n = 1;
239         /*
240          * Second, if not ACKed, store the SACK block that
241          * overlaps with the DSACK block unless it is identical
242          */
243         if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
244             !((mid_blk.start == saved_blks[0].start) &&
245             (mid_blk.end == saved_blks[0].end))) ||
246             identical == 1) {
247                 saved_blks[n].start = mid_blk.start;
248                 saved_blks[n++].end = mid_blk.end;
249         }
250         for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
251                 if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
252                       SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
253                     (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
254                 saved_blks[n++] = tp->sackblks[j];
255         }
256         j = 0;
257         for (i = 0; i < n; i++) {
258                 /* we can end up with a stale initial entry */
259                 if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
260                         tp->sackblks[j++] = saved_blks[i];
261                 }
262         }
263         tp->rcv_numsacks = j;
264 }
265
266 /*
267  * This function is called upon receipt of new valid data (while not in
268  * header prediction mode), and it updates the ordered list of sacks.
269  */
270 void
271 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
272 {
273         /*
274          * First reported block MUST be the most recent one.  Subsequent
275          * blocks SHOULD be in the order in which they arrived at the
276          * receiver.  These two conditions make the implementation fully
277          * compliant with RFC 2018.
278          */
279         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
280         int num_head, num_saved, i;
281
282         INP_WLOCK_ASSERT(tptoinpcb(tp));
283
284         /* Check arguments. */
285         KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
286
287         if ((rcv_start == rcv_end) &&
288             (tp->rcv_numsacks >= 1) &&
289             (rcv_end == tp->sackblks[0].end)) {
290                 /* retaining DSACK block below rcv_nxt (todrop) */
291                 head_blk = tp->sackblks[0];
292         } else {
293                 /* SACK block for the received segment. */
294                 head_blk.start = rcv_start;
295                 head_blk.end = rcv_end;
296         }
297
298         /*
299          * Merge updated SACK blocks into head_blk, and save unchanged SACK
300          * blocks into saved_blks[].  num_saved will have the number of the
301          * saved SACK blocks.
302          */
303         num_saved = 0;
304         for (i = 0; i < tp->rcv_numsacks; i++) {
305                 tcp_seq start = tp->sackblks[i].start;
306                 tcp_seq end = tp->sackblks[i].end;
307                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
308                         /*
309                          * Discard this SACK block.
310                          */
311                 } else if (SEQ_LEQ(head_blk.start, end) &&
312                            SEQ_GEQ(head_blk.end, start)) {
313                         /*
314                          * Merge this SACK block into head_blk.  This SACK
315                          * block itself will be discarded.
316                          */
317                         /*
318                          * |-|
319                          *   |---|  merge
320                          *
321                          *     |-|
322                          * |---|    merge
323                          *
324                          * |-----|
325                          *   |-|    DSACK smaller
326                          *
327                          *   |-|
328                          * |-----|  DSACK smaller
329                          */
330                         if (head_blk.start == end)
331                                 head_blk.start = start;
332                         else if (head_blk.end == start)
333                                 head_blk.end = end;
334                         else {
335                                 if (SEQ_LT(head_blk.start, start)) {
336                                         tcp_seq temp = start;
337                                         start = head_blk.start;
338                                         head_blk.start = temp;
339                                 }
340                                 if (SEQ_GT(head_blk.end, end)) {
341                                         tcp_seq temp = end;
342                                         end = head_blk.end;
343                                         head_blk.end = temp;
344                                 }
345                                 if ((head_blk.start != start) ||
346                                     (head_blk.end != end)) {
347                                         if ((num_saved >= 1) &&
348                                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
349                                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
350                                                 num_saved--;
351                                         saved_blks[num_saved].start = start;
352                                         saved_blks[num_saved].end = end;
353                                         num_saved++;
354                                 }
355                         }
356                 } else {
357                         /*
358                          * This block supercedes the prior block
359                          */
360                         if ((num_saved >= 1) &&
361                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
362                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
363                                 num_saved--;
364                         /*
365                          * Save this SACK block.
366                          */
367                         saved_blks[num_saved].start = start;
368                         saved_blks[num_saved].end = end;
369                         num_saved++;
370                 }
371         }
372
373         /*
374          * Update SACK list in tp->sackblks[].
375          */
376         num_head = 0;
377         if (SEQ_LT(rcv_start, rcv_end)) {
378                 /*
379                  * The received data segment is an out-of-order segment.  Put
380                  * head_blk at the top of SACK list.
381                  */
382                 tp->sackblks[0] = head_blk;
383                 num_head = 1;
384                 /*
385                  * If the number of saved SACK blocks exceeds its limit,
386                  * discard the last SACK block.
387                  */
388                 if (num_saved >= MAX_SACK_BLKS)
389                         num_saved--;
390         }
391         if ((rcv_start == rcv_end) &&
392             (rcv_start == tp->sackblks[0].end)) {
393                 num_head = 1;
394         }
395         if (num_saved > 0) {
396                 /*
397                  * Copy the saved SACK blocks back.
398                  */
399                 bcopy(saved_blks, &tp->sackblks[num_head],
400                       sizeof(struct sackblk) * num_saved);
401         }
402
403         /* Save the number of SACK blocks. */
404         tp->rcv_numsacks = num_head + num_saved;
405 }
406
407 void
408 tcp_clean_dsack_blocks(struct tcpcb *tp)
409 {
410         struct sackblk saved_blks[MAX_SACK_BLKS];
411         int num_saved, i;
412
413         INP_WLOCK_ASSERT(tptoinpcb(tp));
414         /*
415          * Clean up any DSACK blocks that
416          * are in our queue of sack blocks.
417          *
418          */
419         num_saved = 0;
420         for (i = 0; i < tp->rcv_numsacks; i++) {
421                 tcp_seq start = tp->sackblks[i].start;
422                 tcp_seq end = tp->sackblks[i].end;
423                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
424                         /*
425                          * Discard this D-SACK block.
426                          */
427                         continue;
428                 }
429                 /*
430                  * Save this SACK block.
431                  */
432                 saved_blks[num_saved].start = start;
433                 saved_blks[num_saved].end = end;
434                 num_saved++;
435         }
436         if (num_saved > 0) {
437                 /*
438                  * Copy the saved SACK blocks back.
439                  */
440                 bcopy(saved_blks, &tp->sackblks[0],
441                       sizeof(struct sackblk) * num_saved);
442         }
443         tp->rcv_numsacks = num_saved;
444 }
445
446 /*
447  * Delete all receiver-side SACK information.
448  */
449 void
450 tcp_clean_sackreport(struct tcpcb *tp)
451 {
452         int i;
453
454         INP_WLOCK_ASSERT(tptoinpcb(tp));
455         tp->rcv_numsacks = 0;
456         for (i = 0; i < MAX_SACK_BLKS; i++)
457                 tp->sackblks[i].start = tp->sackblks[i].end=0;
458 }
459
460 /*
461  * Allocate struct sackhole.
462  */
463 static struct sackhole *
464 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
465 {
466         struct sackhole *hole;
467
468         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
469             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
470                 TCPSTAT_INC(tcps_sack_sboverflow);
471                 return NULL;
472         }
473
474         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
475         if (hole == NULL)
476                 return NULL;
477
478         hole->start = start;
479         hole->end = end;
480         hole->rxmit = start;
481
482         tp->snd_numholes++;
483         atomic_add_int(&V_tcp_sack_globalholes, 1);
484
485         return hole;
486 }
487
488 /*
489  * Free struct sackhole.
490  */
491 static void
492 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
493 {
494
495         uma_zfree(V_sack_hole_zone, hole);
496
497         tp->snd_numholes--;
498         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
499
500         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
501         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
502 }
503
504 /*
505  * Insert new SACK hole into scoreboard.
506  */
507 static struct sackhole *
508 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
509     struct sackhole *after)
510 {
511         struct sackhole *hole;
512
513         /* Allocate a new SACK hole. */
514         hole = tcp_sackhole_alloc(tp, start, end);
515         if (hole == NULL)
516                 return NULL;
517
518         /* Insert the new SACK hole into scoreboard. */
519         if (after != NULL)
520                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
521         else
522                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
523
524         /* Update SACK hint. */
525         if (tp->sackhint.nexthole == NULL)
526                 tp->sackhint.nexthole = hole;
527
528         return hole;
529 }
530
531 /*
532  * Remove SACK hole from scoreboard.
533  */
534 static void
535 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
536 {
537
538         /* Update SACK hint. */
539         if (tp->sackhint.nexthole == hole)
540                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
541
542         /* Remove this SACK hole. */
543         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
544
545         /* Free this SACK hole. */
546         tcp_sackhole_free(tp, hole);
547 }
548
549 /*
550  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
551  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
552  * the sequence space).
553  * Returns 1 if incoming ACK has previously unknown SACK information,
554  * 0 otherwise.
555  */
556 int
557 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
558 {
559         struct sackhole *cur, *temp;
560         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
561         int i, j, num_sack_blks, sack_changed;
562         int delivered_data, left_edge_delta;
563
564         INP_WLOCK_ASSERT(tptoinpcb(tp));
565
566         num_sack_blks = 0;
567         sack_changed = 0;
568         delivered_data = 0;
569         left_edge_delta = 0;
570         /*
571          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
572          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
573          * Account changes to SND.UNA always in delivered data.
574          */
575         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
576                 left_edge_delta = th_ack - tp->snd_una;
577                 sack_blocks[num_sack_blks].start = tp->snd_una;
578                 sack_blocks[num_sack_blks++].end = th_ack;
579                 /*
580                  * Pulling snd_fack forward if we got here
581                  * due to DSACK blocks
582                  */
583                 if (SEQ_LT(tp->snd_fack, th_ack)) {
584                         delivered_data += th_ack - tp->snd_una;
585                         tp->snd_fack = th_ack;
586                         sack_changed = 1;
587                 }
588         }
589         /*
590          * Append received valid SACK blocks to sack_blocks[], but only if we
591          * received new blocks from the other side.
592          */
593         if (to->to_flags & TOF_SACK) {
594                 for (i = 0; i < to->to_nsacks; i++) {
595                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
596                             &sack, sizeof(sack));
597                         sack.start = ntohl(sack.start);
598                         sack.end = ntohl(sack.end);
599                         if (SEQ_GT(sack.end, sack.start) &&
600                             SEQ_GT(sack.start, tp->snd_una) &&
601                             SEQ_GT(sack.start, th_ack) &&
602                             SEQ_LT(sack.start, tp->snd_max) &&
603                             SEQ_GT(sack.end, tp->snd_una) &&
604                             SEQ_LEQ(sack.end, tp->snd_max)) {
605                                 sack_blocks[num_sack_blks++] = sack;
606                         } else if (SEQ_LEQ(sack.start, th_ack) &&
607                             SEQ_LEQ(sack.end, th_ack)) {
608                                 /*
609                                  * Its a D-SACK block.
610                                  */
611                                 tcp_record_dsack(tp, sack.start, sack.end, 0);
612                         }
613                 }
614         }
615         /*
616          * Return if SND.UNA is not advanced and no valid SACK block is
617          * received.
618          */
619         if (num_sack_blks == 0)
620                 return (sack_changed);
621
622         /*
623          * Sort the SACK blocks so we can update the scoreboard with just one
624          * pass. The overhead of sorting up to 4+1 elements is less than
625          * making up to 4+1 passes over the scoreboard.
626          */
627         for (i = 0; i < num_sack_blks; i++) {
628                 for (j = i + 1; j < num_sack_blks; j++) {
629                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
630                                 sack = sack_blocks[i];
631                                 sack_blocks[i] = sack_blocks[j];
632                                 sack_blocks[j] = sack;
633                         }
634                 }
635         }
636         if (TAILQ_EMPTY(&tp->snd_holes)) {
637                 /*
638                  * Empty scoreboard. Need to initialize snd_fack (it may be
639                  * uninitialized or have a bogus value). Scoreboard holes
640                  * (from the sack blocks received) are created later below
641                  * (in the logic that adds holes to the tail of the
642                  * scoreboard).
643                  */
644                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
645                 tp->sackhint.sacked_bytes = 0;  /* reset */
646         }
647         /*
648          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
649          * SACK holes (snd_holes) are traversed from their tails with just
650          * one pass in order to reduce the number of compares especially when
651          * the bandwidth-delay product is large.
652          *
653          * Note: Typically, in the first RTT of SACK recovery, the highest
654          * three or four SACK blocks with the same ack number are received.
655          * In the second RTT, if retransmitted data segments are not lost,
656          * the highest three or four SACK blocks with ack number advancing
657          * are received.
658          */
659         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
660         tp->sackhint.last_sack_ack = sblkp->end;
661         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
662                 /*
663                  * The highest SACK block is beyond fack.  First,
664                  * check if there was a successful Rescue Retransmission,
665                  * and move this hole left. With normal holes, snd_fack
666                  * is always to the right of the end.
667                  */
668                 if (((temp = TAILQ_LAST(&tp->snd_holes, sackhole_head)) != NULL) &&
669                     SEQ_LEQ(tp->snd_fack,temp->end)) {
670                         temp->start = SEQ_MAX(tp->snd_fack, SEQ_MAX(tp->snd_una, th_ack));
671                         temp->end = sblkp->start;
672                         temp->rxmit = temp->start;
673                         delivered_data += sblkp->end - sblkp->start;
674                         tp->snd_fack = sblkp->end;
675                         sblkp--;
676                         sack_changed = 1;
677                 } else {
678                         /*
679                          * Append a new SACK hole at the tail.  If the
680                          * second or later highest SACK blocks are also
681                          * beyond the current fack, they will be inserted
682                          * by way of hole splitting in the while-loop below.
683                          */
684                         temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
685                         if (temp != NULL) {
686                                 delivered_data += sblkp->end - sblkp->start;
687                                 tp->snd_fack = sblkp->end;
688                                 /* Go to the previous sack block. */
689                                 sblkp--;
690                                 sack_changed = 1;
691                         } else {
692                                 /*
693                                  * We failed to add a new hole based on the current
694                                  * sack block.  Skip over all the sack blocks that
695                                  * fall completely to the right of snd_fack and
696                                  * proceed to trim the scoreboard based on the
697                                  * remaining sack blocks.  This also trims the
698                                  * scoreboard for th_ack (which is sack_blocks[0]).
699                                  */
700                                 while (sblkp >= sack_blocks &&
701                                        SEQ_LT(tp->snd_fack, sblkp->start))
702                                         sblkp--;
703                                 if (sblkp >= sack_blocks &&
704                                     SEQ_LT(tp->snd_fack, sblkp->end)) {
705                                         delivered_data += sblkp->end - tp->snd_fack;
706                                         tp->snd_fack = sblkp->end;
707                                         sack_changed = 1;
708                                 }
709                         }
710                 }
711         } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
712                 /* fack is advanced. */
713                 delivered_data += sblkp->end - tp->snd_fack;
714                 tp->snd_fack = sblkp->end;
715                 sack_changed = 1;
716         }
717         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
718         /*
719          * Since the incoming sack blocks are sorted, we can process them
720          * making one sweep of the scoreboard.
721          */
722         while (sblkp >= sack_blocks  && cur != NULL) {
723                 if (SEQ_GEQ(sblkp->start, cur->end)) {
724                         /*
725                          * SACKs data beyond the current hole.  Go to the
726                          * previous sack block.
727                          */
728                         sblkp--;
729                         continue;
730                 }
731                 if (SEQ_LEQ(sblkp->end, cur->start)) {
732                         /*
733                          * SACKs data before the current hole.  Go to the
734                          * previous hole.
735                          */
736                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
737                         continue;
738                 }
739                 tp->sackhint.sack_bytes_rexmit -=
740                     (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
741                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
742                     ("sackhint bytes rtx >= 0"));
743                 sack_changed = 1;
744                 if (SEQ_LEQ(sblkp->start, cur->start)) {
745                         /* Data acks at least the beginning of hole. */
746                         if (SEQ_GEQ(sblkp->end, cur->end)) {
747                                 /* Acks entire hole, so delete hole. */
748                                 delivered_data += (cur->end - cur->start);
749                                 temp = cur;
750                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
751                                 tcp_sackhole_remove(tp, temp);
752                                 /*
753                                  * The sack block may ack all or part of the
754                                  * next hole too, so continue onto the next
755                                  * hole.
756                                  */
757                                 continue;
758                         } else {
759                                 /* Move start of hole forward. */
760                                 delivered_data += (sblkp->end - cur->start);
761                                 cur->start = sblkp->end;
762                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
763                         }
764                 } else {
765                         /* Data acks at least the end of hole. */
766                         if (SEQ_GEQ(sblkp->end, cur->end)) {
767                                 /* Move end of hole backward. */
768                                 delivered_data += (cur->end - sblkp->start);
769                                 cur->end = sblkp->start;
770                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
771                                 if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
772                                         cur->rxmit = tp->snd_recover;
773                         } else {
774                                 /*
775                                  * ACKs some data in middle of a hole; need
776                                  * to split current hole
777                                  */
778                                 temp = tcp_sackhole_insert(tp, sblkp->end,
779                                     cur->end, cur);
780                                 if (temp != NULL) {
781                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
782                                                 temp->rxmit = cur->rxmit;
783                                                 tp->sackhint.sack_bytes_rexmit +=
784                                                     (SEQ_MIN(temp->rxmit,
785                                                     temp->end) - temp->start);
786                                         }
787                                         cur->end = sblkp->start;
788                                         cur->rxmit = SEQ_MIN(cur->rxmit,
789                                             cur->end);
790                                         if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
791                                                 cur->rxmit = tp->snd_recover;
792                                         delivered_data += (sblkp->end - sblkp->start);
793                                 }
794                         }
795                 }
796                 tp->sackhint.sack_bytes_rexmit +=
797                     (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
798                 /*
799                  * Testing sblkp->start against cur->start tells us whether
800                  * we're done with the sack block or the sack hole.
801                  * Accordingly, we advance one or the other.
802                  */
803                 if (SEQ_LEQ(sblkp->start, cur->start))
804                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
805                 else
806                         sblkp--;
807         }
808         if (!(to->to_flags & TOF_SACK))
809                 /*
810                  * If this ACK did not contain any
811                  * SACK blocks, any only moved the
812                  * left edge right, it is a pure
813                  * cumulative ACK. Do not count
814                  * DupAck for this. Also required
815                  * for RFC6675 rescue retransmission.
816                  */
817                 sack_changed = 0;
818         tp->sackhint.delivered_data = delivered_data;
819         tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
820         KASSERT((delivered_data >= 0), ("delivered_data < 0"));
821         KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
822         return (sack_changed);
823 }
824
825 /*
826  * Free all SACK holes to clear the scoreboard.
827  */
828 void
829 tcp_free_sackholes(struct tcpcb *tp)
830 {
831         struct sackhole *q;
832
833         INP_WLOCK_ASSERT(tptoinpcb(tp));
834         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
835                 tcp_sackhole_remove(tp, q);
836         tp->sackhint.sack_bytes_rexmit = 0;
837
838         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
839         KASSERT(tp->sackhint.nexthole == NULL,
840                 ("tp->sackhint.nexthole == NULL"));
841 }
842
843 /*
844  * Partial ack handling within a sack recovery episode.  Keeping this very
845  * simple for now.  When a partial ack is received, force snd_cwnd to a value
846  * that will allow the sender to transmit no more than 2 segments.  If
847  * necessary, a better scheme can be adopted at a later point, but for now,
848  * the goal is to prevent the sender from bursting a large amount of data in
849  * the midst of sack recovery.
850  */
851 void
852 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
853 {
854         int num_segs = 1;
855         u_int maxseg = tcp_maxseg(tp);
856
857         INP_WLOCK_ASSERT(tptoinpcb(tp));
858         tcp_timer_activate(tp, TT_REXMT, 0);
859         tp->t_rtttime = 0;
860         /* Send one or 2 segments based on how much new data was acked. */
861         if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
862                 num_segs = 2;
863         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
864             (tp->snd_nxt - tp->snd_recover) + num_segs * maxseg);
865         if (tp->snd_cwnd > tp->snd_ssthresh)
866                 tp->snd_cwnd = tp->snd_ssthresh;
867         tp->t_flags |= TF_ACKNOW;
868         /*
869          * RFC6675 rescue retransmission
870          * Add a hole between th_ack (snd_una is not yet set) and snd_max,
871          * if this was a pure cumulative ACK and no data was send beyond
872          * recovery point. Since the data in the socket has not been freed
873          * at this point, we check if the scoreboard is empty, and the ACK
874          * delivered some new data, indicating a full ACK. Also, if the
875          * recovery point is still at snd_max, we are probably application
876          * limited. However, this inference might not always be true. The
877          * rescue retransmission may rarely be slightly premature
878          * compared to RFC6675.
879          * The corresponding ACK+SACK will cause any further outstanding
880          * segments to be retransmitted. This addresses a corner case, when
881          * the trailing packets of a window are lost and no further data
882          * is available for sending.
883          */
884         if ((V_tcp_do_newsack) &&
885             SEQ_LT(th->th_ack, tp->snd_recover) &&
886             (tp->snd_recover == tp->snd_max) &&
887             TAILQ_EMPTY(&tp->snd_holes) &&
888             (tp->sackhint.delivered_data > 0)) {
889                 /*
890                  * Exclude FIN sequence space in
891                  * the hole for the rescue retransmission,
892                  * and also don't create a hole, if only
893                  * the ACK for a FIN is outstanding.
894                  */
895                 tcp_seq highdata = tp->snd_max;
896                 if (tp->t_flags & TF_SENTFIN)
897                         highdata--;
898                 if (th->th_ack != highdata) {
899                         tp->snd_fack = th->th_ack;
900                         (void)tcp_sackhole_insert(tp, SEQ_MAX(th->th_ack,
901                             highdata - maxseg), highdata, NULL);
902                 }
903         }
904         (void) tcp_output(tp);
905 }
906
907 #if 0
908 /*
909  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
910  * now to sanity check the hint.
911  */
912 static struct sackhole *
913 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
914 {
915         struct sackhole *p;
916
917         INP_WLOCK_ASSERT(tptoinpcb(tp));
918         *sack_bytes_rexmt = 0;
919         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
920                 if (SEQ_LT(p->rxmit, p->end)) {
921                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
922                                 continue;
923                         }
924                         *sack_bytes_rexmt += (p->rxmit - p->start);
925                         break;
926                 }
927                 *sack_bytes_rexmt += (SEQ_MIN(p->rxmit, p->end) - p->start);
928         }
929         return (p);
930 }
931 #endif
932
933 /*
934  * Returns the next hole to retransmit and the number of retransmitted bytes
935  * from the scoreboard.  We store both the next hole and the number of
936  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
937  * reception).  This avoids scoreboard traversals completely.
938  *
939  * The loop here will traverse *at most* one link.  Here's the argument.  For
940  * the loop to traverse more than 1 link before finding the next hole to
941  * retransmit, we would need to have at least 1 node following the current
942  * hint with (rxmit == end).  But, for all holes following the current hint,
943  * (start == rxmit), since we have not yet retransmitted from them.
944  * Therefore, in order to traverse more 1 link in the loop below, we need to
945  * have at least one node following the current hint with (start == rxmit ==
946  * end).  But that can't happen, (start == end) means that all the data in
947  * that hole has been sacked, in which case, the hole would have been removed
948  * from the scoreboard.
949  */
950 struct sackhole *
951 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
952 {
953         struct sackhole *hole = NULL;
954
955         INP_WLOCK_ASSERT(tptoinpcb(tp));
956         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
957         hole = tp->sackhint.nexthole;
958         if (hole == NULL)
959                 return (hole);
960         if (SEQ_GEQ(hole->rxmit, hole->end)) {
961                 for (;;) {
962                         hole = TAILQ_NEXT(hole, scblink);
963                         if (hole == NULL)
964                                 return (hole);
965                         if (SEQ_LT(hole->rxmit, hole->end)) {
966                                 tp->sackhint.nexthole = hole;
967                                 break;
968                         }
969                 }
970         }
971         KASSERT(SEQ_LT(hole->start, hole->end), ("%s: hole.start >= hole.end", __func__));
972         if (!(V_tcp_do_newsack)) {
973                 KASSERT(SEQ_LT(hole->start, tp->snd_fack), ("%s: hole.start >= snd.fack", __func__));
974                 KASSERT(SEQ_LT(hole->end, tp->snd_fack), ("%s: hole.end >= snd.fack", __func__));
975                 KASSERT(SEQ_LT(hole->rxmit, tp->snd_fack), ("%s: hole.rxmit >= snd.fack", __func__));
976                 if (SEQ_GEQ(hole->start, hole->end) ||
977                     SEQ_GEQ(hole->start, tp->snd_fack) ||
978                     SEQ_GEQ(hole->end, tp->snd_fack) ||
979                     SEQ_GEQ(hole->rxmit, tp->snd_fack)) {
980                         log(LOG_CRIT,"tcp: invalid SACK hole (%u-%u,%u) vs fwd ack %u, ignoring.\n",
981                                         hole->start, hole->end, hole->rxmit, tp->snd_fack);
982                         return (NULL);
983                 }
984         }
985         return (hole);
986 }
987
988 /*
989  * After a timeout, the SACK list may be rebuilt.  This SACK information
990  * should be used to avoid retransmitting SACKed data.  This function
991  * traverses the SACK list to see if snd_nxt should be moved forward.
992  */
993 void
994 tcp_sack_adjust(struct tcpcb *tp)
995 {
996         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
997
998         INP_WLOCK_ASSERT(tptoinpcb(tp));
999         if (cur == NULL)
1000                 return; /* No holes */
1001         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
1002                 return; /* We're already beyond any SACKed blocks */
1003         /*-
1004          * Two cases for which we want to advance snd_nxt:
1005          * i) snd_nxt lies between end of one hole and beginning of another
1006          * ii) snd_nxt lies between end of last hole and snd_fack
1007          */
1008         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
1009                 if (SEQ_LT(tp->snd_nxt, cur->end))
1010                         return;
1011                 if (SEQ_GEQ(tp->snd_nxt, p->start))
1012                         cur = p;
1013                 else {
1014                         tp->snd_nxt = p->start;
1015                         return;
1016                 }
1017         }
1018         if (SEQ_LT(tp->snd_nxt, cur->end))
1019                 return;
1020         tp->snd_nxt = tp->snd_fack;
1021 }
1022
1023 /*
1024  * Lost Retransmission Detection
1025  * Check is FACK is beyond the rexmit of the leftmost hole.
1026  * If yes, we restart sending from still existing holes,
1027  * and adjust cwnd via the congestion control module.
1028  */
1029 void
1030 tcp_sack_lost_retransmission(struct tcpcb *tp, struct tcphdr *th)
1031 {
1032         struct sackhole *temp;
1033
1034         if (IN_RECOVERY(tp->t_flags) &&
1035             SEQ_GT(tp->snd_fack, tp->snd_recover) &&
1036             ((temp = TAILQ_FIRST(&tp->snd_holes)) != NULL) &&
1037             SEQ_GEQ(temp->rxmit, temp->end) &&
1038             SEQ_GEQ(tp->snd_fack, temp->rxmit)) {
1039                 TCPSTAT_INC(tcps_sack_lostrexmt);
1040                 /*
1041                  * Start retransmissions from the first hole, and
1042                  * subsequently all other remaining holes, including
1043                  * those, which had been sent completely before.
1044                  */
1045                 tp->sackhint.nexthole = temp;
1046                 TAILQ_FOREACH(temp, &tp->snd_holes, scblink) {
1047                         if (SEQ_GEQ(tp->snd_fack, temp->rxmit) &&
1048                             SEQ_GEQ(temp->rxmit, temp->end))
1049                                 temp->rxmit = temp->start;
1050                 }
1051                 /*
1052                  * Remember the old ssthresh, to deduct the beta factor used
1053                  * by the CC module. Finally, set cwnd to ssthresh just
1054                  * prior to invoking another cwnd reduction by the CC
1055                  * module, to not shrink it excessively.
1056                  */
1057                 tp->snd_cwnd = tp->snd_ssthresh;
1058                 /*
1059                  * Formally exit recovery, and let the CC module adjust
1060                  * ssthresh as intended.
1061                  */
1062                 EXIT_RECOVERY(tp->t_flags);
1063                 cc_cong_signal(tp, th, CC_NDUPACK);
1064                 /*
1065                  * For PRR, adjust recover_fs as if this new reduction
1066                  * initialized this variable.
1067                  * cwnd will be adjusted by SACK or PRR processing
1068                  * subsequently, only set it to a safe value here.
1069                  */
1070                 tp->snd_cwnd = tcp_maxseg(tp);
1071                 tp->sackhint.recover_fs = (tp->snd_max - tp->snd_una) -
1072                                             tp->sackhint.recover_fs;
1073         }
1074 }